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Summary

Chapter 1 of this mini-dissertation gives an introduction to Statistical Process Control (SPC) and

provides some background on the Shewhart, CUSUM and the EWMA control charts. The bootstrap

by [9] Efron (1979) is discussed and a brief overview of Phase I and Phase II analysis is given. The

chapter concludes with the research objectives of this dissertation.

Chapter 2 of this dissertation provides a literature review of bootstrap Shewhart, cumulative

sum (CUSUM), exponentially weighted moving average (EWMA) and multivariate control charts.

The Shewhart-type control charts mostly focus on the bootstrap procedures proposed by [2] Bajgier

(1992), [34] Seppala, Moskowitz, Plante and Tang (1995) and [23] Liu and Tang (1996). An overview

of the bootstrap CUSUM charts proposed by [7] Chatterjee and Qiu (2009) and [1] Ambartsoumian

and Jeske (2015) is given. A review of the parametric bootstrap control chart used by [33] Saleh,

Mahmoud, Jones-Farmer, Zwetsloot and Woodal (2015) to construct EWMA control charts is given.

The chapter concludes with a review of the bootstrap T 2 control chart proposed by [32] Phaladiganon,

Kim, Chen, Baek and Park (2011).

In Chapter 3 the design of a potential nonparametric bootstrap EWMA control is given. The

chapter concludes with two examples of how the control limits for such a chart can be constructed for

two different statistics.

Chapter 4 of this mini-dissertation examines conditional in-control (IC) and out-of-control (OOC)

average run-length, for the chart proposed in Chapter 3, taking different underlying process distribu-

tions into consideration.

In Chapter 5 the the mini-dissertation is concluded by summarising the research that has been

done and providing recommendations for further research.
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Chapter 1

Introduction

1.1 What is a control chart?

A control chart is a two-dimensional graphical representation of a plotting (charting) statistic against
time or subgroup number. The charting statistic and the control limits are calculated from data
collected sequentially over time. The data can either be individual observations or subgroups (samples)
of observations. The statistical control chart concept was developed by [36] Walter A. Shewhart in
1924 when he was working at Bell Laboratories. An example of a typical two-sided Shewhart-type
control chart is shown in Figure 1.1.

Figure 1.1: A two-sided Shewhart-type control chart

From Figure 1.1 it can be seen that a control chart consists of three horizontal lines: a lower control
limit (LCL) at the bottom, a center line (CL) and an upper control limit (UCL) at the top. These
lines are placed on the control chart to aid the user in making informed and objective decisions, with
respect to whether a process is in-control (IC) or out-of-control (OOC). When a charting statistic plots
on or outside one of the control limits the process is declared to be OOC. This can also be referred to
as a signaling event. On the contrary, if the charting statistic plots anywhere between the two control

1
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CHAPTER 1. INTRODUCTION 2

limits, then the process is declared to be IC; this is referred to as a non-signaling event. From Figure
1.1 it can be seen that samples 1 to 9 are non-signaling events and the process is subsequently IC.
However, from sample 10 onwards we can see that the process is OOC, since the sample’s charting
statistic plotted on the UCL.

1.1.1 Run-length distribution

[14] Human and Graham (2007) stated in their control charting overview paper that the the run-length
of a control chart is defined as: “The number of rational subgroups to be collected or the number of
charting statistics to be plotted on a control chart before the first OOC signal is observed...” . The
run-length is a random variable, usually denoted by N , usually with finite mean and variance. The
most widely used statistic to measure the performance of a control chart is the mean run-length,
usually referred to as the average run-length (ARL).

It is known that the run-length distribution is skewed to the right and it has been suggested by
other researchers such as [12] Gan (1994) and [19] Khoo, Wong, Wu and Castagliola (2011) to use the
median run-length (MRL), the standard deviation of the run-length (SDRL) and other percentiles
to measure the performance of the control chart. In this mini-dissertation the ARL will primarily
be used to measure the performance of control charts, since it is still the most well-known and the
most widely used performance measure in statistical process control (SPC) literature. The run-length
distribution and its corresponding characteristics (such as the average, median, standard deviation,
etc.) can be obtained by four methods which are the exact approach, the Markov chain approach,
computer (or Monte Carlo) simulations and the exact / integral approach. In this dissertation the
computer simulation approach will be used and more detail on it will be given later.

1.2 Types of control charts

There are three main classes of control charts: the Shewhart chart, the cumulative sum (CUSUM)
chart and the exponentially weighted moving average (EWMA) chart and other variations and/or
refinements based on these charts. Relative advantages and disadvantages of these charts are docu-
mented in the literature (see e.g. [27] Montgomery (2009)). These charts are described in more detail
in each of the three sections that follow.

1.2.1 Shewhart

For the discussion on the Shewhart control chart that follows in this section, assume thatXi1, Xi2, . . . , Xin

denote a random sample of size n ≥ 1 from the process at time i = 1, 2, 3, . . .. Let T denote some
sample statistic that measures the characteristic of interest to the researcher/practitioner, and sup-
pose that the mean of T is µT and the standard deviation of T is σT . Then the UCL, CL and LCL
are given by

UCL = µT + kσT

CL = µT
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CHAPTER 1. INTRODUCTION 3

LCL = µT − kσT

respectively, where k ≥ 0 is the ‘distance’ of the control limits from the CL, expressed in standard
deviation units. If the charting statistic plots on or outside either of the control limits, the process is
declared to be OOC.

1.2.2 CUSUM

Assume that X1, X2, X3, . . . denote independent and identically distributed (i.i.d.) measurements
from a process with mean, µ0, and standard deviation, σ0, where the subscript zero indicates that the
mean and standard deviation are known. The CUSUM chart is formed by plotting Ci where

Ci =
i∑

k=1

(Xk − µ0) = (Xi − µ0) +
i−1∑
k=1

(Xk − µ0) = (Xk − µ0) + Ci−1. (1.1)

The upper one-sided CUSUM works by accumulating deviations from (µ0 + k) that are above target.

For the upper one-sided CUSUM chart we use C+
i , with

C+
i = max[0, Xi − (µ0 + k) + Ci−1] for i = 1, 2, 3, . . . (1.2)

where k > 0 is referred to as the reference or slack value and the starting value is C+
0 = 0. A signaling

event occurs for the first i such that C+
i ≥ H, where H > 0 is referred to as the decision interval,

which can be seen as an upper control limit.
The lower one-sided CUSUM considers deviations from (µ0− k). For the lower one-sided CUSUM

chart we use C−i , with

C−i = max[0, (µ0 − k)−Xi + C−i−1] (1.3)

or

C−
∗

i = min[0, Xi − µ0 + k + C−i−1] for i = 1, 2, 3, . . . , (1.4)

where the starting values are C+
0 = C−0 = 0 and k ≥ 0.

Here a signaling event occurs for the first i such that C−i ≤ −H or C−
∗

i ≥ H . The control chart
design parameters, k and H, are selected such that a desired nominal ARL0 is attained.

1.2.3 EWMA

Assume that X1, X2, X3, . . . denote i.i.d. observations from a process with a known process mean, µ0,

and a known process standard deviation, σ0. The exponentially weighted moving average (EWMA)

charting statistic is defined as
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CHAPTER 1. INTRODUCTION 4

Zi = λXi + (1− λ)Zi−1 for i = 1, 2, 3, . . . , (1.5)

where 0 < λ ≤ 1 is a smoothing constant and the starting value, Z0, is the process target value, i.e.

Z0 = µ0. The expected value and the variance of Zi are given by

E[Zi] = µ0 (1.6)

and

V ar[Zi] = σ2
0

(
λ

2− λ

)
(1− (1− λ)2i), (1.7)

respectively. The exact control limits and the center line of the EWMA control chart are given by

UCLi = µ0 + Lσ0

√
λ

2−λ (1− (1− λ)2i)

CLi = µ0

LCLi = µ0 − Lσ0
√

λ
2−λ (1− (1− λ)2i),

(1.8)

where L > 0 is the width of the control limits, that is chosen together with λ to obtain a desired

nominal ARL0.

The steady-state control limits are implemented when the chart has been running for some period

of time. As i → ∞, then V ar[Zi] = σ2
0

λ
2−λ , since (1 − (1 − λ)2i) → 1 as i → ∞. The steady-state

UCL and LCL are given by

UCL = µ0 + Lσ0

√
λ

2−λ

and

LCL = µ0 − Lσ0
√

λ
2−λ ,

(1.9)

respectively. If the charting statistic Zi plots between the two control limits the process is IC, otherwise

it is considered to be OOC. [27] Montgomery (2009) found that values of λ in the interval [0.05, 0.25]

work well in practice, with λ = 0.05, λ = 0.10 and λ = 0.20 being popular choices. Recommendations

for λ by [27] Montgomery (2009) are summarised in Table 1.1.
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CHAPTER 1. INTRODUCTION 5

Table 1.1: Choice of smoothing parameter λ

Magnitude of the shift of interest Choice of λ
Small 0.05

Moderate 0.10
Large 0.20

[27] Montgomery (2009) found that L = 3 works reasonably well, particularly for larger values λ,

although Montgomery (2009) advised using an L between about 2.6 and 2.8 when λ ≤ 0.1.

1.2.4 Overview of the Monte Carlo simulation approach

The main advantage of using this method is that the run-length distribution characteristics can easily

be calculated, regardless of how complicated the run-length distribution is. [28] Mundform, Schaffer,

Kim, Shaw, Thongteeraparp, Preecha and Supawan (2011) showed that 7 500 to 8 000 simulations

are sufficient for most SPC applications. In this mini-dissertation 10 000 simulations were used, since

it should be a sufficient number of simulations to keep the error of a run-length characteristic within

reasonable bounds. [6] Chakraborti and Van de Wiel (2008) stated the 10% error band (i.e. run-length

characteristic + 0.1(run-length characteristic)) might be too wide to detect practical departures of the

simulated results from the target value, they used a 2% error band. SAS v9.4 was used to perform

simulations in this mini-dissertation. A typical computer simulation procedure to calculate the run-

length distribution for a two-sided control chart, where the charting statistic is calculated from a

random sample, is given as follows:

1. After specifying the necessary parameters, such as the subgroup size, the control limits are

calculated (i.e. LCL and UCL).

2. Random subgroups are generated from some process distribution, say, the normal or exponential

distribution.

3. The charting statistic for each subgroup is calculated and compared to the control limits calcu-

lated in step 1.

4. The number of samples (or subgroups) needed until the charting statistic plots on or outside the

control limits is recorded and is then used as an observation for the run-length distribution.

5. Repeat steps 1 to 4 a total of 10 000 times.

6. Once a dataset with 10 000 observations from the run-length distribution has been obtained,

summary statistics like the ARL, SDRL and percentiles of the run-length distribution can be

obtained.

1.3 Phase I and Phase II analysis of process data

[5] Chakraborti, Human and Graham (2009) stated that SPC is “implemented in two phases or stages

in practice: Phase I, the so-called retrospective phase, and Phase II, the prospective or monitoring
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CHAPTER 1. INTRODUCTION 6

phase.”

Typically, the planning, administration, design of the study, data collection, data management and

exploratory work (graphical and numerical analysis, goodness-of-fit and so on) occurs during Phase

I ([5] Chakraborti et al. (2009), p53). It was stated by [5] Chakraborti et al. (2009) that the goal

of Phase I is to make sure the process is operating at or near acceptable target(s) under natural (or

common) causes of variation. The data obtained during the Phase I analysis is used to construct

control limits, that could potentially be used to monitor an attribute or parameter of the process. [5]

Chakraborti et al. (2009) showed that the control limits obtained during this phase are merely trial

limits, and are often refined and revised to ensure the process is IC. Phase I is iterative by nature,

since data points that plot on or outside the preliminary control limits are discarded and the limits

are subsequently recalculated using the remaining data.

When no assignable causes for variation are found, the final set of control limits is constructed

using the supposed IC data. These control limits are then used to monitor the process. Very often,

the process parameters are unknown and need to be estimated using the Phase I data, this is known

as the standard(s) unknown case (denoted Case U ).

1.4 The bootstrap

The bootstrap is a statistical technique, proposed by [9] Efron (1979), which deals with the problem of

being given a random sample, say X = (X1, X2, . . . , Xn), from an unknown probability distribution

with cumulative density function (CDF) F (x). One then proceeds to use the random sample, X, to

estimate the sampling distribution of a statistic, say T (X) = T (X1, X2, . . . , Xn). Efron (1979) argued

that the unknown CDF F (x) can be approximated by the empircal density function (EDF) F̂ (x), that

is

F̂ (x) =
1

n

n∑
i=1

1(Xi ≤ x), (1.10)

where 1(A) = 1, when A is true and 1(A) = 0, when A is false. [9] Efron (1979) suggested drawing

random samples, each of size n, from the population with distribution function equal to the EDF. This

random sample is denoted by X∗1 , X∗2 , . . . , X∗n and is referred to as a bootstrap sample or replication.

It can be shown that drawing random samples from the EDF, is logically equivalent to sampling

with replacement from the original sample, X. [9] Efron (1979) suggested calculating T , based on

the bootstrap sample X∗1 , X∗2 , . . . , X∗n; this is denoted by T ∗. The resampling procedure is typically

repeated a large number of times, say B ≥ 1 000, and the statistic T is calculated for each of these

bootstrap samples, i.e. T is calculated for every re-sample so that we have T ∗1 , T ∗2 , . . . , T ∗B .

That bootstrap statistics T ∗1 , T ∗2 , . . . , T ∗B can be used to emulate (or approximate) the sampling

distribution for T . [9] Efron (1979) showed that T ∗1 , T ∗2 , . . . , T ∗B can be used to construct reasonably

accurate confidence intervals, provided that T is not an extreme statistic (like the maximum value in

the sample, for example).
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CHAPTER 1. INTRODUCTION 7

1.5 Research objectives

The primary focus of this mini-dissertation is to investigate how the bootstrap can be used to construct

univariate control charts, more specifically, to detect changes in the location of a process distribution

(i.e. an upward/downward shift in the process mean). In Chapter 2 what has been done with regard

to the Shewhart, CUSUM and EWMA control charts are reviewed. In Chapter 3 a naive approach

for a bootstrap EWMA control chart is proposed. In Chapter 4 the performance of the proposed

EWMA chart is reviewed. In Chapter 5 we discuss potential problems with the chart and make

recommendations for further study.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, an overview of the literature is given starting with the well-known Shewhart control

chart (Section 2.2), followed by the CUSUM, EWMA and some other control charts in Sections 2.2,

2.3 and 2.4, respectively.

In Section 2.2 the bootstrap approaches proposed by [2] Bajgier (1992), [34] Seppala, Moskowitz,

Plante and Tang (1995) and [23] Liu and Tang (1996) are discussed and compared to the findings of

[18] Jones and Woodall (1998) (see Table 2.1, 2.2, 2.3 and 2.4, respectively and Figure 2.1, 2.2, 2.3,

2.4, 2.5 , 2.6 and 2.7, respectively).

In Section 2.3 the bootstrap variants of the CUSUM control charts proposed by [39] Yaschin (1992),

[7] Chatterjee and Qiu (2009) and [1] Ambartsoumian and Jeske (2015) are discussed. A summary of

the performance of the bootstrap CUSUM chart proposed by [7] Chatterjee and Qiu (2009) is given

in Section 2.3.2. The performance of the bootstrap CUSUM chart proposed by [1] Ambartsoumian

and Jeske (2015) (more specifically the probability integral transformation CUSUM) is summarised

in Table 2.5 and compared to the transformed CUSUM proposed by [16] Jeske (2009).

In Section 2.4 an overview of the bootstrap EWMA chart used by [13] Gandy and Kvaløy (2013)

and [33] Saleh et al. (2015) is given.

Section 2.5 gives an overview of the bootstrap-based multivariate T 2 control chart proposed by

[32] Phaladiganon et al. (2011).

2.2 Shewhart control chart

2.2.1 Overview of bootstrap control chart designs

[2] Bajgier (1992) proposed a control chart to monitor the mean (X̄) of a process with the intention of

providing an alternative for the Shewhart X̄ control chart. [18] Jones and Woodall (1998) suggested

constructing [2] Bajgier’s (1992) bootstrap control chart as follows:

1. Observe m subgroups of size n for a total of N = mn observations.

8
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CHAPTER 2. LITERATURE REVIEW 9

2. Draw a random sample with replacement from the mn pooled observations. This sample,

x∗1, x
∗
2, . . . , x

∗
n, is a bootstrap sample.

3. Compute the mean (x̄∗) from the bootstrap sample drawn in step 2.

4. Repeat steps 2 to 3 a large number of times, say, B times.

5. Sort the B bootstrap estimates, x̄∗1, x̄∗2, . . . , x̄∗B , in ascending order.

6. Find the smallest ordered x̄∗ such that (α/2)B values are below it. This is the bootstrap control

chart’s lower control limit, LCL.

7. Find the smallest ordered x̄∗ such that (1 − α/2)B values are below it. This is the bootstrap

control chart’s upper control limit, UCL.

Here, α is the desired false alarm rate (FAR). For a typical 3σ Shewhart control chart with the mean

and the variance assumed known, we have that α = 0.0027.

Since each set of mn observations will produce different bootstrap and standard control limits, the

ARL of each chart is a random variable. [2] Bajgier (1992) simulated 1 000 sets of control limits for

m = 20 samples, each of size n = 5, from a normal distribution with mean 0 and variance 1, and a

χ2 distribution with five degrees of freedom. The author compared the bootstrap control limits to

standard Shewhart control limits based on

(LCL,UCL) = ¯̄X ±A2R̄

and

(LCL,UCL) = ¯̄X ±A3S̄

(2.1)

respectively, where

¯̄X =
1

m

m∑
i=1

X̄i =
1

m

m∑
i=1

 1

n

n∑
j=1

Xij

 =
1

mn

m∑
j=1

n∑
i=1

Xij ,

R̄ =
1

m

m∑
i=1

Ri,

Rj = max{Xi1, Xi2, . . . , Xin} −min{Xi1, Xi2, . . . , Xin} for i = 1, 2, 3, . . . ,m,

S̄ =
1

m

m∑
i=1

Sj =
n∑
j=1

√√√√ 1

n− 1

n∑
i=1

(
Xij − X̄i

)2

and A2 and A3 are standard charting constants (see [27] Montgomery (2009), p702). [2] Bajgier (1992)

concluded that his bootstrap control chart performs comparably to the standard methods in terms of

the distribution of the ARL’s.
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[34] Seppala et al. (1995) pointed out a flaw with [2] Bajgier’s (1992) bootstrap control chart,

namely that [2] Bajgier’s (1992) approach assumed that the process was stable and in-control when

the control limits were computed. [18] Jones et al. (1998) argued that violating this assumption

would lead to control limits that were too wide. [34] Seppala et al. (1995) attempted to reduce the

necessity of this assumption with their subgroup bootstrap. [34] Seppala et al. (1995) assumed that

the observations were described by the model

Xij = µi + εij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n,

where µi is the process mean for the i-th subgroup and εij is a random error term with mean 0 and

variance σ2
ε . The subgroup bootstrap control chart by [34] Seppala et al. (1995) is constructed as

follows:

1. Observe m subgroups of size n for a total of N = mn observations.

2. Compute êij = xij − x̄i for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n, where x̄i is the sample mean

for the i-th subgroup.

3. Draw a random sample with replacement from the mn pooled sample residuals. This sample,

ê∗1, ê
∗
2, . . . , ê

∗
n, is a bootstrap sample.

4. Compute x∗i = ¯̄x + aê∗i for i = 1, 2, 3, . . . , n. Here, a =
√
n/(n− 1) is a correction factor used

to adjust the variance of the resampled subgroups.

5. Compute the sample mean (x̄∗) from x∗1, x
∗
2, . . . , x

∗
n.

6. Repeat steps 3 to 5 a large number of times, say, B times.

7. Sort the B bootstrap estimates, x̄∗1, x̄∗2, . . . , x̄∗B , in ascending order.

8. Find the smallest ordered x̄∗ such that (α/2)B values are below it. This is the bootstrap control

chart’s lower control limit, LCL.

9. Find the smallest ordered x̄∗ such that (1 − α/2)B values are below it. This is the bootstrap

control chart’s upper control limit, UCL.

Here, α is the desired FAR for the control chart. [34] Seppala et al. (1995) suggested replacing the

control limits found in steps 8 and 9 with interpolated percentiles. [34] Seppala et al. (1995) also

suggested a modification to the subgroup bootstrap algorithm referred to as a balanced bootstrap.

[11] Efron and Tibshirani (1994) described the balanced bootstrap as a process where the data is

resampled in such a way so that each bootstrap sample appears exactly once in the B resamples. This

is done by concatenating B copies of x1.x2, . . . , xn into a string L of the length nB, then taking a

random permutation of L, say L̃. Finally, the first bootstrap sample should be elements 1, 2, . . . , n of

L̃, the second bootstrap sample to be elements n+ 1, n+ 2, . . . , 2n of L̃, and so on. [34] Seppala et al.
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(1995) used a measure called ‘simulated coverage probabilities’ to measure the performance of their

subgroup control chart. They simulated samples of various sizes from either a N (0, 1) distribution or

Exp(1) distribution. The exact coverage probability of each set of control limits can be calculated by

CV G = P
(
LCL < X̄n < UCL

)
,

where UCL and LCL are the given upper and lower control limits of the subgroup bootstrap chart

and where X̄n represents a future sample mean based on a sample of size n from the IC process

distribution. A control chart is considered to perform well if CV G ≈ 1 − α. [34] Seppala et al.

(1995) calculated simulated coverage for the upper and lower control limits seperately and did not

specify how they computed their measure of simulated coverage. [18] Jones et al. (1998) attempted

to emulate the metric used by [34] Seppala et al. (1995) and found results consistent with theirs.

Like [2] Bajgier (1992), [23] Liu et al. (1996) assumed that the Phase I data was obtained from a

stable and IC process. They also assumed that the observations were independent. [23] Liu et al.

(1996) constructed their bootstrap control chart as follows:

1. Observe m subgroups of size n for a total of N = mn observations.

2. Compute ¯̄XN = 1
N

∑m
i=1

∑n
j=1 xij .

3. Draw a random sample with replacement from the mn pooled observations. This sample,

x∗1, x
∗
2, . . . , x

∗
n, is a bootstrap sample.

4. Compute the sample mean x̄∗ = 1
n

∑n
i=1 x

∗
i and t∗ =

√
n
(
x̄∗ − ¯̄X

)
from the bootstrap sample

in step 3.

5. Repeat steps 3 and 4 a large number of times, say B times.

6. Sort the B bootstrap values t∗1, t∗2, . . . , t∗B in ascending order.

7. Find the smallest ordered t∗ such that (α/2)B values are below it. This value is denoted by

t∗α/2.

8. Find the smallest ordered t∗ such that (1−α/2)B values are below it. This value is denoted by

t∗1−α/2.

Compute the lower and upper control limits using

LCL = ¯̄XN +
t∗α/2√
n

(2.2)

and

UCL = ¯̄XN +
t∗1−α/2√

n
. (2.3)
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[18] Jones et al. (1998) argued that

t∗α/2 =
√
n
(
x̄∗α/2 − ¯̄XN

)
,

where x̄∗α/2 was the smallest value of x̄∗such that (α/2)B values were below it. Similarly,

t∗1−α/2 =
√
n
(
x̄∗1−α/2 − ¯̄XN

)
,

where x̄∗1−α/2 is the smallest value of x̄∗such that (1 − α/2)B values are below it. Substituting the

above results into the control limits for the control chart proposed by [23] Liu et al. (1996), i.e. LCL

and UCL yields

LCL = x̄∗α/2

and

UCL = x̄∗1−α/2.

[23] Liu et al. (1996) discussed the asymptotic properties of their bootstrap control chart and used

a simulation study to evaluate the performance of their chart. They only used one simulated set of

control limits for each type of distribution and reached the conclusion that the bootstrap control limits

are superior to the standard limits. This contradicts [2] Bajgier’s (1992) findings, since he concluded

that one needs more than a single sample of size N = mn to measure the chart’s performance, since

the LCL and UCL are random variables.

[30] Nichols and Padgett (2006) used a parametric bootstrap to construct control charts for mon-

itoring a specified percentile of the distribution of the process characteristic of interest. The chart

proposed by [30] Nichols and Padgett (2006) was designed to be applied to small percentiles of the

Weibull distribution. The probability density function (PDF) of the Weibull distribution is given by

f(w) =
δ

β

(
w

β

)δ−1
exp

[
−
(
w

β

)δ]
, w > 0 (δ, β > 0) (2.4)

where δ and β are the shape and scale parameters, respectively. [30] Nichols and Padgett (2006) noted

that the Weibull distribution could take a variety of shapes which could make it useful for a variety of

applications. The 100pth percentile for the Weibull distribution is given byWp = β [− ln (1− p)]1/δ for

p ∈ (0, 1). [30] Nichols and Padgett (2006) proposed that the following steps be followed to construct

the bootstrap Weibull percentile control chart.

1. From an in-control, stable process, observe n ×m observations from an assumed Weibull dis-
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CHAPTER 2. LITERATURE REVIEW 13

tribution with unknown shape parameter δ and unknown scale parameter β. The observations

are denoted by xij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n and are assumed to come from m

independent subgroups of size n.

2. Use maximum likelihood estimators (MLEs) for the unknown values of δ and β using the equa-

tions

δ̂ =

[∑m
i=1

∑n
i=1 x

δ
ij log xij∑k

j=1

∑n
i=1 x

δ
ij

−
∑m
i=1

∑n
j=1 log xij

nm

]−1
and β̂ =

(∑m
i=1

∑n
j=1 x

δ
ij

nm

)1/δ

.

(2.5)

Here the Newton-Raphson method is used to find δ̂ from Equation (2.5) numerically.

3. Generate a parametric bootstrap of size n, x∗1, x∗2, . . . , x∗n, from the Weibull distribution using

the MLEs obtained in step 2 as the Weibull parameters.

4. Find the parameter MLEs from the bootstrap subgroup and denote these as β̂∗ and δ̂∗.

5. For the bootstrap subgroup, findW ∗p = β̂∗ [− ln (1− p)]1/δ
∗
, the bootstrap estimate of the 100pth

percentile of interest, Wp.

