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1 Introduction
This implementation profile provides the scope, background, and requirements
necessary to implement a Modeling Environment (ME) to test a Distributed Energy
Resource (DER) Management System (DERMS). A DERMS is used by an aggregator to
dispatch large numbers of DERs in order to provide grid services to a Grid Operator
(GO). The ME addresses scalability issues inherent to Hardware-in-the-Loop DERMS
simulation; a large number of assets are needed in order to observe effects on the grid
from deployment and dispatch of DERs. However, it would be prohibitive to physically
procure and install these assets, so it is desirable to have a simulation environment that
can model interactions between a DERMS and a mass of simulated DERs within an
Electrical Distribution Model (EDM) while also being able to interact with a limited
number of physical DERs.

Within the ME, DERs are abstracted into generic models of simulated DERs (DER-S)
and electrical model DERs (DER-EM). DER-EMs are the electrical representations of
DERs within the grid model, while DER-Ss handle the inputs from physical DERs or data
from DER simulations and convert them into electrical data required by DER-EMs. This
removes the need to operate a large number of physical DERs. An abstract DER-S
representation allows for new types of DER models to be developed and simulated
within the ME without major modifications to the grid model or modeling system apart
from development of a single new API handled by a DER-S class. The ME allows real
time and historical DER data to be used as DER-S inputs, calculates DER-EM grid
states via an internal simulator, and provides a configurable simulation of a GO to
communicate with external DERMS. Together, these operations provide a full feedback
loop between the DERMS asset dispatch and the GO’s recognition of how the dispatch
affects the grid. The key component of the ME is the Electrical Distribution Model (EDM)
which provides an interactable grid model and simulation environment by leveraging the
GridAPPS-D app development platform.

The ME was designed as a co-simulation environment for the Portland State University
Power Lab’s Energy Grid of Things (EGoT) DERMS prototype. However, the abstracted
DER-S and GO allow the ME to be used to test other service-based DERMS with
minimal effort. As such, while the EGoT prototype will be used for demonstration and
example purposes, the more generic term “DERMS” will be used to describe the system
being tested by the ME.
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1.1 Design Principles
The following principles guide the design and development of the ME IP.

1. Develop an open-source, object-oriented system expressly designed to be used,
added to, or upgraded by individuals or entities beyond the original designer.

2. Make the system configurable, scalable, and suitable for a variety of tests for a
number of grid scales, DER counts, or grid services.

3. Assume DERs will rapidly evolve in type and complexity in the short term, and
design the system to be extensible to new or updated DER models.

4. Output data will be in a common, non-proprietary format and without excessive
processing; that is, do not develop the system to perform data science, but to
generate data suitable for external analysis.

5. Design the system with generalized, easily modifiable modules to allow testing of
a wide variety of DERMSs without protocol limitations.

1.2 Participants & Definitions
Tables 1.2 through 1.4 list the main participants that interact through information
exchange to perform DERMS testing, feedback, and data logging. The number of
participants varies depending on the use case.

Participants are classified as Actors, which are persons or other external systems;
Collaborative Objects, which include interacting components other than Actors; and
Products, which are the Collaborative Objects developed for this DOE-sponsored
project.

Table 1.2 Actors relevant to the Modeling Environment.
Name Type
Grid Operator (simulated) application
Grid Services Provider (DERMS operator) organization
Test Engineer person

Table 1.3 Collaborative objects relevant to the Modeling Environment.

Name Type
Distributed Control Module agent
Distributed Energy Resource device
Distributed Energy Resource - Simulated (DER-S) device or application
Electrical Distribution Model application
Model Controller application
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Table 1.4 Products relevant to the Modeling Environment.
Name Type
EGoT Server/Client System application
Modeling Environment application

1.2.1 Functionalities and Responsibilities
This subsection presents the functionalities and responsibilities of the system actors and
products that pertain to the Modeling Environment as well as the EGoT System to which
it is applied.

1.2.1.1 Actors

Table 1.5 Grid Operator (GO)

Functionality A GO seeks grid services from GSPs in order to achieve operational
objectives, which are 1) maintaining operations within the physical
constraints that must be honored in order to prevent damage to grid
components and equipment, or 2) operational goals associated with
stable, reliable, and economical delivery of power at nominal
conditions.

Responsibilities ● Engage with GSPs to acquire grid services to achieve operational
objectives.

● Design and fund incentive programs to attract GSP and/or SPC
participation to implement operational objectives.

● Provide DER topological assignment information during the
registration process

Table 1.6 Grid Service Provider (GSP)

Functionality A GSP provides grid services to a GO through the dispatch of DER
that have subscribed to a GO program. Aggregation and dispatch are
achieved using a DERMS. Grid services are the means by which a
GO achieves operational objectives.

Responsibilities ● Provide grid services to GOs.
● Evaluate its aggregation of DER assets to determine a menu of

grid services to offer to GOs, prioritized based on the priority
operational objectives of GOs.

● Entice SPCs to subscribe to DER aggregation programs
● Exchange information according to the EGoT Server/client

Implementation Profile.
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Table 1.7 Test Engineer (TE)
Functionality The TE is a person or group of people who configure or operate the

modeling environment.

Responsibilities ● Develop electrical grid models and enter into ME database
● Plan and design tests
● Configure MC with test parameters
● Implement and configure DER-S
● Operate ME to perform tests
● Collect and analyze measurement logs
● Maintain and troubleshoot ME system

1.2.1.2 Products

Table 1.8 EGoT Server/Client System

Functionality The EGoT server and client facilitate TLS and HTTP communications
using the IEEE 2030.5 resource models. The client and server are
also responsible for translating the common IEEE 2030.5 models into
the specific DER and GO interfaces to implement controls and energy
services.

Responsibilities ● Authenticate client/server
● Encrypt/Decrypt HTTP communications
● Validate IEEE 2030.5 resource models using xml schema
● Update resources based on polling rates, event status, or

pub/sub
● The client interfaces with DER using the flow reservation

resources and DER function sets of IEEE Std 2030.5.
● The server interfaces with a GO to provide Grid-DER services.

Table 1.9 Modeling Environment

Functionality The ME is a configurable power grid modeling and simulation system,
which is capable of modeling DERs and their effect on the grid based
on real time or historical input. These simulations can produce both
CSV log outputs for analysis as well as real-time response via a
simulated GO; this allows for GSP-in-the-loop simulation.

Responsibilities ● EDM simulates the power grid over a selected period of time.
● Provides a database of grid models to simulate; new models can

be developed and added by TE
● Grid states measured within grid model and provided as output to

logs or external systems
● DER modeled as generic electrical loads/sources within EDM
● External scripts or devices emulate the operation of DER and

provide operating data to the ME as inputs to generic DER loads
● Provides timekeeping function to synchronize external

devices/programs with simulation, for functional testing

Award # DE-OE0000922 DOE-PSU-0000922-3 Page 8 of 82



1.2.2 Definitions
Below are definitions of all terms required to properly interpret this document, as defined
for this project.

Table 1.10 Modeling Environment Collaborative Object Definitions
Definition

Distributed Control
Module

A DCM is a client that requests resources from a DERMS server. It
provides gateway service between communications protocols used by the
DERMS and communications protocols used by DER. It serves as a
user-agent on behalf of the SPC to autonomously make resource service
request decisions.

Distributed Energy
Resource

DERs are customer-owned generation, storage, and load assets that are
grid-enabled. These resources are located behind a customer meter.

Distributed Energy
Resources - Electrical
Model

The electrical model representation of a DER or DER-S within the EDM
that models the electrical characteristics of the DER.

Distributed Energy
Resources - Simulated

A system, application, or script that simulates the parameters and
operations of a physical DER and outputs the resultant electrical effects.

Electrical Distribution
Model

An electric model of a distribution system used to determine the electrical
impacts that a grid service dispatch would cause.

Model Controller An application that manages operation of the ME simulations and
interfaces.

Modeling Environment A test environment for simulating the interactions between the GO, GSPs,
and SPCs actors within the EGoT prototype system. The ME includes an
EDM, and provides points of interface between the EDM and actors within
the EGoT.

Master Resource
Identifier

An mRID is an alphanumeric code used by GridAPPS-D to reference
objects, systems, measurements or controls within a grid model. Not
human readable.

Unique Identifier Unique information differentiating a single DER input from others. Used to
associate DER input information with DER-EMs by associating a single
unique identifier with a control mRID for a DER-EM. Unique identifiers are
alphanumeric strings provided by DER inputs or generated by a DER-S
and are likely to be human readable.

Locational Identifier An alphanumeric string referring a DER input to a location in the grid
model. If topological processing is not in use, this will be the bus to which
the DER should be assigned; if topological processing is used, this will be
an alphanumeric string that identifies each layer of the topology to which
the DER is connected.

DER input DER operating data that is provided to a DER-S to be parsed and
converted into a format usable by the simulation. May include one or more
representations of DERs, each of which must have a unique identifier and
a locational identifier.
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2 Modeling Environment Architecture
The ME is an electrical grid simulation platform designed to support testing of a DERMS
and provide a means for analyzing effects of DER dispatch on the electrical grid. We
have selected GridAPPS-D as the EDM platform, which provides means for modeling
distribution systems and includes a grid states solver. A MC coordinates simulations and
provides input and output capabilities. Figure 2.1 shows the components of the ME and
its relationships with other parts of the EGoT project.

The MC provides communications and processing between the EDM, inputs, and
outputs. DER-Ss provide input data to the DER-EM; these input data may come from a
model, an historical data archive, or a hardware interface such as a DCM. Outputs from
the EDM come in two forms: time-coded logs as well as real-time grid state data. These
are available to a simulated GO, which in turn feeds back information to the GSP’s
DERMS, including grid service requests and locational data.

Figure 2.1 The Modeling Environment flowchart. Objects and lines in blue fall within the scope of
the ME product. The ME interacts with other project objects, the GSP (green), the DTM System
(red), the DERMS (orange), and physical DER (yellow).

2.1 GridAPPS-D
The ME is built using the GridAPPS-D platform. GridAPPS-D is an open-source
application development platform designed by the Pacific Northwest National Laboratory
to provide an architecture by which applications can easily communicate with grid
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simulation programs. The network measurement data in GridAPPS-D originates from a
three-phase unbalanced distributor simulator.

The GridAPPS-D installation, and by extension the EDM, is located within a Docker
container. The remainder of the MC is contained in a script external to the GridAPPS-D
simulation; however, the MC and any other potential application can be packaged within
the GridAPPS-D container for deployment purposes. GridAPPS-D provides a Python API
library that facilitates communication between the script and GridAPPS-D via discrete
“topics”, which are communications channels designed for a specific purpose such as
simulation input messages or database queries.

GridAPPS-D applications interface with a Blazegraph database, which is also included
with GridAPPS-D within the Docker container. This database includes grid models in the
Common Information Model (CIM) format. CIM contains identification numbers for all
components and measurements within this model, and these identifiers (or mRIDs) are
used by the MC to direct inputs to the proper DERs or identify measurement points, for
example.

During a typical GridAPPS-D simulation, the Test Engineer (TE) selects a model from the
database (such as, for example, the IEEE 13-node test feeder, which is included in the
package) as well as a simulation start time, duration, and other relevant options. Upon
execution, GridAPPS-D converts the CIM model to a GridLAB-D model and performs the
simulation in real time while awaiting messages on the platform topics. GridAPPS-D also
provides the ability to send regular timekeeping and measurement messages to the MC
via callback objects, discussed below in Section 3.2).

2.2 Grid Models and the Electrical Distribution Model
The Blazegraph database contains several built-in grid models, such as IEEE feeders,
PNNL taxonomy feeders, and OpenDSS/EPRI circuits in the CIM XML format. These
models can be run within the simulation directly. However, these models do not contain
the DER-EM representations needed to test input to the simulation. Existing grid models
modified to contain DER-EMs are required for EGoT testing. These DER-EMs should be
generalizable to a variety of DER types to ensure the ME is extensible as new DERs are
developed, and their usefulness explored via simulation.

CIM-based Battery Inverter System (BIS) models can serve as DER-EMs within the grid
model. They can be easily controlled via the MC DER input functions, and can be
operated to model a wide variety of DER loads. Furthermore, CIMHub allow BIS models1

to be added directly to an existing model in the database at required locations without
going through the process of generating, converting, and ingesting a new model.

New grid models can be created as well. They must be in the CIM format to be ingested
into the database; other formats such as GridLAB-D files need to be converted to CIM
before ingestion. The BIS models may be added during model creation or using the
script, as above.

1 https://github.com/GRIDAPPSD/CIMHub, see App. B.1.2
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Figure 2.2 A diagram of the model ingestion process. Grid models generated in a variety of file
formats can be converted to CIM XML by OpenDSS, which can be added to GridAPPS-D’s
database which contains several IEEE Test Feeders by default. Modifications to the models can
be made using the CIMHub and Powergrid-Models scripts, such as the addition of Battery
Inverter System models to be used as DER-EMs (see appendix B.1.3). Then, during the
simulation run process, the model is taken from the database and converted to the GLM format
for use by the simulation (as well as providing an OpenDSS file for validation purposes.)2

2.3 Model Controller Script
The MC is an object-oriented Python script that controls the simulation and provides
interfaces for input and output, Figure 2.2. The class-based structure of the script allows
the MC to be divided into several ‘actors’ responsible for individual tasks, such as
handling input messages to the EDM, or providing an interface between the MC and the
GSP.

GridAPPS-D assists in this implementation by providing “callback methods” that can be
included in user-written classes, which then become “callback classes”. These callback
methods are automatically called based on inputs from GridAPPS-D. For example: the
EDMTimekeeper’s callback method is called every time a log message is received from
GridAPPS-D. These log messages include a wide variety of data, including
incrementation messages tied to the internal simulator’s time keeping function; these
messages are parsed and whenever an incrementation is detected, the EDMTimekeeper
can then call a method to perform once-per-timestep functions for the MC. The
EDMMeasurementProcessor functions similarly, receiving messages containing grid
state measurements as they’re delivered by the GridAPPS-D simulation. This occurs
once every three seconds. Most MC functions are timed by the EDMTimekeeper’s
“simulation timestep” of one second, but measurement processing is timed by the
“measurement timestep” of three seconds.

2 S. Poudel et al, "Modeling Environment for Testing a Distributed Energy Resource Management
System (DERMS) using GridAPPS-D Platform," IEEE Access, 10:77383-77395, 2022.
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Figure 2.3 An overview of the Class-based architecture of the Model Controller.

2.3.1 Electrical Distribution Model Classes
The callback classes that make up the core of the EDM-MC communication pipeline are:

● EDMCore - Manages configuration and startup of the script as well as
instantiation of all of the necessary classes.

● EDMTimekeeper - Called once per second, this keeps track of the simulation
start time and current time, and also sends signals to all objects that need to be
updated once per second (such as the MCInputInterface).

● EDMMeasurementProcessor - Once every measurement timestep (three
seconds) this object receives updated grid states from the EDM, which it then
organizes, appends necessary locational data, and sends to the MCOutputLog
and GOSensor objects.

Two special cases are the MCInputInterface and the MCConfiguration classes. The
MCInputInterface class manages messages sent to the EDM input topic. This class does
not contain a callback method; however, it does interface directly with the EDM. In this
case it provides inputs to the EDM rather than receiving outputs, and these inputs are
delivered once per timestep on prompting by the EDMTimekeeper. The MCConfiguration
attributes should be customized by the user as they contain file directories, paths, the list
of active DER-Ss for the simulation, and any other global configuration data necessary
for the script to properly utilize inputs and generate outputs.

