Proof of the Kresch-Tamvakis Conjecture

John Caughman
Portland State University, caughman@pdx.edu

Taiyo S. Terada
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac
Part of the Physical Sciences and Mathematics Commons
Let us know how access to this document benefits you.

Citation Details

Published as: Caughman, J., \& Terada, T. (2024). Proof of the Kresch-Tamvakis conjecture. Proceedings of the American Mathematical Society, 152(03), 1265-1277.

Proof of the Kresch-Tamvakis Conjecture

John S. Caughmand and Taiyo S. Terada

September 19, 2023

Abstract

In this paper we resolve a conjecture of Kresch and Tamvakis [5]. Our result is the following. Theorem: For any positive integer D and any integers $i, j(0 \leq i, j \leq D)$, the absolute value of the following hypergeometric series is at most 1 : $$
{ }_{4} F_{3}\left[\begin{array}{c} -i, i+1,-j, j+1 \\ 1, D+2,-D \end{array} ; 1\right] .
$$

To prove this theorem, we use the Biedenharn-Elliott identity, the theory of Leonard pairs, and the Perron-Frobenius theorem.

Keywords. Racah polynomial; Biedenharn-Elliott identity; Leonard pair; 6-j symbols. 2020 Mathematics Subject Classification. Primary 33C45; Secondary 26D15.

1 Introduction

In 2001, Kresch and Tamvakis conjectured an inequality involving certain terminating ${ }_{4} F_{3}$ hypergeometric series [5, Conjecture 2]. In this paper, we prove the conjecture.
To describe the conjecture, we bring in some notation. For any real number a and nonnegative integer n, define

$$
\begin{equation*}
(a)_{n}=a(a+1)(a+2) \cdots(a+n-1) . \tag{1}
\end{equation*}
$$

Let z denote an indeterminate. Given real numbers $\left\{a_{i}\right\}_{i=1}^{4}$ and $\left\{b_{i}\right\}_{i=1}^{3}$, the corresponding ${ }_{4} F_{3}$ hypergeometric series is defined by

$$
{ }_{4} F_{3}\left[\begin{array}{c}
a_{1}, a_{2}, a_{3}, a_{4} \tag{2}\\
b_{1}, b_{2}, b_{3}
\end{array} ; z\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}\left(a_{3}\right)_{n}\left(a_{4}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n}\left(b_{3}\right)_{n}} \frac{z^{n}}{n!}
$$

We now state the conjecture of Kresch and Tamvakis.
Conjecture 1.1. [5, Conjecture 2] For any positive integer D and any integers $i, j(0 \leq i, j \leq D)$, the absolute value of the following hypergeometric series is at most 1:

$$
{ }_{4} F_{3}\left[\begin{array}{c}
-i, i+1,-j, j+1 \tag{3}\\
1, D+2,-D
\end{array} ; 1\right] .
$$

Note 1.2. Conjecture 1.1 is taken from [5, Conjecture 2] with

$$
n=i, \quad s=j, \quad T=D+1
$$

[^0]Next we discuss the evidence for Conjecture 1.1 offered by Kresch, Tamvakis, and others.
In [5] Proposition 2], Kresch and Tamvakis prove that the absolute value of (3) is at most 1, provided that $i \leq 3$ or $i=D$. In [4, p. 863], Ismail and Simeonov prove that the absolute value of (3) is at most 1, provided that $i=D-1$ and $D \geq 6$. They also give asymptotic estimates to further support the conjecture. In [7], Mishev obtains several relations satisfied by the ${ }_{4} F_{3}$ hypergeometric series in question.

In this paper, we prove Conjecture 1.1 from scratch, without invoking the above partial results. The following is a statement of our result.

Theorem 1.3. For any positive integer D and any integers $i, j(0 \leq i, j \leq D)$, the absolute value of the following hypergeometric series is at most 1:

$$
{ }_{4} F_{3}\left[\begin{array}{c}
-i, i+1,-j, j+1 \\
1, D+2,-D
\end{array} ; 1\right] .
$$

To prove Theorem 1.3 we use the following approach. For $0 \leq i \leq D$ we define a certain matrix $B_{i} \in$ $\operatorname{Mat}_{D+1}(\mathbb{R})$. Using the Biedenharn-Elliott identity [1, p. 356], we show that the entries of B_{i} are nonnegative. Using the theory of Leonard pairs [8] , we show that the eigenvalues of B_{i} are $2 i+1$ times

$$
{ }_{4} F_{3}\left[\begin{array}{c}
-i, i+1,-j, j+1 \\
1, D+2,-D
\end{array} ; 1\right] \quad(0 \leq j \leq D)
$$

We also show that the all 1 's vector in \mathbb{R}^{D+1} is an eigenvector for B_{i} with eigenvalue $2 i+1$. Applying the Perron-Frobenius theorem [3, p. 529], we show that the eigenvalues of B_{i} have absolute value at most $2 i+1$. Using these results, we obtain the proof of Theorem 1.3
This paper is organized as follows. In Section 2, we recall the definition of a Leonard pair and give an example relevant to our work. In Section 3, we use the Leonard pair in Section 2 to define a sequence of orthogonal polynomials. In Section 4, we use these orthogonal polynomials to define the matrices $\left\{B_{i}\right\}_{i=0}^{D}$. We then compute the eigenvalues of $\left\{B_{i}\right\}_{i=0}^{D}$. In Section 5, we show that the entries of B_{i} are nonnegative for $0 \leq i \leq D$. In Section 6, we use the Perron-Frobenius theorem to prove Theorem 1.3, In the appendix, we give some details about a key formula in our proof.
Throughout this paper, the square root of a nonnegative real number is understood to be nonnegative.