6. Repeat steps 3 to 5 a larger number of times, say B, obtaining B bootstrap estimates of Wp,

denoted by W ∗p1,W ∗p2, . . . ,W ∗pB .

7. Using the B bootstrap estimates obtained in step 6, find the (α/2)×100th and (1−α/2)×100th

percentiles. Here α ∈ (0, 1) is the probability that an observation is considered to be OOC when

the process is actually IC, i.e. α is the FAR.

8. The lower- (LCL) and upper control limits (UCL) are set equal to the (α/2) × 100th and

(1− α/2)× 100th percentiles of the B bootstrap estimates respectively.

9. Once the control limits have been computed, future subgroups of size n are taken from the

process at regular time intervals and Wp is estimated for each new subgroup by the MLEs

indicated in step 5. If the estimate, Ŵp, falls on or outside LCL or UCL then the process is

declared to be out-of-control.

[21] Lio and Park (2010) proposed using a parametric bootstrap control chart to monitor percentiles by

fitting a two-parameter inverse Gaussian distribution to the in-control reference sample and sampling

from the fitted distribution, instead of the conventional sampling with replacement approach. The

PDF for a two-parameter inverse Guassian distribution is given by

f(t; ν, λ) =

√
λ

2πt3
exp

[
−λ (t− ν)2

2ν2t

]
, t > 0, (2.6)

where ν > 0 is a location parameter and λ > 0 is a scale parameter. The cumulative distribution
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function (CDF) is given by

F (t; ν, λ) = Φ

[√
λ

t

(
t

ν
− 1

)]
+ exp

(
2λ

ν

)
Φ

[
−
√
λ

t

(
1 +

1

ν

)]
, (2.7)

where Φ(.) is the standard normal CDF. Let x1, x2, . . . , xn be a random sample of size n ≥ 1 from the

inverse Gaussian distribution with its PDF in Equation (2.6). The MLEs of the location parameter ν

and scale parameter λ are given by

ν̂ = x̄ =
1

n

n∑
i=1

xi (2.8)

and

λ̂ =
1

(1/n)
∑n
i=1 x

−1
i − 1/x̄

, (2.9)

respectively. Let F−1(p; ν, λ) denote the inverse function of the inverse Gaussian CDF, i.e. the

p × 100th percentile is obtained by solving the equation F (t; ν, λ) = p for t. Therefore, the MLE of

p× 100th percentile, denoted by F−1(p; ν̂, λ̂), is also obtained by solving F (t; ν̂, λ̂) = p for t. [21] Lio

and Park (2010) constructed their bootstrap chart as follows:

1. Observe m ≥ 1 random samples each of size nj (for j = 1, 2, . . . ,m) from an in-control and

stable process independently.

2. Using the MLEs given in Equations (2.8) and (2.9), calculate the MLEs of ν and λ with the

pooled sample of size N =
∑m
j=1 nj .

3. Generate a parametric bootstrap of size n ≥ 1, x∗1, x∗2, . . . , x∗n, from the inverse Gaussian distri-

bution using the MLEs obtained in step 2 as the inverse Gaussian parameters. Here n is the

sample size that will be used for future subgroups.

4. Find the MLEs using the bootstrap sample in step 3 and denote these as ν̂∗ and λ̂∗.

5. For the bootstrap subgroup sample obtained in step 3 and ν̂∗ and λ̂∗ in step 4, find the bootstrap

estimate, Ŵ ∗p = F−1
(
p; ν̂∗, λ̂∗

)
, of the 100pth percentile Ŵp = F−1(p; ν̂, λ̂).

6. Repeat steps 3 to 5 a large number of times, say B, obtaining B bootstrap estimates of Ŵp,

denoted by Ŵ ∗p1, Ŵ ∗p2, . . . , Ŵ ∗pB .

7. Using the B bootstrap estimates obtained in step 6, find the (α/2)×100th and (1−α/2)×100th

percentiles. Here α ∈ (0, 1) is the probability that an observation is considered to be OOC when

the process is actually IC, i.e. α FAR. The lower- (LCL) and upper control limits (UCL) are

set equal to the (α/2) × 100th and (1 − α/2) × 100th percentiles of the B bootstrap estimates

respectively.
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8. Once the control limits have been computed, future subgroups of size n are taken from the

process at regular time intervals and Wp is estimated for each new subgroup by the MLEs

indicated in step 5. If the estimate, Ŵp, falls on or outside LCL or UCL then the process is

declared to be out-of-control.

2.2.2 Performance review and application of Shewart-type bootstrap con-

trol charts

[2] Bajgier (1992) noted that one cannot compare the performance of the bootstrap control chart

using a single sample of mn in-control observations, since each set of mn observations will produce

different bootstrap and standard control limits. [2] Bajgier (1992) simulated 1 000 sets of control

limits for m = 20 samples of size n = 5 from a N (0, 1) and χ2(5) distribution, respectively. Despite

not providing any summary statistics from the simulation study, [2] Bajgier (1992) concluded that his

bootstrap chart performs ‘comparably’ to the standard methods in terms of the distribution of the

ARL′s.

In this mini-dissertation, the researcher investigates the implementation of [2] Bajgier’s (1992)

control chart by constructing two control charts: one being [2] Bajgier’s (1992) bootstrap control

chart and the other being the implementation of a Shewhart control chart with estimated parameters.

[2] Bajgier (1992) constructed conventional control charts with estimated control limits using Equation

(2.1). The researcher deviates from this and opt to use the following estimators

µ̂0 = ¯̄X =
1

m

m∑
i=1

X̄i =
1

m

m∑
i=1

 1

n

n∑
j=1

Xij

 =
1

mn

m∑
j=1

n∑
i=1

Xij (2.10)

and

σ̂0 =
Sp
c4,m

, (2.11)

where

Sp =

√∑m
i=1

∑n
j=1(Xij − X̄i)2

m(n− 1)
(2.12)

and

c4,m =

√
2Γ
(
m(n−1)+1

2

)
√
m(n− 1)Γ

(
m(n−1)

2

) . (2.13)

The constant, c4,m, in Equation 2.13 was used by [25] Mahmoud, Henderson, Epprecht andWoodall

(2010) so that E
[
Sp

c4,m

]
= σ0. [25] Mahmoud et al. (2010) showed that Equation (2.11) provides the

lowest variance of all the commonly used estimators for σ0.

The researcher generated a single set of m = 20 samples of size n = 5 from a χ2(5) distribution.
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Since we want to construct a standard 3σ Shewhart control chart, we set α = 0.0027. Using Bajgier’s

(1992) algorithm, we drew 1 000 re-samples of size n = 5 from the set of mn = 20(5) = 100 in-control

Xij ’s and calculated the sample mean for each of the 1 000 re-samples, i.e. X̄(1)
1 , X̄

(1)
2 , . . . , X̄

(1)
1000.

We then find the ordered X̄(1)
i value so that (α/2)B values are below it and we denote this value

as X̄(1)
α/2. We also find the ordered X̄(1)

i value so that (1 − α/2)B values are below it and we denote

this value as X̄(1)
1−α/2. We set ˆLCL

∗
1 = X̄

(1)
α/2 and ˆUCL

∗
1 = X̄

(1)
1−α/2. We repeat this process 1 000 times

so that we have different sets of lower- and upper control limits. We obtain our final control limits by

calculating

ˆLCL
∗
avg =

1

1000

1000∑
i=1

ˆLCL
∗
i (2.14)

and

ˆUCL
∗
avg =

1

1000

1000∑
i=1

ˆUCL
∗
i . (2.15)

The process used to calculate Equations (2.14) and (2.15) is summarised below.

Algorithm 2.1 Determining the control limits for [2] Bajgier’s (1992) bootstrap control chart

1. Let α ∈ (0, 1).

2. Let X∗1 , . . . , X
∗
n be a set of n ≥ 1 values randomly drawn from

{X11, X12, . . . , X1n, X21, X22, . . . , X2n, . . . , Xm1, Xm2, . . . Xmn} with replacement.

3. Calculate X̄∗ = 1
n

∑n
i=1X

∗
i .

4. Repeat steps 2 and 3 a large number of times, say B1 ≥ 1 000, to obtain B1 X̄
∗ values, i.e.

X̄∗1 , X̄
∗
2 , . . . , X̄

∗
B1

.

5. Let ˆLCL
∗
be the (α/2)× 100th percentile of X̄∗1 , X̄∗2 , . . . , X̄∗B1

and let ˆUCL
∗
be the (1−α/2)×

100th percentile of X̄∗1 , X̄∗2 , . . . , X̄∗B1
.

6. Repeat steps 2 to 5 a large number of times, say B ≥ 1 000, to obtain B values of ˆLCL
∗
and

ˆUCL
∗
, i.e. ˆLCL

∗
1, . . . , ˆLCL

∗
B and ˆUCL

∗
1, . . . , ˆUCL

∗
B .

7. Calculate

ˆLCL
∗
avg =

1

B

B∑
i=1

ˆLCL
∗
i

and

ˆUCL
∗
avg =

1

B

B∑
i=1

ˆUCL
∗
i .

The symmetric estimated control limits for the conventional two-sided Shewhart X̄-chart are given

by

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 2. LITERATURE REVIEW 17

(
ˆLCL, ˆUCL

)
= µ̂0 ± k

σ̂0√
n
, (2.16)

where µ̂0 and σ̂0 are given by Equation (2.10) and Equation (2.11) respectively. The value k > 0 is

chosen so that both the bootstrap and conventional control charts have the same in-control average

run-length ARL0. This is done so that a fair comparison can be made with respect to the performance

of the charts in terms of detecting a shift in magnitude of |δ| standard error units (σ0/
√
n) from the

process mean.

A SAS v9.4 program was written to implement [2] Bajgier’s (1992) control chart (see Section A.1.1

for the source code). We generated the aforementioned i.i.d. χ2(5) random variables in m = 20

samples each of size n = 5. For the sake of illustration and without loss of generality, it can be

assumed that these samples were generated from a stable and in-control process. Algorithm 2.1 was

implemented and 1 000 sets of lower- and upper control limits were generated. After averaging over

the 1 000 values we obtained

ˆLCL
∗
avg = 1.9535515

and

ˆUCL
∗
avg = 10.218125,

respectively. The standard deviations for the lower and upper control limits were estimated as

s ˆLCL
∗
i

=

√√√√ 1

B − 1

B∑
i=1

(
ˆLCL
∗
i − ˆLCL

∗
avg

)2
≈ 0.1607388

and

s ˆUCL
∗
i

=

√√√√ 1

B − 1

B∑
i=1

(
ˆUCL
∗
i − ˆUCL

∗
avg

)2
≈ 0.5151147,

respectively. We can further estimate the standard errors for ˆLCL
∗
avg and ˆUCL

∗
avg to be

SE
(
LCL∗avg

)
≈
s ˆLCL

∗
i√

B
=

0.1607388√
1000

≈ 0.0016

and
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SE
(
UCL∗avg

)
≈
s ˆUCL

∗
i√

B
=

0.5151147√
1000

≈ 0.01629,

respectively. We will always get a different set of control limits for the same in-control reference sample

(as noted by [2] Bajgier (1992)), so averaging over the 1 000 different lower- and upper control limits

allows us to greatly reduce the variability of our results.

Since we know what the underlying process distribution is, the exact control limits can be deter-

mined using the fact that nX̄ follows a χ2(5n) distribution. So the desired lower- and upper control

limits are given by

LCLdesired =
χ2
α/2(5n)

n
= 1.791711742

and

UCLdesired =
χ2
1−α/2(5n)

n
= 10.3182539,

respectively, where χ2
α/2(5n) and χ2

1−α/2(5n) are the (α/2)×100th and (1− (α/2))×100th percentiles

of the χ2(5n) distribution, respectively. The difference between the bootstrap control limits and the

desired control limits are summarised in Table 2.1.

Table 2.1: Comparison of the bootstrap and exact control limits for the Shewhart X̄ chart when the
in-control process is χ2(5) distributed

Control limit Desired Bootstrap Absolute percentage
difference (2 decimal places)

Lower 1.791711742 1.9535515 9.03%
Upper 10.3182539 10.218125 0.97%

For this instance, the upper bootstrap control limit ˆUCLavg is very close to the desired upper con-

trol limit UCLdesired (within 1% of its value), whilst the lower bootstrap control limit ˆLCL
∗
avgdeviates

significantly (more than 5%) from the desired lower control limit LCLdesired. Undoubtedly this will

have an impact on the false alarm rate and subsequently, the average run-length.

The distance between the bootstrap control charts is a little shorter than the distance between

the desired control limits. One would expect a lower in-control average run-length for the bootstrap

control chart (which we will denote by ARL∗0). Since we know that nX̄ ∼ χ2(25) in this instance, we

can calculate the false alarm rate for the bootstrap control chart, FAR∗ as follows:
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FAR∗ = P (Signal|IC)

= 1− P (No Signal|IC)

= 1− P
(

ˆLCL
∗
avg < X̄ < ˆUCLavg|IC

)
= 1− P

(
ˆnLCL

∗
avg < nX̄ < ˆnUCLavg|IC

)
= 1− P

(
ˆnLCL

∗
avg < χ2(5n) < n ˆUCLavg

)
= 1− P

(
9.7677575 < χ2(25) < 51.090625

)
≈ 0.0043.

From the above calculation, it follows that ARL∗0 = 1/FAR∗ ≈ 231, whereas the nominal in-

control average run-length (by design) ARL0 is supposed to be 1/0.0027 ≈ 370. We ran a simulation

in SAS v9.4 (see Section A.1.1) to determine what the average run-length will be when a shift in

magnitude of |δ| ≤ 3 standard deviations from the process mean is introduced. The results of this

simulation are shown in Figure 2.1 .

Figure 2.1: Out-of-control values for the bootstrap Shewhart X̄ control chart

From Figure 2.1 it may be noted that there is some bias in the ARL (the out-of-control ARLδ is

larger than ARL0 for 0 < δ < 0.5). This can be attributed to the fact that the χ2(5) (which is the

underlying in-control process distribution) is a right-skewed distribution. Our simulation consisting

of 10 000 different run-length simulations yielded an IC average run-length of 233.1591 which is lower

than the desired average run-length of 370.4. This means that one could roughly expect 1 in every

233 samples to produce a false alarm (signaling that the process is out-of-control when it is in fact

in-control). For a low volume process this could still be reasonable, but it can lead to serious and
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CHAPTER 2. LITERATURE REVIEW 20

unnecessary downtime in higher volume processes.

The researcher proceeded to compare the bootstrap chart to the more conventional two-sided sym-

metric control limit chart given by Equation (2.16). Using Equations (2.10) and (2.11) the following

estimates for µ0 and σ0 were obtained

µ̂0 = 5.0962183

and

σ̂0 = 3.1939624,

respectively. Using Equation (2.16) the lower- and upper control limits are obtained as

ˆLCL = µ̂0 − k
σ̂0√
n

= 0.6941761

and

ˆUCL = µ̂0 + k
σ̂0√
n

= 9.4982605,

respectively. The researcher set k = 3.0818352 to produce an ARL0 similar to that of the bootstrap

chart, in order to compare the two opposing charts’ abilities with respect to detecting shifts in the

process mean. Another simulation study of 10 000 run-length simulations was conducted and the

results were summarised in Figure 2.2.
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Figure 2.2: Out-of-control values for the bootstrap and conventional Shewhart X̄ control charts with
estimated control limits

It may be noted that both the conventional and the bootstrap control charts have ARL bias.

The conventional Shewhart chart with symmetrically placed control limits has a much higher degree

of ARL bias than the bootstrap control chart. The bootstrap control chart also detects downward

shifts (δ < 0) in the process mean much faster than the conventional chart, whereas the conventional

chart detects upward shifts (δ > 0) much faster than the bootstrap control chart. The question is

whether there is some truth to [2] Bajgier’s (1992) statement that the bootstrap control chart performs

similarly to the conventional chart. For a practitioner who is more interested in detecting drops in

the process mean it most certainly seems like a good alternative in this instance.

Similarly, when the process followed a standard normal N (0, 1) distribution, we implemented

Algorithm (2.1) again and obtained the following values for the bootstrap lower- and upper control

limits

ˆLCL
∗
avg = −1.293245

and

ˆUCL
∗
avg = 1.4620733,

respectively. The standard errors for ˆLCL
∗
avg and ˆUCL

∗
avg were

SE
(
LCL∗avg

)
≈
s ˆLCL

∗
i√

B
=

0.0945022√
1000

≈ 0.0030
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and

SE
(
UCL∗avg

)
≈
s ˆUCL

∗
i√

B
=

0.1255819√
1000

≈ 0.0040,

respectively. Since we know that X̄ ∼ N (0, 1
n ) in this instance, we can calculate the exact (or desired)

control limits as follows:

LCLdesired = x̄α/2 = −1.341630497

and

UCLdesired = x̄1−a/2 = 1.341630497,

respectively, where x̄p is the p× 100th percentile of the N (0, 1
n ) distribution. The difference between

the bootstrap control limits and the desired control limits are summarised in Table 2.2.

Table 2.2: Comparison of the bootstrap and exact control limits for the Shewhart X̄ chart when the
in-control process is N (0, 1) distributed

Control limit Desired Bootstrap Absolute percentage
difference (2 decimal places)

Lower -1.341630497 -1.293245 3.61%
Upper 1.341630497 1.4620733 8.98%

In this case the bootstrap overestimated the lower and upper control limits by 4% and 9%, respec-

tively. It may also be noted that bootstrap control limits are further apart than the desired (or ideal)

control limits. Naturally, this will lead to a higher in-control average run-length. In the simulation

study an IC average run-length of approximately 405 was obtained using the bootstrap control limits.

A two-sided Shewhart control chart, with symmetrically placed control limits and estimated param-

eters, was constructed using Equation (2.16) and k was chosen so that the chart has an in-control

average run-length close to 405. The estimated lower- and upper control limits were obtained as

ˆLCL = −1.342541

and

ˆUCL = 1.3663521
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respectively. A simulation study of 10 000 run-length simulations was conducted to test the perfor-

mance of the chart when a shift in magnitude of |δ| < 3 was introduced. The results are summarised

in Figure 2.3.

Figure 2.3: Out-of-control values for the bootstrap and conventional Shewhart X̄ control charts with
estimated control limits

From Figure 2.3 it can be noted that the bootstrap control chart shows some slight ARL bias when

0 < δ < 0.5. This can be attributed to simulation error or the asymmetrically placed control limits

(since the normal distribution is symmetrically distributed about its mean) of the bootstrap control

chart. When δ > 0, the conventional control limits outperform the bootstrap control limits, since

the conventional chart responds to a shift in the process mean much faster than the bootstrap chart.

However, when δ < 0, the bootstrap control chart performs better than the conventional control chart.

The greatest strength of [2] Bajgier’s (1992) bootstrap control chart is the relative ease with which

it can be implemented and it is complemented by a set of less rigid and relaxed assumptions about the

underlying process distribution. Unfortunately those same assumptions come with inherent weaknesses

since one has to naively assume that the reference sample contains very few extreme observations that

might have slipped past the initial Phase I analysis. [34] Seppala et al. (1995) pointed out that this

could potentially lead to intervals that are too wide, resulting in an increased Type I error rate.

The method used by [34] Seppala et al. (1995) to construct the control limits of their bootstrap

control chart (henceforth known as the subgroup bootstrap) was discussed in Section 2.1 of this mini-

dissertation. [34] Seppala et al. (1995) attempted to account for OOC observations by subtracting

the subgroup mean

X̄i =
1

n

n∑
j=1

Xij for i = 1, 2, . . . ,m

from each observation and subsequently adding it to the grand mean ( ¯̄X). [34] Seppala et al. (1995)
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measured the performance of their control chart by calculating the coverage probability for a large

number of different control limits obtained through the subgroup bootstrap. The subgroup bootstrap

control charts were constructed for various sized subgroups (m = 5 and m = 20) of different sample

sizes (n = 5 and n = 10) from N (0, 1) and Exp(1) populations, respectively. [34] Seppala et al.

(1995) considered the cases where α = 0.0026, 0.01, 0.05 and 0.1 respectively, and concluded that the

subgroup bootstrap control chart outperforms the standard control chart (a Shewhart control chart

with symmetrically placed control limits and estimated parameters) when the process is non-normally

distributed.

[18] Jones et al. (1998) argued that the problem with the method proposed by [34] Seppala et

al. (1995) was that the sample mean was sensitive to extreme values and simply adding the residual

values to the grand mean did not lessen the impact of extreme points. [18] Jones et al. (1998) also

criticised [34] Seppala et al. (1995) for calculating the coverage probability of the lower and upper

control limits and not specifying how these values were computed.

To compare the subgroup bootstrap control chart of [34] Seppala et al. (1995) to the bootstrap

control chart of [2] Bajgier (1992), the case where α = 0.0027, m = 20, n = 5 and Xij ∼ i.i.d. Exp(1)

for i = 1, 2, . . . ,m, and j = 1, 2, . . . , n is considered. Since it is known that

nX̄i =

n∑
j=1

Xij , for i = 1, 2, . . . ,m

follows a Gamma(n, 1) distribution when Xij ∼ i.i.d. Exp(1) for j = 1, 2, . . . , n, the coverage proba-

bility for the ith set of subgroup bootstrap control limits, given by ˆLCL
∗
sb,i and ˆUCL

∗
sb,i, respectively,

can be calculated as

CV Gi = P
(

ˆLCL
∗
sb,i < X̄i ≤ ˆUCL

∗
sb,i | IC

)
= P

(
ˆnLCL

∗
sb,i < nX̄i ≤ n ˆUCL

∗
sb,i | IC

)
= P

(
2 ˆnLCL

∗
sb,i < 2nX̄i ≤ 2n ˆUCL

∗
sb,i | IC

)
= P

(
2 ˆnLCL

∗
sb,i < χ2(2n) ≤ 2n ˆUCL

∗
sb,i | IC

)
.

(2.17)

The result in Equation (2.17) follows from the fact that if nX̄ ∼ Gamma(n, 1) (where n ∈ N), then

2nX̄ ∼ χ2(2n). The FAR for the ith subgroup bootstrap control limits is given by

FAR∗sb,i = 1− CV Gi

and subsequently, the IC ARL for the ith subgroup bootstrap control chart is given by

ARL∗sb,i =
1

FAR∗sb,i
. (2.18)
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To measure the performance of the subgroup bootstrap proposed by [34] Seppala et al. (1995), 10 000

sets of subgroup bootstrap control charts were constructed, by using 2 000 bootstrap replications,

each from a different set of IC reference samples consisting of m = 20 subgroups of size n = 5, from

an Exp(1) population. Equations (2.17) and (2.18), respectively, were used to determine the attained

conditional IC ARL for every set of control limits. The attained conditional IC ARL’s of the subgroup

bootstrap were compared to the standard control limits, which [34] Seppal et al. (1995) defined as

(
ˆLCLstd, ˆUCLstd

)
= ¯̄X + z1−α/2

(
S√
n

)
, (2.19)

where ¯̄X is the grand mean of themn pooled IC observations, z1−α/2 is the (1−α/2)×100th percentile

of the standard normal distribution and S2 is the sample variance of the mn pooled IC observations.

The standard control limits were calculated, for each of the 10 000 sets ofmn IC reference samples, and

their coverage probabilities calculated by replacing
(

ˆLCLsb,i, ˆUCLsb,i

)
with

(
ˆLCLstd,i, ˆUCLstd,i

)
in

Equation (2.17). The subgroup percentiles were constructed using 2 000 bootstrap replications. The

attained conditional IC ARL for the standard control limits were then calculated, by using the coverage

probabilities in Equation (2.18). A SAS v9.4 program was written (see Section A.1.2 for source code)

and the results were summarised by the boxplot-like graphs in Figure 2.4.

Figure 2.4: Boxplot-like graphs of the attained conditional IC ARL for the subgroup bootstrap chart
(first boxplot on top) and the standard chart (second boxplot at the bottom) when the IC process
distribution is Exp(1)

Each boxplot shows the median as a middle band inside the box. The left and right sides of the

box are the 25th and 75th percentiles, respectively. The “whiskers” are extended to the 5th and the

95th percentiles instead of the usual minimum and maximum. From Figure 2.4 it can be noted that

the results for the subgroup bootstrap are much more variable than the results for the standard chart,
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since the rectangle representing the middle 50% of the distribution of the subgroup bootstrap chart

attained conditional IC ARL’s is wider than the rectangle of the bottom placed boxplot representing

the middle 50% of the distribution of the standard chart’s attained conditional IC ARL’s. It can

also be seen in Figure 2.4 that the standard chart produces much more consistent results than the

subgroup bootstrap chart. The summary statistics for the simulation study are provided in Table 2.3.

Table 2.3: Summary statistics for the attained IC conditional ARL’s of 10 000 different sets of sub-
group bootstrap and standard control charts, when the IC process distribution is Exp(1)

ARLavg Standard error
Subgroup bootstrap 6978.1203 3320.0758

Standard 172.6726 2.8844

5th Percentile 25th Percentile 50th Percentile 75th Percentile 95th Percentile
Subgroup bootstrap 43.6180 116.0971 275.3626 768.1300 4772.7674

Standard 25.9971 53.8048 96.6048 186.4389 541.6446

From Table 2.3 it can be seen that control charts constructed using the subgroup bootstrap pro-

posed by [34] Seppala et al. (1995) yield much more variable results with respect to the IC ARL of

the chart versus the standard chart. The standard error for IC ARL of the subgroup bootstrap is

more than a thousand times that of the standard error for the standard control chart. It is extremely

difficult to recommend the subgroup bootstrap of [34] Seppala et al. (1995) to a practitioner for this

case.

The same procedure was used to compare the results of the subgroup bootstrap chart with the

standard chart, when the IC process distribution is N (0, 1) (see Section A.1.2 for the SAS v9.4 source

code). The results are summarised in the form of boxplot-like graphs in Figure 2.5.
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Figure 2.5: Boxplot-like graphs of the attained in-control ARL of the subgroup bootstrap chart (first
boxplot on top) and the standard chart (second boxplot at the bottom) when the process distribution
is N (0, 1)

The boxplot-like graphs in Figure 2.5 are constructed similar to those in Figure 2.4, with the

addition of a line segment connecting the average values of the attained IC conditional ARL’s for the

respective control charts. In Figure 2.5 it may be noticed that the average attained IC conditional

ARL for the subgroup bootstrap is a little bit larger than the average attained IC conditional ARL

for the standard control chart. The results for the subgroup bootstrap control chart vary slightly more

than the results of the standard control chart. The summary statistics for the simulation study are

provided in Table 2.4.