2.3.2 Distributed Energy Resource Classes
The DERs in the electrical model (DER-EMs) are generically represented as battery-
inverter system (BIS) models. BIS models provide a wide variety of sourcing, sinking,
and ramp rate controls, which can be adjusted to represent a wide variety of DERs. The
control inputs to DER-EMs come from simulated DERs (DER-S). Each DER-S may
represent one or multiple DERs and handles input and processing from external
simulations, hardware, or data. These DER-Ss provide electrical operating data as an
output. DER-Ss are assigned to DER-EMs at the proper topological location at the start

Award # DE-OE0000922 DOE-PSU-0000922-3 Page 13 of 82



of the simulation. Data associating the DERs to one another is held in a table for use by
the input processor and output classes.

Each DER-EM within the model has a unique control mRID number, which provides a
location for inputs to be delivered via the appropriate GridAPPS-D messaging function.
Its location within the grid model can also be queried. However, the emulators or
hardware that provide inputs to the DER-S are unlikely to know these mRIDs. Each
DER-S will have its own unique identifiers for each input, either provided by the inputs to
the DER-S or generated within the respective DER-S class. Each DER-S will also
require location data for each of its representative DERs. Using these identifiers and
locational data, DER-Ss can be assigned to DER-EMs.

The DERAssignmentHandler class automates the task of assigning DER inputs to
DER-EMs at the proper location in the model. These locations need to be provided to
each DER-S from the DER inputs; they could be the bus the DER should be assigned to,
or a member of a more complex topological grouping. Topological processing is handled
in GOTopologyProcessor, if necessary. Then, during the simulation start-up process,
the DERAssignmentHandler determines how many DER-Ss are being used by the
system and queries their identification and locational data. Using these data, it assigns
each DER-S input’s unique identifier to a DER-EM mRID existing at the proper node in
the grid model.

The data associating DER-S identifiers, mRIDs, and locational data are stored within the
DERIdentificationManager class. The inputs to the DER-EMs are handled by the
MCInputInterface. The MCInputInterface retrieves the electrical state output data from
each DER-S and its respective identifier at each timestep, converts the electrical data to
a message format usable by the EDM, queries the DERIdentificationManager to replace
the DER-S identifier with the respective target mRID for the DER-EM, then sends the
messages. These messages are received by the EDM, which updates the BIS models to
reflect the new electrical states communicated by the DER-S. These changed grid states
are then reflected in the measurements read by the EDMMeasurementProcessor.

2.3.3 Output Classes
As mentioned above, the EDMMeasurementProcessor retrieves grid state
measurements once every timestep and appends the locational association data
retrieved from DERIdentificationManager. This processed measurement data is sent to
two objects at each timestep:

● MCOutputLog -Writes the measurements to a log once per timestep for later
analysis.

● GOSensor - Represents the Grid Operator’s sensing system and
decision-making process. Filters the measurements as necessary, compares
them to user-defined thresholds, and makes determinations as to whether a new
grid service should be requested from the DERMS.

○ GOPostedService - Grid service requests are packaged into objects of
the GOPostedService class. Each of these objects contains attributes
holding the service name, group id, type, interval, power, ramp rates, and
price. These attributes provide all the information necessary to generate
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service request messages for a particular GOPostedService object; these
objects are maintained in a list in GOSensor and accessed by the
GOOutputInterface (see below).

Finally, GOOutputInterface provides an interface between the MC and GSP by polling
the GOSensor grid service list, packaging grid service requests and feedback data into
messages in the proper protocol, and sending them. This interface would be modified for
the required needs and protocols if a DERMS other than the GSP were used.
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3 Implementation
The following sections describe the implementation of the EDM, MC, DER-Ss, and the
Grid Operator representation contained within the MC. Information about individual
classes including their attributes and methods are included in Appendix B.

3.1 Electrical Distribution Model Implementation
The EDM simulates a node-based grid model consisting of generation, loads, and
distribution and provides methods to model and control transformers, breakers and
switches, reactive power compensation, etc. Rather than develop a complex grid
simulator from scratch, we are using GridAPPS-D. The GridAPPS-D system is contained
within a Docker container and includes the simulation system, a database of grid
models, and a communications bus, which allows inputs and outputs from the system to
an external program. As such, GridAPPS-D provides the EDM for the ME system, and
the GridAPPS-D python library allows development of an API between the EDM and MC.

Figure 3.1 The IEEE 13-node test feeder is an example of a node-based model.

3.1.1 Model Database
The GridAPPS-D database contains models in the CIM format. When a simulation is
started, GridAPPS-D automatically converts the selected CIM model into a GLM file as
part of the startup process.

There are five steps to the process of adding models to the Blazegraph database:

1. The model is generated in a format of the TE’s choosing.
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2. The model is converted from the above format to CIM via OpenDSS or another
comparable software package using CIMHub.

3. The CIM model is ingested to the database.
4. Measurement points are added to the model in the database.
5. The model is validated via CIMHub.

Once a model is contained within the database, DER-EMs (in the form of controllable
BIS models) can be added to the model by using CIMHub. CIMHub provides a set of
utility functions that allow a model in the database to be modified by the addition of
objects, such as houses or DERs, as well as the requisite measurement and control
points. These DER-EMs are added to particular nodes in the model and assigned unique
mRIDs, allowing them to be associated with DER-Ss in the DER assignment process
within the MC.

3.1.2 DER-EM Implementation
DERs may function as either load, source, or both. Emulation of thousands of DERs over
time is a complex and computationally-intensive task; furthermore, hard-coding the
simulator with these emulation processes would unduly couple those specific DER types
to the simulator, complicating the process of simulating new types of DERs or modifying
the profiles of existing ones with updated models. For this reason, DER-EMs do not
contain time-function DER modeling, and instead are generic DERs that respond to
control inputs. This allows their modeling to be offloaded to external scripts or to be
drawn directly from hardware or sensors. The result of this modeling is a representation
of an electrical power source or sink that changes over time; these data are provided to
the ME to control DER-EMs.

DER-EMs are implemented in the EDM using BIS models. BIS models exist in the CIM
standard and the application can control them using the typical input messaging topics
within GridAPPS-D. The MC can control DER-EMs based on inputs from DER-Ss to
reflect their electrical effects on the grid over time. Each DER-S receives DER input data
from an external file, emulator, or system; these data may represent one or many DERs.
Each DER-S is assigned to an appropriate number of DER-EMs automatically during the
simulation startup process. This assignment is based on location data taken from the
DER-S and matched to location data within the model, allowing DERs to be assigned
topologically. Commonly, this location data will be the bus within the model the DER
should be assigned to, but more complex topological processing and assignment can be
implemented within the GOTopologyProcessor.

3.1.3 EDM-MC Communications
Communications to or from the EDM are handled by the GridAPPS-D message bus.
GridAPPS-D has provided a gridappsd Python library to simplify communications by3

packaging requests in intuitive functions. For example, a function exists to write inputs
requiring an mRID and state changes as arguments; this function automatically
packages the request and sends it to the proper GridAPPS-D API. Another way the
library automates communications is by providing “callback functions” or “callback
methods” within classes. These functions are called automatically by the simulation at

3 Found at: https://github.com/GRIDAPPSD/gridappsd-python
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certain times, for instance, when the simulation has updated measurements of grid
states, or when a simulation timestep has elapsed. The contents of the callback
methods are user-defined. This allows for automation of the MC: processing
measurements into a format useful for logs can be performed automatically as the
measurements come in, or on-timestep functions can be handled by a callback method
that is called once per timestep, for example.

3.2 Model Controller Implementation
The MC is the programmed implementation of the ME and is responsible for
configuration, execution, and I/O features of the simulation. It is a class-based python
script, with each class encapsulating some functions of the system. Organizing the
system into a series of class-based actors makes the system more easily extensible.
Inputs from new DER emulators and controllers, different logging schemes, varied Grid
Operator functions, and external communication schemes can be added, removed, or
reconfigured within their respective classes without requiring substantial refactoring
outside of the class.

The classes are roughly organized into three groups:

Figure 3.2 Core classes and their interactions

● Core classes govern the simulation configuration and startup, and also include
classes with “callback methods,” which are methods that are automatically called
by the simulation on startup, once per second, or once per measurement update
(roughly three seconds). These callback classes are EDMCore, EDMTimekeeper,
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and EDMMeasurementProcessor. MCConfiguration is not a callback class, but is
a core class that handles system configuration settings within its attributes.

Figure 3.3 Input classes and their interactions

● Input Classes handle the inputs to the simulation. DER-EMs can be added to
the grid model and assigned measurement and control mRIDs prior to the
simulation. DER-S classes are added and enabled as required by the needs of
the test. The input classes handle communication between the DER-S and MC,
assign the unique identifiers of each DER input in each DER-S to the proper
DER-EM mRIDs, keep track of the DER-S to DER-EM association data for inputs
and logging, and convert DER-S operational changes to input messages for the
EDM. These classes are the DER-S interfaces (DERSHistoricalDataInput,
RWHDERS, and any other DER-S developed in future), DERAssignmentHandler,
DERIdentificationManager, and MCInputInterface.
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Figure 3.4 The output classes and their interactions, both planned (dashed lines) and
implemented (solid lines).

● Output classes take the formatted grid state data from
EDMMeasurementProcessor and send it to logging or simulated Grid Operator
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actors. The logger writes the data to a file for later analysis. The Grid Operator is
a simulated actor that functions in one of two modes. The first mode, “automatic
mode”, responds to grid state changes by requesting grid services from the
DERMS when user-programmed thresholds are met. The second mode, “manual
mode,” does not retrieve grid measurement updates but instead generates grid
service requests based on an XML input file containing information on what
services to request and when.

Grid service requests are objects of the GOPostedService class, which contain
all necessary information for each grid service request and methods to access
this data. These requests (and feedback data) are provided to the DERMS via an
interface class: GOOutputInterface. The GOOutputInterface polls the list of
posted service objects once per timestep and accesses the data in any new
entries to package them into the proper message format.

Finally, the GOTopologyProcessor allows for topological identification. For
instance, if the DERMS is configured to register DERs as members of a group of
buses rather than a single bus, the topology XML file can be updated to reflect
each bus membership in a group, allowing proper assignment, association, and
feedback to the DERMS.

The following class diagrams outline each class in terms of attributes and methods.
Descriptions of these attributes and methods for each class are included in Appendix B.

Note that this is not a full outline of the system but rather an overview. Many functions
and methods have been omitted, such as file system, data processing, and most
accessor methods.

3.2.1 Model Controller Core Classes

The core classes include EDMCore, EDMTimeKeeper, EDMMeasurementProcessor,
and MCConfiguration. Class diagrams for each are shown in Figure 3.5.
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Figure 3.5 UML class diagrams of the callback classes.

The EDMCore class provides EDM configuration and simulation startup functionality. It
also instantiates the other callback classes that are used to handle the EDM to MC
communication pipeline.

The MCConfiguration class contains configuration settings for the Model Controller in
its attributes, making it convenient for the user to configure paths, file names, and active
DER-S classes.

The EDMTimeKeeper callback class receives a message from GridAPPS-D once per
simulation timestep, which is one second. On receipt, the class updates the global
simulation time and sends that to any actors that need it. This class also instructs actors
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to update themselves if they are meant to do so once per timestep (such as the
MCInputInterface), rather than once per measurement (such as the MCOutputLog)

The EDMMeasurementProcessor callback class operates once every three seconds.
GridAPPS-D sends a message to this class containing a dictionary with a timestamp
along with dictionaries containing measured quantities from the simulation. These
measurements are keyed by mRID; they do not include human-readable information
such as the names, locational data, etc. This class draws said information from the
lookup tables in DERIdentificationManager, reformats the message into a single “row” of
data for the logs, and sends it to MCOutputLogs and the GOSensor classes.

3.2.2 Model Controller Input Classes
The Input classes include the DERIdentificationManager, DERAssignmentHandler, and
MCInputInterface. Also included are a number of customizable DER-Ss to handle inputs
to the system. Two examples are provided: the Resistive Water Heater DER-S class
(RWHDERS), and a general-purpose historical data log processor class,
DERSHistoricalDataInput. Class diagrams for each are shown in Figure 3.6.

Figure 3.6 UML class diagrams of the input classes.
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The Resistive Water Heater DER-S class RWHDERS is one example of a DER-S
interface within the ME. This class reads emulated water heater values from an input
buffer, which in the current configuration is a folder containing CSV files representing
each DER that are updated on a running basis by the GSP. Once per timestep,
RWHDER reads the files, parses their contents for their unique identifier and electrical
states data, and provides that data to the MCInputInterface.

The DERSHistoricalDataInput class represents a DER-S that is defined by
timestamped historical data from a CSV file. The input CSV must provide unique
identification data for each DER, as well as location information (such as a bus) for each
DER. This allows the DER inputs to be assigned to DER-EMs like any other DER-S.

Time
DER1_
Watts

DER1_
VARs

DER1_
loc

DER2_
Watts

DER2_
VARs

DER2_
loc

DER3_
Watts

DER3_
VARs

DER3_
loc

1570041118 0 0 632 0 0 633 1000 634 645

1570041119 0 0 632 1000 0 633 0 634 645

1570041120 0 0 632 1000 0 633 0 634 645

1570041121 0 0 632 1000 0 633 0 634 645

1570041122 0 0 632 1000 0 633 1000 634 645

1570041123 0 0 632 1000 0 633 1000 634 645

1570041124 0 0 632 1000 0 633 1000 634 645
Table 3.1 Example data from a DERSHistoricalDataInput CSV file. Timestamps are in unix time
format. Each trio of columns serves a single DER Input; DER1_Watts, DER1_VARs, and
DER1_loc are the real power (in Watts), the reactive power (in VARs), and the locational identifier
(or bus, in this case). The DER Input’s unique identifier is taken from the header, and in this case
is “DER1_mag”. The unique and locational identifiers are used for assignment.

DERIdentificationManager class handles lookups for all association data in the
simulation. ‘Association data’ refers to the tables that correlate each DER input with its
associated DER-EM; this includes each representative unique identifier from the DER
inputs (as handled by the DER-S), mRIDs of DER-EMs in the simulation used by the
MCInputInterface, and locational data. Identification data are used primarily by the
MCInputHandler to send input messages to the correct DER-EM using only identification
data, or by the log for identification purposes during testing.

The DERAssignmentHandler class manages the creation of the DER association
lookup table. It differs from the DERIdentificationManager in that it is only meant to be
used in the ME startup process. The role of the assignment handler is to take mRIDs
and location data from the GridAPPS-D database, associate them with provided unique
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identifiers for each DER-S, and provide that data to the DERIdentificationManager in the
form of a table.

Figure 3.7 DER Input unique and locational identifiers are used to assign a DER input to a
DER-EM by its control mRID.

The MCInputInterface class injects updated DER states into the model. Each timestep,
it retrieves updated data from each DER-S, packages it into formatted messages, and
delivers the messages to the EDM via the GridAPPS-D input topic.
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Figure 3.8 After assignment, the association data is held within the DERIdentificationManager,
automating the process of looking up DER-EM control mRIDs.

3.2.3 Model Controller Output Classes
The Output classes include GOSensor, GOOutputInterface, MCOutputLog, and
GOTopologyProcessor. Another output class is GOPostedService, which is unique in
that it is the only class that may be instantiated into more than one object. Class
diagrams for each are shown in Figure 3.9.
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Figure 3.9 UML class diagrams of the output classes.