2 Leonard pairs

Throughout this paper, D denotes a positive integer. Let $\operatorname{Mat}_{D+1}(\mathbb{R})$ denote the \mathbb{R}-algebra of all $(D+1) \times$ $(D+1)$ matrices that have all entries in \mathbb{R}. We index the rows and columns by $0,1,2, \ldots, D$. Let \mathbb{R}^{D+1} denote the vector space over \mathbb{R} consisting of $(D+1) \times 1$ matrices that have all entries in \mathbb{R}. We index the rows by $0,1,2, \ldots, D$. The algebra $\operatorname{Mat}_{D+1}(\mathbb{R})$ acts on \mathbb{R}^{D+1} by left multiplication.

A matrix $B \in \operatorname{Mat}_{D+1}(\mathbb{R})$ is called tridiagonal whenever each nonzero entry lies on the diagonal, the subdiagonal, or the superdiagonal. Assume that B is tridiagonal. Then B is called irreducible whenever each entry on the subdiagonal is nonzero, and each entry on the superdiagonal is nonzero.
We now recall the definition of a Leonard pair. Let V denote a vector space over \mathbb{R} with dimension $D+1$.
Definition 2.1. [10] By a Leonard pair on V, we mean an ordered pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ that satisfy both (i), (ii) below.
(i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^{*} is diagonal.
(ii) There exists a basis for V with respect to which the matrix representing A^{*} is irreducible tridiagonal and the matrix representing A is diagonal.

The above Leonard pair A, A^{*} is said to be over \mathbb{R}.

Note 2.2. According to a common notational convention, A^{*} denotes the conjugate-transpose of A. We are not using this convention. In a Leonard pair A, A^{*} the linear transformations A and A^{*} are arbitrary subject to (i), (ii) above.

Our next goal is to give an example of a Leonard pair. To do so, we give two definitions.
Definition 2.3. Define

$$
\begin{array}{rlrl}
c_{i} & =\frac{3(D-i+1) i(D+i+1)}{D(D+2)(2 i+1)} & (1 \leq i \leq D) \\
a_{i} & =\frac{3 i(i+1)}{D(D+2)} & (0 \leq i \leq D) \\
b_{i} & =\frac{3(D-i)(i+1)(D+i+2)}{D(D+2)(2 i+1)} & (0 \leq i \leq D-1) \\
\theta_{i} & =3-2 a_{i} & & (0 \leq i \leq D) \tag{7}
\end{array}
$$

We remark that the scalars $\left\{\theta_{i}\right\}_{i=0}^{D}$ are mutually distinct.
Let A, A^{*} denote the following matrices in $\operatorname{Mat}_{D+1}(\mathbb{R})$:

$$
A=\left(\begin{array}{ccccc}
a_{0} & b_{0} & & & \mathbf{0} \tag{8}\\
c_{1} & a_{1} & b_{1} & & \\
& \ddots & \ddots & \ddots & \\
& & c_{D-1} & a_{D-1} & b_{D-1} \\
\mathbf{0} & & & c_{D} & a_{D}
\end{array}\right), \quad A^{*}=\left(\begin{array}{ccccc}
\theta_{0} & & & & \mathbf{0} \\
& \theta_{1} & & & \\
& & \ddots & & \\
& & & \theta_{D-1} & \\
\mathbf{0} & & & & \theta_{D}
\end{array}\right)
$$

Definition 2.4. We define a matrix $P \in \operatorname{Mat}_{D+1}(\mathbb{R})$ with the following entries:

$$
P_{i, j}=(2 j+1)_{4} F_{3}\left[\begin{array}{c}
-i, i+1,-j, j+1 \tag{9}\\
1, D+2,-D
\end{array} ; 1\right] \quad(0 \leq i, j \leq D)
$$

Lemma 2.5. ([11, Ex. 5.10] and [12, Thm. 4.9]) The following hold:
(i) $P^{2}=(D+1)^{2} I$;
(ii) $P A=A^{*} P$;
(iii) $P A^{*}=A P$;
(iv) the pair A, A^{*} is a Leonard pair over \mathbb{R}.

Proof. Calculations (i)-(iii) are the following special case of [11, Ex. 5.10] and [12, Thm. 4.9]:

$$
d=D, \quad \theta_{0}=\theta_{0}^{*}=3, \quad s=s^{*}=r_{1}=0, \quad r_{2}=D+1, \quad h=h^{*}=\frac{-6}{D(D+2)}
$$

Item (iv) follows from items (i)-(iii).
The Leonard pairs from [11, Ex. 5.10] are said to have Racah type. So the Leonard pair A, A^{*} in Lemma 2.5 has Racah type. This Leonard pair is self-dual in the sense of [9, p. 5].

3 Some orthogonal polynomials

In this section we interpret Conjecture 1.1 in terms of orthogonal polynomials.
Let λ denote an indeterminate. Let $\mathbb{R}[\lambda]$ denote the \mathbb{R}-algebra of polynomials in λ that have all coefficients in \mathbb{R}.