Table 2.4: Summary statistics for the attained IC conditional ARL’s of 10 000 different sets of sub-
group bootstrap and standard control charts, when the IC process distribution is N (0, 1)

ARLavg Standard error
Subgroup bootstrap 422.8321 6.2070

Standard 395.4553 3.5418

5th Percentile 25th Percentile 50th Percentile 75th Percentile 95th Percentile
Subgroup bootstrap 65.3755 141.0838 252.7240 463.6236 1288.1164

Standard 97.0419 182.4611 292.7548 482.0677 1023.3255

The standard error for the average IC conditional ARL for the subgroup bootstrap is much lower for

theN (0, 1) case, compared to the Exp(1) case in Table 2.3. The subgroup bootstrap is fairly consistent

with the standard control chart in this case. It can be a viable alternative for the practitioner, but it

should be done with caution since the results are easily influenced by extreme values and may vary

significantly from one set of reference observations to another.

In Section 2.2.1 it was shown that the bootstrap control chart proposed by [23] Liu and Tang
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(1996) is equivalent to [2] Bajgier’s (1992). The variability of the IC ARL of [2] Bajgier’s (1992) and

[23] Liu and Tang’s (1996) bootstrap control chart will be investigated for the Exp(1) distribution. A

simulation study was conducted where 10 000 different sets of bootstrap and standard control limits

were constructed from individual IC pooled observations of size mn (see Section A.1.1 for the source

code). [2] Bajgier’s (1992) control chart was compared to the standard control chart proposed by

[34]Seppala et al. (1995). The results are summarised in the form of boxplot-like graphs in Figure

2.6.

Figure 2.6: Boxplot-like graphs of the attained IC conditional ARL for [2] Bajgier’s (1992) bootstrap
chart (first boxplot on top) and the standard chart (second boxplot at the bottom) when the IC
process distribution is Exp(1)

[2] Bajgier (1992), as well as [23] Liu and Tang’s (1996) control chart has more variable results

than the standard control chart, but its results are less varied than those of [34] Seppala et al. (1995).

The distribution of the attained IC conditional ARL’s for [2] Bajgier’s (1992) bootstrap control chart

is compared to those of [34] Seppala et al. (1995) in Figure 2.7.
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Figure 2.7: Boxplot-like graphs of the attained IC conditional ARL’s for the [2] Bajgier’s (1992)
bootstrap chart (first boxplot on top) and the subgroup bootstrap chart (second boxplot at the
bottom) by [34] Seppala et al. (1995) when the process distribution is Exp(1)

In Figure 2.7 it can be seen that the results for [2] Bajgier’s (1992) control chart are much less

variable than the subgroup bootstrap’s. [2] Bajgier’s (1992) bootstrap control chart has a much lower

average IC ARL than the subgroup bootstrap control chart proposed by [34] Seppala et al. (1995).

2.2.3 Conclusion

[18] Jones et al. (1998) reviewed the performance of the control charts proposed by [2] Bajgier

(1992), [34] Seppala et al. (1995) and [23] Liu and Tang (1996). [18] Jones et al. (1998) concluded

that “bootstrap control charts do not perform substantially better than the standard method when

performance of the charts is evaluated in terms of the resulting in-control ARL.”

However, [18] Jones et al. (1998) also stated that:

“When estimating the tails of an extremely skewed distribution, the bootstrap techniques discussed

here seem to produce estimates that are closer on average to the true quantile values than the standard

Shewhart method.”

[18] Jones et al. (1998) cautions against using bootstrap control limits, on the basis that they do

not offer superior performance in terms of a predictable IC ARL. This is consistent with the findings

of this mini-dissertation, as seen in Section 2.1.2. Attempts have been made to improve bootstrap

confidence intervals, more specifically the bootstrap-t, the variance-stabilised bootstrap-t, the BCa

(bias corrected and accelerated) and ABC (approximate bootstrap confidence) intervals.

Authors like[15] Iranpanah and Moghadam (2010) have applied these methods to the conventional

stable, independent and IC setting assumed by [2] Bajgier (1992). A brief discussion on the application

of the BCa bootstrap and the average attained IC ARL’s for a control chart constructed using the

BCa follows.
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An implementation of the BCa proposed by [10] Efron (1987) for a Shewhart control chart is as

follows:

Let X̄∗1 , X̄∗2 , . . . , X̄∗B be B bootstrap replications of the sample mean for a bootstrap sample, i.e.

X∗1 , X
∗
2 , . . . , X

∗
n, where

P (X∗i = Xjk|χ) =
1

mn
for i, k = 1, 2, . . . , n and j = 1, 2, . . . ,m

and χ is the set of IC observations obtained during a Phase I analysis, i.e. χ = {Xi1, . . . , Xin}mi=1.

Using [2] Bajgier’s (1992) approach, we calculate

( ˆLCL, ˆUCL) =
(
X̄∗α/2, X̄

∗
1−α/2

)
,

where X̄∗α/2 and X̄
∗
1−α/2 are the (α/2)×100th and (1−α/2)×100th sample percentiles of X̄∗1 , X̄∗2 , . . . , X̄∗B ,

respectively. Using the approach proposed by [10] Efron (1987), the control limits that produce a FAR

of α ∈ (0, 1), are given by

(
ˆLCLBCa, ˆUCLBCa

)
=
(
X̄∗α1

, X̄∗α2

)
, (2.20)

where

α1 = Φ

(
ẑ0 +

ẑ0 + zα/2

1− â
(
ẑ0 + zα/2

))

α2 = Φ

(
ẑ0 +

ẑ0 + z1−α/2

1− â
(
ẑ0 + z1−α/2

)) .

(2.21)

Here Φ(.) is the standard normal CDF, zp is the p × 100th percentile of a standard normal dis-

tribution, ẑ0 is an estimator for the bias-correction factor and [10] Efron (1987) referred to â as the

acceleration. We can compute ẑ0 in Equation (2.21) as follows

ẑ0 = Φ−1

∑B
i=1 1

(
X̄i ≤ ¯̄X

)
B

 , (2.22)

where 1(A) = 1 when A is true; 0 when A is false, ¯̄X is the average of all the values in the IC reference

sample and Φ−1(.) is the inverse of the CDF for a standard normal distribution. Let χ(i,j) be the

original sample, but with the (i, j)th element removed, i.e.

χ(i,j) = {X11, X12, . . . , X1n, . . . , Xi1, Xi2, . . . , Xi,j−1, Xi,j+1, . . . , Xin, . . . , Xm1, . . . , Xmn} .
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Let X̄(i,j) be the mean of the sample with the (i, j)th element removed, i.e. χ(i,j). We can compute

â in Equation (2.21) as follows

â =

∑m
i=1

∑n
j=1

(
X̄(.) − X̄(i,j)

)3
6
{∑m

i=1

∑n
j=1

(
X̄(.) − X̄(i,j)

)2}3/2
, (2.23)

where

X̄(.) =
1

mn

m∑
i=1

n∑
j=1

X̄(i,j).

For illustrative purposes, 10 000 IC reference samples from an Exp(1) distribution, each consisting

of m = 20 subgroups of size n = 5 were generated. For each of these samples, 10 000 sets of [2]

Bajgier’s (1992) bootstrap control limits were constructed, together with their BCa counterparts.

The bootstrap control limits were obtained by using 2 000 bootstrap replications. The control charts

were designed to have an ARL0 of 1/0.0027 ≈ 370.37. The conditional ICARL’s were obtained for

each set of limits, and the results were summarised in the form of boxplot-like graphs in Figure 2.8.

The SAS v9.4 source code used to obtain the results can be found in Section A.1.3.

Figure 2.8: Boxplot-like graphs of the attained in-control ARL’s for the BCa bootstrap chart (first box-
plot on top), [2] Bajgier’s (1992) bootstrap control chart (second boxplot) and the standard Shewhart
control chart (last boxplot at the bottom with estimated parameters), when the process distribution
is Exp(1)
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It can be seen in Figure 2.8 that the IC conditional ARL for the control chart using the BCa

bootstrap control limits is much less variable than the control chart constructed using [2] Bajgier’s

(1992) bootstrap approach. The BCa bootstrap control chart has approximately the same consistency,

with respect to the IC conditional ARL, as the standard Shewhart chart with estimated parameters.

The BCa bootstrap control chart produces, on average, a much lower IC conditional ARL than [2]

Bajgier’s (1992) bootstrap control chart.

[27] Montgomery (2009) stated that the Shewhart control chart is optimal with respect to detecting

larger (approximately 3 standard deviations above the mean) shifts in the process mean. The bootstrap

control charts are quite variable with respect to their attained IC conditional ARL’s and one should

exercise caution when implementing them, which is supported by authors such as [18] Jones et al.

(1998). Using the BCa, one could implement a bootstrap chart in a Phase I setting, where it could

prove useful in detecting extreme values.
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2.3 CUSUM control chart

2.3.1 Overview of Bootstrap Control Chart Designs

[39] Yashchin (1992) used a Markov-chain approach to estimate the run-length characteristics (the

FAR and the coefficient of variation for the run-length). [39] Yashchin (1992) used a technique called

the jackknife to obtain confidence intervals for the run-length characteristics. Suppose we have a

random sample X = (X1, X2, . . . , Xn) and an estimator θ̂ = T (X1, X2, . . . , Xn). To estimate the bias

and standard error of θ̂, [11] Efron and Tibshirani (1994) argued that we could focus on samples that

leave out one observation at a time:

X(i) = (X1, X2, . . . , Xi−1, Xi+1, . . . Xn) for i = 1, 2, 3, . . . , n.

These samples are referred to as jackknife samples by [11] Efron and Tibshirani (1994). Let

θ̂(i) = T (X(i)) (2.24)

be the ith jackknife replication of θ̂. [11] Efron and Tibshirani (1994) defined the jackknife estimate

of bias by

ˆbiasjack = (n− 1)(θ̂(.) − θ̂) (2.25)

where

θ̂(.) =
1

n

n∑
i=1

ˆθ(i).

[11] Efron and Tibshirani (1994) defined the jackknife estimate of standard error by

ŝejack =

[
n− 1

n

n∑
i=1

(
θ̂(i) − θ̂(.)

)2]1/2
. (2.26)

Assume that X1, X2, X3, . . . form a sequence of i.i.d. random variables with CDF (x). [31] Page

(1954) defined the upper CUSUM scheme in terms of three parameters, namely, h ≥ 0 (control limit),

k ∈ R (the reference or target value) and 0 ≤ s0 ≤ h (with s0 the head start). The charting statistic

is defined as:

Si = max {0, Si−1 + (Xi − k)} , for i = 1, 2, 3, . . . , (2.27)

where
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S0 = s0.

When Si ≥ h for some i ∈ N, the process is declared to be OOC. [39] Yaschin (1992) argued

that for a given CDF, F (x), the run-length characteristics could be computed by using the approach

suggested by [3] Brook and Evans (1972). [3] Brook and Evans (1972) proposed to subdivide the

interval (0, h) into d (d is called the level of discretization) subintervals of length ∆ = h/(d − 0.5).

The transition matrix P of the Markov-chain corresponding to the upper [31] Page’s (1954) scheme

with discretized states is expressed in terms of F (x) as follows

P d+1 =

 R (I −R)1

0T 1

 , (2.28)

where the elements rij (i , j = 0, 1, 2, . . . , d− 1) of R are given by

rij =

F (k + (−i+ 0.5)∆) , for j = 0

F (k + (j − i+ 0.5)∆)− F (k + (j − i− 0.5)∆) , for j > 0,
(2.29)

where 1 is a vector of ones, I is a (d×d) identity matrix and 0T is a vector consisting of zeroes. IfK =

(I −R)−1, then the vector containing ARL’s corresponding to the head starts 0,∆, 2∆, . . . , (d− 1)∆

and the similarly defined vector of second moments around 0 are defined by

µ = K1 (2.30)

and

µ2 = 2Kµ− µ, (2.31)

respectively. The CDF for the run-length (RL) for all values of the head start can be calculated from

the formula

P (RL ≤ n) = 1−Rn1. (2.32)

To obtain point estimates of the run-length, [39] Yashchin (1992) simply substituted F (x) with

the EDF F̂ (x) in Equation (2.28). Suppose that µ = (µ11, µ12, . . . , µ1d)
T (Equation (2.30)) and

µ2 = (µ21, µ22, . . . , µ2d)
T . [39] Yashchin (1992) used two performance characteristics θ and ρ, where

θ =

(
1

µ11
,

1

µ12
, . . . ,

1

µ1d

)T
(2.33)
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and

ρ = (ρ1, ρ2, . . . , ρd)
T ,

respectively, where Kij is the (i, j)th element of the matrix K and

ρi = 2−
2
∑d
j=1Kijµ1j

µ2
1i

, for i = 1, 2, . . . , d. (2.34)

[39] Yashchin (1992) used (θ̂, ρ̂) =
(

1
µ̂11

, ρ̂1

)
(this was done by replacing the CDF with the EDF)

and calculated confidence intervals for these parameters, by removing a sample element and then

proceeding to re-calculate the jackknife EDF. This was done n times and confidence intervals were

obtained for the the differentARL values. [11] Efron and Tibshirani (1994, p142) argued that “the

jackknife makes a linear approximation to the bootstrap.”

However, we are only concerned with the application of the nonparametric bootstrap using Monte

Carlo simulations and [39] Yaschin’s (1992) approach falls outside the scope of this mini-dissertation.

[7] Chatterjee and Qiu (2009) proposed using a sequence of control limits for the CUSUM control

chart, where the control limits were determined by the conditional distribution of the CUSUM charting

statistic given the last time it was zero (henceforth known as the sprint length) and the control limits

were determined by bootstrap. Suppose a sequence of i.i.d. random variables {Xn}∞n=1 on the real

line is observed, such that X1, X2, . . . , Xt0 follow a given distribution F , called the IC distribution,

and Xt0+1, Xt0+2, . . . follow another distribution G, called the OOC distribution, where F 6= G. SPC

techniques are often implemented to detect these distribution shifts as soon as possible. To detect an

upward shift, the CUSUM charting statistic Cn is defined by

C0 = 0,

Cn = max (Cn−1 +Xn − k, 0) for n ≥ 0,
(2.35)

where k ≥ 0 is a pre-specified allowance constant. The process is declared OOC if Cn ≥ H, where

H is a control limit determined by setting the IC ARL to a certain nominal level ARL0, and the

in-control ARL is defined to be the expected time to signal under F , that is

ARL = EF [inf {n > 0 | Cn > h}] . (2.36)

[7] Chatterjee and Qiu (2009) defined the sprint length statistic as

Tn =

0, if Cn = 0

j, if Cn 6= 0, . . . , Cn−j+1 6= 0, Cn−j = 0, for j = 1, 2, . . . , n.
(2.37)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 2. LITERATURE REVIEW 36

The procedure proposed by [7] Chatterjee and Qiu (2009) assumes that a set of IC process data was

collected during a Phase I analysis. Let Yj be a random variable having the distribution of [Cn|Tn = j].

For any positive integer jmax ≤ n, the distribution of Cn equals that of

jmax∑
j=1

YjI (Tn = j) + Y ∗I (Tn > jmax) ,

where Y ∗ is a random variable with the distribution of [Cn|Tn > jmax]. It can be argued that it is

reasonable to choose the control limit hj (h∗) based on the distribution of Yj (Y ∗). [7] Chatterjee and

Qiu (2009) declared the process to be OOC, at time point n, if Tn = j and Cn > hj , for 1 ≤ j ≤ jmax,

or if Tn > jmax and Cn > h∗. The constants jmax and k are the two tuning parameters of this

procedure whose choice is up to the practitioner. The control limits {hj , 1 ≤ j ≤ jmax;h∗} are

obtained using the bootstrap, the choice of jmax is limited by the IC data, the allowance constant k

and the computational power available to the practitioner. [7] Chatterjee and Qiu (2009) showed that

a high jmax value does not result in the most efficient bootstrap based SPC. It was found that results

seem to be fairly stable for 20 ≤ jmax ≤ 50. In conventional CUSUMs, the selection of k is related

to the desired magnitude of the shift to be detected by the process, i.e. δ. Because of the desired

robustness against non-normality, [7] Chatterjee and Qiu (2009) argued that the choice for k should

be related to the average sprint length, i.e. E [Tn].

From Equations (2.35) and (2.37) it can be seen that if k is chosen larger, then Cn will have a

larger chance to bounce back to 0. Consequently, E [Tn] will be smaller. Conversely, if k is chosen

smaller then E [Tn] will be larger. [7] Chatterjee and Qiu (2009) considered three choices for E [Tn],

namely E [Tn] = 0.5jmax, E [Tn] = 0.75jmax and E [Tn] = jmax, respectively. The value of k was

obtained from E [Tn] using an iterative procedure, explained by Algorithm 2.2.

Algorithm 2.2 Obtaining a value for k using E [Tn]

1. Let kL, kU and k0 be lower-bound, upper-bound and an initial value for k.

2. Draw B bootstrap samples from the normalised IC data (i.e. having zero sample mean and unit
sample variance).

3. The CUSUM procedure uses allowance constant k0.

4. Record the first sprint length of the CUSUM for each of the B bootstrap samples.

5. Estimate E [Tn] with the sample mean of the B sprint length values.

6. If the estimated E [Tn] value is larger than the target E [Tn] value, then we update k to be
k1 = (kU + k0) /2, and use k0 and kU as the new lower and upper bounds. Otherwise, update k
to be k1 = (kL + k0)/2 and use kL and k0 as the new lower and upper bounds. Set k0 = k1.

7. Repeat steps 2 to 6 until the estimated E [Tn] value in an iteration is sufficiently close to the
target E [Tn] value.

[7] Chatterjee and Qiu (2009) set kL, kU and k0 equal to the first, third and second quartiles of

the IC data and B = 5 000. The control limits {hj , 1 ≤ j ≤ jmax;h∗} can be determined from the IC
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data using the bootstrap, once jmax and k are fixed. [7] Chatterjee and Qiu (2009) used a smoothed

bootstrap as discussed by [37] Silverman (1986). The algorithm consists of two steps. In the first step

the bootstrap is used for obtaining preliminary values {Mj , 1 ≤ j ≤ jmax;M∗}, such that Mj ≈ hj

and M∗ ≈ h∗. Then, in the second step these values are calibrated using some more bootstrap steps

to ensure that the resulting IC ARL equals the nominal ARL0 up to a certain level of accuracy.

Algorithm 2.3 Obtaining initial values for {Mj , 1 ≤ j ≤ jmax;M∗}

1. Let B be the bootstrap Monte Carlo sample size, C∗old = 0, T ∗old = 0 and b = 0. For all
j ∈ {1, 2, . . . jmax + 1} we implement steps 2 to 5.

2. Set b = b+ 1.

3. Draw an observation X∗ from F̂0.

4. Update C∗old to C∗new = max (C∗old +X∗ − k, 0). If C∗old > 0, then compute T ∗new by T ∗new =
T ∗old + 1. If C∗new = 0, then set T ∗new = 0.

5. Check if T ∗new = j. If so, then record Yj:b = C∗new. If not, then set C∗old = C∗new and T ∗old = T ∗new,
and go to step 1. If b < B, go to step 2.

6. Define
α̂ =

(
p̂2ARL0

)−1 ,
where p̂ denotes the proportion of observations in the IC data that are larger than k.

7. The B(1− α̂)th ordered value from Yj:1, Yj:2, . . . , Yj:B is taken as Mj for j = 1, 2, . . . , jmax. The
B(1− α̂)th ordered value from Y(jmax+1):1, . . . , Y(jmax+1):B is taken as M∗.

To fine tune M1,M2, . . . ,Mjmax and M∗ to obtain h1, h2, . . . , hjmaxand h∗ so that the nominal

ARL0 is reached we need to use an iterative approach as recommended by [7] Chatterjee and Qiu

(2009). This approached is summarised by Algorithm 2.4.
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Algorithm 2.4 Fine tuning Mj ’s and M∗ to h1, h2, . . . , hjmax
and h∗

1. Define h(0)j = Mj for j = 1, 2, . . . , jmax and h∗(0) = M∗ (as obtained in Algorithm (2.3)).

2. Let n = 0, k = 0, C0 = 0 and T0 = 0.

3. Set n = n+ 1.

4. For n ≥ 1 generate X∗n from F̂ (where F̂ is the AKDE for the IC reference sample). Construct
Cn = max {Cn−1 +X∗n − k, 0} and keep track of the corresponding sprint length Tn (as defined
by Equation (2.37)). If Tn = j and Cn > h

(0)
j then process is declared OOC. If Tn > jmax and

Cn > h∗(0) then the process is also declared OOC and take the run-length as n.

5. Repeat steps 2 to 4 N1 times.

6. Set RL(0) equal to the average of the N1 run-lengths obtained in steps 2 to 5.

7. Set k = k + 1.

8. If RL(k−1) < ARL0, then repeat steps 2 to 6 after h(k−1)1 , h
(k−1)
2 , . . . , h

(k−1)
jmax

and h∗(k−1) are
replaced by h(k−1)1U = (1 + ε)M1, h

(k−1)
2U = (1 + ε)M2, . . . , h

(k−1)
jmaxU

= (1 + ε)Mjmax and h∗(k−1)U =
(1 + ε)M∗, where ε > 0 is a parameter. The corresponding average run-length is denoted by
RL

(k−1)
U . Define

h
(k)
j =

RL
(k−1)
U −ARL0

RL
(k−1)
U −RL(k−1)

h
(k−1)
j +

ARL0 −RL(k−1)

RL
(k−1)
U −RL(k−1)

h
(k−1)
jU , for j = 1, 2, . . . , jmax,

h∗(k) =
RL

(k−1)
U −ARL0

RL
(k−1)
U −RL(0)

h∗(k−1) +
ARL0 −RL(k−1)

RL
(k−1)
U −RL(k−1)

h
∗(k−1)
U .

(2.38)

If RL(0) < ARL0, then run the CUSUM procedure in steps 2 to 6 using control limits h(k−1)1L =

(1 − ε)h(k−1)1 , h
(k−1)
2L = (1 − ε)h(k−1)2 , . . . , h

(k−1)
jmaxL

= (1 − ε)h(k−1)jmax
and h∗(k−1)L = (1 − ε)h∗(k−1),

where ε > 0 is a parameter. The corresponding average run-length is denoted by RL(0)
L . Define

h
(k)
j =

ARL0 −RL(k−1)
L

RL(k−1) −RL(k−1)
L

h
(k−1)
j +

RL(k−1) −ARL0

RL(k−1) −RL(0)
L

h
(k−1)
jL , for j = 1, 2, . . . , jmax,

h∗(k) =
ARL0 −RL(k−1)

L

RL(k−1) −RL(k−1)
L

h∗(k−1) +
RL(k−1) −ARL0

RL(k−1) −RL(k−1)
L

h
∗(k−1)
L .

(2.39)

9. Repeat steps 2 to 8 until ∣∣RL(k) −ARL0

∣∣
ARL0

< ε̃

where ε̃ > 0.

[1] Ambartsoumian and Jeske (2015) proposed a two-stage approach where a set of in-control

observations is first accumulated through McDonald’s (1990) sequential rank CUSUM (SRC). After

a sufficient number of in-control observations have been accumulated a switch was made to one of

the authors’ proposed nonparametric CUSUM procedures. The procedures discussed in the paper are

the nonparametric density estimation based CUSUM (NDEC) and probability integral transformation

based CUSUM (PITC).
[1] Ambartsoumian and Jeske (2015) were concerned with detecting shifts in a process mean.

To illustrate this, consider an in-control set of historical observations, Y1, Y2, Y3 . . . , YN . This set is
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traditionally obtained during a Phase I (or retrospective) analysis, during which OOC observations
(or subgroups) are removed. The process by nature is iterative and the IC reference sample gets
recalibrated until there are only IC observations remaining. [26] McDonald’s (1990) SRC is used to
obtain Y1, Y2, . . . , YN . To illustrate this procedure, consider a sequence of observations X1, X2, . . .,
the sequential rank of Xi is defined as

Ri = 1 +
i−1∑
j=1

(Xi −Xj)+ for i = 2, 3, 4, . . . , (2.40)

where

x+ =

1 for x > 0

0 for x ≤ 0

and

R1 = 1.

The SRC is of the form

T0 = 0

Ti = max {0, Ti +Ri/(i+ 1)− k} , i = 1, 2, . . .
(2.41)

where k is a reference parameter fixed in advance. The CUSUM signals as soon as Ti ≥ H, where

H is the upper one-sided control limit. When the process is IC, the process is assumed to follow

a distribution with probability density function f0(x) and distribution function F0(x). When the

sequence is generated by the IC distribution, F0(x), the quantities Ri(i + 1) are independent and

discrete uniform on
{

1
(i+1) ,

2
(i+1) , . . . ,

i
(i+1)

}
. We set k = 1

2 , since it has the intuitive appeal of being

the expected value of Ri when the process is IC. H is chosen using the following algorithm:

Algorithm 2.5 Determining the threshold for H in the SRC

1. Select a candidate value for H.

2. Simulate discrete uniform variables Ui from {1/(i+ 1), 2/(i+ 1), . . . , i/(i+ 1)} and substitute
them for Ri/(i + 1) in Equation (2.41). Record the run-length needed before the SRC exceeds
H.