The GOSensor class represents the operations of the Grid Operator and is meant to be
configurable for the needs of the model or the test. There are two possible operating
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modes: automatic mode and manual mode. In automatic mode, GOSensor reads in grid
states from the measurement processor (hence the name “GOSensor”); these are
compared to thresholds based on a user-defined algorithm and service requests are
automatically generated. For example, the GOSensor detects voltage deviations beyond
5% and, as a result, generates a Voltage Management service request to DERMS. In
manual mode, a list of services, parameters and request times are read from a file during
system startup. The GOSensor then generates service requests with the proper
parameters at the designated times. This mode is sufficient for most functional testing
purposes and is considered the “default” mode of operation. In either case, service
requests are generated by the instantiation of an object of the GOPostedService class;
these objects contain the service request parameters, are kept in a list by GOSensor and
accessed by the GOOutputInterface.

The GOOutputInterface class handles service request messaging between the MC and
the DERMS. It makes connections as necessary, polls the GOSensor for new service
requests each timestep, accesses posted service request parameters, packages them
into the proper message format, and sends the messages to the DERMS. The actual
decision-making process is in GOSensor.

The MCOutputLog class handles logging. Processed measurements from
EDMMeasurementProcessor are retrieved, converted to dictionary format, and written to
a CSV file for later data analysis.

Timestamp PowerTransformer_sub3_Power PowerTransformer_sub3_Power.1

2019-10-02
18:31:58

{'measurement_mrid': '_01e96721-222d-42be-bcc3-8cb6fe23d44c',
'magnitude': 1474276.2673145642, 'angle': -11.711333830924843,
'Measurement name': 'PowerTransformer_sub3_Power', 'Meas
Name': 'PowerTransformer_sub3_Power', 'Conducting Equipment
Name': 'sub3', 'Bus': '650', 'Phases': 'B', 'MeasType': 'VA'}

{'measurement_mrid': '_122affee-e7dd-4d8f-bd10-2696fd95c950',
'magnitude': 1415691.1267786373, 'angle': -7.507786248792342,
'Measurement name': 'PowerTransformer_sub3_Power', 'Meas Name':
'PowerTransformer_sub3_Power', 'Conducting Equipment Name': 'sub3',
'Bus': '650z', 'Phases': 'A', 'MeasType': 'VA'}

2019-10-02
18:31:59

{'measurement_mrid': '_01e96721-222d-42be-bcc3-8cb6fe23d44c',
'magnitude': 1474276.2673145642, 'angle': -11.711333830924843,
'Measurement name': 'PowerTransformer_sub3_Power', 'Meas
Name': 'PowerTransformer_sub3_Power', 'Conducting Equipment
Name': 'sub3', 'Bus': '650', 'Phases': 'B', 'MeasType': 'VA'}

{'measurement_mrid': '_122affee-e7dd-4d8f-bd10-2696fd95c950',
'magnitude': 1415691.1267786373, 'angle': -7.507786248792342,
'Measurement name': 'PowerTransformer_sub3_Power', 'Meas Name':
'PowerTransformer_sub3_Power', 'Conducting Equipment Name': 'sub3',
'Bus': '650z', 'Phases': 'A', 'MeasType': 'VA'}

2019-10-02
18:32:00

{'measurement_mrid': '_01e96721-222d-42be-bcc3-8cb6fe23d44c',
'magnitude': 1474276.2673145642, 'angle': -11.711333830924843,
'Measurement name': 'PowerTransformer_sub3_Power', 'Meas
Name': 'PowerTransformer_sub3_Power', 'Conducting Equipment
Name': 'sub3', 'Bus': '650', 'Phases': 'B', 'MeasType': 'VA'}

{'measurement_mrid': '_122affee-e7dd-4d8f-bd10-2696fd95c950',
'magnitude': 1415691.1267786373, 'angle': -7.507786248792342,
'Measurement name': 'PowerTransformer_sub3_Power', 'Meas Name':
'PowerTransformer_sub3_Power', 'Conducting Equipment Name': 'sub3',
'Bus': '650z', 'Phases': 'A', 'MeasType': 'VA'}

Table 3.2 Subset of data contained within an output log file. Note that each cell contains a
dictionary of data which can be used or filtered out during analysis.
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GOTopologyProcessor allows for more complex topological assignments. A topology
file is read into the object on startup. This file must be user-defined to match the topology
expected by the DERMS and contains XML dictionaries clustering service points (buses)
into groups. This information can then be used during the DER assignment process,
allowing groups to be entered as locational identifiers. These groups are translated to
appropriate buses, which are fed back to the assignment handler to continue the
assignment process.

Our team customized the IEEE 13-Node feeder shown in Figure 3.1 to simulate 1000≈
DERs. The topology of this feeder is designed to align with the Common Smart Inverter
Profile (CSIP) topological grouping scheme . The PSU IEEE-13 Node topology4

incorporates three groups; each group includes feeders, segments, transformers, and
service points, as shown in Figure 3.10. Such configuration provides flexibility within the
GOTopologyProcessor, allowing for a wide range of grid services levels. The entire
topology of the PSU IEEE 13-Node feeder is available on GitHub .5

<Groups>

<group name= "group-1" >

<Feeder name= "OL630-632" >

<Segment name= "UL632-633" >

<Transformer name= "xfmr_633_a_1" >

<ServicePoint name= "tlx_633_a_h_1"/>

<ServicePoint name= "tlx_633_a_h_2"/>

<ServicePoint name= "tlx_633_a_h_3"/>
..

</Transformer>

<Transformer name= "xfmr_633_a_2">

<ServicePoint name= "tlx_633_a_h_9"/>

<ServicePoint name= "tlx_633_a_h_10"/>

<ServicePoint name= "tlx_633_a_h_11"/>
..

</Transformer>

<Transformer name= "xfmr_633_a_3">

<ServicePoint name= "tlx_633_a_h_17"/>

<ServicePoint name= "tlx_633_a_h_18"/>

<ServicePoint name= "tlx_633_a_h_19"/>
..

</Transformer>

</Segment>

</Feeder>

</group>

</Groups>

Figure 3.10 Customized IEEE 13-Node Feeder topology aligning with the CSIP grouping
scheme. This is an example of only “group” out of three groups.

5 Portland State University Version of IEEE 13-Node Feeder

4 Common Smart Inverter Profile Working Group. Common smart inverter profile v2.1.
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Figure 3.11 During assignment, the GOTopologyProcessor translates non-bus locational
identifiers to buses using a predetermined topology (see Figure 3.10)

GOPostedService is the only class in the MC that is instantiated more than once; the
GOSensor class creates an object each time it determines that a service should be
requested. All service request parameters are included in attributes of the
GOPostedService object; this includes a name, a group id, the service type, interval, and
parameters. These objects are contained within a list in the GOSensor class and queried
by the GOOutputInterface once per timestep.

3.3 DER-S Implementation
The ME is designed with extensibility in mind, particularly regarding the ability to
implement models of a variety of DERs, both existing and those yet to be developed.
Each DER-S is a black box: it receives data from one or more DER inputs, and provides
unique and locational identifiers (for assignment and association) and power sourced or
sunk (for DER-EM control). However, the contents of the DER-S are deliberately
undefined. This provides a greater amount of flexibility in how a particular DER-S can be
developed and allows for hardware-in-the-loop implementations, inputs from emulators,
and historical data to be used. Of course, this also means that any type of DER can be
included in the MC as long as a DER-S is developed for said DER, along with any
sensors, instruments, emulators or programs required to model said DER externally to
the ME.

Due to this flexibility, it is impossible to provide an exhaustive list of possible
implementations, particularly with regards to inputs or internal processing within a
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DER-S. Some examples are presented in Sections 3.3.1 and 3.3.2. Note that each
example refers to one or more DER-S classes that would need to be developed for a
particular purpose or DER.

3.3.1 DERMS to DER-S communication
Typically, information exchange between the DERMS and DER is beyond the scope of
the ME since the DER-S is concerned with reading the operating state of a DER, not
how that state is achieved. However, it is conceivable that for test purposes a DERMS
could request resources that would be convenient to implement directly within the MC.
One example would be a DERMS that controls BISs directly.

In this example, communications between the DERMS and DER-S would need to be
established via development of an API within the DER-S class that handles and parses
these communications. This is typical for all DER-S types; in this particular case,
however, the communication protocol would be dictated by the DERMS. After the
communications are parsed, they will be processed into the proper output format within
the DER-S class.

3.3.1.1 DERMS to DER-S using Physical Systems

A physical DER will operate per normal operating procedures most of the time. At times,
however, it will request grid-service participation with the DERMS. This messaging
requires a communication pathway between the DERMS and DER via the DER control
system, such as a Distributed Control Module (DCM). The DERMS-to-DCM information
exchange is managed by the DERMS, and is beyond the scope of the ME.

In this case, the DER-S class will interface with one or more DCMs by a communications
API between the DCM and DER-S class. The contents of these communications would
be dictated by the capabilities of the DCM, and the DER-S would govern processing
these communications into a readable by the MCInputProcessor and
DERAssignmentHandler classes. For example, one method of modeling a DER is to
control its power consumption over time. A sophisticated enough DCM with the proper
sensors in its DER could provide power consumption readings directly to the DER-S,
along with unique identifiers. A more rudimentary DCM may only provide a flag that the
DER is “turned on” to the DER-S class, which would require the DER-S to “emulate”
power consumption patterns based on the DER nameplate information. Locational
identifiers would likely need to be provided to the DER-S by the test engineer, using an
input configuration file or an algorithm for automatic generation.

Due to the flexibility in DER-S design, no communication protocols or standards are
suggested. These should be selected based on the needs of the particular DERMS,
DCM, and DER-S implementation in use.

3.3.1.2 DERMS to DER-S using Emulated Systems

DER-S implementations that do not include physical hardware should instead use
software algorithms to generate operating data. This need not be done within the DER-S
class: sophisticated external emulators or functions within the DERMS may be used for
this purpose, handling all communications and time-valued DER modeling. The DER-S
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class needs to extract some information from these emulators that can be parsed into
electrical data. These “DER inputs” may be electrical information, such as power
consumption, that may be fed directly into the simulation. Or, they may be more generic
operating data that are converted to electrical information within the DER-S by the
inclusion and processing of label plate data or similar parameters.

One example of an emulated DER that has been developed is a resistive water heater,6

developed specifically to test the GSP. One or many resistive water heaters are
emulated within the GSP; the power consumption of each water heater is placed in a
constantly updated file containing unique identifiers, location data, and operation data in
the form of power. These files are read in real time by the RWHDERS, a DER-S class
written for this purpose. While RWHDERS provides a power reading directly, another
DER-S implementation may not. One conceivable DER-S would function similarly to
RWHDERS but instead of providing power readings, it may only provide whether the
water heater is “importing” or “exporting” power. The import/export flags would be
translated into power consumption data by the DER-S using provided label plate ratings.
The role of the DER-S class is to read the data, perform the operational/electrical power
conversion, and pass those data in the proper form to the MCInputInterface for use in
DER-EM updates.

3.3.2 DER Modeling using Historical Data
“Historical data” in this case refers to any input to the simulation that is not being
generated in real-time. For example, this could be data generated by an emulator, or it
could be states read from DCM sensors and written to a file. In any case, a DER-S
needs to be written or configured to parse the historical data and provide it to the
simulation at appropriate times. These data must be time stamped to be used at the
proper time in the simulation, and must include unique and locational identifiers so DERs
in the data can be assigned to DER-EMs in the EDM. This is a preferred method for
generating inputs to the DER-EMs in many functional test cases due to its simplicity:
direct communications do not need to be established between the DERMS/emulators
and DER-S during simulation runtime and large amounts of data can be processed
without encountering communication obstacles such as bandwidth and latency.

Time
DER1
_mag

DER1
_loc

DER2
_mag

DER2
_loc

PowerElectronicsConnection_Battery
Unit_DER_Association_Test_6321_Ba
ttery.3

PowerElectronicsConnection_Battery
Unit_DER_Association_Test_6331_Ba
ttery.3

1570041118 0 632 1000 633

{ 'magnitude': 1333.333333, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1666.666667, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

1570041119 1000 632 0 633

{ 'magnitude': 1333.333333, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1666.666667, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

1570041120 1000 632 1000 633

{ 'magnitude': 1333.333333, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1666.666667, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

6 https://github.com/PortlandStatePowerLab/doe-egot-dcm/tree/main/src/ecs/include/ecs
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1570041121 0 632 0 633

{ 'magnitude': 1333.333333, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1333.333333, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

1570041122 0 632 1000 633

{ 'magnitude': 1333.333333, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1333.333333, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

1570041123 1000 632 0 633

{ 'magnitude': 1333.333333, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1333.333333, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

1570041124 1000 632 1000 633

{ 'magnitude': 1666.666667, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1666.666667, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

1570041125 0 632 0 633

{ 'magnitude': 1666.666667, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1666.666667, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

1570041126 0 632 1000 633

{ 'magnitude': 1666.666667, 'Bus': '632',
'MeasType': 'VA', 'Input Unique ID':
'DER1_mag'}

{ 'magnitude': 1666.666667, 'Bus': '633',
'MeasType': 'VA', 'Input Unique ID':
'DER2_mag'}

Table 3.3 An example of the effects of DER inputs on grid state data over time. The inputs are
drawn from an input CSV file for the DERHistoricalDataInput DER-S, and the outputs are log
outputs that have been edited for clarity. Note that each column represents a single phase; as
such, an added 1 kW of load shows as 333 W per phase. Also note the discrepancy between
simulation and measurement timesteps: while inputs are delivered once per second, the
measurements only update once every three.

3.4 Grid Operator Implementation
As a component of the ME, the GO is a set of classes that simulate the decision-making
process and actions of a real Grid Operator. The GO also provides an interface for
communicating grid service requests and feedback data to the DERMS, and provides a
method for topological translation. The GO will have two modes of operation: Automatic
and Manual mode. Automatic mode is designed to realistically simulate GO operations
by forecasting the demand profiles and retrieving grid states once per timestep, making
determinations based on the grid states and built-in detection algorithms, and posting
service requests automatically based on grid conditions. In Manual mode, grid service
requests are read in from an XML file and posted at the proper times, allowing for
simple, direct control for functional testing.

In a fully functional test system such as the EGoT prototype, during a running simulation
the GOSensor may request a service from the DERMS via the GOOutputInterface.
Externally to the ME, the DERMS will dispatch DERs per this request. These changes in
DERs will be reflected by the DER-EMs within the EDM via the respective DER-S
interface. These changes in the DER-EMs affect the grid states, which are gathered by
the EDMMeasurementProcessor and (in Automatic mode) sent to the GOSensor. The
GOSensor will parse the EDM grid states to verify the dispatch had occurred and
incurred the required grid effects. The GO is meant to be a high-level representation of
the GO’s decision making; as such, the GOSensor decision-making function is meant to
be a simple threshold detection script, though the system can be updated with more
advanced detection capabilities if necessary. The GOOutputInterface communication
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with the DERMS is meant to be configured by the end user rather than requiring a
specific protocol.

3.4.1 Grid States Inputs
During the simulation process, the EDMMeasurementProcessor holds a table containing
the most recent grid states read from the ME at each time step, including electrical
characteristics, the status of each DER-EM, and its association data (mRIDs, locational
data, etc.) along with any other relevant grid state data. These tables are sent to the
MCOutputLog once per time step to construct the logs. If Automatic Mode is enabled,
they are also sent to the GOSensor, which parses them. The data may be limited by the
GOSensor to better simulate a real-world GO, or it may simply read in all grid states data
directly.

3.4.2 Decision-Making Process
There are two types of tests involving grid services that the TE may wish to conduct.
First, the TE may want to test the effects of a grid service on a typical grid, to gather data
on how a service affects a grid. Second, the TE may wish to test the GSP’s ability to
correct actual problems by dispatching DERs. In the former test, the GO can be set to
manually request a grid service per the TE’s needs; in the latter, the GO may need to
make that determination automatically.