Definition 3.1. With reference to Definition [2.3, let $u_{0}(\lambda), u_{1}(\lambda), \ldots, u_{D}(\lambda)$ denote the polynomials in $\mathbb{R}[\lambda]$ that satisfy:

$$
\begin{gather*}
u_{0}(\lambda)=1, \quad u_{1}(\lambda)=\lambda / 3, \\
\lambda u_{i}(\lambda)=b_{i} u_{i+1}(\lambda)+a_{i} u_{i}(\lambda)+c_{i} u_{i-1}(\lambda) \quad(1 \leq i \leq D-1) . \tag{10}
\end{gather*}
$$

Note that the polynomial $u_{i}(\lambda)$ has degree exactly i for $0 \leq i \leq D$.
By [11, Ex. 5.10], the polynomials $\left\{u_{i}(\lambda)\right\}_{i=0}^{D}$ are a special case of the Racah polynomials. Also by [11, Ex. 5.10],

$$
u_{i}\left(\theta_{j}\right)={ }_{4} F_{3}\left[\begin{array}{c}
-i, i+1,-j, j+1 \tag{11}\\
1, D+2,-D
\end{array} ; 1\right] \quad(0 \leq i, j \leq D) .
$$

Lemma 3.2. The following hold:
(i) $u_{i}\left(\theta_{j}\right)=u_{j}\left(\theta_{i}\right) \quad(0 \leq i, j \leq D)$;
(ii) $u_{i}\left(\theta_{0}\right)=1 \quad(0 \leq i \leq D)$;
(iii) $u_{0}\left(\theta_{j}\right)=1 \quad(0 \leq j \leq D)$.

Proof. Each of $(i)-(i i i)$ is immediate from (11).
In light of Equation (11), Conjecture 1.1) asserts that

$$
\begin{equation*}
\left|u_{i}\left(\theta_{j}\right)\right| \leq 1 \quad(0 \leq i, j \leq D) \tag{12}
\end{equation*}
$$

To prove (12) it will be useful to adjust the normalization of the polynomials $u_{i}(\lambda)$.
Define

$$
\begin{equation*}
k_{i}=\frac{b_{0} b_{1} \cdots b_{i-1}}{c_{1} c_{2} \cdots c_{i}} \quad(0 \leq i \leq D) . \tag{13}
\end{equation*}
$$

One checks that

$$
\begin{equation*}
k_{i}=2 i+1 \quad(0 \leq i \leq D) . \tag{14}
\end{equation*}
$$

Definition 3.3. With reference to Definition 3.1 let

$$
\begin{equation*}
v_{i}(\lambda)=k_{i} u_{i}(\lambda) \quad(0 \leq i \leq D) . \tag{15}
\end{equation*}
$$

By construction,

$$
\begin{equation*}
v_{i}\left(\theta_{j}\right)=k_{i} u_{i}\left(\theta_{j}\right) \quad(0 \leq i, j \leq D) . \tag{16}
\end{equation*}
$$

The polynomials $v_{i}(\lambda)$ satisfy the following three-term recurrence.
Lemma 3.4. [12, Lem. 3.11] We have

$$
\begin{array}{r}
v_{0}(\lambda)=1, \quad v_{1}(\lambda)=\lambda, \\
\lambda v_{i}(\lambda)=c_{i+1} v_{i+1}(\lambda)+a_{i} v_{i}(\lambda)+b_{i-1} v_{i-1}(\lambda) \quad(1 \leq i \leq D-1) . \tag{17}
\end{array}
$$

Lemma 3.5. For $0 \leq i, j \leq D$ we have

$$
\begin{equation*}
P_{i, j}=v_{j}\left(\theta_{i}\right) . \tag{18}
\end{equation*}
$$

Proof. Immediate by (9),(11), (14), and (16).
We emphasize two special cases of (18).
Lemma 3.6. The following hold:
(i) $P_{i, 0}=1 \quad(0 \leq i \leq D)$;
(ii) $P_{0, j}=k_{j} \quad(0 \leq j \leq D)$.

Proof. Immediate from (16) and (18).
We have some comments about the parameters (13). For notational convenience, define

$$
\begin{equation*}
\nu=(D+1)^{2} . \tag{19}
\end{equation*}
$$

By (14),

$$
\sum_{i=0}^{D} k_{i}=\nu
$$

Next, we state the orthogonality relations for the polynomials $\left\{u_{i}(\lambda)\right\}_{i=0}^{D}$.
Lemma 3.7. [12, p. 282] For integers $0 \leq n, m \leq D$ we have

$$
\begin{align*}
& \sum_{j=0}^{D} k_{j} u_{n}\left(\theta_{j}\right) u_{m}\left(\theta_{j}\right)=\nu k_{n}^{-1} \delta_{n, m} \tag{20}\\
& \sum_{j=0}^{D} k_{j} u_{j}\left(\theta_{n}\right) u_{j}\left(\theta_{m}\right)=\nu k_{n}^{-1} \delta_{n, m} \tag{21}
\end{align*}
$$

Next, we state the orthogonality relations for the polynomials $\left\{v_{i}(\lambda)\right\}_{i=0}^{D}$.
Lemma 3.8. [12, p. 281] For integers $0 \leq n, m \leq D$ we have

$$
\begin{align*}
\sum_{j=0}^{D} k_{j} v_{n}\left(\theta_{j}\right) v_{m}\left(\theta_{j}\right) & =\nu k_{n} \delta_{n, m} \tag{22}\\
\sum_{j=0}^{D} k_{j}^{-1} v_{j}\left(\theta_{n}\right) v_{j}\left(\theta_{m}\right) & =\nu k_{n}^{-1} \delta_{n, m} \tag{23}
\end{align*}
$$

4 Two commutative subalgebras of $\operatorname{Mat}_{D+1}(\mathbb{R})$

We continue to discuss the Leonard pair A, A^{*} from Definition 2.3
Definition 4.1. Let M denote the subalgebra of $\operatorname{Mat}_{D+1}(\mathbb{R})$ generated by A. Let M^{*} denote the subalgebra of $\operatorname{Mat}_{D+1}(\mathbb{R})$ generated by A^{*}.