3. Repeat step 2 B times ([1] Ambartsoumian and Jeske (2015) used B = 10 000) and compute
the ARL.

4. If the ARL from step 3 is sufficiently close to the target ARL0, then stop, otherwise repeat steps
2 to 4.

We use McDonald’s (1990) SRC with k = 1
2 and H obtained by using Algorithm (2.5), to obtain a

sufficiently large reference sample, Y1, Y2, . . . , YN . This sample is then used to construct an Adaptive

Kernel Density Estimate (AKDE). Given Y1, Y2, . . . , YN ∼ f0(x), the adaptive kernel density estimate
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of f0 at x is

f̂0(x) =
1

N

N∑
j=1

1

ĥj
φ

(
x− Yj
ĥj

)
, (2.42)

with ĥj = ĥλ̂j , where λ̂j are adaptive factors that change with each value Yj , ĥ is a fixed bandwidth

calculated by one of the standard methods and φ(.) is the standard normal density function. The

adaptive factors are defined as

λ̂j =

(
ĝ

f̂(Yj)

)α
,

where f̂ is an initial pilot estimate of f0 found by any available estimation method,

ĝ =
N∏
τ=1

(
f̂ (Yτ )

) 1
N

and α ∈ [0, 1] is a constant. [1] Ambartsoumian and Jeske (2015) used a kernel density estimate with

kernel function φ(.) and a fixed bandwidth to derive the pilot estimate of f0. We set ĥ = Â (4/ (3N))
1/5

with Â = min
{
σ̂, ˆIQR/1.34

}
where both σ̂ and ˆIQR are estimated from the data. [37] Silverman

(1986) recommends setting α = 0.5.

Nonparametric density estimate CUSUM

The starting point for the NDEC is the following recursive form of [31] Page’s (1954) optimal CUSUM

S0 = 0, Si = max

{
0, Si−1 + ln

f1(Xi)

f0(Xi)

}
. (2.43)

The CUSUM signals a change when Si crosses a corresponding control limit H. When the process

is IC, it is assumed that the monitoring observations X1, X2, . . . have PDF f0(x) and CDF F0(x), as

mentioned earlier. When the process is OOC, however, we assume that the observations have PDF

f1(x) and CDF F1(x). It is assumed that f1(x) is a shift transformation of f0(x), i.e. f1(x) = f0(x−K).

Without loss of generality, we can consider a one-sided CUSUM because the two-sided CUSUM can

be implemented, by running two one-sided CUSUMs (see Chapter 1.2.2).

The idea with the NDEC is to employ a properly chosen nonparametric density estimation (NDE)

method to estimate the true, unknown IC density, f0 in Equation (2.43), based on the historical IC

data, i.e. Y1, Y2, . . . , YN . If we denote the nonparametric density estimates of f0 and f1 by f̂0 and f̂1

respectively, the proposed nonparametric extension of Equation (2.43) is given by

Ŝ0 = 0, Ŝ1 = max

{
0, Ŝi=1 + ln

f̂1(Xi)

f̂0(Xi)

}
. (2.44)
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Note that f̂1(x) = f̂0(x − K), since we assumed that f1 is a shift transformation of f0. The

challenge of implementing the NDEC is to find a suitable value for H. [1] Ambartsoumian and Jeske

(2015) used the following algorithm:

Algorithm 2.6 Determining H in the NDEC

1. Use {Yi}Ni=1 to obtain the AKDE of the in-control density, f̂0, and correspondingly, f̂1.

2. Select a candidate value for H.

3. Simulate (using a smoothed bootstrap) observations from f̂0and input them into the NDEC in
Equation (2.44). Record the run-length needed before the NDEC exceeds H.

4. Repeat step 3 B times and compute the ARL.

5. If the ARL from step 4 is sufficiently close to the target ARL0, then stop, otherwise repeat steps
2 to 5.

The smoothed bootstrap mentioned in step 3 of Algorithm 2.6 is performed using the following

algorithm:

Algorithm 2.7 Smoothed bootstrap using AKDE

1. Calculate ĥj , for j = 1, 2, 3, . . . , N , in Equation (2.42) using Y1, Y2, . . . , YN .

2. For i = 1, 2, 3, . . ., let ri to be a random integer from {1, 2, . . . , N}. Set Xi = Yri +
(
ĥλ̂ri

)
εi,

where εi ∼ N (0, 1).

Probability integral transformation CUSUM (PITC)

When the process is IC, the transformed incoming observations Ui = F0(Xi) are distributed uniformly

on the unit interval, i.e. U(0, 1). [1] Ambartsoumian and Jeske (2015) hypothesised that the OOC

distribution of Ui could be approximated as a beta distribution, B(a, b), for suitably chosen values of

a and b. The values for a and b are obtained by using the first and second moments, given by m1 and

m2 respectively, of the OOC process distribution, which is assumed to be B(a, b). When the change

is a shift by a constant K, we have

m1 =

∫ 1

0

[
1− F0

(
F−10 (u)−K

)]
du,

m2 =

∫ 1

0

2u
[
1− F0

(
F−10 (u)−K

)]
du.

(2.45)

The solutions for a and b, in terms of m1 and m2 are given by

a =
m2

1 −m1m2

m2 −m2
1

(2.46)

and
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b =
(m1 −m2)(1−m1)

m2 −m2
1

, (2.47)

respectively. If we let g1 denote the ‘best fit’ beta distribution describing the OOC behaviour of

the transformed data and the corresponding IC uniform density by g0, then the optimal CUSUM

increment based on the transformed data is

log [g1 (Ui) /g0 (Ui)] = log
[
Ua−1i (1− Ui)b−1 /B(a, b)

]
= (a− 1) log (Ui) + (b− 1) log (1− Ui)− logB(a, b)

= (a− 1) log [F0(X1)] + (b− 1) log [1− F0(Xi)]− logB(a, b).

(2.48)

A smoothed estimate of the increment in Equation (2.48) was derived by approximating the un-

known CDF F0 with a kernel estimate F̂0, obtained from the historical IC data. Assuming that F0(x)

has a corresponding density f0(x), the kernel estimate of F0(x) is taken to be the following statistic

F̂0(x) =

∫ x

−∞
f̂0(t)dt,

where f̂0(x) is the AKDE of the density function. Values for m1 and m2 (hence a and b) can be

calculated numerically by replacing F0 in Equation (2.48) with F̂0(x). The proposed PITC tracking

statistic is then

Ŝ0 = 0,

Ŝi = max
[
0, Ŝi−1 + (â− 1) log

[
F̂0 (Xi)

]
+
(
b̂− 1

)
log
[
1− F̂0(Xi)

]
− logB(â, b̂)

]
.

(2.49)

As in the NDEC, the control limit H is determined through Monte Carlo simulation using the result

that F̂0(Xi)
a∼ U(0, 1). H clearly depends on the historical IC data, this time trough â and b̂. [1]

Ambartsoumian and Jeske (2015) used the following algorithm:
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Algorithm 2.8 Determining threshold H in the PITC

1. Use {Yi}Ni=1 to estimate the IC CDF F̂0(x) and calculate â and b̂ using Equations (2.45), (2.46)
and (2.47), respectively.

2. Select a candidate value for H.

3. Simulate a Ui from U(0, 1) distribution and substitute it for F̂0(x) in PITC plotting statistic
given in Equation (2.49). Record the number of observations (i.e. the run-length) needed before
PITC exceeds H.

4. Repeat step 3 B1 times ([1] Ambartsoumian and Jeske (2015) used B1 = 10 000) and compute
the ARL.

5. If the ARL in step 4 is sufficiently close to the target ARL0, then stop. Otherwise, repeat steps
2 to 5.

[1] Ambartsoumian and Jeske (2015) never discussed how they calculated F̂0(x), but based on

Equations (2.45), (2.46) and (2.47) it is strongly implied that this is done using numerical methods.

Since

F̂0(x) =

∫ x

−∞
f̂0(t)dt,

where

f̂0(t) =
1

N

N∑
j=1

1

ĥj
φ

(
t− Yj
ĥj

)
.

It follows that

F̂0(x) =

∫ x

−∞

 1

N

N∑
j=1

1

ĥj
φ

(
t− Yj
ĥj

) dt
=

1

N

N∑
j=1

[∫ x

−∞

(
1

ĥj
φ

(
t− Yj
ĥj

))
dt

]
.

If we let uj =
[
(t− Yj) /ĥj

]
, i.e. t = uj ĥj + Yj , then it follows that

∫ x

−∞

(
1

ĥj
φ

(
t− Yj
ĥj

))
dt =

∫ [(x−Yj)/ĥj]

−∞

(
1

ĥj
φ (uj) ĥj

)
duj

=

∫ [(x−Yj)/ĥj]

−∞
φ(uj)duj

= Φ

(
x− Yj
ĥj

)
− Φ(−∞)

= Φ

(
x− Yj
ĥj

)
.

Using the above result, we can calculate F̂0(x) using the formula
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F̂0(x) =
1

N

N∑
j=1

Φ

(
x− Yj
ĥj

)
, (2.50)

where ĥj is the same adaptive smoothing parameter used in the AKDE and Φ(.) is the CDF for a

normal distribution with mean equal to 0 and variance equal to 1. We can define the inverse of F̂0 as

F̂−10 (u) = inf
{
x ∈ R | F̂0(x) ≥ u

}
, (2.51)

where 0 < u < 1. We can also determine F̂−10 (u) numerically, using the fact that F̂−10 (u) = x is

equivalent to F̂0(x) = u for some x ∈ R and 0 < u < 1. This can be done using Algorithm (2.9).

Algorithm 2.9 Secant method to solve F̂−10 (u) = x

1. Specify a tolerance level TOL, where TOL > 0. Take two initial guesses for x, say x1 and x2,
such that F̂0(x1) < u and F̂0(x2) > u.

2. Calculate

xn+2 = xn+1 −
xn+1 − xn

F̂0(xn+1)− F̂0(xn)

(
F̂0(xn+1)− u

)
for n = 1, 2, . . . .

3. Repeat step 2 until
∣∣∣F̂0(xn+2)− u

∣∣∣ ≤ TOL for some n = 1, 2, . . ..

Using Equation (2.50) and Algorithm (2.9) one can obtain estimates for m1 and m2 by numerically

integrating the functions

m̂1 =
∫ 1

0

[
1− F̂0

(
F̂−10 (u)−K

)]
du,

m̂2 =
∫ 1

0
2u
[
1− F̂0

(
F̂−10 (u)−K

)]
du.

It follows that the estimates for a and b can be calculated by substituting m̂1 and m̂2 in Equations

(2.46) and (2.47), respectively.

2.3.2 Performance overview of bootstrap CUSUM charts

[7] Chatterjee and Qiu (2009) tested the performance of their bootstrap CUSUM chart by performing

a simulation study. The following cases were considered:

1. A standard normal distribution, i.e. N (0, 1), when the process is IC and N (δ, 1) distribution

when the process is OOC, where δ > 0.

2. The IC process distribution has the density function

f(x) =


1
6e
−x/3 , when x ≥ 0

1
2e
x , when x < 0.
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Note than any random variable X from the distribution with PDF f(.) is standardised to have

a mean of 0 and variance of 1, i.e. Y = T (X), such that E(Y ) = 0 and V ar(Y ) = 1. A random

variable from OOC process distribution is just a location shift of f(.), i.e. Z = Y − δ for δ > 0.

In this case, the distribution is skewed to the right.

3. The IC process distribution has the density function

h(x) =


1
2e
−x , when x ≥ 0

1
6e
x/3 , when x < 0.

Note than any random variable X from the distribution with PDF h(.) is standardised to have

a mean of 0 and variance of 1, i.e. Y = T (X), such that E(Y ) = 0 and V ar(Y ) = 1. A random

variable from OOC process distribution is just a location shift of h(.), i.e. Z = Y − δ for δ > 0.

[7] Chatterjee and Qiu (2009) found that their bootstrap control chart “performs reasonably well,

provided that jmax is not too small.” In general, it was found that when jmax ≥ 30, then the

bootstrap chart proposed by [7] Chatterjee and Qiu (2009) performs reasonably well. [7] Chatterjee

and Qiu (2009) stated that:

“In this paper we suggest choosing jmax from computational considerations, and E[Tn] by linking

it to jmax, as a matter of convenience. The distribution of (Cn, Tn) depends on (jmax, k) in a way

that is poorly understood at present.”

[7] Chatterjee and Qiu (2009) observed that the best choice for jmax may depend on both the

IC and OOC process distributions. It was found that the general rule of jmax ≥ 30 is sufficient for

most circumstances. The method proposed by [7] Chatterjee and Qiu (2009) may prove cumbersome

to implement for the novice practitioner, due to the computational complexity of determing the best

value for jmax and k.

[1] Ambartsoumian and Jeske (2015) benchmarked the performance of their proposed NDEC and

PITC charts by simulating from the following distributions:

1. The standard normal, i.e. N (0, 1),

2. the t-distribution with 3 degrees of freedom, i.e. t(3) and

3. the Laplace distribution with location parameter 0 and scale parameter 1, i.e. L(0, 1).

The NDEC and PITC control charts were constructed using Algorithms 2.6 and 2.8. [1] Ambart-

soumian and Jeske (2015) also considered the Transformed CUSUM (TC) control chart by [16] Jeske,

Montes De Oca, Bischoff and Marvasti (2009). The TC tracking statistic was defined as

Ŝi = max
{

0, Ŝi−1 + F̂0(Xi)− α
}
, for i = 1, 2, 3, . . . , (2.52)

where Ŝ0 = 0 and F̂0(.) is the usual empirical density function (EDF). [1] Ambartsoumian and Jeske
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(2015) set α = 0.5 in Equation (2.52). The procedure used by [1] Ambartsoumian and Jeske (2015)

to determine the control limit for the TC chart is listed in Algorithm 2.10.

Algorithm 2.10 Determing the threshold H in TC

1. Select a candidate value for H.

2. Simulate discrete uniform random variable U1, U2, U3, . . . from {0, 1/N, 2/N, . . . , (N − 1)/N, 1}
and substitute them for F̂0(x) in Equation (2.52). Record the run-length needed before the TC
plotting statistic exceeds H.

3. Repeat step 2 a large number of times, say B1 ([1] Ambartsoumian and Jeske (2015) used
B1 = 10 000) and compute the ARL.

4. If the ARL in step 3 is sufficiently close to the targe ARL0, then stop. Otherwise, repeat steps
1 to 4.

[1] Ambartsoumian and Jeske (2015) showed that, at a minimum, a reference dataset of size

N ≥ 13 000 is required to consistently achieve an IC ARL close to the nominal ARL0 value, for

the NDEC chart. A change point model was used to evaluate the performance of the control charts.

Typically, in a change point model environment, it is assumed that random observations follow the IC

process distribution with CDF F0(x), before a certain point in time, say τ ∈ N, i.e. Xi ∼ F (x) for i =

1, 2, . . . , (τ − 1). From the τth observation onwards, it is assumed that random observations follow

the OOC process distribution with CDF F1(x), i.e. Xi ∼ F1(x) for i = τ, τ + 1, τ + 2, . . ..

[1] Ambartsoumian and Jeske (2015) introduced a shift in the process mean at the 2 000th obser-

vation, this was done so that the CUSUM charts could reach their so-called steady-states, hence the

run-lengths were recorded after the insertion of the shift at the 2 000th observation. It should also

be noted that [1] Ambartsoumian and Jeske (2015) calibrated their control charts to be optimised

for detecting shifts in magnitude of 0.5 standard deviations (∆ = 0.5). To mitigate the effect of

the computational load that the AKDE carries, [1] Ambartsoumian and Jeske (2015) used the exact

(or known) PDF and CDF functions for the respective distribution, this referred to as the N = ∞

assumption. The rationale behind the N =∞ assumption is that the AKDE, f̂0(x), should approach

the real (or true) PDF of the IC process distribution, f0(x), as N →∞.

Under the N = ∞ assumption, it was found that the NDEC and PITC perform at a similar

level when there is a shift in the process mean in magnitude of δ ∈ {0, 0.1, 0.25, 0.5, 0.75, 1} (see [1]

Ambartsoumian and Jeske (2015), p273). [1] Ambartsoumian and Jeske (2015) also showed that their

PITC and NDEC chart out-performed the benchmark TC control chart, for the N (0, 1), t(3) and

L(0, 1) cases, respectively.

2.3.3 Conclusion

The bootstrap control chart proposed by [7] Chatterjee and Qiu (2009) relies on using a sequence of

control limits {hj}jmax

i=1 , which depend on the conditional distribution of {Cn|Tn = j}, obtained via the

bootstrap. For any given scenario, implementing Algorithms 2.2, 2.3 and 2.4, seems to yield decent

results, provided that jmax is not too small or too large. The problem with the approach proposed by
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[7] Chatterjee and Qiu (2009) is that no clear guidelines can be given on how some of the parameters

should be chosen, since there is a lack of understanding of the distributional relationship between

(Cn, Tn) and (jmax, k). This makes it difficult to recommend it to a practitioner.

The NDEC and PITC proposed by [1] Ambartsoumian and Jeske (2015) seems more robust and

easier to implement. [1] Ambartsoumian and Jeske (2015) tested their chart(s) by simulating from

symmetric distributions, whereas [7] Chatterjee and Qiu. (2009) used both symmetric- and skew

distributions. A problem with the approach proposed by [1] Ambartsoumian and Jeske (2015) is

the extreme computation time required to construct the NDEC. Since [1] Ambartsoumian and Jeske

(2015) showed that the PITC is equivalent to the NDEC in terms of performance, a PITC chart

was constructed for a process with an IC Exp(1) process distribution. [1] Ambartsoumian and Jeske

(2015) recommended using an IC reference dataset of size N ≥ 13 000. A reference dataset of size

N = 15 000 was used, the PITC and TC charts were calibrated to have nominal ARL0 = 2 000. A

shift in magnitude of δ standard deviations was inserted at the 2 000th observation. The SAS v9.4

source code is given in Section A.1.4 of this mini-dissertation.

The results for the simulation study are given in Table 2.5.

Table 2.5: ARL when IC distribution is Exp(1), N = ∞. Target shift inserted at the 2 000th
observation, ∆ = 0.5

δ PITC TC0.5

0.00 1997.2909 1702.4304
0.10 115.3836 180.6027
0.25 25.3909 78.5742
0.50 13.3509 44.1701
0.75 9.8974 32.9701
1.00 8.3392 27.3905

The TC chart has a lower IC ARL than the PITC chart, despite finding the control limit for the

TC chart as suggested by Algorithm 2.10. Since the two charts have significantly different IC ARL’s

it would be unfair to compare them directly. It can be noted from Table 2.5 that, despite having a

lower IC ARL than the PITC chart, the TC chart performs much worse when there is a shift in the

process mean, than the PITC.

The NDEC and PITC charts proposed by [1] Ambartsoumian and Jeske (2015) are fairly easy to

implement and provide consistent results, provided that the IC reference dataset is sufficiently large.

The two-stage approach, where the Phase I analysis is completely skipped and replaced by the online

process monitoring procedure known as the SRC, ensures that the necessary amount of data will be

acquired at some stage to implement the NDEC and PITC. A disadvantage of the NDEC is the speed

at which the process is monitored, since it is computationally intensive to obtain estimates for f̂1(x)

and f̂0(x) using AKDE. The PITC has the complication of having to estimate a and b using numerical

integration.

The NDEC and PITC can easily be modified for monitoring any process parameter using a statistic,

say T (.), i.e. the Y1, Y2, . . . , YN values can be replaced with T1, T2, . . . , TN where
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Ti = T (Xi1, Xi2, . . . , Xin) for i = 1, 2, . . . , N ,

Xij ∼ i.i.d. F0(x) for j = 1, 2, . . . n,

and n ≥ 1 is the subgroup size. The IC process sampling distribution for T (.) can be approximated

by f̂T,0(t), where f̂T,0(t) is the AKDE of T (.).

2.4 EWMA control chart

[33] Saleh et al. (2015) showed that larger values for the EWMA smoothing constant (λ) resulted in

higher levels of variability in the IC ARL distribution and concluded that more Phase I data is required

for charts with larger smoothing constants. [33] Saleh et al. (2015) considered different estimators

for the IC process standard deviation, to compensate for practitioner-to-practitioner variability. [33]

Saleh et al. (2015) used a bootstrap approach proposed by [13] Gandy and Kvaløy (2013) to determine

the control limits for the EWMA control chart. [33] Saleh et al. (2015) summarised the steps of the

procedure proposed by [13] Gandy and Kvaløy (2013) as follows:

1. Without loss of generality, it can be assumed that the IC process distribution is N (0,
√
n). A

Phase I dataset of m samples each of size n is generated from a N (0,
√
n) distribution.

2. The IC process mean and standard deviation are estimated from the Phase I data, generated in

step 1, i.e. µ̂0 and σ̂0.

3. Compute the quantity q(P̂ , θ̂), where P̂ = N (µ̂0, σ̂0) and θ̂ = (µ̂0, σ̂0), respectively. The quantity

q(P̂ , θ̂) is the value of L that produces the desired IC ARL when the Phase II data are generated

from a N (µ̂0, σ̂0) distribution.

4. Generate a bootstrap dataset consisting m samples each size n from a N (µ̂0, σ̂0) distribution.

The mean and standard deviation are calculated for the bootstrap dataset as in step 2, i.e. µ̂∗0
and σ̂∗0 , respectively. We denote the set of bootstrap parameters as θ̂∗ = (µ̂∗0, σ̂

∗
0).

5. Compute the quantities q
(
P̂ ∗, θ̂∗

)
and q

(
P̂ , θ̂∗

)
, respectively, where q

(
P̂ ∗, θ̂∗

)
is the value of

L that produces the desired IC ARL when the Phase II data are generated from a N (µ̂∗0, σ̂
∗
0)

distribution and q
(
P̂ , θ̂∗

)
is the value of L that produces the desired IC ARL when the Phase

II data are generated from a N (µ̂0, σ̂0) distribution.

6. Repeat steps 4 and 5 a large number of times, say B ≥ 1 000, and compute the quantities

q
(
P̂ ∗i , θ̂

∗
i

)
and q

(
P̂ , θ̂∗i

)
, respectively, for i = 1, 2, . . . , B.

7. Calculate the value p∗α as the α×100th percentile of the bootstrap distribution of
(
q
(
P̂ ∗, θ̂∗

)
− q

(
P̂ , θ̂∗

))
.

8. The final (adjusted) control limit for the chart is then taken as q
(
P̂ , θ̂

)
− p∗α.
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[33] Saleh et al. (2015) warned that this procedure can take a long time to produce results, since

the value of L has to determined B different sets of data using a trial and error approach. In this

mini-dissertation a nonparametric bootstrap procedure is proposed for the EWMA control chart.

2.5 Other control charts

[32] Phaladiganon et al. (2011) proposed a bootstrap-based multivariate T 2 control chart. Suppose

that we have an IC reference sample that contains n observations and each observation is characterised

by p ≥ 1 process variables. If we assume that the data follows a multivariate normal distribution with

an unknown mean vector µ : (p× 1) and a covariance matrix Σ : (p× p), then Hotelling’s T 2 statistic

calculated by

T 2 = (x− x̄)
T
S−1(x− x̄), (2.53)

where

x̄ =
1

n

n∑
i=1

xi,

and

S2 =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)
T

follows an F distribution with p and (n−p) degrees of freedom under the normality assumption. Under

this assumption, the control limit for T 2 can be determined by using the 100(1−α)-th percentile of the

F distribution. Since this control limit is only accurate, when assuming T 2 follows an F distribution,

[8] Chou and Mason (2001) proposed a nonparametric approach that uses KDE to estimate the

distribution of the T 2 statistics. The control limit can be determined by the 100(1− α)-th percentile

of the estimated kernel distribution. One major drawback of this approach is that it is computationally

intensive, since it requires numerical integration of the KDE. [32] Phaladiganon et al. (2011) suggested

resampling from a set of n ≥ 1 T 2 statistics computed from an in-control dataset using Equation (2.53).

The approach followed by Phaladiganon et al. (2011) is summarised as follows.
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Algorithm 2.11 The bootstrap procedure to calculate control limits for T 2 control chart

1. Compute the T 2 statistics with the n ≥ 1 observations from an in-control dataset, i.e.
x1,x2, . . . ,xn, using

T 2
i = (xi − x̄)

T
S−1(xi − x̄) for i = 1, 2, . . . n.

2. Let T 2(i)
1 , T

2(i)
2 , . . . , T

2(i)
n be a set of n T 2 from the i-th bootstrap sample (i = 1, 2, . . . , B)

randomly drawn from
{
T 2
i

}n
i=1

with replacement. In general, B is a large number, sayB ≥ 1 000.

3. For i = 1, 2, . . . , B determine the (1 − α) × 100th percentile value, T 2(i)
(100(1−α)), for a given

user-specified α.

4. Determine the control limit by taking an average of the B 100(1− α)-th percentile values, i.e.

T̄ 2
100(1−α) =

1

B

B∑
i=1

T
2(i)
(100(1−α)).

5. Use the established control limit to monitor a new observation. If the monitoring statistic of a
new observation exceeds T̄ 2

100(1−α) then the process is declared out-of-control.

[32] Phaladiganon et al. (2011) concluded that with normally distributed data, the conventional,

the KDE and bootstrap approaches all performed similarly. It was also concluded that the bootstrap

chart’s performances in normal and nonnormal situations were similar to the KDE approach by [8]

Chou and Mason (2001).
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Chapter 3

Proposed design for EWMA bootstrap

control chart

3.1 Introduction

In this chapter a different approach to constructing a bootstrap-based EWMA control chart is shown.

Potential estimators for the process mean and variance, based on the statistic used to monitor the

process, are shown. The estimates for the process mean and variance, respectively, are calculated

using the bootstrap.

Two illustrative examples are provided, showing the implementation of the bootstrap EWMA chart

for monitoring the process mean and median, respectively, of the Exp(1) distribution. The width of

the EWMA control limits is determined using a secant method and the bootstrap.

3.2 Design

Suppose that a sufficiently large in-control reference sample consisting of m≥1 samples (or subgroups)

of size n ≥ 1 i.i.d. random variables was accumulated, i.e.

χ = (X11, X12, . . . , X1n, X21, X22, . . . , X2n, . . . , Xm1, Xm2, . . . , Xmn) .

Without loss of generality, it can be assumed that this in-control reference sample was obtained by

performing either a Phase I analysis (where out of control subgroups were iteratively removed using

the process described by [27] Montgomery (2009)) or a self-starting procedure like [26] McDonald’s

(1990) SRC.

The parameter of interest for the process is IC monitored by calculating a statistic

ψi = T (Xi1, Xi2, . . . , Xin)

51
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based on a sample of size n collected at a specific sampling point i = 1, 2, 3, . . .. The charting statistic

for the classic (or Vanilla) EWMA control chart is defined as

Zi = λψi + (1− λ)Zi−1 for i = 1, 2, 3, . . . (3.1)

where λ ∈ (0, 1] is a constant called the smoothing parameter and ψi is the statistic used to monitor the

process. The starting value for Zi is typically taken to be the target value, i.e. Z0 = θ0. Theoretically,

E [ψi|IC] = θ0

and

V ar [ψi|IC] = σ2
0 .