3.4.2.1 Manual Decision-Making Mode

In this mode, the TE will select a particular desired request and a specific time to send
the request. This will be done for one or more requests by placing the service request
parameters and times in a properly formatted XML file and configuring the MC to read it
in during the startup process. As the simulation is running, the GO will keep time with the
simulation using the MCTimekeeper current_time attribute. At the programmed time, the
GOSensor will generate a GOPostedMessage object containing the parameters of the
grid service and place this object in a list. Each timestep, the GOOutputInterface reads
this list and, if a new object is found, generates a message in the proper format
containing the service parameters. The GO will then send the message to the DERMS.
The format and protocol of this message will be dependent on the needs of the DERMS;
generally, the message will contain a request for a particular service and any related
information such as durations, levels, etc. This mode is suitable for testing the output of
the DERMS and its effects on the grid without necessarily requiring an abnormal grid
condition to exist.

3.4.2.3 Automatic Decision-Making Mode

In this mode, the TE does not request a service at a particular time. Instead, the GO is
configured to forecast the demand profiles and schedule a service based on the
forecasted data. The GO is also configured to measure a particular component or value
via the feedback function and compares it to a programmed threshold once per time
step. If the threshold is exceeded, a GOPostedService object is generated, and the
process is followed identically to a manual mode.
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Figure 3.11 depicts the GO automatic Decision-Making mode operation. In this mode,
grid services are divided into two categories: autonomous and scheduled grid services.
The former method is meant for grid services requiring DER capabilities that respond
automatically to grid variations, such as Voltage management and Frequency Response.
The autonomous grid services method defines frequency and voltage threshold values
for measurements read by the GOSensor. Simultaneously, the autonomous grid services
method requests a service from DERMS to aggregate DERs with suitable algorithms to
provide the requested service. In each timestep, the GOSensor evaluates the
measurements against the defined thresholds; if the thresholds are exceeded, the GO
updates the service attributes (location and time interval), indicating that the dispatched
DERs did not meet the requested service requirements. Otherwise, the GOSensor
monitors the grid states for the service interval to ensure the measures taken by DERMS
meet the requested grid service objectives. For instance, in a voltage management
service, the DERMS updates aggregated DERs with Volt-VAr curve points prior to the
service time. As such, the DERs respond to voltage excursions beyond the defined
threshold by injecting or absorbing reactive power.

The scheduled grid services method simulates the GO behavior with grid services that
are planned in advance, such as blackstart, reserve, and energy grid services. At the
beginning of the simulation, the GO forecasts the demand profiles and simulates a grid
contingency situation (i.e., blackout or sudden change in load). When forecasting the
demand profiles, the GO reads data provided by the DERSHistoricalDataInput class
and identifies the peak demand periods. The GO then requests a service from DERMS,
either a peak demand shifting or mitigation, based on the outputs of the forecasting
process. As the service time starts, the GO monitors the grid states and ensures that
DERMS's actions realize the requested service's objectives.

When simulating a grid emergency event, the Grid Services Simulator class packages
the event’s start time, duration, end time, and topological location and send it to the
DERMS through the GOOutputInterface at the beginning of the simulation. The role of
the Grid Services Simulator is to simulate the event at the scheduled time. For
instance, to test the DERMS effectiveness in responding to blackstart grid service, the
Grid Services Simulator class simulates a blackout during the scheduled service time
by opening a switch that disconnects a feeder from the source. The GO interacts with
the DERMS during the blackout to update the feeder restoration time to revert DERs to
normal operation.
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Figure 3.11: GOSensor Automatic Mode Operational Scheme.

3.4.3 GO-DERMS Communications
Since the ME is designed to be used with a variety of DERMSs, there is no single
protocol for information exchange between a GO and a DERMS. This will necessarily
be defined by the user within the GOOutputInterface class. To simplify this process, all
results of the decision-making process are simplified into “grid service requests” and
“feedback data.” As such, the TE will need to develop an API between the GO and the
DERMS in order to translate request types and magnitudes into messages that both
actors can understand.
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Appendix A

A.1 MC Callback Classes

A.1.1 EDMCore Class
“““Provides central, core functionality to the MC. Responsible for the startup process and
storing the GridAPPS-D connection and simulation mRIDs and objects.”””

A.1.1.1 EDMCore Attributes
gapps_session The gridappsd library allows the script to connect to the GridAPPS-D
simulation running in the docker container. That function returns an object that is stored
in this attribute for use in direct queries and later when initializing the simulation.

sim_session This object is returned by the gridappsd library simulation() method when
the gapps_session object and the configuration parameters are passed in. This object
represents the current simulation (rather than the environment as a whole in
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gapps_session) and is used to instantiate the subclasses and get the simulation ID,
providing general simulation control.

sim_start_time The unix timestamp of the simulation start time. This is the start time
that the simulation will increment from until reaching the end of the simulation duration
and is not associated with the real time.

sim_current_time This is running the most current timestep of the simulation. This is
the variable used for global timekeeping purposes.

sim_mRID The Simulation ID of the current simulation.

line_mRID The mRID of the model being simulated. This can be used to query various
aspects of the model (such as measurement points) directly from the blazegraph
database. GeoRegion and SubGeoRegion are contained within config_parameters as
well, but aren’t given attributes since they’re never needed for our purposes.

config_parameters A dictionary of configuration parameters required by GridAPPS-D to
start a simulation. Includes the line model mRIDs, application configurations as needed,
and simulation configuration including the start time, duration, timestep, and other
options required by GridAPPS-D during startup.

mrid_name_lookup_table Object measurement table queried from the database.
Contains information connecting mRIDs to names for measurements. These are used by
the logs to make headers more human-readable.

cim_measurement_dict A similar, but separate table queried in a different way from
mrid_name_lookup_table. This measurement dict contains amplifying data for
measurements, such as the measurement type or bus location. These are added to the
logs to make data cells more human-readable.

A.1.1.2 EDMCore Methods
get_sim_start_time() ACCESSOR METHOD: returns the simulation start time (per the
configuration file, not realtime)

get_line_mRID() ACCESSOR METHOD: Returns the mRID for the current model.

sim_start_up_process() ENCAPSULATION METHOD: calls all methods required to set
up the simulation process. Does not start the simulation itself, but performs the “startup
checklist.” This includes connecting to GridAPPS-D and the simulation, loading
configuration from the file, instantiating all the (non-callback) objects, initializing DER-Ss,
assigning DER-EMs and creating the association table, and connecting to the
aggregator among others. See the docstring for each method for more details.

self.connect_to_gridapps()

self.load_config_from_file()

self.initialize_line_mrid()

self.establish_mrid_name_lookup_table()
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self.connect_to_simulation()

self.initialize_sim_start_time()

self.initialize_sim_mrid()

self.create_objects()

self.initialize_all_der_s()

derAssignmentHandler.create_assignment_lookup_table()

derAssignmentHandler.assign_all_ders()

derIdentificationManager.initialize_association_lookup_table()

mcOutputLog.set_log_name()

goSensor.load_manual_service_file()

load_config_from_file() Loads the GridAPPS-D configuration string from a file and
places the parameters in a variable for later use.

connect_to_gridapps() Connects to GridAPPS-D and creates the GridAPPS session
object.

initialize_sim_mRID() Retrieves the simulation mRID from the simulation object. The
mRID is used to connect to messaging topics, while the object contains methods to, for
example, start the simulation.

initialize_line_mRID() Retrieves the model mRID from the config parameters.

initialize_sim_start_time() Retrieves the simulation start timestamp from the config
parameters. Note: this is a setting, not the real current time.

connect_to_simulation() Connects to the GridAPPS-D simulation (as opposed to the
GridAPPS-D session) and creates the simulation object.

create_objects() Instantiates all non-callback classes. All objects are global to simplify
arguments and facilitate decoupling. (Note: EDMCore is manually instantiated first, in the
main loop function. This is part of the startup process. The callback classes need to be
instantiated separately to ensure the callback methods work properly.)

initialize_all_der_s() Calls the [object name].initialize_der_s() method for each
DER-S listed in mcConfiguration.ders_obj_list.

start_simulation() Performs one final initialization of the simulation start time (this fixes
a bug related to our use of the logging API tricking the timekeeper into thinking it is later
than it is) and calls the method to start the actual simulation.

establish_mrid_name_lookup_table() This currently creates two lookup dictionaries.
mrid_name_lookup_table gets the real names of measurements for the measurement
processor/logger. cim_measurement_dict gives a more fully fleshed out dictionary
containing several parameters related to measurements that are appended to the
current readings of the measurement processor.

get_mrid_name_lookup_table() ACCESSOR METHOD: Returns the
self.mrid_name_lookup_table.
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get_cim_measurement_dict() ACCESSOR METHOD: Returns the
self.cim_measurement_dict.

A.1.2 EDMTimeKeeper Class
“““CALLBACK CLASS. GridAPPS-D provides logging messages to this callback class.
on_message() filters these down to exclude everything except simulation timestep
“incrementing to…” messages and simulation ending messages. Each time an
incrementation message is received from GridAPPS-D, one second has elapsed. The
Timekeeper increments the time each timestep; more importantly, it also calls all
methods that are intended to run continuously during simulation runtime.
perform_all_on_timestep_updates() updates the MC once per second, including
receiving DER-S inputs, updating the DER-EMs, and updating the logs.

Note: this does not include updating the grid state measurements. GridAPPS-D retrieves
grid states for the measurement callbacks once every three seconds using a completely
different communications pathway. As such, measurements and their processing are not
handled by this class in any way.”””
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A.1.2.1 EDMTimeKeeper Attributes
sim_start_time The (from config) simulation start timecode.

sim_current_time The current timestamp. Initialized to the sim start time.

previous_log_message A buffer containing the previous log message. Necessary to fix
a double incrementation glitch caused by GridAPPS-D providing the same log multiple
times.

edmCoreObj edmCore is fed through an argument directly since it doesn't function
properly as a global object.

A.1.2.2 EDMTimeKeeper Methods
on_message() CALLBACK METHOD: the “message” argument contains the full text of
the Log messages provided by GridAPPS-D. This occurs for many reasons, including
startup messages, errors, etc. We are only concerned with two types of messages: if the
message contains the text “incrementing to,” that means one second (and thus one
timestep) has elapsed, and if the message process status is “complete” or “closed”, we
know the simulation is complete and the MC should close out.

end_program() Submethod of self.on_message(). Ends the program by
closing out the logs and setting the global end program flag to true, breaking the
main loop.

update_and_increment_timestamp() Submethod of self.on_message().
Increments the timestep only if “incrementing to” is within the log_message;
otherwise does nothing.

increment_sim_current_time() Increments the current simulation time by 1.

get_sim_current_time() ACCESSOR: Returns the current simulation time. (Not real
time.)

perform_all_on_timestep_updates ENCAPSULATION: Calls all methods that update
the system each timestep (second). New processes should be added here if they need
to be ongoing, I.E. once per second through the simulation. NOTE: DOES NOT
INCLUDE MEASUREMENT READING/PROCESSING. Those are done once every
three seconds due to the way GridAPPS-D is designed and are independent of the
simulation timekeeper processes. See EDMMeasurementProcessor.
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A.1.3 EDMMeasurementProcessor Class
“““CALLBACK CLASS: once per three seconds (roughly), GridAPPS-D provides a
dictionary to the on_message() method containing all of the simulation grid state
measurements by mRID, including the magnitude, angle, etc. The measurement
processor parses that dictionary into something more useful to the MC, draws more
valuable information from the model, gets association and location data from the input
branch, and appends it to the dictionary to produce something usable by the GO and the
logging class.
NOTE: the API for measurements and timekeeping are completely separate. The MC as
a whole is synchronized with the timekeeping class, but measurement processes are
done separately. This is why logs will have repeated values: the logs are part of the MC
and thus update once per second, but the grid states going IN to the logs are only
updated once per three seconds.”””

A.1.3.1 EDMMeasurementProcessor Attributes
measured_timestamp The timestamp of the most recent set of measurements as read
from the GridAPPS-D message. NOTE: Currently unused, but might be useful for future
log revisions.

current_measurements Contains the measurements taken from the GridAPPS-D
message. Written in the function
self.parse_message_into_current_measurements().

current_processed_grid_states This contains the current processed grid states.
Processed grid states include the measurements from self.current_measurements as
well as DER-S to DER-EM association data and locational data.

mrid_name_lookup_table Read from EDMCore. Used to append informative data to
each measurement.
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measurement_lookup_table Read from EDMCore. Used to append (different)
information to each measurement.

measurement_mrids Measurement dictionaries provided by GridAPPS-D use mRIDs
as keys for each measurement. This contains a list of those keys and is used to replace
those mRIDs with human-readable names.

measurement_names A list of human-readable measurement names. See
measurement_mrids.

assignment_lookup_table Read from DERAssignmentHandler. Used to append DER-S
to DER-EM association data to each measurement for logging and troubleshooting
purposes.

A.1.3.2 EDMMeasurementProcessor Methods

on_message() (Note: This is required by GridAPPS-D.) This is the “callback method” for
measurements. Once per three seconds, the Simulation API provides a dictionary of
dictionaries containing key-value pairs, each key being the mRID of a measurement
point and each value being one or more quantities, magnitudes, or switch positions.
These are given in the message argument, which can be processed by this function (and
only this function) into a form usable by the rest of the script. As such, all of the actions
taken each measurement timestep will be contained in this method.

parse_message_into_current_measurements() This takes the contents of message
(which by definition contain the newest set of measurements), parses the measurements
and the timestamp, and places the values in the proper attributes. It also appends
names, association data, and any other data we want to include in the measurements
that have been fed through other parts of the MC.

append_names() Adds important data to each measurement taken from the EDMCore
lookup tables. This includes real names, equipment names, bus locations, phases, and
measurement types.

append_association_data() Takes association data for each DER from the assignment
lookup table and appends it to the parsed measurements by mRID. This allows
locational data, for example, to be fed through the system to the GSP via the GO.
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A.1.4 MCConfiguration Class
“““Provides user configurability of the MC when appropriate. Not to be confused with the
GridAPPS-D configuration process, this provides global configuration for the MC as a
whole. DER-S configuration should be handled within the DER-S Class definition, and
not here.”””

A.1.4.1 EDMMeasurementProcessor Attributes
mc_file_directory The root folder where the ME is located.

config_file_path The text file containing the GridAPPS-D configuration info.

ders_obj_list A dictionary containing the DER-S classes and objects that will be used in
the current simulation. Add or comment out as appropriate for new DER-Ss or for
different tests.

go_sensor_decision_making_manual_override Set to True to use manual GOSensor
decision making. Grid services are called by a text file rather than based on grid
conditions.

manual_service_filename the XML filename of the GOSensor manual service input file.
Should be in MC root.

output_log_name The name and location of the output logs. Rename before simulation
with date/time, for example.
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A.2 MC Input Classes

A.2.1 RWHDERS Class
“““The Resistive Water Heater DER-S. This DER-S is designed to build on prior work by
the Portland State University Power Engineering Group. RWHDERS is designed to
provide a means for resistive water heaters to be modeled and simulated in the Modeling
Environment.

The input to RWHDERS is information from water heater emulators that are/will be
provided by the GSP (via the EGoT server/client system). These emulators function over
time as a resistive water heater, turning on and off based on current tank temperature,
ambient losses, usage profiles, etc. These functions are handled externally to the ME,
however: the end result is a series of CSV files contained in the RWHDERS Inputs
folder.