In this section, we describe a basis for M and a basis for M^{*}.
Definition 4.2. For $0 \leq i \leq D$ define

$$
B_{i}=v_{i}(A), \quad B_{i}^{*}=v_{i}\left(A^{*}\right)
$$

where $v_{i}(\lambda)$ is from (15).

Lemma 4.3. For $0 \leq i \leq D$ we have

$$
P B_{i}=B_{i}^{*} P, \quad P B_{i}^{*}=B_{i} P
$$

Proof. By Lemma 2.5, Definition 4.2, and linear algebra.
Lemma 4.3 tells us that for integers $0 \leq i, j \leq D$, column j of P is an eigenvector of B_{i} with eigenvalue $v_{i}\left(\theta_{j}\right)$. We emphasize one special case. Let $\mathbb{1}$ denote the vector in \mathbb{R}^{D+1} that has all entries 1 .

Lemma 4.4. For $0 \leq i \leq D$ the vector $\mathbb{1}$ is an eigenvector for B_{i} with eigenvalue k_{i}.
Proof. Immediate from Lemma 3.6 and Lemma 4.3,
Lemma 4.5. The matrices $\left\{B_{i}\right\}_{i=0}^{D}$ form a basis for M. The matrices $\left\{B_{i}^{*}\right\}_{i=0}^{D}$ form a basis for M^{*}.
Proof. By Definition 2.3, the matrix A^{*} has $D+1$ distinct eigenvalues, so M^{*} has dimension $D+1$. By Definition 4.2, the matrices $\left\{B_{i}^{*}\right\}_{i=0}^{D}$ belong to M^{*}. By these comments, the matrices $\left\{B_{i}^{*}\right\}_{i=0}^{D}$ form a basis for M^{*}. We have now verified the second assertion. The first assertion follows from this and Lemma4.3.

Next we discuss the entries of the matrices $\left\{B_{i}\right\}_{i=0}^{D}$. The following definition will be convenient.
Definition 4.6. For $0 \leq h, i, j \leq D$ let $p_{i, j}^{h}$ denote the (h, j)-entry of B_{i}. In other words,

$$
\begin{equation*}
p_{i, j}^{h}=\left(B_{i}\right)_{h, j} . \tag{24}
\end{equation*}
$$

We have a comment about the scalars $p_{i, j}^{h}$.
Lemma 4.7. [9, Lem. 4.19] For $0 \leq i, j \leq D$ we have

$$
\begin{equation*}
B_{i} B_{j}=\sum_{h=0}^{D} p_{i, j}^{h} B_{h}, \quad \quad B_{i}^{*} B_{j}^{*}=\sum_{h=0}^{D} p_{i, j}^{h} B_{h}^{*} \tag{25}
\end{equation*}
$$

The scalars $p_{i, j}^{h}$ can be computed using the following result. This result is from [8]; we include a proof for the sake of completeness.

Proposition 4.8. [8, Lem. 12.12] For $0 \leq h, i, j \leq D$ we have

$$
\begin{equation*}
p_{i, j}^{h}=\frac{k_{i} k_{j}}{\nu} \sum_{t=0}^{D} k_{t} u_{t}\left(\theta_{i}\right) u_{t}\left(\theta_{j}\right) u_{t}\left(\theta_{h}\right) \tag{26}
\end{equation*}
$$

Proof. We invoke Equation (24). By Lemma 2.5(i) and Lemma 4.3 we have that $B_{i}=\nu^{-1} P B_{i}^{*} P$. Recall that the matrix P has entries $P_{i, j}=k_{j} u_{j}\left(\theta_{i}\right)$. We also have $B_{i}^{*}=v_{i}\left(A^{*}\right)$ and $A^{*}=\operatorname{diag}\left(\theta_{0}, \theta_{1}, \ldots, \theta_{D}\right)$. Evaluating (24) using these comments, we obtain the result.

We have a comment about Proposition 4.8,
Lemma 4.9. For $0 \leq h, i, j \leq D$ we have

$$
\begin{equation*}
p_{i, j}^{h}=p_{j, i}^{h}, \quad \quad k_{h} p_{i, j}^{h}=k_{j} p_{h, i}^{j}=k_{i} p_{j, h}^{i} \tag{27}
\end{equation*}
$$

Proof. Immediate from (26).

5 The nonnegativity of the $p_{i, j}^{h}$

Our next goal is to show that $p_{i, j}^{h} \geq 0$ for $0 \leq h, i, j \leq D$. To obtain this inequality, we use the BiedenharnElliott identity [1, p. 356].
Recall the natural numbers $\mathbb{N}=\{0,1,2,3, \ldots\}$. Note that $\frac{1}{2} \mathbb{N}=\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots\right\}$.
Definition 5.1. Given $a, b, c \in \frac{1}{2} \mathbb{N}$, we say that the triple (a, b, c) is admissible whenever $a+b+c \in \mathbb{N}$ and

$$
\begin{equation*}
a \leq b+c, \quad b \leq c+a, \quad c \leq a+b \tag{28}
\end{equation*}
$$

Definition 5.2. Referring to Definition 5.1, assume that (a, b, c) is admissible. Define

$$
\begin{equation*}
\Delta(a, b, c)=\left(\frac{(a+b-c)!(b+c-a)!(c+a-b)!}{(a+b+c+1)!}\right)^{\frac{1}{2}} \tag{29}
\end{equation*}
$$

Next, we recall the Racah coefficients.
Definition 5.3. ([1, Eq. 5.11.4] and [6, p. 1063]) For $a, b, c, d, e, f \in \frac{1}{2} \mathbb{N}$, we define a real number $W(a, b, c, d ; e, f)$ as follows.