In the case where both θ0 and σ0 are unknown, estimates for these parameters need to be obtained

from the Phase I data. The problem with this is that distributional assumptions need to be made

about the process distribution. The theoretical framework for most control charts assumes that the

statistic, used to monitor the process, is normally distributed with in-control mean θ0 and variance

σ2
0 . Within this framework good estimators for the unknown parameters can easily be found. Even

when the process is not normally distributed, if one assumes some known distribution, closed-form

expressions for the estimators can still be found which leads to a myriad of possible estimators. We

propose a different, if somewhat naive, approach where one uses the bootstrap to estimate θ0 and σ0.

Before we can do this, we need to assume that the Xij ’s in the in-control reference sample are i.i.d.

with CDF given by F0(x) and the OOC process distribution has CDF F1(x).

The empirical distribution function (EDF) for the in-control distribution is given by

F̂0(x) =
1

mn

m∑
i=1

n∑
j=1

I (Xij ≤ x) , (3.2)

where I(A) equals 1 when A is true and 0 when A is false. It can be shown that

E
[
F̂0(x)

]
= F0(x)

and

lim
N→∞

V ar
[
F̂0(x)

]
= 0,

where N = mn, which implies that F̂0(x) is an unbiased and consistent estimator for F0(x). One can
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emulate the IC process distribution by sampling from the EDF, i.e. sample with replacement from the

Xij ’s. If we draw a sample of size n ≥ 1 from the reference sample (by sampling with replacement),

say X∗1 , X∗2 , . . . , X∗n, we can calculate the statistic ψ∗ = T (X∗1 , . . . , X
∗
n) using the bootstrap sample. If

we were to draw all possible permutations of bootstrap samples and calculate ψ∗ for each of them, we

would obtain the sampling distribution for ψ∗. If we had a reference sample of size mn and we drew

bootstrap samples of size n from the available mn elements, there would be (mn)n possible samples,

which becomes computationally intensive very quickly, e.g. if mn = 20 and n = 5 then we would have

205 = 3 200 000 possible bootstrap samples of size 5.

[9] Efron (1979) showed that the bootstrap sampling distribution can be sufficiently replicated by

performing a large number of Monte Carlo simulations (say B). We want to use these B bootstrap

samples, which we generated by taking samples of size n ≥ 1 from F̂0, to emulate the actual in-control

sampling distribution function of ψ, given by Fψ, by using the bootstrap sampling distribution of ψ∗

given by F ∗ψ. It follows that

lim
B→∞

F̂ ∗ψ(x) = F ∗ψ(x),

where

F̂ ∗ψ(t) =
1

B

B∑
i=1

1 (ψ∗i ≤ t) .

Let

EF̂0
[ψ∗] =

∫ ∞
−∞

ψ∗dF̂0 = θ∗0

and

SEF̂0
[ψ∗] = σ∗ψ,0,

where θ∗0 and σ∗0 are the mean and standard error, respectively, for the distribution of ψ∗. Let

θ̂∗0 =
1

B

B∑
i=1

ψ∗i (3.3)

and

σ̂∗0 =

√√√√ 1

B − 1

B∑
i=1

(
ψ∗i − θ̂∗0

)2
. (3.4)

Clearly EF̂0

[
θ̂∗0

]
= θ∗0 and EF̂0

[(
θ̂∗0 − θ∗0

)2]
=

σ2
0

B . From this it follows that
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lim
B→∞

1

B

B∑
i=1

ψ∗i = θ∗0 (3.5)

and

lim
B→∞

√√√√ 1

B − 1

B∑
i=1

(
ψ∗i − θ̂∗0

)2
= σ∗0 . (3.6)

The following algorithm can be used to obtain estimates for θ0 and σ0:

Algorithm 3.1 Bootstrap estimators for θ0 and σ0

1. Use X11, X12, . . . , X1n, . . . , Xm1, Xm2, . . . , Xmn to construct the EDF F̂0 as defined by Equation
(3.2).

2. Draw a random sample with replacement of size n ≥ 1 from the N = mn pooled in-control
observations.

3. Compute ψ∗i = T (X∗1 , X
∗
2 , . . . , X

∗
n) from the bootstrap sample in step 2, for i = 1, 2, . . . , B,

where B is a large number, say B = 10 000.

4. Compute

θ̂∗0 =
1

B

B∑
i=1

ψ∗i

and

σ̂∗0 =

√√√√ 1

B − 1

B∑
i=1

(
ψ∗i − θ̂∗0

)2
.

From Equations 3.5 and 3.6, respectively, it was shown that θ̂∗0 = θ∗0 and σ̂∗0 = σ∗0 if B → ∞, i.e.

θ̂∗0 ≈ θ∗0 and σ̂∗0 ≈ σ∗0 when B is sufficiently large.

3.2.1 Naive EWMA bootstrap control chart

Consider the following version of the classic or vanilla EWMA charting statistic

Z∗i = λψ∗i + (1− λ)Z∗i−1, (3.7)

where ψ∗i = T (X∗i1, X
∗
i2, . . . , X

∗
in) for i = 1, 2, 3, . . ., X∗i1, X∗i2, . . . , X∗in is a resample from the in-control

Xij ’s and Z∗0 = θ̂∗0 (where θ̂∗0 is defined in Algorithm 3.1). The control limits and CL for the Naive

Bootstrap EWMA (NBEWMA) chart are determined by using the formulae
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UCL∗i = θ̂∗0 + Lσ̂∗0

√(
λ

2− λ

)
(1− (1− λ)2i)

CL∗i = θ̂0

LCL∗i = θ̂∗0 − Lσ̂∗0

√(
λ

2− λ

)
(1− (1− λ)2i),

(3.8)

where L is chosen to achieve a nominal in-control average run-length ARL0 and λ ∈ (0, 1] is chosen to

detect the magnitude of a shift in the process mean. The chart is set up using a two-stage approach,

where the value for L is chosen using Algorithm 3.2 and the process is then subsequently monitored

using the tuned value for L.

Algorithm 3.2 Choosing L for the NBEWMA chart

1. Calculate θ̂∗0 and σ̂∗0 using Algorithm 3.1.

2. Select a value for L and calculate the control limits in Equation (3.8).

3. Simulate (by sampling with replacement) observations from F̂0 and input them in Equation
(3.7). Record the run-length needed before Z∗i ≥ UCL∗i or Z∗i ≤ LCL∗i .

4. Repeat step 3 B times (typically B ≥ 1 000) and compute the ARL.

5. If the ARL from step 4 is sufficiently close to the target ARL0 (i.e. within 5%), then stop,
otherwise repeat steps 2 to 4.

3.2.2 Illustrative example 1

Suppose we have an in-control reference sample consisting ofm = 20 subgroups of size n = 5 generated

from an Exp(1) distribution. The SAS v9.4 code used to produce the results in this example is provided

in Section A.2.1 of the Appendix. Suppose that we want to monitor the process using the sample

mean, i.e. ψ = X̄, we want a nominal in-control average run-length of 500, i.e. ARL0 = 500, and we

want to detect small shifts (λ = 0.05). Using Algorithm 3.1 with B = 100 000 replications, we have

µ̂∗0 = 0.7965718

and

σ̂∗0 = 0.4130238.

Since a large number of replications were used, i.e. B = 100 000, it can be inferred from Equations

3.5 and 3.6, respectively, that µ̂∗0 ≈ µ∗0 and σ̂∗0 ≈ σ∗0 , respectively. As specified by Algorithm 3.2, it was

initially guessed that L = 2.5. After running 1 000 iterations, an ARL of 340.376 < 500 was obtained.

Clearly, L = 2.5 produced intervals that were not wide enough, so it was decided to set L = 2.7 and

1 000 iterations were ran, again. This produced an ARL of 553.099 > 500, which produced intervals

that were too wide. Using a secant method, it was determined that L = 2.6501. The results used are
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summarised in the Table 3.1.

Table 3.1: Searching for a suitable L-value using a secant method

L ARL Absolute % difference
2.5000 340.376 31.9248%
2.7000 553.099 10.6198%
2.6501 501.557 0.3114%

To employ the secant method used in Table 3.1, two initial guesses for L, given by L1 and L2,

respectively and their corresponding ARL values, given by ARL1 and ARL2, respectively, are needed.

Typically, L1 < L2 (and subsequently ARL1 < ARL2). The value for L was calculated iteratively by

using

Li = (ARL0 −ARLi−1)
Li−1 − Li−2

ARLi−1 −ARLi−2
+ Li−1 for i = 3, 4, 5, . . . ,

where ARL0 is the specified in-control ARL (in our case ARL0 = 500). The stopping criteria was

determined by

|ARLi −ARL0|
ARL0

≤ TOL,

where TOL is a pre-specified tolerance (or desired level of precision). The TOL-value used to determine

L was 2%.

3.2.3 Illustrative example 2

Again, we have an in-control reference sample consisting of m = 20 subgroups of size n = 5 generated

from an Exp(1) distribution. The SAS v9.4 code used to produce the results in this example is

provided in Section A.2.2 of the Appendix. Suppose that the sample median is used to monitor the

process, i.e. η̂ = X̃. To achieve nominal in-control average run-length of 500, i.e. ARL0 = 500, and

the detection small shifts (λ = 0.05) is of interest. Using Algorithm 3.1 with 100 000 replications,

estimates for the process mean and standard error are given by

η̂∗0 = 0.7976531

and

σ̂∗0 = 0.5074285,

respectively. As specified by Algorithm 3.2, it was initially guessed that L = 2.5. After running 1 000
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iterations, an ARL of 344.347 < 500 was obtained. Clearly, L = 2.5 produced intervals that were not

wide enough, it was decided to set L = 2.7 and run 1 000 iterations were ran again. This gave an

ARL of 565.865 > 500, which produced intervals that were too wide. Using a secant method, it was

determined that L = 2.656. The results used are summarised in Table 3.2.

Table 3.2: Searching for a suitable L-value using a secant method

L ARL Absolute % Difference
2.5000 344.347 31.13%
2.7000 565.865 13.17%
2.641 491.117 1.78%
2.648 491.569 1.69%
2.779 646.085 29.22%
2.655 475.7 4.86%
2.673 550.117 10.02%
2.661 514.129 2.83%
2.656 493.808 1.24%

To employ the secant method used in Table 3.1, two initial guesses for L, given by L1 and L2,

respectively and their corresponding ARL values, given by ARL1 and ARL2, respectively, are needed.

Typically, L1 < L2 (and subsequently ARL1 < ARL2). The value for L was calculated iteratively by

using

Li = (ARL0 −ARLi−1)
Li−1 − Li−2

ARLi−1 −ARLi−2
+ Li−1 for i = 3, 4, 5, . . . ,

where ARL0 is the specified in-control ARL (in our case ARL0 = 500). The stopping criteria was

determined by

|ARLi −ARL0|
ARL0

≤ TOL,

where TOL is a pre-specified tolerance (or desired level of precision). The TOL-value used to determine

L was 2%.
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Chapter 4

Performance of the proposed

NBEWMA control chart

4.1 Introduction

In this chapter the IC and OOC performance of the proposed NBEWMA control chart (see Chapter

3) is determined for different underlying process distributions. The process mean is monitored using

the sample mean, x̄, in this chapter, since it is a commonly used location statistic in SPC literature.

The NBEWMA control chart is constructed using m = 50, 100 and 1000 samples, respectively,

each of size n = 1, 5 and 10 respectively. The performance of the NBEWMA chart is compared

to a conventional EWMA control chart (see [17] Jones, Champ and Rigdon (2001) and [33] Saleh,

Mahmoud, Jones-Farmer, Zwetsloot and Woodall (2015)). This chapter is concluded with an overview

of the performance of the NBEWMA chart, followed by recommendations for future research.

4.2 Simulation Study

[33] Saleh, Mahmoud, Jones-Farmer, Zwetsloot and Woodall (2015) made recommendations for the

minimum number of subgroups required to construct Shewhart and EWMA control charts. It was

shown by [33] Saleh et al. (2015) that the minimum number of subgroups required were typically

more than recommended by [17] Jones, Champ and Rigdon (2001). [33] Saleh et al. (2015) used the

standard deviation for the average run-length (SDARL) to measure whether the number of subgroups

used are sufficient. It was argued by [33] Saleh et al. (2015) that the SDARL is a measurement of

the practitioner-to-practitioner variability. [33] Saleh et al. (2015) targeted SDARL values that are

approximately within 10% of the nominal ARL0.

[33] Saleh et al. (2015) argued that about m = 600 samples of size n = 5 are needed in order to

construct an EWMA-X̄ control chart, if λ = 0.1, to obtain an SDRL within 10% of the ARL0. It is

worth noting that [33] Saleh et al. (2015) assumed that the IC process distribution is normal, which

is a common assumption in the literature of the EWMA control chart. It was shown by [33] Saleh et

58
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al. (2015) that smaller values of λ (λ < 0.25) require fewer observations to construct reliable control

charts; fewer than their Shewhart counterparts. Saleh et al. (2015) stated that: “In most applications,

it would not be realistic to obtain this amount of stable Phase I data from the process.”

In this mini-dissertation an alternative approach to constructing an EWMA control using a non-

parametric bootstrap (sampling with replacement from the IC reference sample) is proposed (see

Chapter 3 of this dissertation). A simulation study was conducted to test the conditional ARL per-

formance of the NBEWMA control chart proposed in Chapter 3. The following distributions were

used in the simulation study:

1. a standard normal distribution, i.e. N (0, 1),

2. t-distribution with 3 degrees of freedom, t(3),

3. an exponentional distribution with mean equal to 1, Exp(1) (or Gamma(1, 1)),

4. a Gamma distribution with scale parameter equal to 3 and shape parameter equal to 1, Gamma(3, 1),

5. a Laplace distribution with location parameter 0 and scale parameter 1, L(0, 1),

6. and Logistic distribution with location parameter 0 and scale parameter 1, Logistic(0, 1).

Reference samples were generated, consisting of m = 50, 100 and 1 000 subgroups, respectively, each

of different sizes n = 1, 5 and 1 000, respectively. This combination was chosen to be more reflective of

a typical Phase I setting. The NBEWMA charts can be constructed usisng Equation (3.8), Algorithm

3.1 and Algorithm 3.2. The process mean was monitored using the sample mean, x̄, since it is a

commonly used location statistic (one could also use the sample median). In this section, we use

closed-form expressions to calculate the bootstrap estimates for mean and standard error for the

sample mean, when the process is IC. The derivation of the equations are shown in Section B.1 of this

mini-dissertation.

[20] Knoth and Schmid (2015) showed that there have been many cases in the literature where

EWMA charts, specifically for monitoring spread (typically the process variance), have been developed

that are ARL-biased (see, e.g. [38] Wortham and Ringer (1971), [29] Ng and Case (1989) and [24]

MacGregor and Harris (1993)). [20] Knoth and Schmid (2015) recommended using small values for

λ, since this reduces the ARL-bias dramatically.

Any potential ARL-bias, of the NBEWMA chart, in the simulation study was minimised by

setting λ = 0.05. The nominal IC ARL, i.e. ARL0, was set equal to 500. Since the charts were

constructed, using one data set generated from each distribution, the focus will be on the conditional

attained ARL’s. To measure the OOC performance of the chart, an upward (or downward) shift in

magnitude of δ standard errors was added to the process mean, this was done for −1.5 ≤ δ ≤ 1.5. The

conditional IC ARL’s for the N (0, 1), t(3), Exp(1), Gamma(3, 1), L(0, 1) and Logistic(0, 1) cases, for

m = 50, 100, 1 000 and n = 1, 5, 10, are given in Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9,

respectively. The simulation study was conducted using SAS v9.4 and the source code is available in

Section A.3 of the Appendix.
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Table 4.1: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process param-
eters, when m = 50 Phase I samples, each of size n = 1, were used to estimate the IC values of the
process parameters.

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
125.1487 128.1563 5 35 86 173 380
(126.1438) (125.7447) (4) (36) (89) (175) (377)

t(3)
129.9398 140.4063 2 31 86 181 409
(126.6641) (134.0261) (2) (31) (84) (179) (395)

Exp(1)
278.7150 294.6640 3 65 198 397 863
(283.6591) (306.6476) (2) (66.5) (186.5) (394.5) (889)

Gamma(3, 1)
1284.4662 1321.2296 29.5 338.5 879.5 1805 3872.5
(1248.5240) (1259.7625) (18.5) (320.5) (857.5) (1732) (3837)

L(0, 1)
561.8380 555.6755 30.5 169 385.5 795 1654.5
(563.9910) (570.8144) (19) (161) (393) (772.5) (1728)

Logistic(0, 1)
693.5294 692.6809 28 191 478 974 2072.5
(697.0648) (706.1439) (27) (192) (479) (976.5) (2099)

From Table 4.1 it can be seen that the N (0, 1), t(3) and Exp(1) distributions produce conditional

IC ARL’s that are smaller than the nominal ARL0 = 500, despite the control limits being adjusted to

specifically achieve an IC ARL of 500 when using bootstrap samples to emulate the process distribu-

tion. From Table 4.1 it can be seen that the Gamma(3, 1), L(0, 1) and Logistic(0, 1) cases produced

IC ARL’s that were much larger than the desired ARL0 = 500. The percentiles in Table 4.1 give an

idea of how the run-lengths were distributed when the NBEWMA was implemented in Phase II for

different underlying process distributions.

Table 4.2: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process param-
eters, when m = 50 Phase I samples, each of size n = 5, were used to estimate the IC values of the
process parameters.

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
323.5578 322.8327 10 89 227 453 965
(320.1552) (326.3702) (10) (89) (219) (447) (964.5)

t(3)
155.8726 165.1260 3 39 105 217 481.5
(156.7842) (162.7057) (3) (39) (109) (221) (475)

Exp(1)
298.0540 309.7303 7.5 82 203 419.5 883
(293.9975) (305.3862) (8.5) (79) (197) (406) (894)

Gamma(3, 1)
174.2340 161.5419 10.5 57.5 124.5 237.5 502
(172.1644) (168.8018) (7) (53) (122) (237) (507)

L(0, 1)
654.5840 684.8136 17.5 180 444 891 1982
(674.0750) (687.7128) (16) (187) (461) (949) (2012.5)

Logistic(0, 1)
758.9957 769.0934 24 207 521 1063 2286
(755.5933) (783.6880) (24) (202) (514) (1041.5) (2291.5)

From Table 4.2 it can be seen that for the N (0, 1), t(3), Exp(1) and Gamma(3, 1) distributions,

respectively, the NBEWMA chart produced IC ARL’s that were less than the nomal ARL0 of 500,

whilst the L(0, 1) and Logistic(0, 1) distributions produced IC ARL’s that were larger than 500. It

can also be seen from Table 4.2 that there was no significant different in performance between the
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NBEWMA chart and the conventional EWMA chart with estimated process mean and variance.

Table 4.3: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process param-
eters, when m = 50 Phase I samples, each of size n = 10, were used to estimate the IC values of the
process parameters.

2015

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
140.9800 135.1759 8 46 102 192 411
(142.3936) (137.7122) (8) (45) (102) (194) (413)

t(3)
1401.4685 1281.4760 61 417 1007.5 2034 4352
(1424.3249) (1438.7274) (59.5) (382) (981) (1974) (4304)

Exp(1)
128.2590 119.1728 13 45 95 178 368.5
(127.0175) (112.5368) (15) (47.5) (95) (172) (349)

Gamma(3, 1)
118.7170 112.9180 5 37 85 165.5 351.5
(118.0140) (120.7201) (4) (33) (80.5) (163) (354)

L(0, 1)
214.0510 209.0883 15 70 153 292 595.5
(212.4310) (207.7939) (13) (67) (149) (292) (621.5)

Logistic(0, 1)
195.0342 190.1837 12 62 138 268 570
(194.3591) (189.4570) (11) (62) (136) (267) (577)

From Table 4.3 it can be seen that all six underlying process distributions produced IC ARL’s

less than 500. It can also be seen in Table 4.3 that there was no significant different in performance

between the NBEWMA chart and the conventional EWMA chart with estimated process mean and

variance.

Table 4.4: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process param-
eters, when m = 100 Phase I samples, each of size n = 1, were used to estimate the IC values of the
process parameters.

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
243.7152 249.8410 8 67 170 339 731
(242.2706) (231.0763) (14) (75) (172) (338) (710)

t(3)
99.7746 101.0281 2 28 69 142 297
(99.7920) (101.9523) (2) (27) (69) (140) (306)

Exp(1)
272.4930 285.9282 2 65 181 390.5 828.5
(277.1573) (304.9053) (3) (63) (182) (384) (879)

Gamma(3, 1)
189.3160 189.5295 5 58 134.5 259.5 559.5
(192.6300) (192.6773) (3) (51.5) (137.5) (283) (575.5)

L(0, 1)
425.3750 423.8685 11.5 118.5 291.5 595.5 1274
(424.3427) (435.0104) (10) (113) (293.5) (593) (1276)

Logistic(0, 1)
489.7498 498.7364 14 133.5 339 680 1496
(490.4518) (501.6566) (14) (135) (334) (680) (1488)

From Table 4.4 it can be seen that all six underlying process distributions produced IC ARL’s less

than 500. It is interesting to note that the L(0, 1) and Laplace(0, 1) distributions produced IC ARL’s

that are much closer to the nominal IC ARL0 = 500. Again, It can seen in Table 4.4 that there was

no significant different in performance between the NBEWMA chart and the conventional EWMA

chart with estimated process mean and variance.
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Table 4.5: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process param-
eters, when m = 100 Phase I samples, each of size n = 5, were used to estimate the IC values of the
process parameters.

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
210.8414 210.6904 8 62 146 292 626
(207.7935) (209.8430) (8) (59) (144) (290.5) (622)

t(3)
1517.9861 1373.5275 56 445 1087.5 2214 4786
(1547.0236) (1562.3598) (52) (414.5) (1059) (2174) (4694.5)

Exp(1)
275.0050 260.2454 21 82.5 193 390 771.5
(277.0763) (263.7756) (21) (89) (195) (385) (804)

Gamma(3, 1)
172.0720 182.0482 5.5 52 114 233.5 523.5
(169.4060) (175.3184) (5) (49) (117) (226) (556)

L(0, 1)
328.4980 316.8112 15.5 95.5 235 475 938
(329.1805) (328.5283) (14) (94) (229) (458) (997)

Logistic(0, 1)
317.2831 314.4513 15 93 220 442 949
(313.6287) (313.6838) (13) (92) (219) (433) (932)

From Table 4.5 it can be seen that all six underlying process distributions produced IC ARL’s

less than 500. No significant difference between the IC performance of the NBEWMA chart and the

conventional EWMA with estimated values for the process mean and variance can be seen.

Table 4.6: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process parame-
ters, when m = 100 Phase I samples, each of size n = 10, were used to estimate the IC values of the
process parameters.

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
347.3618 349.1090 11 97 243 487 1042
(345.2000) (351.0599) (11) (96) (238) (482) (1051)

t(3)
1206.8930 1152.5769 46 341 842 1711 3687.5
(1215.4754) (1236.2749) (41) (337.5) (832) (1688.5) (3692)

Exp(1)
374.4270 373.2870 16.5 104 255.5 525 1143.5
(368.9904) (375.2387) (14) (105) (252) (510.5) (1107)

Gamma(3, 1)
276.3160 279.2927 8 84.5 193.5 381.5 833.5
(276.6230) (281.2266) (8) (75.5) (195) (387.5) (840)

L(0, 1)
265.4100 257.8081 11 74 190.5 367.5 774
(263.3815) (269.1061) (10) (74) (178) (365) (795.5)

Logistic(0, 1)
266.1720 268.3931 11 77 186 368 798.5
(260.5684) (262.1348) (10) (75) (180) (360.5) (784)

From Table 4.6 it can be seen that all six underlying process distributions produced IC ARL’s

less than 500. No significant difference between the IC performance of the NBEWMA chart and the

conventional EWMA with estimated values for the process mean and variance can be seen.
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chapter a

Table 4.7: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process parame-
ters, when m = 1000 Phase I samples, each of size n = 1, were used to estimate the IC values of the
process parameters.

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
478.9717 487.1930 12 132 330 668 1464
(480.2636) (493.4384) (12) (125) (322) (682) (1445)

t(3)
1463.6541 1347.9654 45 413.5 1036 2153.5 4667
(1494.6339) (1513.2246) (41.5) (397) (1028) (2087.5) (4562)

Exp(1)
687.3610 684.3858 9 163 456.5 998.5 2134.5
(686.9311) (719.0360) (7) (165) (462) (974) (2126)

Gamma(3, 1)
392.2020 421.4794 8.5 101 258 540 1184
(386.9413) (403.6318) (6) (98) (262) (544) (1197.5)

L(0, 1)
539.3120 553.8567 10.5 131.5 374.5 747.5 1672.5
(535.3770) (550.1273) (8) (135.5) (365) (754) (1643)

Logistic(0, 1)
487.6441 505.2175 9 123 330 695.5 1500.5
(488.5199) (508.6631) (9) (125) (327) (679) (1513)

From Table 4.7 it can be seen that the N (0, 1), t(3), Gamma(3, 1) and Logistic(0, 1) distributions

produced IC ARL’s less than 500. In Table 4.7 it can be seen that there is no significant difference

between the IC performance of the NBEWMA chart and the conventional EWMA with estimated

values for the process mean and variance.

Table 4.8: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process parame-
ters, when m = 1000 Phase I samples, each of size n = 5, were used to estimate the IC values of the
process parameters.