The ME uses these CSV files as follows. Each file is named "DER#####_Bus###.csv".
The first set of numbers is a serial number used as a 'unique identifier' for each emulated
DER input. The second set is the 'locational information', in this case the Bus the DER
should be located on in the model. The contents of the CSV file are a single pair of
values: "P", for power, and a number corresponding to what the power should be set to.
This is by agreement with the GSP designer for current testing needs; in future, the file
could contain voltages, or more complex information such as usage profiles that would
require modification to the RWHDERS class to parse.

At the beginning of each simulation, the DERAssignmentHandler class calls the
assign_der_s_to_der_em() function for each DER-S, including RWHDERS. This function
associates each unique identifier with the mRID of a DER-EM. These DER-EMs already
exist in the model and do nothing unless associated with a DER-S unit.

During the simulation, each time step RWHDERS reads the CSV files for updates. The
power levels for each DER are processed into a standard message format used by
MCInputInterface. The association data are used to ensure each input is being sent to
the proper DER-EM by MCInputInterface. Then, again on each timestep,
MCInputInterface updates the DER-EMs in the model with the new power data, which is
reflected in the logs.

In this way, changes to water heater states are converted to time-valued power changes,
which are sent to RWHDERS, processed by the MC, and written into the simulation so
that grid states reflect the changes.”””
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A.2.1.1 RWHDERS Attributes

der_em_input_request Contains the new DER-EM update states for this timestep,
already parsed and put into list format by RWHDERS. The list is so multiple DER-EMs
can be updated per timestep.

input_file_path The folder in which the RWHDERS input files are located.

input_identification_dict a dictionary of identification information for each DER input.
The keys are the serial numbers parsed from each file name, and the values include the
buses and the filename. Used during assignment, and also on time step to get the right
data from the right file for each DER unique ID.

A.2.1.2 RWHDERS Methods

initialize_der_s() This function, with this specific name, is required in each DER-S used
by the ME. The EDMCore initialization process calls this function for each DER-S
activated in MCConfig to perform initialization tasks. This does not include DER-EM
assignment (see self.assign_der_s_to_der_em()). In this case, all this function does
is call the self.parse_input_file_names_for_assignment() function.

assign_der_s_to_der_em() This function (with this specific name) is required in each
DER-S used by the ME. The DERAssignmentHandler calls this function for each DER-S
activated in MCConfig. The purpose of this function is to take unique identifiers from
each "DER input" for a given DER-S and “associate” them with the mRIDs for DER-EMs
in the model. This is done using locational data: I.E. a specific DER input should be
associated with the mRID of a DER-EM on a given bus. This function does those tasks
using the input_identification_dict generated in the initialization process.

parse_input_file_names_for_assignment This function is called during the DER-S
initialization process. It reads all the files in the RWHDERS Inputs folder and parses
them into an input dictionary containing the unique ID, file name, and Bus location for
each. These are used during assignment and each time step to “connect the dots”
between the input file and the DER-EM that represents its data.

update_der_em_input_request() Reads the input data from each file in the input
identification dict, and puts it in a list readable by the MCInputInterface.
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get_input_request() This function (with this specific name) is required in each DER-S
used by the ME. Accessor function that calls for an updated input request, then returns
the updated request for use by the MCInputInterface

A.2.2 DERSHistoricalDataInput Class
“““The Historical Data DER-S. Sometimes referred to as “manual input,” this DER-S
serves as a simple method to update DER-EMs manually at certain times with specific
values, allowing the test engineer to write in grid states as needed by each simulation.
Since DER-EMs are generic models, each historical data input could represent a single
DER, groups of DERs, or even more abstract ideas such as massive power excursions.

The input is a single CSV file, contained in the DERSHistoricalData Inputs folder. This
CSV is timestamped and in a specific format; after the timestamp column, columns are in
pairs, with each pair representing Power and Bus for each DER-EM. The bus is used for
assignment, at which point the values are associated to DER-EMs by header names.

Otherwise, it functions like any other DER-S: it has an initialization process, an
assignment process, and on timestep updates.”””
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A.2.2.1 DERSHistoricalDataInput Attributes

der_em_input_request Contains the new DER-EM states for this timestep, already
parsed and put into list format by the function. The list is so multiple DER-EMs can be
updated per timestep.

input_file_path The folder in which the DERSHistoricalDataInput files are located.

input_table The input files are in CSV format; the csv reader reads these files into a
table here.

list_of_ders The DER names read from the header of the input table.

location_lookup_dictionary A dictionary associating the DER unique identifiers with
the bus they should be assigned to.

A.2.2.2 DERSHistoricalDataInput Methods

initialize_der_s() This function (with this specific name) is required in each DER-S used
by the ME. The EDMCore initialization process calls this function for each DER-S
activated in MCConfiguration to perform initialization tasks. This does not include
DER-EM assignment (see self.assign_der_s_to_der_em()). In this case, all this
function does is call the self.read_input_file() function.

get_input_request() This function (with this specific name) is required in each DER-S
used by the ME. Accessor function that calls for an updated input request, then returns
the updated request for use by the MCInputInterface

assign_DER_S_to_DER_EM() This function (with this specific name) is required in each
DER-S used by the ME. The DERAssignmentHandler calls this function for each DER-S
activated in MCConfig. The purpose of this function is to take unique identifiers from
each “DER input” for a given DER-S and “associate” them with the mRIDs for DER-EMs
in the model. This is done using locational data: I.E. a specific DER input should be
associated with the mRID of a DER-EM on a given bus.

open_input_file(path) Opens the historical data input file, reads it as a CSV file, and
parses it into a list of dicts.

read_input_file() Reads and parses the input file. Places all the input information in
input_table. Also, parses the CSV file to determine the names and locations of each
DER: when the timestamp column is removed, odd column headers are names and even
headers are their associated locations. These lists are converted to a list of dictionaries
to be passed to the assignment handler (which takes the locations for each DER name
and assigns a DER-EM mRID at the proper location to the name, this allows the MC to
provide updated DER states to the DER-EM without requiring the inputs to know
DER-EM mRIDs.)

update_der_em_input_request() Checks the current simulation time against the input
table. If a new input exists for the current timestep, it is read, converted into an input
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dictionary, and put in the current der_input_request (see
MCInputInterface.get_all_der_s_input_requests() )

A.2.3 DERIdentificationManager Class
“““This class manages the input association lookup table generated by the
DERSAssignmentHandler. The accessor methods allow input unique IDs to be looked
up for a given DER-EM mRID, or vice versa. The table is generated during the
assignment process (see DERAssignmentHandler).”””

A.2.3.1 DERIdentificationManager Attributes

association_lookup_table a list of dictionaries containing association data, read from
the DERAssignmentHandler after the startup process is complete. Used to connect the
unique identifiers of DER inputs (whatever form they might take) to mRIDs for their
assigned DER-EMs.

A.2.3.2 DERIdentificationManager Methods

get_meas_name(mRID) ACCESSOR FUNCTION: Returns a unique identifier for a
given DER-EM mRID. If none is found, the DER-EM was never assigned, and
'Unassigned' is returned instead.

get_DER_EM_mRID(name) ACCESSOR FUNCTION: Returns the associated DER-EM
control mRID for a given input unique identifier. Unlike get_meas_name(), if none is
found that signifies a critical error with the DERSAssignmentHandler.

initialize_association_lookup_table() Retrieves the association table from the
assignment handler.
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A.2.4 DERAssignmentHandler Class
“““This class is used during the MC startup process. DER-S inputs will not know the
mRIDs of DER-EMs since those are internal to the EDM, and DER inputs are external to
the MC. As such, a process is required to assign each incoming DER input to an
appropriate DER-EM mRID, so that its states can be updated in the model. Each DER-S
DER unit requires a unique identifier (a name, a unique number, etc.) and a “location” on
the grid, generally the bus it is located on. The assignment handler receives as input a
list of {uniqueID:location} dictionaries, uses the location values to look up the DER-EMs
on the appropriate bus, and assigns each unique identifier to an individual DER-EM.
These associations are passed to the Identification Manager; during the simulation, new
inputs from each unique ID are sent to the input manager, which automatically looks up
the appropriate mRID for the associated DER-EM and sends the inputs there.”””

A.2.4.1 DERAssignmentHandler Attributes

assignment_lookup_table contains a list of dictionaries containing mRID, name, and
Bus of each DER-EM within the model.

assignment_table a redundant assignment_lookup_table, used during the assignment
process in order to prevent modification to the original assignment lookup table (which
will still need to be used by the output branch, for example).

association_table Contains association data provided by each DER-S class, for use by
the DERIdentificationManager.

der_em_mrid_per_bus_query_message SPARQL Query used to gather the DER-EM
info for the assignment tables from the model database.

A.2.4.2 DERAssignmentHandler Methods

get_assignment_lookup_table() ACCESSOR: Returns the assignment lookup table.
Used in the message appendage process.
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create_assignment_lookup_table() Runs an extended SPARQL query on the
database and parses it into the assignment lookup table: that is, the names and mRIDs
of all DER-EMs on each bus in the current model.

assign_all_ders() Calls the assignment process for each DER-S. Uses the DER-S list
from MCConfiguration, so no additions are needed here if new DER-Ss are added.

get_mRID_for_der_on_bus() For a given Bus, checks if a DER-EM exists on that bus
and is available for assignment. If so, returns its mRID and removes it from the list (so a
DER-EM can't be assigned twice).

append_new_values_to_association_table() Used by DER-S classes to add new
values to the association table during initialization.

A.2.5 MCInputInterface Class
“““Input interface. Receives input messages from DER-Ss, retrieves the proper DER-EM
input mRIDs for each input from the Identification Manager, and delivers input messages
to the EDM that update the DER-EMs with the new states.”””

A.2.5.1 MCInputInterface Attributes

current_unified_input_request A list of all input requests currently being provided to
the Input Interface by all active DER-Ss.

A.2.5.2 MCInputInterface Methods

update_all_der_em_status() Currently, calls the self.update_der_ems() method. In
future, may be used to call methods for different input types; a separate method may be
written for voltage inputs, for instance, and called here once per timestep.

update_all_der_s_status() This is an encapsulation function. Once per timestep, call all
methods required per DER-S to update their states.

get_all_DER_S_input_requests() Retrieves input requests from all DER-Ss and
appends them to a unified input request.

update_der_ems() Reads each line in the unified input request and uses the
GridAPPS-D library to generate EDM input messages for each one. The end result is the
inputs are sent to the associated DER-EMs and the grid model is updated with the new
DER states. This will be reflected in future measurements.
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A.3 MC Output Classes

A.3.1 GOSensor Class
“““This class retrieves fully formatted grid states from the measurement processor, filters
them down to necessary information, and makes determinations (automatically or
manually) about grid services, whether they're required, happening satisfactorily, etc.
These determinations are sent to the output API to be communicated to the DERMS.”””

A.3.1.1 GOSensor Attributes

current_sensor_states Grid states read into the sensor. Automatic mode only.

posted_service_list List of posted service objects. Used by both Automatic and Manual
modes.

manual_service_xml_data In Manual Mode, the data contained within the manual
service xml file. To be parsed and posted service objects generated from this data.
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A.3.1.2 GOSensor Methods

update_sensor_states() Retrieves measurement data from the Measurement
Processor. The measurements are organized by topological group.

make_service_request_decision() Performs the following once per timestep.

In MANUAL MODE (override is True):

Instantiates a grid service

In AUTOMATIC MODE (override is False):

Monitors voltage and frequency, instanctiates grid services, and evaluates grid
services performance

load_manual_service_file() MANUAL MODE: Reads the
manually_posted_service_input.xml file during MC initialization and loads it into a
dictionary for later use.

manually_post_service() Called by self.make_service_request_decision() when
in MANUAL mode. Reads the contents of the manual service dictionary, draws all
relevant data points for each service, and instantiates a GOPostedService object for
each one, appending the objects to a list.

A.3.2 GOOutputInterface Class
“““API between the MC and a DERMS. Must be customized to the needs of the DERMS.
Converts determinations and feedback data to message formats the DERMS
requires/can use, and delivers them..”””

A.3.2.1 GOOutputInterface Attributes

current_service_requests A list of posted services, in the form of objects of the
GOPostedService class. These are the services that are being requested, or are
currently being executed. Can come from either Automatic or Manual Decision making.
See GOPostedService.
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A.3.2.2 GOOutputInterface Methods

get_all_posted_service_requests() Retrieves the service message data from each
posted service (see the GOPostedService.get_service_message_data() method for
more detail). Appends the data in the proper list-of-dict format to
current_service_requests.

Note: In the current implementation, it may seem redundant to read data from an xml file
into dictionaries, package the data into an object, and extract the data back into identical
dictionaries; however, this is important to ensure that the process is decoupled. A
different DERMS or even a more advanced ME-GSP API might not allow for such direct
input formats.

generate_service_messages() Converts the self.current_service_requests list of
dicts into a proper xml format. Used by the xml written in
self.send_service_request_messages().

send_service_request_messages()Writes the current service request messages to an
xml file, which will be accessed by the GSP for its service provisioning functions.
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A.3.3 MCOutputLog Class

“““Generates CSV logs containing measurements from the measurement processor.
Updates (writes a line) once per timestep.”””

A.3.3.1 MCOutputLog Attributes

csv_file Contains the csv file object (see open_csv_file())

log_name The log name, taken from MCConfiguration during initialization.

mrid_name_lookup_table A table of mRIDs and their respective plain english names,
used to create the log headers. Taken from
edmCore.get_mrid_name_lookup_table().

header_mRIDs a list of mRIDs for each measurement point, used (invisibly) in the
header to write logs.

header_names the plain english versions of the header names.

csv_dict_writer The dictionary writer object, used to write the CSV logs.

timestamp_array A list of all timestamps for the logs. Appended at the end of
simulation.

current_measurement The dictionary containing the current set of measurements.
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is_first_measurement Flags functions that should only run once at the start of logging
(such as opening the log files, setting up the header, etc.)

A.3.3.2 MCOutputLog Methods

update_logs() During the first measurement, performs housekeeping tasks like opening
the file, setting the name, translating the header to something readable, and writing the
header. On all subsequent measurements, it writes a row of measurements to the logs
and appends a new timestamp to the timestamp array.

Note: The first timestep in the logs will be several seconds after the actual simulation
start time.

open_csv_file() Opens the csv_file object.

open_csv_dict_writer() Opens the dict writer used to write rows. Note that the headers
used are the measurement mRIDs; the plain English names are a visual effect only.

close_out_logs() Closes the log file and re-appends the timestamps.

translate_header_names() Looks up the plain english names for the headers and
provides them to a dictionary for use by write_header().

write_header()Writes the log header.

append_timestamps() Uses the pandas library to append the timestamp column to the
logs. This is the most convenient way to handle timekeeping while making sure to use
the simulation time rather than the measurement time.

write_row()Writes a row of values to the csv file.

set_log_name() Sets the log name based on the MCConfiguration settings.
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A.3.4 GOTopologyProcessor

“““ 'Topology' refers to where things are on the grid in relation to one another. In its
simplest form, topology can refer to what bus each DER-EM is on. However, GOs and
DERMS may view topology in more complex forms, combining buses into branches,
groups, etc. More complex topologies are stored in xml files and read into the MC by this
class; the XML contains each "group" and whatever buses are members of it. This class
will then be able to provide that information during the assignment process or append it
to measurements as needed.”””

A.3.4.1 GOTopologyProcessor Attributes

topology_dict The table of topology information read in from the XML file

bus_list A list of buses in the model

group_list A list of groups in the topology table.