First assume that each of $(a, b, e),(c, d, e),(a, c, f),(b, d, f)$ is admissible. Then

$$
\begin{align*}
W(a, b, c, d ; e, f)= & \frac{\Delta(a, b, e) \Delta(c, d, e) \Delta(a, c, f) \Delta(b, d, f)\left(\beta_{1}+1\right)!(-1)^{\beta_{1}-(a+b+c+d)}}{\left(\beta_{2}-\beta_{1}\right)!\left(\beta_{3}-\beta_{1}\right)!\left(\beta_{1}-\alpha_{1}\right)!\left(\beta_{1}-\alpha_{2}\right)!\left(\beta_{1}-\alpha_{3}\right)!\left(\beta_{1}-\alpha_{4}\right)!} \\
& \times{ }_{4} F_{3}\left[\begin{array}{c}
\alpha_{1}-\beta_{1}, \alpha_{2}-\beta_{1}, \alpha_{3}-\beta_{1}, \alpha_{4}-\beta_{1} \\
-\beta_{1}-1, \beta_{2}-\beta_{1}+1, \beta_{3}-\beta_{1}+1
\end{array} ; 1\right] \tag{30}
\end{align*}
$$

where

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\text { any permutation of }(a+b+e, c+d+e, a+c+f, b+d+f)
$$

and where

$$
\beta_{1}=\min (a+b+c+d, a+d+e+f, b+c+e+f),
$$

and β_{2}, β_{3} are the other two values in the triple $(a+b+c+d, a+d+e+f, b+c+e+f)$ in either order.
Next assume that $(a, b, e),(c, d, e),(a, c, f),(b, d, f)$, are not all admissible. Then

$$
\begin{equation*}
W(a, b, c, d ; e, f)=0 \tag{31}
\end{equation*}
$$

We call $W(a, b, c, d ; e, f)$ the Racah coefficient associated with a, b, c, d, e, f.
Let $0 \leq h, i, j \leq D$. In order to show that $p_{i, j}^{h} \geq 0$, we will show that

$$
p_{i, j}^{h}=(2 i+1)(2 j+1)(D+1)\left(W\left(\frac{D}{2}, \frac{D}{2}, i, h ; j, \frac{D}{2}\right)\right)^{2}
$$

We will use the Biedenharn-Elliott identity.
Proposition 5.4. (Biedenharn-Elliott identity [1, p. 356]) Let $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, e, f, g \in \frac{1}{2} \mathbb{N}$. Then

$$
\begin{align*}
\sum_{d \in \frac{1}{2} \mathbb{N}}(-1)^{c+c^{\prime}-d}(2 d+1) W & \left(b, b^{\prime}, c, c^{\prime} ; d, e\right) W\left(a, a^{\prime}, c, c^{\prime} ; d, f\right) W\left(a, a^{\prime}, b, b^{\prime} ; d, g\right) \tag{32}\\
= & (-1)^{e+f-g} W(a, b, f, e ; g, c) W\left(a^{\prime}, b^{\prime}, f, e ; g, c^{\prime}\right)
\end{align*}
$$

In order to evaluate the Racah coefficients in the Biedenharn-Elliott identity, we will use the following transformation formula of Whipple.

Proposition 5.5. (Whipple transformation [2, p. 49]) For integers $p, q, a_{1}, a_{2}, r, b_{1}, b_{2}$ we have

$$
{ }_{4} F_{3}\left[\begin{array}{cc}
-p, q, a_{1}, a_{2} & ; 1 \tag{33}\\
r, b_{1}, b_{2} & ; 1
\end{array}\right]=\frac{\left(b_{1}-q\right)_{p}\left(b_{2}-q\right)_{p}}{\left(b_{1}\right)_{p}\left(b_{2}\right)_{p}}{ }_{4} F_{3}\left[\begin{array}{c}
-p, q, r-a_{1}, r-a_{2} \\
r, 1+q-b_{1}-p, 1+q-b_{2}-p
\end{array} \quad ; 1\right],
$$

provided that $p \geq 0$ and $q+a_{1}+a_{2}+1=r+b_{1}+b_{2}+p$.
We are interested in the following Racah coefficient. For $0 \leq i, j \leq D$ consider

$$
W\left(\frac{D}{2}, \frac{D}{2}, \frac{D}{2}, \frac{D}{2} ; i, j\right)
$$

Evaluating this Racah coefficient using Definition 5.3 we get a scalar multiple of a certain ${ }_{4} F_{3}$ hypergeometric series. Applying several Whipple transformations to this hypergeometric series, we get the following result as we will see.

Proposition 5.6. For integers $0 \leq i, j \leq D$ we have

$$
W\left(\frac{D}{2}, \frac{D}{2}, \frac{D}{2}, \frac{D}{2} ; i, j\right)=\frac{(-1)^{i+j-D}}{D+1}{ }_{4} F_{3}\left[\begin{array}{cc}
-i, i+1,-j, j+1 & ; 1 \tag{34}\\
1, D+2,-D &
\end{array}\right]
$$

Proof. To evaluate $W\left(\frac{D}{2}, \frac{D}{2}, \frac{D}{2}, \frac{D}{2} ; i, j\right)$, we will consider two cases: $i+j \leq D$ and $i+j>D$.
Case $i+j \leq D$. In this case, from (30) we get $\beta_{1}=D+i+j, \beta_{2}=2 D, \beta_{3}=D+i+j, \alpha_{1}=\alpha_{2}=D+i$, $\alpha_{3}=\alpha_{4}=D+j$. The hypergeometric term in (30), after rearranging the upper indices, becomes

$$
{ }_{4} F_{3}\left[\begin{array}{c}
-i,-i,-j,-j \tag{35}\\
-D-i-j-1, D-i-j+1,1
\end{array} \quad ; 1\right]
$$