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
531.9275 553.6864 14 140 363 734 1603
(537.0786) (557.2846) (14) (142) (367) (744) (1639)

t(3)
553.7659 573.9586 12 147 377 764 1704.5
(564.1165) (582.1677) (11) (148) (384) (790) (1729.5)

Exp(1)
518.1010 536.8353 14.5 138.5 329.5 728 1588
(520.3149) (523.1819) (12) (142) (359) (736) (1574)

Gamma(3, 1)
501.7400 500.1822 10 136 365 698.5 1529.5
(498.6700) (518.4591) (16) (133.5) (345.5) (692) (1544.5)

L(0, 1)
312.3030 302.6070 6.5 84.5 220 440.5 934.5
(311.6744) (324.2712) (7) (81) (213.5) (431) (974.5)

Logistic(0, 1)
327.4753 337.0085 10 89 224.5 454 1006.5
(315.8558) (322.3036) (8) (85) (216) (439) (967.5)

In Table 4.8 it can be seen that the IC ARL’s for all the distributions are much closer to the target

ARL of 500.
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Table 4.9: Summary statistics for the IC run-length distributions when using the NBEWMA chart
versus a conventional EWMA control chart (given in parenthesis) with estimated IC process parame-
ters, when m = 1000 Phase I samples, each of size n = 10, were used to estimate the IC values of the
process parameters.

Underlying
ARL SDRL

Percentiles
Process Distribution 5th 25th 50th 75th 95th

N (0, 1)
525.9098 540.1841 13 137 360 743 1617
(527.6114) (538.5985) (15) (142) (359) (737) (1606.5)

t(3)
481.9065 505.0990 9 121 332 664 1466
(482.0350) (496.6728) (10) (125.5) (328) (675) (1469.5)

Exp(1)
487.7240 486.0607 17.5 128 339 694.5 1468
(481.1230) (498.6627) (14) (130) (324) (668) (1472)

Gamma(3, 1)
488.6020 489.1681 12.5 133.5 341 683.5 1446.5
(493.2570) (514.3483) (9) (124) (343.5) (692) (1513.5)

L(0, 1)
376.3150 370.6525 7 100 261.5 532 1098.5
(359.8217) (368.6731) (9) (97.5) (247.5) (495) (1099.5)

Logistic(0, 1)
376.6590 384.6498 11 103 256 519 1158.5
(377.2048) (380.8640) (10) (101) (259) (530) (1139)

In Table 4.9 it can be seen that the IC ARL’s for the N (0, 1), t(3), Exp(1) and Gamma(3, 1)

are within 10% of the nominal ARL0 = 500. The results in Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,

4.8 and 4.9, respectively, show that the IC performance of the NBEWMA chart is very similar to

a conventional EWMA chart with estimated parameters. The results in Tables 4.7, 4.8 and 4.9,

respectively, suggest that the bootstrap became better at emulating the process when a large enough

number of subgroups (i.e. m ≥ 1 000) was collected, in an IC reference sample. The results of the IC

and OOC ARL’s for the distributions are summarised in Figure 4.1.
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Figure 4.1: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA chart (orange graph) with estimated parameters, for
λ = 0.05, m = 50 and n = 1.

(a) N (0, 1) (b) t(3)

2015

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1) (f) Logistic(0, 1)

It can be seen in Figure 4.1a that both the bootstrap and conventional EWMA charts showed

slight ARL-bias, this can be due to simulation error. The attained IC / OOC ARL’s for both the

bootstrap and conventional EWMA control in Figure 4.1a seem identical and there appears to be no

significant performance advantage (in terms of detecting shifts in magnitude of |δ| ≤ 1.5 standard

deviations above/below the process mean). In Figure 4.1b it can be seen that both the bootstrap and

conventional control limits produced a slight ARL-bias, when the underlying process distribution was

t(3). It can be seen in Figure 4.1b that the attained IC ARL is much lower than the desired value of
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500. In Figure 4.1c it can be seen that the performance of the bootstrap control was equivalent to the

performance of the conventional control chart, with the conventional EWMA control chart performing

slightly better when the process is IC (i.e. δ = 0), which can be attributed to simulation error, since

the charts perform identically for the most part. Similarly, Figure 4.1d showed that the performance

of the bootstrap chart was similar to that of the conventional control chart, with the latter performing

slightly better when the process is IC. The bootstrap and conventional EWMA control charts for

L(0, 1) distribution shown in Figure 4.1e performed similarly and showed only slight ARL-bias. The

L(0, 1) distribution produced a higher IC ARL than specified. In Figure 4.1f it can be seen that the

bootstrap control chart performed better than the conventional chart, since it had much lower ARL’s

when the process was OOC than its conventional counterpart.
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Figure 4.2: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA chart (orange graph) with estimated parameters, for
λ = 0.05, m = 50 and n = 5.

(a) N (0, 1) (b) t(3)

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1) (f) Logistic(0, 1)

It can be seen in Figure 4.2 that the attained ARL’s for the N (0, 1), t(3), Exp(1) and Gamma(3, 1)

distributions were less than the nominal ARL0 = 500. For the L(0, 1) and Logistic(0, 1) distributions,

the attained ARL’s were more than 500. Both the bootstrap and conventional EWMA control charts

showed ARL-bias for theGamma(3, 1) case (see Figure 4.2d). The bootstrap and conventional EWMA

charts performed similarly for the N (0, 1), t(3), Exp(1) and Logistic(0, 1) cases. In Figure 4.2d it

can be seen that the bootstrap control chart performs slightly better than the conventional control

chart for δ ∈ [−0.25, 0). In Figure 4.2e it can be seen that the bootstrap control chart performs
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slightly better than the conventional control chart for δ ∈ [−0.25, 0). The better performance of the

bootstrap control chart for the Gamma(3, 1) and Logistic(0, 1) cases, respectively, could be caused

by simulation error.

Figure 4.3: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA (orange graph) chart with estimated parameters, for
λ = 0.05, m = 50 and n = 10.

(a) N (0, 1) (b) t(3)

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1)

.

(f) Logistic(0, 1)

In Figure 4.3 it can be seen that the attained ARL’s for the N (0, 1), Exp(1), Gamma(3, 1), L(0, 1)

and Logistic(0, 1) cases, respectively, were less than the nominal value ARL0 = 500. The attained

ARL’s for the t(3) case were greater than the nomal value ARL0 = 500. In 4.3b it can be seen that

the bootstrap chart out-performed the conventional chart for −0.5 ≤ δ ≤ 0.5. For the t(3) case the
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bootstrap chart out-performed the conventional chart for −0.75 ≤ δ < 0, whereas the conventional

chart out-performed the bootstrap chart for 0 < δ < 0.75. In Figure 4.3e and 4.3f it can be seen

that the bootstrap control chart out-performed the conventional chart for −0.5 < δ < 0 for the

L(0, 1) and Logistic(0, 1) cases, respectively. In the Exp(1) case the conventional control chart out-

performed the bootstrap control chart for 0 < δ < 0.25. The N (0, 1), Exp(1), Gamma(3, 1), L(0, 1)

and Logistic(0, 1) cases were ARL-biased.

Figure 4.4: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA chart (orange graph) with estimated parameters, for
λ = 0.05, m = 100 and n = 1.

(a) N (0, 1) (b) t(3)

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1) (f) Logistic(0, 1)

It can be seen in Figure 4.4 that for the N (0, 1), t(3), Exp(1), Gamma(3, 1) and L(0, 1) distribu-
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tions the attained ARL’s are lower than the nominal value of ARL0 = 500. The bootstrap control

chart achieved the desired ARL0 = 500 for the Logistic(0, 1) distribution. In Figure 4.4f it can be seen

that the bootstrap control chart out-performed the conventional control for δ > 0. For the t(3) case,

it can be seen in Figure 4.4b that the conventional control chart out-performed the bootstrap chart

when δ < 0, however, the bootstrap control chart out-performed the conventional chart when δ > 0.

The manifestation of ARL-bias can clearly be seen in Figures 4.4a, 4.4b, 4.4d and 4.4f, respectively.

Figure 4.5: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA chart (orange graph) with estimated parameters, for
λ = 0.05, m = 100 and n = 5.

(a) N (0, 1) (b) t(3)

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1) (f) Logistic(0, 1)

In Figure 4.5 it can be seen that all distributions, apart from the t(3) distribution, attained ARL’s
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lower than the nominal value of ARL0 = 500. The presence of ARL-bias can be seen in Figure 4.5a

and 4.5d, respectively.

Figure 4.6: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA chart (orange graph) with estimated parameters, for
λ = 0.05, m = 100 and n = 10.

(a) N (0, 1) (b) t(3)

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1) (f) Logistic(0, 1)

In Figure 4.6 it can be seen that the attained ARL’s for all distributions, except the t(3) distribu-

tion, were within approximate 50% of the target value of 500. It can also be seen in Figure 4.6 that

there was no significant ARL-bias. The bootstrap chart showed no significant performance advantage

compared to its conventional counterpart.
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Figure 4.7: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA chart (orange graph) with estimated parameters, for
λ = 0.05, m = 1000 and n = 1.

(a) N (0, 1) (b) t(3)

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1) (f) Logistic(0, 1)

It can be seen in Figure 4.7 that the attained IC ARL values for the N (0, 1), Gamma(3, 1), L(0, 1)

and Logistic(0, 1) were within 10% of their target value ARL0 = 500. For the Logistic(0, 1) case, the

bootstrap control chart out-performed the conventional EWMA chart for −1.5 ≤ δ ≤ 1.5. Similarly,

the bootstrap control chart out-performed its conventional counterpart, for the t(3) case (see Figure

4.7b), for all non-zero values of δ. The bootstrap chart performed similarly to the conventional chart

for the N (0, 1), Exp(1), Gamma(3, 1) and Logistic(0, 1) cases, respectively.
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Figure 4.8: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA chart (orange graph) with estimated parameters, for
λ = 0.05, m = 1000 and n = 5.

(a) N (0, 1) (b) t(3)

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1) (f) Logistic(0, 1)

In Figure 4.8 it can be seen that the bootstrap control chart produced IC ARL’s within approx-

imately 10% of ARL0 = 500 for all distributions considered, except the L(0, 1) and Logistic(0, 1)

distributions. No clear performance advantage, derived from either the bootstrap or conventional

chart, was evident during this round of testing.
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Figure 4.9: OOC ARL values for the NBEWMA-X̄ control chart (blue graph) compared to the
OOC ARL values for the conventional EWMA chart (orange graph) with estimated parameters, for
λ = 0.05, m = 1000 and n = 10.

(a) N (0, 1) (b) t(3)

(c) Exp(1) (d) Gamma(3, 1)

(e) L(0, 1) (f) Logistic(0, 1)

It can be seen in Figure 4.9 that the bootstrap and conventional EWMA chart performed iden-

tically. The attained IC ARL’s for the L(0, 1) and Logistic(0, 1) cases, respectively, were below the

desired ARL0 = 500. The availability of m = 1 000 subgroups of size n = 10, created a pool consisting

of 1 000(10) = 10 000 reference values from which the bootstrap control chart could be constructed.

All distributions, except the L(0, 1) and Logistic(0, 1), produced IC ARL’s that were within 10% of

the target value. Clearly, the larger reference sample aided the selection of an appropriate L value. It

can be seen in Figure 4.9 that there was no significant ARL-bias present.
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4.3 Conclusion

A preliminary look at the NBEWMA-X̄ chart, suggests that it could potentially be a viable alternative,

provided that λ is sufficiently small and that the reference dataset is stable with very few extreme

values. Different combinations of (m,n) were considered for the N (0, 1), t(3), Exp(1), Gamma(3, 1),

L(0, 1) and Logistic(0, 1) distributions, respectively. Figures 4.8 and 4.9, respectively, showed that

the NBEWMA chart constructed using Algorithm 3.2 performs similarly to the conventional EWMA

when m = 1 000.

[33] Saleh et al. (2015) showed that a large number (m ≥ 1000) of subgroups, in the reference

sample, were needed to construct EWMA control charts, with estimated process parameters, to pro-

duce SDARL’s that are within 10% of ARL0 = 500. The results in Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6,

4.7, 4.8 and 4.9, respectively, show that m subgroups, where m ≥ 1000, are needed to yield IC ARL’s

close to 500, which supports the findings of [33] Saleh et al. (2015).

The relatively large size of the IC reference sample required to construct the NBEWMA chart,

brings its practicality in doubt. Practioners would need to consider the variability of the NBEWMA

chart and the economic implications of collecting an adequate number of IC reference samples to

construct it. The two-stage approach proposed by authors like [1] Ambartsoumian and Jeske (2015)

could prove to be a better trade-off. [22] L. Liu, X. Zi, J. Zhang and Z. Wang (2013) proposed using

what they termed a nonparametric adaptive EWMA (NAE) control chart. The NAE is effectively

a self-starting chart (i.e. the process is monitored from the start with no IC reference data being

collected first). [22] Liu et al. (2013) assumed that the the process readings collected over time came

from the following change-point model:

xi ∼

F (x, µ0) for t = 1, 2, . . . , τ ,

F (x, µ1) for t = τ + 1, τ + 2, . . . ,

where τ ∈ N is the unknown change point, µ0 and µ1 are the IC and OOC location parameters, re-

spectively, and F (·) is an unknown continuous distribution function. Let Rn denote the nth sequential

rank of xn amoung x1, . . . , xn, i.e.

Rn =
n∑
j=1

1 {xn ≥ xj} . (4.1)

[22] Liu et al. (2013) noted that the distribution of Rn varies as n increases. When the process is

IC, [22] Liu et al. (2013) showed that

E [Rn|Process IC] =
(n+ 1)

2

and

V ar [Rn|Process IC] =
(n+ 1)(n− 1)

12
,
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provided that n ≥ 2. It was argued by [22] Liu et al. (2013) that the standardized sequential rank,

i.e.

R∗n =
Rn − E [Rn|Process IC]√
V ar [Rn|Process IC]

, (4.2)

should be used. It is reasonable to assume that a nonparametric EWMA (NEWMA) control chart

based on R∗n can be defined as

Zn = (1− λ)Zn−1 + λR∗n, (4.3)

where the initial value Z0 = 0 and λ ∈ (0, 1] is a suitable smoothing constant. [22] Liu et al. (2013)

modified the NEWMA chart to be robust to various magnitudes of shifts - motivated by [4] Capizzi

and Masarotto (2003) - by setting

Zn = (1− η)Zn−1 + ηR∗n, (4.4)

where Z0 = 0 and the weight η is given by

η = 1− 1− λ

max
{

1,
∣∣∣R̄∗n,k∣∣∣ /ω} , (4.5)

where R̄∗n,k = k−1
∑k−1
i=0 R

∗
n−i denotes the average of the last k R∗n’s, and k, ω, λ are pre-specified

constants. [22] Liu et al. (2013) recommended using (k, ω, λ) = (5, 1.2, 0.03), since it was shown to

provide a balanced performance against both small and large shifts in the process mean.

The NBEWMA proposed in this mini-dissertation can be accompanied by the NAE used by [22]

Liu et al. (2013), effectively emulating the two-stage approach [1] Ambartsoumian and Jeske (2015)

followed. Without loss of generality, the NAE used by [22] Liu et al. (2013) can be adapted, by

re-defining Rn in Equation 4.1 as the nth sequential rank of ψn among ψ1, . . . , ψn, where ψi is some

arbitrary statistic used to monitor the process. The process can then be monitored using the NAE

until a sufficient number of IC subgroups are collected, say m ≥ 1 000.
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Chapter 5

Summary of research and

recommendations for future research

This mini-dissertation focused on constructing control charts, using bootstrap methods, to detect

location shifts in the process distribution. The bootstrap offers an alternative to the parametric

methods, typically utilised in a classical SPC environment. The nonparametric bootstrap, originally

proposed by Efron (1979), is relatively easy to implement and makes naive assumptions about the

statistical distribution.

[2] Bajgier (1992), [34] Seppala et al. (1995) and Liu and Tang (1996) discussed bootstrap imple-

mentations for the Shewhart control chart. The weaknesses of these methods were discussed by [18]

Jones and Woodall (1998), more specifically, the variability of the bootstrap charts’ IC ARL. When

the underlying process distribution is skew, the bootstrap Shewhart control charts seem to perform

better than their traditional counterparts.

The Shewhart bootstrap control charts were implemented in a Phase II setting to monitor the

process distribution. Since Shewhart charts tend to be good at detecting larger shifts (see [27] Mont-

gomery (2009)), a bootstrap control chart can be used in the Phase I setting to detect and remove

outliers. This could potentially yield reasonable results, provided that the control limits are con-

structed using a trimmed sample (e.g. removing the bottom 25% of observations and top 25% of

observations).

The most pressing issue with Shewhart control charts constructed using bootstrap procedures is

the variability, with respect to their IC ARL’s, we proposed applying [2] Bajgier’s (1992) procedure,

with the addition of constructing the control limits using the BCa procedure proposed by [11] Efron

and Tibshirani (1994). In Section 2.2 it was shown that the BCa method could potentially reduce the

variability of the IC ARL. More research should be done to find ways of minimising the variability,

in terms of performance, of the bootstrap control limits for Shewhart charts.

[7] Chatterjee and Qiu (2009) and [1] Ambartsoumian and Jeske (2015) constructed CUSUM

charts using the bootstrap, but with fundamentally different approaches. [7] Chatterjee and Qiu

(2009) constructed a conventional upper one-sided CUSUM for detecting positive shifts in the process

77

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



CHAPTER 5. SUMMARY OF RESEARCH AND RECOMMENDATIONS FOR FUTURE RESEARCH78

mean by using a set of control limits, conditioned on the charting statistic and, what they termed,

the sprint length (the number of observations since the last zero observation). The method proposed

by [7] Chatterjee and Qiu (2009) seems robust and applicable for many scenarios, but the relationship

between the variables necessary to construct the control chart is not well understood at present.

[1] Ambartsoumian and Jeske (2015) used a two-stage approach, where the IC Phase I process

data is sequentially collected over time using a SRC control chart. When a sufficient number of

observations were collected, [1] Ambartsoumian and Jeske (2015) used [31] Page’s (1954) optimal

CUSUM to monitor the process. [31] Page’s (1954) optimal CUSUM uses the ratio of the OOC

process distribution’s PDF over the IC process distribution’s PDF. [1] Ambartsoumian and Jeske

(2015) used the AKDE to estimate both the IC and OOC PDF’s.

One potential problem with the NDEC chart proposed by [1] Ambartsoumian and Jeske (2015)

is the intense computation time required to construct the control chart, since a large number of IC

observations are required to obtain a sufficiently good estimate of the IC process distribution’s PDF.

Fortunately, [1] Ambartsoumian and Jeske (2015) argued that the OOC process distribution can be

approximated by a Beta distribution, from where the PITC was created. The PITC is computationally

less intensive than its NDEC counterpart and provides similar levels of performance.

In future some more focus should be given to the performance of bootstrap CUSUM charts when

very little reference data is available or obtaining large reference samples is economically unfeasible.

A parametric bootstrap (generating samples from a known distribution with, or without, estimating

parameters) was suggested for the EWMA control chart by [13] Gandy and Kvaløy (2011). This

approach assumes, without loss of generality, that the IC process distribution is N (0,
√
n) and an

iterative approach is followed to construct the control limits. We proposed a nonparametric bootstrap

EWMA control chart. The chart showed signs of ARL-bias in our conditional run-length tests when

a shift was introduced in the process mean. Knoth and Schmid (2015) recommended using small

values of λ to reduce the impact of ARL-bias. Despite setting λ = 0.05, ARL-bias was still noted

for some distributions. A simple solution to this problem can be to implement the NBEWMA with

asymmetrically placed control limits, i.e.

UCL∗i = θ̂∗0 + Luσ̂
∗
0

√(
λ

2− λ

)
(1− (1− λ)2i), (5.1)

CL∗i = θ̂0 (5.2)

and

LCL∗i = θ̂∗0 + Llσ̂
∗
0

√(
λ

2− λ

)
(1− (1− λ)2i). (5.3)

Algorithm 3.2 can be implemented, but with added layers of complexity namely: finding values for

Lu and Ll, respectively, and ensuring that the OOC ARL is always less than the IC ARL. The
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variability of the IC ARL’s for the NBEWMA chart should also be investigated. An EWMA chart

transforms into a Shewhart chart when λ = 1, it is therefore reasonable to assume that it too will

struggle with high levels of variability, with regard to its IC ARL.

Bootstrap control charts have the potential of becoming viable alternatives to their parametric

counterparts derived in the Phase I setting, provided that they are constructed using a sufficient

amount of data. With the availability of self starting charts, like the SRC employed by [1] Ambart-

soumian and Jeske (2015), the economic feasibility and sustainability of bootstrap control charts is

brought into serious doubt. The bootstrap could perhaps be better suited in a Phase I environment

or to emulate the statistical distribution of a process so that informed decisions can be made on the

most appropriate chart for a particular problem.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix A

SAS programs used in the

mini-dissertation

A.1 SAS programs used in Chapter 2

A.1.1 SAS program to calculate the ARL’s of [2] Bajgier’s (1992) bootstrap

control chart and conventional control chart

SAS program that simulates a χ2(5) in-control process distribution

1 opt ions l s =100 nodate pageno=1 formdlim="_" ;

2

3 %l e t m=20;

4 %l e t n=5;

5 %l e t sim=1e4 ;

6 %l e t seed=88;

7 %l e t alpha =0.0027;

8 proc iml ;

9 r e s e t nolog ;

10 m=&m;

11 n=&n ;

12 x=j (&m,&n , . ) ;

13 bigN = &m∗&n ;

14 c a l l randseed (&seed ) ;

15 c a l l randgen (x , "CHI" ,5) ; ∗gene ra t e s m∗n random va lue s from CHI(5) ;

16 xbarbar = mean(x ) [ , : ] ;

17 sp2 = mean( var (x ‘ ) ) [ , : ] ;

18 p r i n t sp2 ;

19 a=log ( sq r t (2 ) ) ;

80
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20 b=lgamma ( (m∗ (n−1)+1)/2) ;

21 c=log ( sq r t (m∗ (n−1) ) ) ;

22 d=lgamma ( (m∗ (n−1) )/2) ;

23 lc4m=a+b−c−d ;

24 c4m=exp ( lc4m ) ;

25 ∗pr in t c4m ;

26 muhat=xbarbar ;

27 sigma_0=sq r t ( sp2 )/c4m ;

28 p r i n t muhat sigma_0 ;

29 x = shape (x , bigN , 1 ) ; ∗vec operator on m by n matrix x ;

30

31 r e s u l t=j ( 1 000 , 2 , . ) ;

32 alpha = &alpha ;

33 do i = 1 to 1000 ;

34 xbar_b = j ( 1000 , 1 , . ) ;

35 do j = 1 to 1000 ;

36 u = in t ( ranuni ( j (&n , 1 , 0 ) )#bigN )+1;

37 x_b = x [ u ] ;

38 xbar_b [ j ,1 ]=mean(x_b) ;

39 end ; ∗end do j ;W

40 p = ( alpha/2) | | (1−( alpha/2) ) ;

41 c a l l qnt l (q , xbar_b , p) ;

42 r e s u l t [ i , ] = q ‘ ;

43 end ; ∗end do i ;

44 r e s u l t_f i n a l = mean( r e s u l t ) ;

45

46 ∗pr in t r e s u l t_f i n a l ;

47 LL_se = sq r t ( var ( r e s u l t [ , 1 ] ) ) ;

48 UL_se = sq r t ( var ( r e s u l t [ , 2 ] ) ) ;

49 LL_avg = r e s u l t_f i n a l [ 1 , 1 ] ;

50 UL_avg = r e s u l t_f i n a l [ 1 , 2 ] ;

51 p r i n t LL_avg LL_se ;

52 p r i n t UL_avg UL_se ;

53 f r e e r e s u l t xbar_b ;

54

55 ∗Phase I I ;

56

57 n=&n ;

58
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59 ARL_0=1/alpha ;

60 stop=ARL_0 ∗ 10 ;

61

62 do de l t a = −3 to 3 by 0 . 2 5 ;

63 run l=j (&sim , 1 , . ) ;

64 s h i f t = de l t a∗ ( s q r t (2∗5)/ s q r t (n) ) ;

65 do i = 1 to &sim ;

66 k=0;

67 f l a g =0;

68 do j = 1 to stop un t i l ( f l a g =1) ;

69 k=k+1;

70 ∗u=in t ( ranuni ( j (n , 1 , 0 ) )#bigN )+1;

71 ∗x_obs = x [ u ] ;

72 x_obs = j (&n , 1 , . ) ;

73 c a l l randgen (x_obs , "CHI" ,5) ;

74 x_obs = x_obs + s h i f t ;

75 xbar = mean(x_obs ) ;

76 ∗pr in t xbar LL UL;

77 i f ( xbar<=LL_avg ) | ( xbar>=UL_avg ) then f l a g =1;

78 ∗pr in t f l a g ;

79 end ; ∗end do un t i l ;

80 run l [ i ]=k ;

81 end ; ∗end do i ;

82 ARL = mean( run l ) ;

83 i f d e l t a=0 then rem_ARL=ARL;

84 SDRL = sqr t ( var ( run l ) ) ;

85 c a l l qnt l (q , runl , { 0 . 0 5 , 0 . 25 , 0 . 5 , 0 . 75 , 0 . 95} ) ;

86 output1 = de l t a | | ARL | | SDRL | | (q ‘ ) ;

87 output = output // output1 ;

88 end ; ∗end do de l t a ;

89 p r i n t "Run−Length D i s t r i bu t i on f o r Bootstrap Control Limits with var i ous

s h i f t s in p roce s s mean" ;

90 p r i n t output [ colname={"de l t a " " a r l " " s d r l " "p5" "p25" "p50" "p75" "p95

" } ] ;

91 ∗pr in t rem_ARL;

92

93 c r ea t e a r l_data_boots t rap from output [ colname={"de l t a " " a r l " " s d r l " "p5"

"p25" "p50" "p75" "p95 " } ] ;

94 append from output ;
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95 f r e e output output1 ;

96

97 ∗Finding the optimal va lue f o r k ;

98 ARL_0 = rem_ARL;

99 p r i n t ARL_0 ;

100 k_i_1 = 2 ; ∗ f i r s t i n i t i a l guess f o r k ;

101 k_i = 3 . 5 ; ∗second i n i t i a l guess f o r k ;

102

103 LCL_i_1 = muhat − k_i_1∗sigma_0/ s q r t (n) ;

104 UCL_i_1 = muhat + k_i_1∗sigma_0/ s q r t (n) ;

105 LCL_i = muhat − k_i ∗sigma_0/ s q r t (n) ;

106 UCL_i = muhat + k_i ∗sigma_0/ s q r t (n) ;

107

108 FAR_i_1 = 1−(PROBCHI(UCL_i_1∗n , 5∗n)−PROBCHI(LCL_i_1∗n , 5∗n) ) ;

109 FAR_i = 1−(PROBCHI(UCL_i ∗n , 5∗n)−PROBCHI(LCL_i ∗n , 5∗n) ) ;

110

111 ARL_i_1 = 1/FAR_i_1 ;

112 ARL_i = 1/FAR_i ;

113

114 p r i n t ARL_i_1 ARL_i ;