A.3.4.2 GOTopologyProcessor Methods

reverse_topology_dict() Allows groups to be references by a bus, rather than vice
versa.

get_group_members() Returns all buses contained in a given group.

get_groups_bus_is_in() Returns all groups a given bus is a member of.
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A.3.5 GOPostedService

“““ This class is (currently) the only class that can get instantiated more than once per
simulation. It contains service request data required to communicate with the DERMS.
These data inform the DERMS of the type, location, and parameters of a single service it
wants to request from the DERMS. These service requests are then 'posted' to a list in
the GOSensor class, which is read by the GOOutputInterface class and processed into
the communication format or protocol necessary for GO-DERMS communications
(currently, an xml text file stored in the /Outputs to DERMS/ folder.)

The attributes and accessor methods are mostly self-explanatory; the major points of
interest are the fact that it stores whatever data are needed by the DERMS, and that
there is a function that returns these data in dictionary format.”””

A.3.5.1 GOPostedService Attributes

service_name Name of the posted service.

group_id Group identification of the posted service.

service_type Type of the posted service.

interval_start Start time of the posted service interval.

interval_duration Duration of the posted service interval.
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power Power requirement of the posted service.

ramp Ramp rate of the posted service.

price Price of the posted service.

status Boolean flag. Set to True once the service has been posted.

A.3.5.2 GOPostedService Methods

get_service_name() Returns service_name.

get_group_id() Returns group_id.

get_service_type() Returns service_type.

get_interval_start() Returns interval_start.

get_interval_duration() Returns interval_duration.

get_power() Returns power.

get_price() Returns price.

get_status() Returns status.

set_status() Sets status to a new value.

get_service_message_data() Returns the attribute names and values in dictionary form
for use by the message wrapper (GOOutputInterface).
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Appendix B

B.1 Example Simulation Procedure

B.1.1 Explanation and Configuration
The following section provides a step-by-step example of a single simulation, including
preparation, configuration, the mechanisms that occur during a simulation, and the
expected output. The simulation parameters are as follows:

● GridAPPS-D Simulation Configuration parameters
○ Start time: 1570041113 (WedOct 02 2019 18:31:53 GMT+0000)
○ Duration: 30 (seconds)
○ Model: “_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62” (IEEE 13 node

feeder)
● Topology

○ 1:1; i.e. each group represents a single bus, and vice versa.
● DER-Ss active

○ RWHDERS
■ Input files contained in “RWHDERS Inputs” folder.

○ DERSHistoricalDataInput
■ Input file contained in “DERSHistoricalData Inputs” folder.

● Outputs active
○ MCOutputLog

■ Saved to “Logged Grid State Data/MeasOutputLogs.csv”
○ GOOutputInterface

■ Configured to operate with GSP using XML output scheme
■ Saved to “Outputs to DERMS/OutputtoGSP.xml”

● GO Operation
○ MANUAL MODE selected

■ Inputs read from “manually_posted_service_input.xml” in the MC
root folder

■ Request 1:

<service1>

<group_id>1</group_id>

<service_type>"Energy"</service_type>

<interval_start>0</interval_start>

<interval_duration>0</interval_duration>

<power>1000</power>

<ramp>0</ramp>

<price>0</price>

<start_time>1570041123</start_time>

</service1>

■ Request 2:
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<service2>

<group_id>2</group_id>

<service_type>"Energy"</service_type>

<interval_start>0</interval_start>

<interval_duration>0</interval_duration>

<power>1000</power>

<ramp>0</ramp>

<price>0</price>

<start_time>1570041128</start_time>

</service2>

● Purpose of simulation
○ Functional test: ensure inputs from DERSHistoricalDataInput are being

reflected in the output logs
○ Note: GSP will not be operating during this simulation. Mock inputs

showing no effect will be used and outputs to GSP will be ignored.
However, the processes will be explained all the same.

B.1.2 MC Installation
The following is a step-by-step process on installing and configuring the MC and
CIMHub scripts.

1. If not already done, install Python 3.
2. If using Windows, install Ubuntu. If using Linux, this step shouldn’t be required.7 8

3. Install Docker.9
4. Install GridAPPS-D.10
5. Clone the doe-egot-me GitHub repository to your local system.11

6. Clone the CIMHub and Powergrid-Models repositories to your local system.12 13

7. Make the following edits to ModelController.py:
a. In the MCConfiguration.__init__() method, edit

“self.mc_file_directory” with the correct file path for your computer.
Verify other path and filename attributes are correct.

b. Verify the path attributes are correct in the __init__() methods of all
DER-S classes.

8. Navigate to the /DERScripts/ directory and make the following changes to
envars.sh

a. Edit the SRC_PATH variable with the correct path for the
/Powergrid-Models/platform/ folder you cloned.

13 https://github.com/GRIDAPPSD/Powergrid-Models
12 https://github.com/GRIDAPPSD/CIMHub
11 https://github.com/PortlandStatePowerLab/doe-egot-me
10 https://gridappsd.readthedocs.io/en/master/installing_gridappsd/index.html
9 https://www.docker.com/products/docker-desktop/

8 The ME was designed for cross-platform support and GridAPPS-D is executed in Linux while
the MC is executed directly from the command line. Mac support via a Linux command line is
expected, but has not been tested.

7 https://ubuntu.com/

Award # DE-OE0000922 DOE-PSU-0000922-3 Page 61 of 82

https://github.com/GRIDAPPSD/Powergrid-Models
https://github.com/GRIDAPPSD/CIMHub
https://github.com/PortlandStatePowerLab/doe-egot-me
https://gridappsd.readthedocs.io/en/master/installing_gridappsd/index.html
https://www.docker.com/products/docker-desktop/
https://ubuntu.com/


b. Edit cimhubconfig.json, ensure it reads:

{

"blazegraph_url": "http://localhost:8889/bigdata/namespace/kb/sparql",

"cim_ns": "<http://iec.ch/TC57/CIM100#"

}

B.1.3 Pre-Simulation Configuration
1. Start GridAPPS-D

a. From the command line, navigate to the GridAPPS-D docker container
folder and type “./run.sh” to start the container. The most recent version
of GridAPPS-D will be downloaded as necessary, along with the updated
blazegraph database.
i. Important note: Any new version of GridAPPS-D will overwrite

the models in the database. The DER-EM addition process will
need to be performed after any update. See below for the process
to do so.

b. Within the container, type “./run-gridappsd.sh” to start the
GridAPPS-D program.

i. Note: If necessary, press CTRL-C to exit a running GridAPPS-D
program. Type “exit” to leave the gridappsd docker container.
Type “./stop.sh -c” to close the docker container.

2. Add DER-EMs to the grid model
a. Configure the DER addition scripts as follows:

i. In the DERScripts folder, verify, create or modify and equivalent to
“EGoT13_der.txt” with the required number and labelplate info for
each DER-EM required as well as the mRID for the proper model.

ii. Verify, modify, or create as needed “EGoT13_orig_der.txt” or an
equivalent containing information on any DER that is included in
the model by default but should be removed; for example, in the
IEEE 13 node feeder, by default the model contains a house and a
school, which should be removed.

iii. Modify (or verify) each script within the Initialise_DER_EMs.sh
script for the proper feeder model:

1. drop_orig_der.sh: ensure the proper text file from (ii) is
entered.

2. drop_der.sh: ensure that an equivalent to
“EGoT13_der_uuid.txt” is entered. This file contains the
DER-EM uuids generated by a previous DER-EM addition
script execution; if this is your first time adding DERs to a
new model, this file will not yet exist and thus can be
ignored.

3. insert_der.sh: ensure the file from (i) is entered.

Award # DE-OE0000922 DOE-PSU-0000922-3 Page 62 of 82



4. drop_all_measurements.sh: uncomment (or, for a new
model, add) the line including the mRID for the desired
feeder model.

5. list_all_measurements.sh: uncomment (or, for a new
model, add) the line including the mRID for the desired
feeder model.

6. insert_all_measurements.sh: uncomment (or, for a new
model, add) lines corresponding to the name of the desired
feeder model. If this is the first time adding DER-EMs to a
new model, this name is taken from column 4 of the line in
list_all_measurements.sh.

b. Execute the DER-EM addition scripts as follows.
i. From the MC root folder, execute “Initialise_DER_EMs.bat” or,

from the DERScripts folder, execute “Initialise_DER_EMs.sh”. The
following steps occur:

1. drop_orig_der.sh removes “original” DERs from the model;
that is, DERs contained in the default models provided by
GridAPPS-D, but which the TE wished to be removed by
default.

2. drop_der.sh removes any DER-EMs added to the model by
previous DER-EM addition runs. At this point, the model is
a “blank slate” containing no DER-EMs.

3. insert_der.sh adds DER-EMs to the model as listed in
EGoT13_der.txt (or equivalent). It also automatically
generates uuids for the DER-EMs and places them in the
“EGoT13_der_uuid.txt” (or equivalent) file. The model now
contains DER-EMs and their controls; however, there are
no associated measurement points yet.

4. drop_all_measurements.sh removes any measurements
contained in the files in the Meas folder associated with the
selected grid model. As (2) above, this gives us a “blank
slate” and prevents duplicate measurement points when
the DER-EM addition script is run more than once.

5. list_all_measurements.sh generates measurement point
mRIDs for the selected grid model, collects them in files
and adds them to the Meas folder.

6. insert_all_measurements takes the mRIDs generated in (5)
and inserts them into the grid model for the associated
DER-EMs.

c. At this point, all DER-EMs are added, excess DERs have been removed,
and everything in the model has all necessary mRIDs. The grid model is
ready for use in the MC; if no GridAPPS-D updates or model
modifications are required, this process needs only be run once.

3. Update GridAPPS-D simulation configuration for the simulation parameters
(Section B.1.1):

a. In the Configuration folder, make edits or verify the following in Config.txt:
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i. The Geographical Region, SubGeographicalRegion, and Line
mRIDs for the feeder model in use.

ii. start_time
iii. duration

b. In the Configuration folder, verify or edit topology.xml with the correct
topology

i. For this example, each group should hold a single bus, and each
bus should be a member of only one group. An example of the
syntax is:

<group name= "group-1" >

<bus name="650" />

</group>

4. Configure and enable each DER-S
a. DERSHistoricalDataInput:

i. Create an input log. The first column must contain UNIX
timestamps. Each pair of columns after this represents the input to
a single DER-EM, with the unique identifier being the header of
the first column in the pair. For each column pair, the first column
must contain Watt values, and the second column must contain
the bus the DER should be assigned to (and therefore will be the
same value in every row). This log must be saved as a CSV file in
the “DERSHistoricalData Inputs” folder.

ii. Modify ModelController.py as follows
1. DERSHistoricalDataInput class:

a. Modify or verify that the __init__() method
assignment of
self.historical_data_file_path attribute is
set to the input file (see i.)

2. MCConfiguration class
a. Modify or verify that the __init__() method

assignment of self.ders_obj_list includes the
DERSHistoricalDataInput object by adding or
uncommenting the following line in the dictionary:

'DERSHistoricalDataInput': 'dersHistoricalDataInput',

b. RWHDERS
i. Create or verify mock input files with the following format:

1. The filename for each must be in “DER#####_Bus$$$.csv”
with “#####” form representing a unique identifier and
“$$$” is the bus (locational identifier).

2. The contents of each must be “P, ####” with P standing for
“power” and “####” representing the Watt value of power
consumption.

3. Note: Due to the parameters of this simulation, the GSP
will not be active. As such, these files will not change
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throughout the simulation; the initial values of the mock
inputs will be used through the entire simulation.

ii. Modify ModelController.py as follows
1. RWHDERS class:

a. Modify or verify that the __init__() method
assignment of self.input_file_path attribute is
set to the directory containing the mock inputs (see
i.)

2. MCConfiguration class
a. Modify or verify that the __init__() method

assignment of self.ders_obj_list includes the
RWHDERS object by adding or uncommenting the
following line in the dictionary:

'RWHDERS': 'rwhDERS'

5. Configure the GO and outputs
a. Set GO to MANUAL operation mode:

i. Modify or verify ModelController.py as follows:
1. Modify or verify the MCConfiguration.__init__()

method
self.go_sensor_decision_making_manual_override
attribute is set to “True”.

ii. Ensure a properly formatted “manually_posted_service_input.xml”
file exists in the MC root directory

1. Note: In this simulation, grid service requests will be
generated and posted; however, without a GSP to receive
them, they’ll simply sit in the “Output to DERMS” directory
without being used. Since they’ll still be generated, a
proper input file is required.

b. No configuration is required for the MCOutputLog; the output file name
and path can be set by modifying the
MCConfiguration.output_log_name attribute.

c. No configuration is required for the GOOutputInterface; the output file
name and path can be set by modifying the
GOOutputInterface.send_service_request_messages() method.

6. The MC is now ready. The TE may begin a simulation.

B.1.4 Simulation execution
1. If not already completed, start GridAPPS-D and configure the system (see

section B.1.3)
2. Run the ModelController.py script from an IDE or the command line.

a. No further inputs should be required for the duration of the simulation.
Proper operation should be verified via the terminal.
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b. IMPORTANT NOTE: A glitch in GridAPPS-D causes very frequent
instances of GridAPPS-D freezing during the simulation startup process.
If the simulation doesn’t seem to be starting in short order, press CTRL-C
in the terminal to close GridAPPS-D, type “./run-gridappsd.sh” to
re-run the program, and attempt to rerun the ModelController.py script.

3. When the simulation is complete, measurement logs will be generated and
placed in the “Logged Grid States Data” directory. These logs can be used to
verify DER-EMs operated per the input data sent to DERSHistoricalDataInput.
The functional test is complete.

B.2 PSU IEEE 13-Node Feeder Simulation Example
In its current state, the PSU IEEE 13-Node Feeder incorporates 1000 houses; each≈
house includes a DER. The house objects within the model can only be changed by
editing the OpenDSS file. The number of added DERs, however, can be configured by
modifying the “EGoT13_der.txt” file, as shown in step B.1.3.

This section is divided in two parts: Modifying PSU IEEE 13-node feeder and
Pre-simulation Configuration. The Modifying PSU IEEE-13 Node feeder section provides
insights into how to edit the PSU IEEE-13 Node Feeder file, if needed, export the
required CIM XML file, and upload the CIM XML file to the Blazegraph database. The
Pre-simulation Configuration shows how configure the MC to run a simulation. Note that
this section does not discuss validating the OpenDSS model. The validation process is
explained in the CIMHub documentation.14

B.2.1 Modifying the PSU IEEE 13-Node feeder

B.2.1.1 Dependencies
1. Install OpenDSS (required)15
2. Install GridLAB-D (if validation is needed)16

Note: Ensure the OpenDSS version is 1.2.11. The latest version of OpenDSS exports
the CIM XML objects mRIDs without prepended underscores , which is not compatible17

with the current GridAPPS-D version. Any OpenDSS version above the 1.2.11 will result
in an empty measurement files and, therefore, no measurements will be captured during
the simulation.

B.2.1.2 Feeder Configuration
The PSU Feeder OpenDSS files are located within the “DERScripts” folder inside the
root MC directory. Changing the configuration of the feeder, the rated values, or the
names associated with any object within the feeder will require generating a new CIM
XML file. This CIM XML file can be generated using OpenDSS to reflect the changes
made to the feeder. The CIM XML file will then be uploaded to the Blazegraph database.

17 Our discussion in OpenDSS Forum regarding the prepended underscores in CIM XML file.
16 https://www.gridlabd.org/downloads.stm
15 https://sourceforge.net/projects/electricdss/
14 https://cimhub.readthedocs.io/en/latest/Tutorial.html#ieee-123-bus-base-case
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The following steps explain how to edit the feeder model and generate a new XML CIM
file.