The coefficient in (30) is

$$
\begin{align*}
& \frac{\left(\Delta\left(\frac{D}{2}, \frac{D}{2}, i\right)\right)^{2}\left(\Delta\left(\frac{D}{2}, \frac{D}{2}, j\right)\right)^{2}(D+i+j+1)!(-1)^{i+j-D}}{(D-i-j)!(j!)^{2}(i!)^{2}} \\
& \quad=\frac{(D-i)!(i!)^{2}(D-j)!(j!)^{2}(D+i+j+1)!(-1)^{i+j-D}}{(D+i+1)!(D+j+1)!(D-i-j)!(j!)^{2}(i!)^{2}} \tag{36}
\end{align*}
$$

The expression (36) is equal to

$$
\begin{equation*}
\frac{(D-i)!(D-j)!(D+i+j+1)!(-1)^{i+j-D}}{(D+i+1)!(D+j+1)!(D-i-j)!} \tag{37}
\end{equation*}
$$

Performing a Whipple transformation (33) with the substitutions $-p=-i, q=-j, a_{1}=-i, a_{2}=-j$, $r=1, b_{1}=-D-i-j-1, b_{2}=D-i-j+1$, the hypergeometric component in (35), after rearranging lower indices, becomes

$$
{ }_{4} F_{3}\left[\begin{array}{cc}
-i, i+1,-j, j+1 & ; 1 \tag{38}\\
1, D+2,-D &
\end{array}\right]
$$

The coefficient contribution from the Whipple transformation is

$$
\begin{equation*}
\frac{(-D-i-1)_{i}(D-i+1)_{i}}{(-D-i-j-1)_{i}(D-i-j+1)_{i}}=\frac{(-1)^{i}(D+i+1)!}{(D+1)!} \frac{D!}{(D-i)!} \frac{(D+j+1)!}{(-1)^{i}(D+i+j+1)!} \frac{(D-i-j)!}{(D-j)!} \tag{39}
\end{equation*}
$$

We see that coefficients (37) and (39) multiply to $\frac{(-1)^{i+j-D}}{D+1}$, as desired.
Case $i+j>D$. In this case, from (30) we get $\beta_{1}=2 D, \beta_{2}=D+i+j, \beta_{3}=D+i+j, \alpha_{1}=\alpha_{2}=D+i$, $\alpha_{3}=\alpha_{4}=D+j$. The hypergeometric term in (30) becomes

$$
{ }_{4} F_{3}\left[\begin{array}{cc}
i-D, i-D, j-D, j-D & \tag{40}\\
-2 D-1, i+j-D+1, i+j-D+1 & ; 1
\end{array}\right] .
$$

The coefficient in (30) is

$$
\begin{equation*}
\frac{\left(\Delta\left(\frac{D}{2}, \frac{D}{2}, i\right)\right)^{2}\left(\Delta\left(\frac{D}{2}, \frac{D}{2}, j\right)\right)^{2}(2 D+1)!}{((i+j-D)!)^{2}((D-i)!)^{2}((D-j)!)^{2}}=\frac{(D-i)!(i!)^{2}(D-j)!(j!)^{2}(2 D+1)!}{(D+i+1)!(D+j+1)!((i+j-D)!(D-i)!(D-j)!)^{2}} \tag{41}
\end{equation*}
$$

The expression (41) is equal to

$$
\begin{equation*}
C_{0}=\frac{(i!)^{2}(j!)^{2}(2 D+1)!}{(D+i+1)!(D+j+1)!((i+j-D)!)^{2}(D-i)!(D-j)!} \tag{42}
\end{equation*}
$$

Now we will perform three Whipple transformations. For each one we list the indices chosen $-p, q, a_{1}$, a_{2}, r, b_{1}, b_{2}, the resulting hypergeometric term (with possible rearranging of some upper indices), and the coefficient contribution, C_{i}, from the corresponding Whipple transformation.

1. Using $-p=i-D, q=j-D, a_{1}=i-D, a_{2}=j-D, r=i+j-D+1, b_{1}=-2 D-1, b_{2}=i+j-D+1$:

$$
\left.\begin{array}{rl}
{ }_{4} F_{3}\left[\begin{array}{c}
i-D, i+1, j-D, j+1 \\
i+j+2,-D, i+j-D+1
\end{array} \quad ; 1\right.
\end{array}\right], \quad \begin{aligned}
C_{1} & =\frac{(-D-j-1)_{D-i}(i+1)_{D-i}}{(-2 D-1)_{D-i}(i+j-D+1)_{D-i}} \\
& =\frac{(-1)^{D-i}(D+j+1)!}{(i+j+1)!} \frac{D!}{i!} \frac{(D+i+1)!}{(-1)^{D-i}(2 D+1)!} \frac{(i+j-D)!}{j!} .
\end{aligned}
$$

2. Using $-p=i-D, q=j+1, a_{1}=i+1, a_{2}=j-D, r=-D, b_{1}=i+j+2, b_{2}=i+j-D+1$:

$$
\begin{align*}
& { }_{4} F_{3}\left[\begin{array}{c}
i-D,-D-i-1,-j, j+1 \\
-D,-D, 1
\end{array}\right. \tag{45}\\
C_{2}= & \frac{(i+1}{} \frac{(i)_{D-i}(i-D)_{D-i}}{(i+j+2)_{D-i}(i+j-D+1)_{D-i}} \\
= & \frac{D!}{i!}(-1)^{D-i}(D-i)!\frac{(i+j+1)!}{(D+j+1)!} \frac{(i+j-D)!}{j!} . \tag{46}
\end{align*}
$$