115

116 perc_e r r o r 1 = ( abs (ARL_i_1−ARL_0)/ARL_0)∗100 ;

117 perc_e r r o r 2 = ( abs (ARL_i−ARL_0)/ARL_0)∗100 ;

118

119 i t_matrix = (1 | | k_i_1 | | ARL_i_1 | | perc_e r r o r 1 ) // (2 | | k_i | | ARL_i

| | perc_e r r o r 2 ) ;

120 c=2;

121 max_i t = 30 ;

122 f l a g =0;

123 TOL=0.01; ∗0.1% e r r o r ;

124 do i t = 1 to max_i t u n t i l ( f l a g =1) ;

125 c=c+1;

126 k_i_1 = i t_matrix [ c−1 ,2 ] ;

127 k_i_2 = i t_matrix [ c−2 ,2 ] ;

128 ARL_i_1 = i t_matrix [ c−1 ,3 ] ;

129 ARL_i_2 = i t_matrix [ c−2 ,3 ] ;

130 k_i = ( (ARL_0−ARL_i_1)∗ ( k_i_1−k_i_2)/ (ARL_i_1−ARL_i_2) )+k_i_1 ;

131 LCL_i=muhat − k_i ∗sigma_0/ s q r t (n) ;

132 UCL_i = muhat + k_i ∗sigma_0/ s q r t (n) ;
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133 IF LCL_i<0 then LCL_i =0;

134 FAR_i = 1−(PROBCHI(UCL_i ∗n , 5∗n)−PROBCHI(LCL_i ∗n , 5∗n) ) ;

135 ARL_i = 1/FAR_i ;

136 perc_e r r o r = ( abs (ARL_i − ARL_0) )/ARL_0∗100 ;

137 i t_matrix = i t_matrix // ( c | | k_i | | ARL_i | | perc_e r r o r ) ;

138

139 i f perc_e r r o r <= TOL then f l a g =1;

140 end ; ∗end do i t ;

141 p r i n t i t_matrix ;

142

143 k = i t_matrix [ c , 2 ] ;

144

145 LCLhat = muhat − k∗sigma_0/ s q r t (n) ;

146 UCLhat = muhat + k∗sigma_0/ s q r t (n) ;

147

148 p r i n t "Estimated Control Limits " ;

149 p r i n t LCLhat UCLhat ;

150

151 run l=j (&siCodem , 1 ) ;

152 f l a g =0;

153 do de l t a = −3 to 3 by 0 . 2 5 ;

154 s h i f t = de l t a∗ ( s q r t (10)/ s q r t (5 ) ) ;

155 do i = 1 to &sim ;

156 k=0;

157 f l a g =0;

158 do j = 1 to stop un t i l ( f l a g =1) ;

159 k=k+1;

160 ∗u=in t ( ranuni ( j (n , 1 , 0 ) )#bigN )+1;

161 ∗x_obs = x [ u ] ;

162 x_obs = j (&n , 1 , . ) ;

163 c a l l randgen (x_obs , "CHI" ,5) ;

164 x_obs = x_obs + s h i f t ;

165 xbar = mean(x_obs ) ;

166 ∗pr in t xbar LL UL;

167 i f ( xbar<=LCLhat ) | ( xbar>=UCLhat) then f l a g =1;

168 ∗pr in t f l a g ;

169 end ; ∗end do un t i l ;

170 run l [ i ]=k ;

171 end ; ∗end do i ;
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172 ARL=mean( run l ) ;

173 SDRL=sq r t ( var ( run l ) ) ;

174 c a l l qnt l (q , runl , { 0 . 0 5 , 0 . 25 , 0 . 5 , 0 . 75 , 0 . 95} ) ;

175 output1 = de l t a | | ARL | | SDRL | | (q ‘ ) ;

176 output = output // output1 ;

177 ∗pr in t ARL;

178 end ; ∗end do de l t a ;

179

180 c r ea t e a r l_data_convent iona l from output [ colname={"de l t a " " a r l " " s d r l " "

p5" "p25" "p50" "p75" "p95 " } ] ;

181 append from output ;

182

183 p r i n t "Run−Length D i s t r i bu t i on f o r Estimated Control Limits with var i ous

s h i f t s in p roce s s mean" ;

184 p r i n t output [ colname={"de l t a " " a r l " " s d r l " "p5" "p25" "p50" "p75" "p95

" } ] ;

185 f r e e output output1 ;

186 qu i t ;

187 data bootst rap1 ( keep = de l t a a r l 1 ) ;

188 s e t a r l_data_boots t rap ;

189 a r l 1 = a r l ;

190 run ;

191 data convent iona l1 ( keep = de l t a a r l 2 ) ;

192 s e t a r l_data_convent iona l ;

193 a r l 2 = a r l ;

194 run ;

195

196 data combined ;

197 merge bootst rap1 convent iona l1 ;

198 run ;

199 gopt ions r e s e t=a l l ;

200 symbol1 c o l o r=blue i=j o i n ;

201 symbol2 c o l o r=green i=j o i n ;

202 proc gp lo t data=combined ;

203 p l o t ( a r l 1 a r l 2 )∗de l t a /over l ay ;

204 run ;

205 symbol ;

206 qu i t ;

207 r e s e t l i n e ;
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SAS program that simulates a N (0, 1) in-control process distribution

1 opt ions l s =100 nodate pageno=1 formdlim="_" ;

2

3 %l e t m=20;

4 %l e t n=5;

5 %l e t sim=1e4 ;

6 %l e t seed=88;

7 %l e t alpha =0.0027;

8 proc iml ;

9 r e s e t nolog ;

10 m=&m;

11 n=&n ;

12 x=j (&m,&n , . ) ;

13 bigN = &m∗&n ;

14 c a l l randseed (&seed ) ;

15 c a l l randgen (x , "NORMAL" ,0 ,1 ) ; ∗gene ra t e s m∗n random va lue s from CHI(5) ;

16 xbarbar = mean(x ) [ , : ] ;

17 sp2 = mean( var (x ‘ ) ) [ , : ] ;

18 p r i n t sp2 ;

19 a=log ( sq r t (2 ) ) ;

20 b=lgamma ( (m∗ (n−1)+1)/2) ;

21 c=log ( sq r t (m∗ (n−1) ) ) ;

22 d=lgamma ( (m∗ (n−1) )/2) ;

23 lc4m=a+b−c−d ;

24 c4m=exp ( lc4m ) ;

25 ∗pr in t c4m ;W

26 muhat=xbarbar ;

27 sigma_0=sq r t ( sp2 )/c4m ;

28 p r i n t muhat sigma_0 ;

29 x = shape (x , bigN , 1 ) ; ∗vec operator on m by n matrix x ;

30

31 r e s u l t=j ( 1 000 , 2 , . ) ;

32 alpha = &alpha ;

33 do i = 1 to 1000 ;

34 xbar_b = j ( 1000 , 1 , . ) ;

35 do j = 1 to 1000 ;

36 u = in t ( ranuni ( j (&n , 1 , 0 ) )#bigN )+1;

37 x_b = x [ u ] ;
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38 xbar_b [ j ,1 ]=mean(x_b) ;

39 end ; ∗end do j ;

40 p = ( alpha/2) | | (1−( alpha/2) ) ;

41 c a l l qnt l (q , xbar_b , p) ;

42 r e s u l t [ i , ] = q ‘ ;

43 end ; ∗end do i ;

44 r e s u l t_f i n a l = mean( r e s u l t ) ;

45

46 ∗pr in t r e s u l t_f i n a l ;

47 LL_se = sq r t ( var ( r e s u l t [ , 1 ] ) ) ;

48 UL_se = sq r t ( var ( r e s u l t [ , 2 ] ) ) ;

49 LL_avg = r e s u l t_f i n a l [ 1 , 1 ] ;

50 UL_avg = r e s u l t_f i n a l [ 1 , 2 ] ;

51 p r i n t LL_avg LL_se ;

52 p r i n t UL_avg UL_se ;

53 f r e e r e s u l t xbar_b ;

54

55 ∗Phase I I ;

56

57 n=&n ;

58

59 ARL_0=1/alpha ;

60 stop=ARL_0 ∗ 10 ;

61

62 do de l t a = −3 to 3 by 0 . 2 5 ;

63 run l=j (&sim , 1 , . ) ;

64 s h i f t = de l t a∗ ( s q r t (1 )/ s q r t (n) ) ;

65 do i = 1 to &sim ;

66 k=0;

67 f l a g =0;

68 do j = 1 to stop un t i l ( f l a g =1) ;

69 k=k+1;

70 ∗u=in t ( ranuni ( j (n , 1 , 0 ) )#bigN )+1;

71 ∗x_obs = x [ u ] ;

72 x_obs = j (&n , 1 , . ) ;

73 c a l l randgen (x_obs , "NORMAL" ,0 ,1 ) ;

74 x_obs = x_obs + s h i f t ;

75 xbar = mean(x_obs ) ;

76 ∗pr in t xbar LL UL;
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77 i f ( xbar<=LL_avg ) | ( xbar>=UL_avg ) then f l a g =1;

78 ∗pr in t f l a g ;

79 end ; ∗end do un t i l ;

80 run l [ i ]=k ;

81 end ; ∗end do i ;

82 ARL = mean( run l ) ;

83 i f d e l t a=0 then rem_ARL=ARL;

84 SDRL = sqr t ( var ( run l ) ) ;

85 c a l l qnt l (q , runl , { 0 . 0 5 , 0 . 25 , 0 . 5 , 0 . 75 , 0 . 95} ) ;

86 output1 = de l t a | | ARL | | SDRL | | (q ‘ ) ;

87 output = output // output1 ;

88 end ; ∗end do de l t a ;

89 p r i n t "Run−Length D i s t r i bu t i on f o r Bootstrap Control Limits with var i ous

s h i f t s in p roce s s mean" ;

90 p r i n t output [ colname={"de l t a " " a r l " " s d r l " "p5" "p25" "p50" "p75" "p95

" } ] ;

91 ∗pr in t rem_ARL;

92

93 c r ea t e a r l_data_boots t rap from output [ colname={"de l t a " " a r l " " s d r l " "p5"

"p25" "p50" "p75" "p95 " } ] ;

94 append from output ;

95 f r e e output output1 ;

96

97 ∗Finding the optimal va lue f o r k ;

98 ARL_0 = rem_ARL;

99 p r i n t ARL_0 ;

100 k_i_1 = 2 . 8 ; ∗ f i r s t i n i t i a l guess f o r k ;

101 k_i = 2 . 9 ; ∗second i n i t i a l guess f o r k ;

102

103 LCL_i_1 = muhat − k_i_1∗sigma_0/ s q r t (n) ;

104 UCL_i_1 = muhat + k_i_1∗sigma_0/ s q r t (n) ;

105 LCL_i = muhat − k_i ∗sigma_0/ s q r t (n) ;

106 UCL_i = muhat + k_i ∗sigma_0/ s q r t (n) ;

107

108 FAR_i_1 = 1−CDF( ’NORMAL’ ,UCL_i_1 ,0 ,1/ s q r t (n) )+CDF( ’NORMAL’ ,LCL_i_1 ,0 ,1/

s q r t (n) ) ;

109 FAR_i = 1−CDF( ’NORMAL’ ,UCL_i , 0 , 1/ s q r t (n) )+CDF( ’NORMAL’ ,LCL_i , 0 , 1/ s q r t (n) )

;

110
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111 ARL_i_1 = 1/FAR_i_1 ;

112 ARL_i = 1/FAR_i ;

113

114 p r i n t ARL_i_1 ARL_i ;

115

116

117 perc_e r r o r 1 = ( abs (ARL_i_1−ARL_0)/ARL_0)∗100 ;

118 perc_e r r o r 2 = ( abs (ARL_i−ARL_0)/ARL_0)∗100 ;

119

120 i t_matrix = (1 | | k_i_1 | | ARL_i_1 | | perc_e r r o r 1 ) // (2 | | k_i | | ARL_i

| | perc_e r r o r 2 ) ;

121 c=2;

122 max_i t = 30 ;

123 f l a g =0;

124 TOL=0.01; ∗0.1% e r r o r ;

125 do i t = 1 to max_i t u n t i l ( f l a g =1) ;

126 c=c+1;

127 k_i_1 = i t_matrix [ c−1 ,2 ] ;

128 k_i_2 = i t_matrix [ c−2 ,2 ] ;

129 ARL_i_1 = i t_matrix [ c−1 ,3 ] ;

130 ARL_i_2 = i t_matrix [ c−2 ,3 ] ;

131 k_i = ( (ARL_0−ARL_i_1)∗ ( k_i_1−k_i_2)/ (ARL_i_1−ARL_i_2) )+k_i_1 ;

132 LCL_i=muhat − k_i ∗sigma_0/ s q r t (n) ;

133 UCL_i = muhat + k_i ∗sigma_0/ s q r t (n) ;

134 FAR_i = 1−CDF( ’NORMAL’ ,UCL_i , 0 , 1/SQRT(5 ) )+CDF( ’NORMAL’ ,LCL_i , 0 , 1/ s q r t

(5 ) ) ;

135 ∗pr in t FAR_i ;

136 ARL_i = 1/FAR_i ;

137 perc_e r r o r = ( abs (ARL_i − ARL_0) )/ARL_0∗100 ;

138 i t_matrix = i t_matrix // ( c | | k_i | | ARL_i | | perc_e r r o r ) ;

139

140 i f perc_e r r o r <= TOL then f l a g =1;

141 end ; ∗end do i t ;

142 p r i n t i t_matrix ;

143

144 k = i t_matrix [ c , 2 ] ;

145

146 LCLhat = muhat − k∗sigma_0/ s q r t (n) ;

147 UCLhat = muhat + k∗sigma_0/ s q r t (n) ;
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148

149 p r i n t "Estimated Control Limits " ;

150 p r i n t LCLhat UCLhat ;

151

152 run l=j (&sim , 1 ) ;

153 f l a g =0;

154 do de l t a = −3 to 3 by 0 . 2 5 ;

155 s h i f t = de l t a∗ ( s q r t (1 )/ s q r t (n) ) ;

156 do i = 1 to &sim ;

157 k=0;

158 f l a g =0;

159 do j = 1 to stop un t i l ( f l a g =1) ;

160 k=k+1;

161 ∗u=in t ( ranuni ( j (n , 1 , 0 ) )#bigN )+1;

162 ∗x_obs = x [ u ] ;

163 x_obs = j (&n , 1 , . ) ;

164 c a l l randgen (x_obs , "NORMAL" ,0 ,1 ) ;

165 x_obs = x_obs + s h i f t ;

166 xbar = mean(x_obs ) ;

167 ∗pr in t xbar LL UL;

168 i f ( xbar<=LCLhat ) | ( xbar>=UCLhat) then f l a g =1;

169 ∗pr in t f l a g ;

170 end ; ∗end do un t i l ;

171 run l [ i ]=k ;

172 end ; ∗end do i ;

173 ARL=mean( run l ) ;

174 SDRL=sq r t ( var ( run l ) ) ;

175 c a l l qnt l (q , runl , { 0 . 0 5 , 0 . 25 , 0 . 5 , 0 . 75 , 0 . 95} ) ;

176 output1 = de l t a | | ARL | | SDRL | | (q ‘ ) ;

177 output = output // output1 ;

178 ∗pr in t ARL;

179 end ; ∗end do de l t a ;

180

181 c r ea t e a r l_data_convent iona l from output [ colname={"de l t a " " a r l " " s d r l " "

p5" "p25" "p50" "p75" "p95 " } ] ;

182 append from output ;

183

184 p r i n t "Run−Length D i s t r i bu t i on f o r Estimated Control Limits with var i ous

s h i f t s in p roce s s mean" ;
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185 p r i n t output [ colname={"de l t a " " a r l " " s d r l " "p5" "p25" "p50" "p75" "p95

" } ] ;

186 f r e e output output1 ;

187 qu i t ;

188 data bootst rap1 ( keep = de l t a a r l 1 ) ;

189 s e t a r l_data_boots t rap ;

190 a r l 1 = a r l ;

191 run ;

192 data convent iona l1 ( keep = de l t a a r l 2 ) ;

193 s e t a r l_data_convent iona l ;

194 a r l 2 = a r l ;

195 run ;

196

197 data combined ;

198 merge bootst rap1 convent iona l1 ;

199 run ;

200 gopt ions r e s e t=a l l ;

201 symbol1 c o l o r=blue i=j o i n ;

202 symbol2 c o l o r=green i=j o i n ;

203 proc gp lo t data=combined ;

204 p l o t ( a r l 1 a r l 2 )∗de l t a /over l ay ;

205 run ;

206 symbol ;

207 qu i t ;

208 r e s e t l i n e ;
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A.1.2 SAS program used in the simulation study of the subgroup boot-

strap proposed by [34] Seppala et al. (1995)

The Exp(1) case

1 opt ions l s =100 nodate pageno=1;

2

3 %l e t m=20;

4 %l e t n=5;

5 %l e t alpha =0.0027;

6 %l e t sim=1e4 ;

7 gopt ions r e s e t=a l l border ;

8 proc iml ;

9 r e s e t nolog ;

10 m=&m;

11 n=&n ;

12 alpha=&alpha ;

13 sim=&sim ;

14 do j = 1 to sim ;

15 x=j (m, n , . ) ;

16 c a l l randgen (x , "GAMMA" ,1) ;

17 xbar_sub = (mean(x ‘ ) ) ‘ ;

18 e_i j = x−xbar_sub ;

19 xbarbar = mean(mean(x ) ‘ ) ;

20 a=sq r t (n/ (n−1) ) ;

21 bigB = 2000 ;

22 e_i j = shape ( e_i j ,m∗n , 1 ) ; ∗vec ( e_i j ) operator ;

23 x = shape (x ,m∗n , 1 ) ;

24 xbar_bCode = j ( bigB , 1 , . 0 ) ;

25 do i = 1 to bigB ;

26 u=in t ( ranuni ( j (n , 1 , 0 ) )#(m∗n) )+1;

27 e_i s t a r = e_i j [ u ] ;

28 x_i s t a r = xbarbar + a#e_i s t a r ;

29 ∗pr in t x_i s t a r ;

30 xbar_b [ i ] = mean(x_i s t a r ) ;

31 end ; ∗end do i ;

32 ∗pr in t xbar_b ;

33 c a l l qnt l (LCL_j , xbar_b , alpha/2) ;

34 c a l l qnt l (UCL_j , xbar_b,1−( alpha/2) ) ;

35 z_p = Quant i le ("NORMAL",1− alpha/2) ;
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36 LCL_std = xbarbar − z_p ∗ s q r t ( var (x ) )/ s q r t (n) ;

37 UCL_std = xbarbar + z_p ∗ s q r t ( var (x ) )/ s q r t (n) ;

38 ∗pr in t LCL_std UCL_std ;

39 i f LCL_std < 0 then LCL_std=0;

40 CVG_std_j = CDF("GAMMA" ,n∗UCL_std , n , 1 )−CDF("GAMMA" ,n∗LCL_std , n , 1 ) ;

41 ARL_std_j = 1/(1−CVG_std_j ) ;

42 ∗pr in t ARL_std_j ;

43 ∗pr in t LCL_j UCL_j ;

44 CVG_j = CDF("GAMMA" ,n∗UCL_j , n , 1 )−CDF("GAMMA" ,n∗LCL_j , n , 1 ) ;

45 FAR_j = 1−CVG_j ;

46 ARL_j = 1/FAR_j ;

47 output1 = j | | LCL_j | | UCL_j | | CVG_j | | FAR_j | | ARL_j ;

48 output2 = j | | ARL_std_j ;

49 ∗pr in t output1 ;

50 output_b = output_b // output1 ;

51 output_s = output_s // output2 ;

52 end ; ∗end do j ;

53 ∗pr in t output ;

54 ∗pr in t output_s ;

55 ARL_d i s t = output_b [ , 6 ] ;

56 avg_ARL = mean( output_b [ , 6 ] ) ;

57 ARL_se = sq r t ( var ( output_b [ , 6 ] ) )/ s q r t ( sim ) ;

58 p = {0.05 0 .25 0 .5 0 .75 0 . 9 5 } ;

59 c a l l qnt l (ARL_q ,ARL_d i s t , p ) ;

60 ARL_b_data = avg_ARL | | ARL_se | | ARL_q ‘ ;

61

62 ARL_s_d i s t = output_s [ , 2 ] ;

63 c a l l qnt l (ARL_q ,ARL_s_d i s t , p ) ;

64 ARL_s_data = mean(ARL_s_d i s t ) | | ( s q r t ( var (ARL_s_d i s t ) )/ s q r t ( sim ) ) | | ARL

_q ‘ ;

65 p r i n t m n alpha ;

66 p r i n t "Bootstrap ARL S t a t i s t i c s " ;

67 l = {"Average" "SE" "p5" "Q1" "Q2" "Q3" "p95 "} ;

68 p r i n t ARL_b_data [ colname=l ] ;

69 p r i n t "Standard ARL S t a t i s t i c s " ;

70 p r i n t ARL_s_data [ colname=l ] ;

71

72 c r ea t e a r l_data_b from a r l_d i s t [ colname={"ARL" } ] ;

73 append from a r l_d i s t ;
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74 c r ea t e a r l_data_s from a r l_s_d i s t [ colname={"ARL" } ] ;

75 append from a r l_s_d i s t ;

76

77 qu i t ;

78

79 data a r l_data_b ;

80 s e t a r l_data_b ;

81 Group="Bootstrap " ;

82 run ;

83 data a r l_data_s ;

84 s e t a r l_data_s ;

85 Group="Standard " ;

86 run ;

87 data toge the r ;

88 s e t a r l_data_b a r l_data_s ;

89 run ;

90 proc s o r t data=toge the r ;

91 by Group ;

92 run ;

93 /∗

94 gopt ions r e s e t = a l l ;

95 ax i s 1 va lue=("Bootstrap " "Standard ") l a b e l=( ’ Control Chart ’ ) ;

96 ax i s 2 l a b e l = ( ’ Average Run−Length (ARL) ’ a=90 j u s t i f y=cente r ) ;

97 symbol

98 i n t e r p o l=boxt5

99 co=blue

100 bwidth=4

101 value=dot

102 cv=red

103 he ight =2;

104 ax i s1

105 l a b e l=none

106 value=(t=1 "Bootstrap " t=2 "Standard ")

107 o f f s e t =(5 ,5)

108 l ength =50;

109 ∗/

110 proc s gp l o t data=toge the r ;

111 xax i s max=6000 l a b e l=’ In−Control Average Run−Length ’ ;

112 yax i s l a b e l=’Type o f Control Chart ’ ;
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113 hbox ARL / category=group WHISKERPCT=5 noou t l i e r s ;

114 run ;

115 qu i t ;

116 r e s e t l i n e ;

The N (0, 1) case

1 opt ions l s =100 nodate pageno=1;

2

3 %l e t m=20;

4 %l e t n=5;

5 %l e t alpha =0.0027;

6 %l e t sim=1e4 ;

7

8 proc iml ;

9 r e s e t nolog ;

10 m=&m;

11 n=&n ;

12 alpha=&alpha ;

13 sim=&sim ;

14 do j = 1 to sim ;

15 x=j (m, n , . ) ;

16 c a l l randgen (x , "NORMAL" ,0 ,1 ) ;

17 xbar_sub = (mean(x ‘ ) ) ‘ ;

18 e_i j = x−xbar_sub ;

19 xbarbar = mean(mean(x ) ‘ ) ;

20 a=sq r t (n/ (n−1) ) ;

21 bigB = 2000 ;

22 e_i j = shape ( e_i j ,m∗n , 1 ) ; ∗vec ( e_i j ) operator ;

23 x = shape (x ,m∗n , 1 ) ;

24 xbar_b = j ( bigB , 1 , . 0 ) ;

25 do i = 1 to bigB ;

26 u=in t ( ranuni ( j (n , 1 , 0 ) )#(m∗n) )+1;

27 e_i s t a r = e_i j [ u ] ;

28 x_i s t a r = xbarbar + a#e_i s t a r ;

29 ∗pr in t x_i s t a r ;

30 xbar_b [ i ] = mean(x_i s t a r ) ;

31 end ; ∗end do i ;

32 ∗pr in t xbar_b ;
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33 c a l l qnt l (LCL_j , xbar_b , alpha/2) ;

34 c a l l qnt l (UCL_j , xbar_b,1−( alpha/2) ) ;

35 z_p = Quant i le ("NORMAL",1− alpha/2) ;

36 LCL_std = xbarbar − z_p ∗ s q r t ( var (x ) )/ s q r t (n) ;

37 UCL_std = xbarbar + z_p ∗ s q r t ( var (x ) )/ s q r t (n) ;

38 ∗pr in t LCL_std UCL_std ;

39 CVG_std_j = CDF("NORMAL" ,UCL_std , 0 , 1/ s q r t (n) )−CDF("NORMAL" ,LCL_std

, 0 , 1/ s q r t (n) ) ;

40 ARL_std_j = 1/(1−CVG_std_j ) ;

41 ∗pr in t ARL_std_j ;

42 ∗pr in t LCL_j UCL_j ;

43 CVG_j = CDF("NORMAL" ,UCL_j , 0 , 1/ s q r t (n) )−CDF("NORMAL" ,LCL_j , 0 , 1/ s q r t (n

) ) ;

44 FAR_j = 1−CVG_j ;

45 ARL_j = 1/FAR_j ;

46 output1 = j | | LCL_j | | UCL_j | | CVG_j | | FAR_j | | ARL_j ;

47 output2 = j | | ARL_std_j ;

48 ∗pr in t output1 ;

49 output_b = output_b // output1 ;

50 output_s = output_s // output2 ;

51 end ; ∗end do j ;

52 ∗pr in t output ;

53 ∗pr in t output_s ;

54 ARL_d i s t = output_b [ , 6 ] ;

55 avg_ARL = mean( output_b [ , 6 ] ) ;