1. Install the OpenDSS software.
2. Follow the instructions in section B.1.2 to install and configure the MC and the

CIMHub scripts.
3. Navigate to the /DERScripts/dss_files/ folder
4. The PSU feeder model is in a file named “Master.dss”
5. Edit the “Master.dss” file as needed and save the changes.
6. Within the same folder, edit the cim_test.dss file.

a. In the first line, change the path to point to the modified Master.dss file.
7. Using OpenDSS, run the cim_test.dss file.
8. If configured correctly, step 7 will execute without errors and generate a CIM XML

file named “Master.xml”.

B.2.2 Pre-Simulation Configuration
The “Master.xml” file now holds the model mRID as well as the mRIDs for each object
within the feeder. A subset of these mRIDs will be used in the DER addition scripts. This
subsection follows the steps previously described in section B.1.3. However, minor
required modifications to the DER-EM addition scripts will be highlighted below.

1. Start GridAPPS-D:
a. Follow the instructions described in section B.1.3, steps 2.a and 2.b

2. Adding DER-EMs to the PSU feeder model:
a. Follow the instructions in section B.1.3 steps 2.a.i.
b. Since the PSU feeder is initialized without DER-EMs, step 2.a.ii is not

needed.
3. Uploading the Model to the GridAPPS-D database:

a. Navigate to the /DERScripts/psu_feeder_files/ folder.
b. Using Python3, simply run “python3 upload_model.py” script. By

default, this script will upload the newly created grid model to the
Blazegraph database and remove all other existing models within the
database.

c. If the TE wants to keep the other models in the Blazegraph database:
i. Edit the “upload_model.py” Python script.
ii. In the main function, comment out “remove_all_feeders()” method.

4. Extracting the model mRIDs:
a. Navigate to the /DERScripts/psu_feeder_files/ folder.
b. Using Python3, run “python3 extract_mrids.py” script. This script will

send a query to Powergrid Model API to retrieve the information of all
available models in the GridAPPS-D database. The query response is
filtered to print out the following dictionary:

{'modelId': '_89869331-6171-421C-95D8-55D61BCA706D',

'modelName': 'psu_13_node_feeder',

'regionId': '_9E64579D-216C-4731-B05B-6EE7FE68DB46',

'regionName': 'Oregon',
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'stationId': '_2B50FE7F-ADDE-41C5-A76A-52CE0E5E4535',

'stationName': 'Fictitious',

'subRegionId': '_2498B425-DE51-4692-8D20-9D8D16CB23CC',

'subRegionName': 'Portland'}
Figure B.1: PSU IEEE 13-Node Feeder information

5. Edit the “Initialize_DER_EMs.sh” or “Initialize_DER_EMs.bat” scripts:
a. Follow the instructions in section B.1.3, steps 2.a.i, 2.a.iii.3, 2.a.iii.5, and

2.a.iii.6.
i. The 'modelId' from figure B.1 is used in steps B.1.3.2.a.i and

B.1.3.2.a.iii.5.
ii. The 'modelName' from figure B.1 is used in step B.1.3.2.a.iii.5.

b. The other initialization scripts are skipped because the PSU Feeder does
not incorporate any DER-EMs. These DER-EMs are added using the
EGoT13_der.txt file, as shown in the in step B.2.2.2.

6. Executing the DER-EM addition scripts:
a. Navigate to the /DERScripts/ folder.
b. Edit the “Initialise_DER_EMs.sh” files:

i. Comment out the drop_orig_der.sh line.
ii. Comment out the drop_der.sh line.
iii. Comment out the drop_all_measurements.sh line.

c. Execute the “Initialise_DER_EMs.bat” from the MC root directory or
“Initialise_DER_EMs.sh” files from the DERScripts folder.

7. Updating the GridAPPS-D simulation configuration:
a. Within the MC root directory, /Configuration/ folder, modify the Config.txt

file as follows:
i. The 'regionId', 'subRegionId', 'modelId', and

'modelName' are replaced with Geographical Region,
SubGeographical Region, Line mRID, and simulation name,
respectively.

b. The PSU feeder topology is located within the /Configuration/ folder, in a
file named “psu_feeder_topology.xml”. Each group incorporates a feeder
and several segments, transformers, and service points. The TE may
change the topology as they wish. However, ensure that the names of the
objects within the topology file match the names of the objects within the
feeder file (i.e. Master.xml).

8. Configure and enable each DER-S
a. The configuration of the DER-S class are identical to the instructions in

section B.1.3, step 4.
9. Configure the GO and the outputs

a. If the GO is set in MANUAL operation mode, follow the instructions in
section B.1.3, step 5.

b. If the GO is set in Automatic operation mode, no configurations will be
required.

10. The TE may now run the simulation.
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B.2.3 Simulation execution
Follow instructions in section B.14

B.3 Simulation Process Summary
The following is a simplified summary of the inner workings and information exchanges
of the ME simulation configured in (B.1 and B.2). This is intended to be a high level
overview of operations, and not a full algorithmic description of the system.

B.3.1 Simulation Top Level Process
1. The Test Engineer, having previously configured the system, executes

“ModelController.py”.
2. Prior to major class instantiation, the MC performs the following tasks:

a. The “end_program” flag is initialized to “False”.
b. Python libraries are imported.
c. Classes and functions are defined.

3. The MC runs “Program Execution”, including the “main loop”:
a. MCConfiguration is instantiated as a global object.
b. EDMCore is instantiated as a global object.
c. The following processes are called:

i. the EDMCore simulation startup processes (See B.3.1.1)
ii. the callback class instantiation (See B.3.1.2)

d. The script enters the “main loop.” In this state, all system functions are
handled by the callback classes and their respective function calls (See
B.3.2). Meanwhile, a while loop verifies that the end_program variable is
“False” and, if so, pauses itself briefly. If the end_program variable is set
to “True”, quit() is called to end the program.

B.3.1.1 EDMCore Simulation Startup Processes
1. edmCore is instantiated

a. __init__() is called, creating all attributes. No significant processes occur.
2. edmCore.sim_start_up_process() is called.

a. self.connect_to_gridapps() is called.
i. A gridappsd library function is called, connecting the MC to the

GridAPPS-D program (not simulation) by assigning an object to
the self.gapps_session attribute.

b. self.load_config_from_file() is called.
i. The GridAPPS-D config parameters are read in and parsed from

the Config.txt file.
c. self.initialize_line_mrid() is called.

i. The “line” (or model) mRID is parsed from the config and assigned
to the proper attribute.

d. self.establish_mrid_name_lookup_table() is called.
i. Two queries are sent to the model in the database via the

self.gapps_session object. These queries return dictionaries
containing the mRID-Name Lookup Table and the CIM
Measurement Dictionary for later use by the logger.
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e. self.connect_to_simulation() is called.
i. This establishes the simulation in GridAPPS-D using the

gapps_session object and the config_parameters read in.
Generates an object assigned to self.sim_session.

f. self.initialize_sim_start_time() is called.
i. The simulation start time attribute is initialized using the start time

from the config.
g. self.initialize_sim_mrid() is called.

i. Retrieves the mRID for the simulation, called from the
self.sim_session object. Places it in the self.sim_mrid
attribute.

h. self.create_objects() is called.
i. Calls global instances of the following non-callback classes:

1. MCOutputLog
2. MCInputInterface
3. DERSHistoricalDataInput

a. On construction, sets the
DERSHistoricalDataInput.historical_data_f
ile_path attribute based on the MCConfiguration
attribute and user configuration.

4. RWHDERS
a. On construction, sets the

RWHDERS.input_file_path attribute based on the
MCConfiguration attribute and user configuration.

5. DERAssignmentHandler
6. DERIdentificationManager
7. GOSensor
8. GOOutputInterface

i. self.initialize_all_der_s() is called.
i. For each DER-S considered “active” (that is, enabled in

mcConfiguration), the [object name].intialize_der_s()
method of the DER-S is called. This method with this name must
be included in every DER-S, customized to its needs, and
performs the following:

1. Connects to or reads in and input data
2. Using input data, generates a list of DERs to be assigned;

each dictionary in said list contains the unique identifier
and locational identifier of each DER to be assigned.

j. derAssignmentHandler.create_assignment_lookup_table() is
called.

i. This queries the model database and produces a list of DER-EMs
by locational identifier and mRID.

k. derAssignmentHandler.assign_all_ders() is called.
i. This method connects the previous two steps. In the first step, a

table of DER Inputs by unique identifier and location was
generated; in the second step, a table of DER-EMs by location
and mRID was generated. In this step, the assignment handler
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steps through each DER Input for each DER-S, one by one. For
each DER Input, the locational identifier is read, and the
assignment handler attempts to locate an unassigned DER-EM on
that location. If successful, it returns a dictionary associating the
unique identifier with the mRID, which is added to a list: the
association table. This continues until the unique identifier of each
DER Input is assigned to a DER-EM mRID; or, if not enough
DER-EMs exist at the proper location, the system exits with an
explicit error informing the TE.

l. derIdentificationManager.initialize_association_lookup_tabl
e() is called.

i. After the Assignment Manager has completed the assignment
task, the association manager is moved to the Identification
Manager, which has methods allowing mRIDs to be referenced by
unique identifiers and vice versa.

m. mcOutputLog.set_log_name() is called.
i. Sets the log name. This method can either assign the attribute

directly or be modified to generate custom log names based on
system time, for example. Hence the method call.

n. goSensor.load_manual_service_file() is called.
i. Loads the XML file containing service requests to be called in

Manual Mode.

B.3.1.2 Callback Class Instantiation
1. Global function instantiate_callback_classes() is called.

a. Global callback object edmMeasurementProcessor is instantiated.
b. Global callback object edmTimekeeper is instantiated.

i. On construction, the edmTimekeeper.sim_start_time and
edmTimekeeper.sim_current_time attributes are set to the start
time from the Config.txt file, ensuring that timekeeping starts at the
proper time.

B.3.2 Callback Processes
After the simulation start up processes have been completed, all script functions are
handled within the callback classes. EDMTimekeeper handles all functions that are
intended to call frequently, and updates once per timestep, or once per second.
EDMMeasurementProcessor is dedicated to receiving measurements from the
simulation, parsing them into the proper form, and making them available to the GO and
logger; it updates less frequently around once per three seconds.

B.3.2.1 On-Timestep Functions
1. Frequently each second, log messages are sent from the GridAPPS-D simulation

to the edmTimekeeper object. These messages are sent for many reasons,
including errors, system changes, and (internal) simulation timestep
incrementation. This invokes edmTimekeeper.on_message(), performing the
following tasks.
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a. The GridAPPS-D log message is parsed. If the message indicates that
the process is “COMPLETED” or “CLOSED”, self.end_program() is
called; this closes out the log file and ends the program. If the log
message contains the words “incrementing to”, a timestep has occurred
and on-timestep functions are called (see b.) Otherwise, the message is
disregarded.

b. If an incrementation message has been detected, the incrementation
method first detects if the log message is a repeat of the last received
message. GridAPPS-D often sends the same log message multiple times;
this check ensures duplicate messages don’t invoke multiple on-timestep
processes or incrementations.

c. self.increment_sim_current_time() is called.
i. This increments the edmTimekeeper.sim_current_time by 1.

d. self.perform_all_on_timestep_updates() is called. This is the
encapsulation method that performs all of the system processes that
should be done frequently. They include the following:

i. The edmCore current time is matched to the edmTimekeeper
current time.

ii. mcInputInterface.update_all_der_s_status() is called.
1. This method generates the “unified input request” by

calling the [object name].get_input_request()
method of each DER-S and appending the results to a list.
Said results are a list of dictionaries for each DER-S
containing the unique identifiers of DER inputs as keys,
and power in Watts as values. These values are taken
from the most up-to-date DER inputs and represent the
state the DER-EMs should be updated to. In short, the
unified input request contains all the DER unique IDs to be
updated, and the power values they should be updated to.

iii. mcInputInterface.update_all_der_em_status() is called.
1. This method reads each line of the unified input request

and replaces each unique identifier with the mRID of the
DER-EM that DER input has been assigned to (see B.2.1)
by referencing the Association Lookup Table in the
derIdentificationManager. The result is a new unified input
request: this table associates mRIDs with power values.
Then, for each item in the unified input request, a message
is generated in the proper format containing the target
DER-EM mRID and the power; these messages are sent
to the EDM via the edmCore.gapps_session object. This
causes the DER-EM power values to be adjusted to the
new values.

iv. mcOutputLog.update_logs() is called.
1. If at least one measurement has been parsed by the

edmMeasurementProcessor, this method updates the logs.
The first time this occurs, the log file is created, the log
headers are translated from mRIDs to human-readable
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names via the mRID-Name Lookup Table in edmCore, the
header is written, and a flag is set indicating the logs are
ready to be written. If this is not the first measurement,
then a line of the logs is written and timestamped using the
edmTimekeeper current time.

v. goSensor.make_service_request_decision() is called.
1. This method is the same for Automatic and Manual GO

operations and uses the configuration flag to determine
how to proceed. In this case, Manual mode has been
selected; so, it calls the
goSensor.manually_post_service() method.

2. goSensor.manually_post_service() checks the
manually_posted_service_input.xml file contents (loaded
into a dictionary in the startup process) to see if any
services should be posted in the current timestep. If so, it
instantiates a GOPostedService object whose attributes
are initialized to the values from the input dictionary, and
appends the object to the
goSensor.posted_service_list to be read by the
GOOutputInterface.

vi. goOutputInterface.get_all_posted_service_requests() is
called.

1. The first step in the GO-DERMS communication process.
Each goPostedService object on the
goSensor.posted_service_list is scanned; if the
“status” flag indicates it hasn’t been packaged yet, the
service request parameters are pulled from the object
attributes and placed in a standardized dictionary. This list
of dictionaries is used to generate messages in the next
step.

vii. goOutputInterface.send_service_request_messages() is
called.

1. The second and final step in the GO-DERMS
communication process. The list of dictionaries in
goOutputInterface.current_service_requests is
converted to XML format and written to (in this case) an
output file to be read by the GSP. In this case, the GSP is
inactive so nothing is done with the file; in other
simulations, the GSP would read and parse that file to
determine when and how to dispatch resources to fulfill the
request.

B.3.2.2 On-Measurement Functions
1. Once every three seconds, a message is sent from the EDM to the

edmMeasurementProcessor object. This message is a very large dictionary of
dictionaries containing grid state measurements for every item in the grid model
Each measurement is a dictionary containing multiple key/value pairs for mRID,
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measurement value, measurement angle, etc. Each set of measurements is
timestamped, and each measurement is referenced by mRID; however,
amplifying data such as readable names, measurement types, phase, bus
location, etc. are not included and must be added by the measurement
processor. Each measurement message invokes the
edmMeasurementProcessor.on_message() method, performing the following
tasks:

a. The message is parsed for the current measurements, which are placed
in self.current_measurements.

b. The message is parsed for the measurement timestamp, which is placed
in self.measurement_timestamp.

c. self.append_names() is called.
i. This method accesses the MRID-Name Lookup Table and the

Measurement Lookup Table from edmCore, and retrieves the
measurement mRIDs from the current measurement message.
Using those mRIDs, the readable names are pulled from the
MRID-Name Lookup Table and added to the individual
measurement dictionaries. It then pulls the following values from
the Measurement Lookup Table: Measurement Name, Conducting
Equipment Name, Bus, Phases, and MeasType and adds these
data to the dictionary for each measurement.

d. self.append_association_data() is called.
i. This method appends the association data from the

derAssignmentHandler lookup table to each measurement; this
associates the measurement with the piece of equipment as well
as its operating mRID and unique identifiers. This information is
useful to reference DER Inputs against resultant grid state
changes reflected in the log outputs.