3. Using $-p=-j, q=j+1, a_{1}=i-D, a_{2}=-D-i-1, r=-D, b_{1}=-D, b_{2}=1$:

$$
\begin{gather*}
{ }_{4} F_{3}\left[\begin{array}{cc}
-i, i+1,-j, j+1 & ; 1 \\
-D, D+2,1
\end{array}\right]={ }_{4} F_{3}\left[\begin{array}{cc}
-i, i+1,-j, j+1 & ; 1 \\
1, D+2,-D & ;
\end{array}\right] \tag{47}\\
C_{3}=\frac{(-D-j-1)_{j}(-j)_{j}}{(-D)_{j}(1)_{j}} \\
=\frac{(-1)^{j}(D+j+1)!}{(D+1)!}(-1)^{j} j!\frac{(D-j)!}{(-1)^{j} D!} \frac{1}{j!} \tag{48}
\end{gather*}
$$

Combining coefficients we see that $C_{0} C_{1} C_{2} C_{3}=\frac{(-1)^{D-i+j}}{D+1}=\frac{(-1)^{i+j-D}}{D+1}$, since i, j, D are integers.
We now evaluate the Biedenharn-Elliott identity using Proposition 5.6.
Proposition 5.7. For integers $0 \leq h, i, j \leq D$ we have

$$
\begin{equation*}
\sum_{t=0}^{D}(2 t+1) u_{t}\left(\theta_{h}\right) u_{t}\left(\theta_{i}\right) u_{t}\left(\theta_{j}\right)=(D+1)^{3}\left(W\left(\frac{D}{2}, \frac{D}{2}, i, h ; j, \frac{D}{2}\right)\right)^{2} \tag{49}
\end{equation*}
$$

Proof. First we apply Proposition 5.4 with $a=a^{\prime}=b=b^{\prime}=c=c^{\prime}=\frac{D}{2}, e=h, f=i, g=j$, and $d=t$ to obtain

$$
\begin{gather*}
\sum_{t \in \frac{1}{2} \mathbb{N}}(-1)^{D-t}(2 t+1) W\left(\frac{D}{2}, \frac{D}{2}, \frac{D}{2}, \frac{D}{2} ; t, h\right) W\left(\frac{D}{2}, \frac{D}{2}, \frac{D}{2}, \frac{D}{2} ; t, i\right) W\left(\frac{D}{2}, \frac{D}{2}, \frac{D}{2}, \frac{D}{2} ; t, j\right) \\
=(-1)^{h+i-j} W\left(\frac{D}{2}, \frac{D}{2}, i, h ; j, \frac{D}{2}\right) W\left(\frac{D}{2}, \frac{D}{2}, i, h ; j, \frac{D}{2}\right) \tag{50}
\end{gather*}
$$

Note that $\frac{D}{2}+\frac{D}{2}+t$ is an integer if and only if t is an integer. So by (31), the terms of the sum vanish in which t is not an integer or $t>D$. By Proposition 5.6 and (11), the left hand side of (50) becomes

$$
\sum_{t=0}^{D}(-1)^{D-t}(2 t+1) \frac{(-1)^{t+h-D} u_{t}\left(\theta_{h}\right)}{D+1} \frac{(-1)^{t+i-D} u_{t}\left(\theta_{i}\right)}{D+1} \frac{(-1)^{t+j-D} u_{t}\left(\theta_{j}\right)}{D+1}
$$

which simplifies to

$$
\begin{equation*}
\frac{(-1)^{i+j+h}}{(D+1)^{3}} \sum_{t=0}^{D}(2 t+1) u_{t}\left(\theta_{h}\right) u_{t}\left(\theta_{i}\right) u_{t}\left(\theta_{j}\right) \tag{51}
\end{equation*}
$$

Setting (51) equal to the right hand side of (50) and dividing by the coefficients completes the proof.
Corollary 5.8. For $0 \leq h, i, j \leq D$ we have

$$
\begin{equation*}
p_{i, j}^{h}=(2 i+1)(2 j+1)(D+1)\left(W\left(\frac{D}{2}, \frac{D}{2}, i, h ; j, \frac{D}{2}\right)\right)^{2} \tag{52}
\end{equation*}
$$

Proof. Using Propositions 4.8, 5.7 and substituting (14),(19) we have

$$
\begin{aligned}
p_{i, j}^{h} & =\frac{k_{i} k_{j}}{\nu} \sum_{t=0}^{D} k_{t} u_{t}\left(\theta_{i}\right) u_{t}\left(\theta_{j}\right) u_{t}\left(\theta_{h}\right) \\
& =\frac{(2 i+1)(2 j+1)}{(D+1)^{2}}\left((D+1)^{3}\left(W\left(\frac{D}{2}, \frac{D}{2}, i, h ; j, \frac{D}{2}\right)\right)^{2}\right) \\
& =(2 i+1)(2 j+1)(D+1)\left(W\left(\frac{D}{2}, \frac{D}{2}, i, h ; j, \frac{D}{2}\right)\right)^{2}
\end{aligned}
$$

Corollary 5.9. For $0 \leq h, i, j \leq D$ we have

$$
p_{i, j}^{h} \geq 0
$$

Proof. Immediate from Corollary 5.8.

6 Proof of the Kresch-Tamvakis conjecture

We are now ready to prove our main result. We will use the Perron-Frobenius theorem [3, p. 529].
Proposition 6.1. For $0 \leq i, j \leq D$ we have

$$
\left|u_{i}\left(\theta_{j}\right)\right| \leq 1
$$

Proof. By Lemma 4.4 the vector $\mathbb{1}$ is an eigenvector for B_{i} with eigenvalue k_{i}. By Corollary [5.9, the entries of B_{i} are all nonnegative. By Lemma 4.3 the scalar $v_{i}\left(\theta_{j}\right)$ is an eigenvalue of B_{i}. By the Perron-Frobenius theorem [3, p. 529], we have $\left|v_{i}\left(\theta_{j}\right)\right| \leq k_{i}$. The result follows from this and (16).

Equation (11) and Proposition 6.1 imply Theorem 1.3 .

7 Appendix

In this appendix we give more detail about the formula for $p_{i, j}^{h}$ in Corollary 5.8. By Lemma 4.9, without loss of generality we assume $i \leq j \leq h$. Also, in order to avoid trivialities we assume that h, i, j satisfy the triangle inequalities; which in this case become $h \leq i+j$. As we evaluate $p_{i, j}^{h}$ in line (52) we consider the last factor. We evaluate that factor using Definition 5.3 with

$$
a=\frac{D}{2}, \quad b=\frac{D}{2}, \quad c=i, \quad d=h, \quad e=j, \quad f=\frac{D}{2}
$$

For these values,

$$
\begin{gathered}
\alpha_{1}=D+i, \quad \alpha_{2}=D+j, \quad \alpha_{3}=D+h, \quad \alpha_{4}=h+i+j, \\
\beta_{1}=D+i+j, \quad \beta_{2}=D+h+i, \quad \beta_{3}=D+h+j
\end{gathered}
$$

Note that

$$
\begin{gathered}
\alpha_{1}-\beta_{1}=-j, \quad \alpha_{2}-\beta_{1}=-i, \quad \alpha_{3}-\beta_{1}=h-i-j, \quad \alpha_{4}-\beta_{1}=h-D \\
-\beta_{1}-1=-D-i-j-1, \quad \beta_{2}-\beta_{1}+1=h-j+1, \quad \beta_{3}-\beta_{1}+1=h-i+1
\end{gathered}
$$

For the above data, (52) becomes

$$
p_{i, j}^{h}=C_{i, j}^{h}(2 i+1)(2 j+1)(D+1)\left({ }_{4} F_{3}\left[\begin{array}{c}
-j,-i, h-i-j, h-D \\
-D-i-j-1, h-j+1, h-i+1
\end{array} \quad ; 1\right]\right)^{2}
$$

where

$$
\begin{aligned}
C_{i, j}^{h} & =\left(\frac{\left.\Delta\left(\frac{D}{2}, \frac{D}{2}, i\right) \Delta\left(\frac{D}{2}, \frac{D}{2}, j\right) \Delta\left(\frac{D}{2}, \frac{D}{2}, h\right) \Delta(i, j, h)\right)(D+i+j+1)!}{(h-i)!(h-j)!i!j!(i+j-h)!(D-h)!}\right)^{2} \\
& =\frac{(D-i)!(D-j)!(D-h)!(j+h-i)!(h+i-j)!}{(D+i+1)!(D+j+1)!(D+h+1)!(i+j+h+1)!(i+j-h)!}\left(\frac{h!(D+i+j+1)!}{(h-i)!(h-j)!(D-h)!}\right)^{2}
\end{aligned}
$$

Acknowledgement. We would like to express our gratitude to Professor Paul Terwilliger, whose careful feedback greatly enhanced the clarity of the exposition.

References

[1] Lawrence C. Biedenharn and James D. Louck, The Racah-Wigner algebra in quantum theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley Publishing Co., Reading, MA, 1981. With a foreword by Peter A. Carruthers, With an introduction by George W. Mackey.
[2] George Gasper and Mizan Rahman, Basic hypergeometric series, Second, Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey.
[3] Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
[4] Mourad E. H. Ismail and Plamen Simeonov, Inequalities and asymptotics for a terminating ${ }_{4} F_{3}$ series, Illinois J. Math. 51 (2007), no. 3, 861-881.
[5] Andrew Kresch and Harry Tamvakis, Standard conjectures for the arithmetic Grassmannian $G(2, N)$ and Racah polynomials, Duke Math. J. 110 (2001), no. 2, 359-376.
[6] Albert Messiah, Quantum mechanics. Vol. II, North-Holland Publishing Co., Amsterdam; Interscience Publishers (a division of John Wiley \& Sons, Inc.), New York, 1962. Translated from the French by J. Potter.
[7] Ilia D. Mishev, A relation for a class of Racah polynomials, arXiv:1412.7115 (2014).
[8] Kazumasa Nomura and Paul Terwilliger, Idempotent systems, Algebr. Comb. 4 (2021), no. 2, 329-357.
[9] $\overline{59 .}$, Leonard pairs, spin models, and distance-regular graphs, J. Combin. Theory Ser. A 177 (2021), Paper No. 105312,
[10] Paul Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), no. 1-3, 149-203.
[11] , Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005), no. 2-3, 307-332.
[12] \qquad , An algebraic approach to the Askey scheme of orthogonal polynomials, Orthogonal polynomials and special functions, 2006, pp. 255-330.

John S. Caughman
Fariborz Maseeh Dept of Mathematics \& Statistics
PO Box 751
Portland State University
Portland, OR 97207 USA
email: caughman@pdx.edu
Taiyo S. Terada
Fariborz Maseeh Dept of Mathematics \& Statistics
PO Box 751
Portland State University
Portland, OR 97207 USA
email: taiyo2@pdx.edu

[^0]: ${ }^{1}$ Corresponding author: caughman@pdx.edu.