B.4 DER-S Design
Each DER-S serves as an interface between some form of DER input and the MC.
These data can come from systems, scripts, physical modules, sensors, or any other
input format imaginable. This makes it impossible to develop a single generic interface
between the inputs and the MC: a new interface should be developed for each new type
of input.

The MC is structured to make the development and integration of new inputs relatively
user-friendly while allowing for complete flexibility in how the DER-S reads and
processes inputs. The following section describes the architecture of a “generic” DER-S
including mandatory components, as well as an example of how one DER-S was
developed.

B.4.1 Overview
A DER-S is, ultimately, a communication interface. Because of this, it can be described
in terms of Inputs, Processing, and Output. Each timestep, Input functions retrieve
updated DER states from the DER Input. For example, this could be the current sensor
states stored in an input buffer, or a line of data read from a log file containing DER
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power levels at the given time. Then, Processing functions convert that operating data
into something useful to the MC. If a DER Input does not provide power directly, but
does provide operating states and nameplate data, these functions can calculate the
proper power level at a given time. Finally, Output functions generate a standardized list
of dictionaries containing each DER Input Unique Identifier as key and a numeric power
as value, and provide them to the MCInputInterface to be delivered to DER-EM
controllers.

One complicating factor in DER-S design is integrating the DER-S with the MC once it
has been developed. Each DER-S has interactions with the DERAssignmentHandler and
MCInputInterface classes; manually adding or removing functions for each DER-S to
both of said classes each time a simulation is reconfigured would be complicated,
particularly if many DER-Ss are being used. To simplify integration, certain requirements
have been put in place with respect to how DER-S functions are named and called by
the system. These are addressed below.

B.4.2 Mandatory Methods
The following methods are required to be included in all DER-S classes. These methods
must have the specific name given. This is because the MC puts each DER-S object in a
list in the MCConfiguration object; when a certain process is required, the MC iterates
through the list and calls the method with that name for each member in the list. For
example, every timestep the MCInputInterface updates its inputs by calling the
[object_name].get_input_request() method of every active DER-S.

1. self.initialize_der_s() performs any functionality required during the
simulation startup process before assigning DER-Ss to DER-EMs. Typically this
would include making connections to external systems, reading input files into the
DER-S, and/or making lists of DER Input unique identifiers and locational
identifiers for the assignment process.

2. self.assign_der_s_to_der_em() iterates through the list of DER
Inputs/locational identifiers generated by self.initialize_der_s(), and for
each item, retrieves a DER-EM mRID for assignment based on the locational
identifier. This mRID is placed in a dictionary with a unique identifier as key and
mRID as value; this dictionary is appended to the association table via the
DERAssignmentHandler.append_new_values_to_association_table()
method. The process is repeated for each DER Input handled by the DER-S,
resulting in each DER Input being assigned to a DER-EM.

3. self.get_input_request() typically performs two steps. The first step is to call
a method, usually named self.update_der_em_input_request() (though this
name is not mandatory). This method contains the Processing function for the
DER-S: it performs whatever steps are necessary in whatever order is required to
retrieve updated DER Input states, process them into updated power levels for
the current timestep, and places them in dictionaries with the DER Input unique
identifier as key, and the numeric power level as value. This dictionary is
appended to a list of dictionaries for each DER Input; this list is normally (but not
required to be) named self.der_em_input_request. The second step in the
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self.get_input_request() process is mandatory: the method returns the
attribute containing the list of updated DER input requests.

These are the mandatory methods; other methods may be written and called by the
mandatory methods or other MC components (e.g. the EDMTimeKeeper) to provide
more advanced functionality.

B.4.3 Installing a New DER-S
Once a new DER-S class is written, follow these steps to integrate it into the Model
Controller.

1. Include Class Definition: Include the class within the ModelController.py script,
either by adding the class definition to the “Class Definitions” section, or including
it as a module from another file.

2. Define Class and Instantiate Object: Within ModelController.py, navigate to the
EDMCore.create_objects() method definition. Declare the object as a global
variable, and instantiate the object with the argument (mcConfiguration). For
example, for a DER-S named “DERSExample”, use the following syntax:

global dersExample

dersExample = DERSExample(mcConfiguration)

B.4.4 Configuring and Activating a DER-S
Once the installation process is complete (see section B.3.3) the DER-S is ready to be
used. However, the mandatory function calls will not occur for a DER-S unless it is
activated by performing the following step:

● In ModelController.py, edit the MCConfiguration.ders_obj_list attribute and
add a new dictionary to the list. Each dictionary has the following format:
{'CLASS_name': 'object_name'}. For example, for a DER-S named
DERSExample instantiated to an object names dersExample, add a dictionary to
the list that reads {'DERSExample': 'dersExample'}.

● If more than one DER-S is active in the list at a time, ensure that the proper
python dictionary format is being maintained including commas. For example:

self.ders_obj_list = {

'DERS_1' : 'ders_1',

'DERS_2' : 'ders_2',

'DERSExample' : 'dersExample'

}

Note: configuration settings for an individual DER-S should be contained within the
DER-S and not in the MCConfiguration class. This decouples the DER-S from the MC
when it is removed from the simulation by removing the dictionary added above. For
example, for a DER-S that reads data from a log file, the file path should be contained in
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an attribute in the DER-S class, not MCConfiguration; however, the file directory may be
read from the MCConfiguration class and used by the DER-S.

B.4.5 Example DER-S Design: RWHDERS
The following section describes the design process used to develop the Resistive Water
Heater DER-S, starting from a high-level overview of processes and building to as a
low-level description of the functions written to accomplish the specifications.

B.4.5.1 Specifications
RHWDERS was developed specifically to provide an interface between the GSP and the
Modeling Environment. More specifically, it was designed to tap into water heater
emulators used by the GSP to test controls within its ECS system. These emulators
were designed to test the GSP’s ability to dispatch DERs in a realistic manner by
providing realistic, controllable models of water heaters. They provide a profile of a water
heater’s functionality over time including water temperature, usage profiles, and
modifications to operating conditions and setpoints based on DER dispatch. At any given
time, the emulated water heater is either importing or exporting energy, corresponding to
whether or not the heating element is determined to be on or off.

This heating element condition can be translated directly into a load profile. When it is
on, the water heater is consuming power equivalent to the label plate rating of the
element; when it is off, power is zero. Each emulated water heater is assigned a unique
identifier; furthermore, since the emulators are designed to test a Grid Service Provider
that dispatches resources locationally, each emulated DER contains a locational
identifier as well. Note that the DERMS and MC topology must be in agreement for these
locational identifiers to mean anything; in the case of the GSP, we are using the same
Bus identifiers for the DERMS and the MC as part of the testing specifications, but
topological processing may be required in other situations. Since the DER Inputs can be
updated in real time and contain operating data (power), unique identifiers, and
locational information, they contain all the information necessary to design a DER-S
utilizing these emulators.

While the requisite data exists in the DER emulators, there remains the matter of
communicating the data from the emulators to the DER-S. The DER-S must be
programmed to receive data from a DER Input via whatever communication protocol
necessary. In this case, the communication scheme between the emulators and DER-S
was developed expressly for RWHDERS, so we selected a scheme that would be
extremely simple to implement, troubleshoot, and use.

Each water heater emulator generates a CSV file and places it in a folder to be read by
the DER-S; the path to this folder is configured in the attributes of the RWHDERS class.
The file name for each CSV file is generated by the following scheme:

● ‘DER#####_Bus$$$.csv’
○ ‘DER#####’: the ##### represents the unique identifier for the

individual DER Input. For example, the unique identifier could be
an DER LFDI or a counter starting with ‘DER00000’ and counting
up.
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○ ‘Bus$$$’: the $$$ is the locational identifier. In our test cases, we
used the IEEE 13 node test feeder, so one example of a locational
identifier would be ‘Bus632’.

The contents of each CSV file are a single two column row, no header, with two cells.
The first cell contains ‘P’ for “power”, dictating that power is meant to be controlled; ‘V’
would represent “voltage”, but this functionality is not implemented in either the GSP or
MC at this time. The second cell is a numeric value representing the value of power (in
watts) that the water heater is consuming. The files are generated prior to the MC startup
process and updated in real time by the emulators; RWHDERS needs to read each of
these files, determine a DER-EM to assign each input to at the proper location, reread
the contents once per timestep to retrieve the updated power usage for each, and
update the DER-EMs with the proper consumption at the proper time.

B.4.5.2 Process Design Overview
Given the specifications above, bidirectional communication between the emulators and
DER-S is not necessary. So, no connections need to be made during the startup
process, and the DER-S can read the files immediately and directly. The files provide
information required during the assignment process, as well as load profiles used
throughout the simulation process.

● During Startup: Once during the startup process, RWHDERS needs to scan the
directory containing the DER Input CSV files. The necessary data for assignment
are unique identifiers and locational identifiers, both of which are located by
design in the file name. Therefore, RWHDERS must read each file name, parse
the identifiers, and place them in a list for assignment. The assignment process
will then read them in, assign DER-EM mRIDs to each unique identifier, and
maintain that association data within the DERIdentificationManager. Importantly,
RWHDERS maintains its own identification table associating file names with
unique identifiers; this removes the need to parse file names every timestep.

● Processing During Simulation: The water heater emulators update the
information within the CSV files at their own pace asynchronously to RWHDERS.
Once per timestep, RWDERS opens each file in its internal identification table
(see above) and reads the power value contained in each file. These values are
placed in dictionaries along with the unique identifier of the DER Input associated
with each file; this list of identifier/value dictionaries is then stored for use by the
output processes.

● Output Functions: Once per timestep, the EDMTimekeeper will call for updated
input requests from all active DER-Ss. The input requests are generated during
processing and placed in a list, so the only real output function that’s required is
one that returns said list. Since the output format is standardized (see B.3.2), this
will be the case for all DER-Ss, including RWHDERS.

B.4.5.3 RWHDERS Implementation
The following section is adapted from the class outline in Appendix A and demonstrates,
in short, how the processes in B.3.5.2 are implemented. For more detail reference
section A.2.1.
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B.4.5.3.1 RWHDERS Attributes
● der_em_input_request: Contains the list of updates to be sent to the DER-EMs

for this timestep.
● input_file_path: The folder in which the RWHDERS input files are located.
● input_identification_dict: Contains data associating unique identifiers with file

names and locational identifiers.

B.4.5.3.2 RWHDERS Methods
● initialize_der_s(): Mandatory startup function. Calls

self.parse_input_file_names_for_assignment() and nothing else. This
makes the code more readable without having to dig through the function.

● assign_DER_S_to_DER_EM(): Mandatory startup function. Takes the unique
identifiers and associated locational identifiers from self.input_identification_dict
and feeds them to the DERAssignmentHandler to assign them all to DER-EMs.

● parse_input_file_names_for_assignment(): Startup function. Reads all the
input files from the folder (self.input_file_path) and parses their file names
into dictionaries. Each dictionary’s key is the unique identifier, and the value is a
nested dictionary containing the filepath as well as the locational identifier for
each.

● get_input_request(): Mandatory output function. Calls
self.update_der_em_input_request() and returns the
self.der_em_input_request generated by that function. This is also
encapsulated for readability purposes.

● update_der_em_input_request(): Input/processing function. First, it clears the
self.der_em_input_request attribute to minimize redundant processing. Then, it
iterates through the self.der_em_input_request attribute. For each unique
identifier in the list, it opens the file in the associated filename value, reads in the
power data, and stores it in a dictionary in the “input request” format used by all
DER-Ss: the key is the unique identifier used by the MCInputInterface to look up
the DER-EM mRID, and the value is the power value the DER-EM will be set to
this timestep. Each input request dictionary is appended to the
self.der_em_input_request attribute, which upon completion of this method,
will contain the updated DER states that need to be sent to the DER-EMs during
this time step.
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Appendix C Product Requirements
Product Requirement Keywords Description

SHALL
Indicates the development of this specification for this
prototype is expected, without exception.

SHOULD
Indicates the development of this specification for this
prototype is expected, but may not be completed.

MAY
Indicates the development of this specification for this
prototype is not expected, but should be considered.

C.1 ME Product Requirements
PR Description

ME01 The ME SHALL allow for testing of the effects of a DERMS with an electrical grid model.

ME02 The ME SHALL simulate large numbers of DER-EMs

ME03 The ME SHALL be extensible to many DER types.

ME04 The ME SHALL provide a simulation of a GO.

ME05 The ME SHALL generate data logs.

ME06 The ME MAY be extensible to a variety of DERMS.

ME07 The ME MAY be extensible to a variety of grid models.

C.2 DER-S Product Requirements
PR Description

DER01
The DER-S SHALL provide electrical data to the MC necessary to generate control inputs to
DER-EMs.

DER02
The DER-S SHALL have a configurable/reprogrammable API between external DER
representations and itself.

DER03 The DER-S SHALL provide unique identifiers for its respective DERs.

DER04 The DER-S SHALL provide locational/topography information for its respective DERs.

DER05 The DER-S SHOULD be able to receive physical DER states

DER06 The DER-S SHOULD be able to receive simulated or emulated DER states

DER07 The DER-S SHOULD be able to receive data-represented DER states

DER08 The DER-S MAY have the capability to receive direct control messages from a DERMS.
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C.3 GO Product Requirements
PR Description

GO01 The GO SHALL have awareness of EDM grid model states.

GO02 The GO SHALL determine an appropriate grid service based on system state data from the EDM.

GO03 The GO SHALL have an API between itself and the DERMS.

GO04 The GO SHALL be able to request grid services from the DERMS.

GO05 The GO SHOULD provide a method to permit the TE to request grid services.

GO06 The GO SHOULD provide feedback data to the DERMS

GO07 The GO MAY alert the MC if it loses communication with a DERMS.

C.4 EDM Product Requirements
PR Description

EDM01 The EDM SHALL be implemented in GridAPPS-D.

EDM02 The EDM SHALL include a database of grid models to be used in simulations.

EDM03 The EDM SHALL calculate new grid states at regular intervals.

EDM04
The EDM SHALL provide a means for measuring electrical characteristics within the simulated
grid model.

EDM05 The EDM SHALL have configurable start time and duration.

EDM06 The EDM SHALL include non-DER asset models.

EDM07
The EDM SHALL include DER-EMs that are generalizable to a variety of DER types (including
loads, sources, and storage assets)

EDM08 The EDM SHALL have the capability to add DER-EMs to existing grid models.

EDM09 The EDM SHALL model an electrical distribution system including unbalanced components.

EDM10 The EDM SHALL provide a unique identifier to each DER-EM.

EDM11 The EDM SHALL track locational/topological data for each DER-EM for assignment purposes.
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C.5 MC Product Requirements
PR Description

MC01 The MC SHALL coordinate simulations and input/output communications.

MC02 The MC SHALL provide access to grid states data to the GO.

MC03 The MC SHALL provide input and output interfaces.

MC04 The MC SHALL recognize if DER-Ss have changed state since the prior timestep.

MC05 The MC SHALL update DER-EMs as necessary.

MC06 The MC SHALL retrieve grid states data from the EDM at regular intervals.

MC07 The MC SHALL use a defined time step size for coordination purposes.

MC08
The MC SHALL provide an automated method to assign DER-EMs to DER-Ss (based on
locational data.)

MC09 The MC SHOULD produce and store timestamped logs of grid state and operational data.

MC10 The MC MAY have the ability to inform/alert the TE.

MC11 The MC MAY have a closeout process.
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