56 ARL_se = sq r t ( var ( output_b [ , 6 ] ) )/ s q r t ( sim ) ;

57 p = {0.05 0 .25 0 .5 0 .75 0 . 9 5 } ;

58 c a l l qnt l (ARL_q ,ARL_d i s t , p ) ;

59 ARL_b_data = avg_ARL | | ARL_se | | ARL_q ‘ ;

60

61 ARL_s_d i s t = output_s [ , 2 ] ;

62 c a l l qnt l (ARL_q ,ARL_s_d i s t , p ) ;

63 ARL_s_data = mean(ARL_s_d i s t ) | | ( s q r t ( var (ARL_s_d i s t ) )/ s q r t ( sim ) ) | | ARL

_q ‘ ;

64 p r i n t m n alpha ;

65 p r i n t "Bootstrap ARL S t a t i s t i c s " ;

66 l = {"Average" "SE" "p5" "Q1" "Q2" "Q3" "p95 "} ;

67 p r i n t ARL_b_data [ colname=l ] ;

68 p r i n t "Standard ARL S t a t i s t i c s " ;
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69 p r i n t ARL_s_data [ colname=l ] ;

70 c r e a t e a r l_data_b from a r l_d i s t [ colname={"ARL" } ] ;

71 append from a r l_d i s t ;

72 c r e a t e a r l_data_s from a r l_s_d i s t [ colname={"ARL" } ] ;

73 append from a r l_s_d i s t ;

74 qu i t ;

75

76 data a r l_data_b ;

77 s e t a r l_data_b ;

78 Group="Bootstrap " ;

79 run ;

80 data a r l_data_s ; SAS code f o r f i nd i n g f o r the NBEWMA Chart

81

82 s e t a r l_data_s ;

83 Group="Standard " ;

84 run ;

85 data toge the r ;

86 s e t a r l_data_b a r l_data_s ;

87 run ;

88 proc s o r t data=toge the r ;

89 by Group ;

90 run ;

91 qu i t ;

92 proc s gp l o t data=toge the r ;

93 xax i s max=1500 l a b e l=’ In−Control Average Run−Length ’ ;

94 yax i s l a b e l=’Type o f Control Chart ’ ;

95 hbox ARL / category=group WHISKERPCT=5 connect=mean no ou t l i e r s ;

96 run ;

97 r e s e t l i n e ;
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A.1.3 SAS program used to construct the BCa control chart

1 opt ions l s =100 nodate pageno=1;

2

3 %l e t m=20;

4 %l e t n=5;

5 %l e t alpha =0.0027;

6 %l e t sim=1e4 ;

7 gopt ions r e s e t=a l l border ;

8 proc iml ;

9 r e s e t nolog ;

10 m=&m;

11 n=&n ;

12 alpha=&alpha ;

13 sim=&sim ;

14 do j = 1 to sim ;

15 x=j (m, n , . ) ;

16 c a l l randgen (x , "GAMMA" ,1) ;

17 bigB = 2e3 ;

18 x = shape (x ,m∗n , 1 ) ;

19 xbar_b = j ( bigB , 1 , . 0 ) ;

20 xbarbar = mean(x ) ;

21 do i = 1 to bigB ;

22 u=in t ( ranuni ( j (n , 1 , 0 ) )#(m∗n) )+1;

23 x_i s t a r = x [ u ] ;

24 xbar_b [ i ] = mean(x_i s t a r ) ;

25 end ; ∗end do i ;

26 B=bigB ;

27 ind = xbar_b < xbarbar ;

28 zhat_0 = Quant i le ("NORMAL" ,mean( ind ) ) ;

29 ∗pr in t zhat_0 ;

30 xbar=mean(x ) ;

31 do i = 1 to n ;

32 i fCode i=1 then ;

33 do ;

34 x_i d e l = x [ ( i +1) : n , 1 ] ;

35 ∗pr in t xbar_i d e l_b ;

36 end ;

37 i f i=n then ;

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



APPENDIX A. SAS PROGRAMS USED IN THE MINI-DISSERTATION 99

38 do ;

39 x_i d e l = x [ 1 : ( n−1) , 1 ] ;

40 ∗pr in t xbar_i d e l_b ;

41 end ;

42 i f i>1 && i<n then ;

43 do ;

44 x_i d e l = xbar_b [ 1 : ( i −1) , 1 ] // xbar_b [ ( i +1) : n , ] ;

45 ∗pr in t xbar_i d e l_b ;

46 end ;

47 c a l c = mean(x_i d e l ) ;

48 thetahat_i = thetahat_i // c a l c ;

49 end ;

50 thetahat = mean(x ) ;

51 num = j (1 , n , 1 )∗ ( ( thetahat − thetahat_i )##3) ;

52 denom = 6∗ ( j (1 , n , 1 )∗ ( ( thetahat − thetahat_i )##2))∗∗ ( 1 . 5 ) ;

53 ∗pr in t num denom ;

54 ahat = num/denom ;

55 ∗pr in t zhat_0 ahat ;

56 z_L = Quant i le ("NORMAL" , alpha/2) ;

57 z_U = Quanti le ("NORMAL",1− alpha/2) ;

58 ∗pr in t z_L z_U;

59 in1 = zhat_0 + ( zhat_0+z_L)/(1−ahat∗ ( zhat_0+z_L) ) ;

60 alpha1 = CDF("NORMAL" , in1 , 0 , 1 ) ;

61 in2 = zhat_0 + ( zhat_0+z_U)/(1−ahat∗ ( zhat_0+z_U) ) ;

62 alpha2 = CDF("NORMAL" , in2 , 0 , 1 ) ;

63 ∗pr in t alpha1 alpha2 ;

64 p = alpha1 | | alpha2 ;

65 c a l l qnt l (LCL_j , xbar_b , alpha1 ) ;

66 c a l l qnt l (UCL_j , xbar_b , alpha2 ) ;

67 f r e e thetahat_i ;

68 z_p = Quant i le ("NORMAL",1− alpha/2) ;

69 LCL_std = xbarbar − z_p ∗ s q r t ( var (x ) )/ s q r t (n) ;

70 UCL_std = xbarbar + z_p ∗ s q r t ( var (x ) )/ s q r t (n) ;

71 ∗pr in t LCL_std UCL_std ;

72 i f LCL_std < 0 then LCL_std=0;

73 CVG_std_j = CDF("GAMMA" ,n∗UCL_std , n , 1 )−CDF("GAMMA" ,n∗LCL_std , n , 1 ) ;

74 ARL_std_j = 1/(1−CVG_std_j ) ;

75 ∗pr in t ARL_std_j ;

76 ∗pr in t LCL_j UCL_j ;
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77 CVG_j = CDF("GAMMA" ,n∗UCL_j , n , 1 )−CDF("GAMMA" ,n∗LCL_j , n , 1 ) ;

78 FAR_j = 1−CVG_j ;

79 ARL_j = 1/FAR_j ;

80 output1 = j | | LCL_j | | UCL_j | | CVG_j | | FAR_j | | ARL_j ;

81 output2 = j | | ARL_std_j ;

82 ∗pr in t output1 ;

83 output_b = output_b // output1 ;

84 output_s = output_s // output2 ;

85 end ; ∗end do j ;

86 ∗pr in t output ;

87 ∗pr in t output_s ;

88 ARL_d i s t = output_b [ , 6 ] ;

89 avg_ARL = mean( output_b [ , 6 ] ) ;

90 ARL_se = sq r t ( var ( output_b [ , 6 ] ) )/ s q r t ( sim ) ;

91 p = {0.05 0 .25 0 .5 0 .75 0 . 9 5 } ;

92 c a l l qnt l (ARL_q ,ARL_d i s t , p ) ;

93 ARL_b_data = avg_ARL | | ARL_se | | ARL_q ‘ ;

94

95 ARL_s_d i s t = output_s [ , 2 ] ;

96 c a l l qnt l (ARL_q ,ARL_s_d i s t , p ) ;

97 ARL_s_data = mean(ARL_s_d i s t ) | | ( s q r t ( var (ARL_s_d i s t ) )/ s q r t ( sim ) ) | | ARL

_q ‘ ;

98 p r i n t m n alpha ;

99 p r i n t "Bootstrap ARL S t a t i s t i c s " ;

100 l = {"Average" "SE" "p5" "Q1" "Q2" "Q3" "p95 "} ;

101 p r i n t ARL_b_data [ colname=l ] ;

102 p r i n t "Standard ARL S t a t i s t i c s " ;

103 p r i n t ARL_s_data [ colname=l ] ;

104

105 c r ea t e a r l_data_b from a r l_d i s t [ colname={"ARL" } ] ;

106 append from a r l_d i s t ;

107 c r ea t e a r l_data_s from a r l_s_d i s t [ colname={"ARL" } ] ;

108 append from a r l_s_d i s t ;

109

110 qu i t ;

111

112 data a r l_data_b ;

113 s e t a r l_data_b ;

114 Group="Bootstrap " ;
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115 run ;

116 data a r l_data_s ;

117 s e t a r l_data_s ;

118 Group="Standard " ;

119 run ;

120 data toge the r ;

121 s e t a r l_data_b a r l_data_s ;

122 run ;

123 proc s o r t data=toge the r ;

124 by Group ;

125 run ;

126 /∗

127 gopt ions r e s e t = a l l ;

128 ax i s1 va lue=("Bootstrap " "Standard ") l a b e l=( ’ Control Chart ’ ) ;

129 ax i s2 l a b e l = ( ’ Average Run−Length (ARL) ’ a=90 j u s t i f y=cente r ) ;

130 symbol

131 i n t e r p o l=boxt5

132 co=blue

133 bwidth=4

134 value=dot

135 cv=red

136 he ight =2;

137 ax i s1

138 l a b e l=none

139 value=(t=1 "Bootstrap " t=2 "Standard ")

140 o f f s e t =(5 ,5)

141 l ength =50;

142 ∗/

143 proc s gp l o t data=toge the r ;

144 xax i s max=1000 l a b e l=’ In−Control Average Run−Length ’ ;

145 yax i s l a b e l=’Type o f Control Chart ’ ;

146 hbox ARL / category=group WHISKERPCT=5 connect=mean no ou t l i e r s ;

147 run ;

148 qu i t ;

149 r e s e t l i n e ;
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A.1.4 SAS code used to construct and measure the performance of the

PITC and TC charts for the Exp(1) case

A.1.4.1 SAS program to find â and b̂ for the PITC chart

1 opt ions pageno=1 nodate l s =100;

2

3 %l e t bigN=15000;

4

5 proc iml ;

6 r e s e t nolog ;

7 bigN=&bigN ;

8 Y=j ( bigN , 1 , . ) ;

9 c a l l randseed (123456) ;

10 c a l l randgen (Y, "GAMMA" ,1 ,1 ) ;

11

12 sigmahat = sq r t ( var (Y) ) ;

13 N=nrow (Y) ;

14 c a l l qnt l (q ,Y, { 0 . 2 5 0 . 75} ) ;

15 IQRhat = q [2]−q [ 1 ] ;

16 Ahat = min ( sigmahat , IQRhat/ 1 . 34 ) ;

17 p r i n t Ahat ;

18 hhat = Ahat∗(4/(3∗bigN ) )∗∗(1/5) ;

19 p r i n t hhat ;

20 /∗ f ha t_y ’ s are generated here ∗/

21 f0hat_kde = j (N, 1 , . ) ;

22 do i = 1 to N;

23 yval = Y[ i ] ;

24 vec = ( j (n , 1 , yval )−Y)/hhat ;

25 vec = PDF( ’NORMAL’ , vec , 0 , 1 ) ;

26 t e s t = sum( vec ) ;

27 f0hat_kde [ i ] = sum( vec )/ (N∗hhat ) ;

28 end ; ∗end do i ;

29 ∗pr in t f0hat_kde ;

30 ghat = geomean ( f0hat_kde ) ; SAS code f o r i l l u s t r a t i v e example 1

31 ∗pr in t ghat ;

32 lambda = ( ghat/ f 0hat_kde )##0.5;

33 ∗pr in t lambda ;

34 hj = lambda##hhat ;

35 ∗pr in t hj ;
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36

37 s t a r t akde (x , hj , y ) ;

38 n=nrow (y ) ;

39 vec = (x−y )/hj ;

40 vec = PDF( ’NORMAL’ , vec , 0 , 1 ) ;

41 va l = sum( vec )/n ;

42 re turn ( va l ) ;

43 f i n i s h akde ;

44 s t a r t akde_cd f (x , hj , y ) ;

45 n=nrow (y ) ;

46 vec = (x−y )/hj ;

47 vec = CDF( ’NORMAL’ , vec , 0 , 1 ) ;

48 va l = sum( vec )/n ;

49 re turn ( va l ) ;

50 f i n i s h akde_cd f ;

51

52 ∗u=ranuni (123) ;

53 ∗pr in t u ;

54 s t a r t akde_cd f_inv (u , hj , y ) ;

55 n=nrow (y ) ;

56 y1=y ;

57 TOL=1/(1 e6 ) ;

58 c a l l s o r t ( y1 , {1} ) ;

59 help_vec = y1 | | ( 1 : n ) ‘ | | ( 1 : n ) ‘ ;

60 he lp_vec [ , 3 ] = help_vec [ , 3 ] /n ;

61 d i s t = abs ( he lp_vec [ ,3 ]−u) ;

62 help_vec = help_vec | | d i s t ;

63 c a l l s o r t ( he lp_vec , {4} ) ;

64 x1 = help_vec [ 1 , 1 ] ;

65 x2 = help_vec [ 2 , 1 ] ;

66 ∗pr in t he lp_vec ;

67 ∗pr in t x1 x2 ;

68 Fhat_x1 = akde_cd f ( x1 , hj , y ) ;

69 Fhat_x2 = akde_cd f ( x2 , hj , y ) ;

70 ∗pr in t x1 Fhat_x1 ;

71 ∗pr in t x2 Fhat_x2 ;

72 i t =30;

73 i t_matrix = ( 1 : 2 ) ‘ | | ( x1 // x2 ) | | ( Fhat_x1 // Fhat_x2 ) ;

74 ∗pr in t i t_matrix ;
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75 k=2;

76 f l a g =0;

77 do i = 1 to i t u n t i l ( f l a g =1) ;

78 k=k+1;

79 x_n = i t_matrix [ k−2 ,2 ] ;

80 x_n_1 = i t_matrix [ k−1 ,2 ] ;

81 Fhat_n = i t_matrix [ k−2 ,3 ] ;

82 Fhat_n_1 = i t_matrix [ k−1 ,3 ] ;

83 x_n_2 = x_n_1 − ( ( x_n_1−x_n)/ ( Fhat_n_1−Fhat_n) )∗ ( Fhat_n_1−u) ;

84 Fhat_n_2 = akde_cd f ( x_n_2 , hj , y ) ;

85 i t_matrix = i t_matrix // ( k | | x_n_2 | | Fhat_n_2) ;

86 t e s t = abs ( Fhat_n_2 − Fhat_n_1) ;

87 i f t e s t<=TOL then f l a g =1;

88 ∗pr in t i t_matrix ;

89 end ;

90 l a s t = i t_matrix [ k , 2 ] ;

91 re turn ( l a s t ) ;

92 f i n i s h akde_cd f_inv ;

93

94 no_i n t s = 1000 ;

95 h = (1−0)/no_i n t s ;

96 bigK=0.5∗ 1 ;

97 do i = 1 to no_i n t s ;

98 x i_s t a r = ((0+ i ∗h) + (0+( i −1)∗h) )/ 2 ;

99 va l1 = akde_cd f_inv ( x i_s tar , hj , y ) ;

100 va l2 = akde_cd f ( val1−bigK , hj , y ) ;

101 va l2 = 1 − va l2 ;

102 keep1 = keep1 // ( va l2∗h) ;

103 keep2 = keep2 // ( va l2∗2∗x i_s t a r∗h) ;

104 end ;

105 m1hat = sum( keep1 ) ;

106 m2hat = sum( keep2 ) ;

107 p r in t m1hat m2hat ;

108

109 ahat = (m1hat∗∗2 − m1hat∗m2hat )/ (m2hat−m1hat∗∗2) ;

110 bhat = ( (m1hat−m2hat )∗(1−m1haSAS code f o r f i nd i n g f o r the NBEWMA

Chart

111 t ) )/ (m2hat−m1hat∗∗2) ;

112
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113 p r in t ahat bhat ;

114 qu i t ;

115 r e s e t l i n e ;

A.1.4.2 SAS program to find the threshold H value for the PITC chart

1 opt ions pageno=1 nodate l s =100;

2

3 proc iml ;

4 r e s e t nolog ;

5 ahat =1.400553;

6 bhat =0.9053615;

7 sims=10000;

8 h=4.72;

9 run l=j ( sims , 1 , . ) ;

10 do i = 1 to sims ; he d e r i v a t i on o f the equat ions are shown in Sec t i on o f

t h i s d i s s e r t a t i o n .

11 f l a g =0;

12 s0_hat = 0 ;

13 k=0;

14 do j = 1 to 20000 un t i l ( f l a g =1) ;

15 k=k+1;

16 u=ranuni (0 ) ;

17 va l = s0_hat+(ahat−1)∗ l og (u)+(bhat−1)∗ l og (1−u)−l og ( beta ( ahat , bhat

) ) ;

18 s1_hat = max(0 , va l ) ;

19 i f s1_hat>=h then f l a g =1;

20 s0_hat=s1_hat ;

21 end ;

22 run l [ i ]=k ;

23 end ;

24 a r l = mean( run l ) ;

25 p r i n t a r l ;

26 qu i t ;

A.1.4.3 SAS Program to measure the performance of PITC chart

1 opt ions pageno=1 nodate l s =100;

2
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3 proc iml ;

4 r e s e t nolog ;

5 ahat =1.400553;

6 bhat =0.9053615;

7 sims=10000;

8 h=4.72;

9 cache = {0 0 .1 0 .25 0 .5 0 .75 1} ;

10 d to t a l = nco l ( cache ) ;

11 do d = 1 to d to t a l ;

12 run l=j ( sims , 1 , . ) ;

13 de l t a = cache [ d ] ∗ 1 ;

14 do i = 1 to sims ;

15 f l a g =0;

16 s0_hat = 0 ;

17 k=0;

18 do j = 1 to 22000 un t i l ( f l a g =1) ;

19 i f j>=2000 then k=k+1;

20 x=j (1 , 1 , 0 ) ;

21 c a l l randgen (x , "GAMMA" ,1 ,1 ) ;

22 x = x + de l t a ;

23 u=CDF("GAMMA" ,x , 1 , 1 ) ;

24 va l = s0_hat+(ahat−1)∗ l og (u)+(bhat−1)∗ l og (1−u)−l og ( beta ( ahat ,

bhat ) ) ;

25 s1_hat = max(0 , va l ) ;

26 i f ( s1_hat>=h) & ( j<2000) then s0_hat=0;

27 i f ( s1_hat>=h) & ( j>=2000) then f l a g =1;

28 i f ( s1_hat<h) then s0_hat=s1_hat ;

29 end ;

30 run l [ i ]=k ;

31 end ;

32 a r l = mean( run l ) ;

33 s t a t s = s t a t s // ( cache [ d ] | | a r l ) ;

34 ∗pr in t a r l ;

35 end ;

36 p r i n t s t a t s ;

37 qu i t ;

A.1.4.4 SAS program to find the threshold value H for the TC chart
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1 opt ions pageno=1 nodate l s =100;

2

3 %l e t bigN=15000;

4

5 proc iml ;

6 r e s e t nolog ;

7 bigN=&bigN ;

8 Y=j ( bigN , 1 , . ) ;

9 c a l l randseed (123456) ;

10 c a l l randgen (Y,"GAMMA" ,1 ,1 ) ;

11 s t a r t ed f (x , y ) ;

12 prob = mean(x<=y) ;

13 return ( prob ) ;

14 f i n i s h ed f ;

15

16 s t a r t RandBetween (n , min , max) ;

17 u = j (n , 1 , 0 ) ;

18 u = in t ( ranuni (u)#(max+1−min) )+min ;

19 return (u) ;

20 f i n i s h ;

21

22 H=12.7;

23 alpha =0.5 ;

24 nosims=10000;

25 run l=j ( nosims , 1 , . ) ;

26 do i = 1 to nosims ;

27 k=0;

28 f l a g =0;

29 S0_hat=0;

30 do j = 1 to 20000 un t i l ( f l a g =1) ;

31 k=k+1;

32 u1 = RandBetween (1 , 0 , bigN )/bigN ;

33 va l = S0_hat + u1 − alpha ;

34 S1_hat = max(0 , va l ) ;

35 ∗pr in t S1_hat ;

36 i f S1_hat>=H then f l a g =1;

37 S0_hat = S1_hat ;

38 end ;

39 run l [ i ]=k ;
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40 end ;

41 ∗pr in t run l ;

42 a r l=mean( run l ) ;

43 p r i n t a r l ;

44 qu i t ;

45 r e s e t l i n e ;

A.1.4.5 SAS program to measure the performance of TC chart

1 opt ions pageno=1 nodate l s =100;

2

3 %l e t bigN=15000;

4

5 proc iml ;

6 r e s e t nolog ;

7 bigN=&bigN ;

8 Y=j ( bigN , 1 , . ) ;

9 c a l l randseed (123456) ;

10 c a l l randgen (Y,"GAMMA" ,1 ,1 ) ;

11 s t a r t ed f (x , y ) ;

12 prob = mean(x<=y) ;

13 return ( prob ) ;

14 f i n i s h ed f ;

15

16 s t a r t RandBetween (n , min , max) ;

17 u = j (n , 1 , 0 ) ;

18 u = in t ( ranuni (u)#(max+1−min) )+min ;

19 return (u) ;

20 f i n i s h ;

21

22 H=12.7;

23 alpha =0.5 ;

24 nosims=10000;

25 cache = {0 0 .1 0 .25 0 .5 0 .75 1} ;

26 bigD = nco l ( cache ) ;

27 do d = 1 to bigD ;

28 de l t a = cache [ d ] ∗ 1 ;

29 run l=j ( nosims , 1 , . ) ;

30 do i = 1 to nosims ;
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31 k=0;

32 f l a g =0;

33 S0_hat=0;

34 do j = 1 to 22000 un t i l ( f l a g =1) ;

35 i f j>=2000 then k=k+1;

36 x=log (1− ranuni (0 ) )∗−1;

37 i f j>=2000 then x=x+de l t a ;

38 u1 = CDF("GAMMA" ,x , 1 , 1 ) ;

39 ∗u1 = edf (x , y ) ;

40 va l = S0_hat + u1 − alpha ;

41 S1_hat = max(0 , va l ) ;

42 i f S1_hat>=H & j<2000 then S0_hat=0;

43 i f S1_hat>=H & j>=2000 then f l a g =1;

44 i f S1_hat<H then S0_hat=S1_hat ;

45 ∗S0_hat = S1_hat ;

46 end ;

47 run l [ i ]=k ;

48 end ;

49 ∗pr in t run l ;

50 a r l=mean( run l ) ;

51 ∗pr in t a r l ;

52 output = output // ( d e l t a | | a r l ) ;

53 end ;

54 p r i n t output ;

55 qu i t ;

56 r e s e t l i n e ;

A.2 SAS programs used in Chapter 3

A.2.1 SAS code for illustrative example 1

1 opt ions nodate l s =100 formdlim="_" pageno=1;

2

3 %l e t n = 5 ; ∗sample s i z e ;

4 %l e t m = 20 ; ∗subgroup s i z e ;

5 %l e t seed = 1988 ; ∗random seed ;

6

7 proc iml ; only

8 r e s e t nolog ;
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9 n=&n ;

10 m=&m;

11 bigN = m∗n ;

12 x = j (m, n , . ) ; s e c t i o n

13

14 c a l l randseed (&seed ) ;

15 c a l l randgen (x , ’GAMMA’ ,1) ;

16 p r i n t x ;

17 x=shape (x , bigN , 1 ) ;

18 /∗

19 The Expected Value and Variance f o r the Sampling D i s t r i bu t i on

20 o f the Bootstrap Sample Mean i s Calcu lated below ;

21 ∗/

22 B=1e6 ;

23 xbar_b = J (B, 1 , . ) ;

24 do i = 1 to B;

25 u=in t ( ranuni ( J (n , 1 , 0 ) )#bigN+1) ;

26 x_b = x [ u , 1 ] ;

27 xbar_b [ i ,1 ]=x_b [ : , ] ;

28 end ; ∗end do i ;

29 avg_xbarb=mean( xbar_b) ;

30 sigma_xbarb=sq r t ( var ( xbar_b) ) ;

31 p r i n t m n ;

32 p r i n t avg_xbarb sigma_xbarb ;

33

34 f r e e xbar_b ;

35

36 s t a r t tune_L( sim ,m, n , vec_x , z0 , lambda ,L ,mu, sigma ) ;

37

38 bigN=m∗n ;

39 run l=j ( sim , 1 , . ) ;

40 do i = 1 to sim ;

41 f l a g =0;

42 k=0;

43 z_0=z0 ;

44 do j = 1 to 5000 un t i l ( f l a g =1) ;

45 k=k+1;

46 u=in t ( ranuni ( j (n , 1 , 0 ) )#bigN )+1;
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47 UCL_i = mu+L∗sigma∗ s q r t ( ( ( lambda )/(2−lambda ) )∗(1−((1− lambda )∗

∗(2∗k ) ) ) ) ;

48 LCL_i = mu−L∗sigma∗ s q r t ( ( ( lambda )/(2−lambda ) )∗(1−((1− lambda )∗

∗(2∗k ) ) ) ) ;

49 x_bi = vec_x [ u , 1 ] ;

50 xbar_bi = x_bi [ : , ] ;

51 z_i = lambda∗xbar_bi+(1−lambda )∗z_0 ;

52 z_0=z_i ;

53 i f ( z_i>=UCL_i ) | ( z_i<=LCL_i ) then f l a g =1;

54 end ; ∗end do j ; The f o l l ow i n g Saleh et a l . ( ) showed that an EWMA

chart , with est imated va lues f o r and , where r e qu i r e s about

samples o f s i z e .

55 run l [ i ,1 ]=k ;

56 end ; ∗end do i ;

57 ARL=runl [ : , ] ;

58 re turn (ARL) ;

59 f i n i s h tune_L ;

60

61 ∗ t e s t = tune_L(1 e4 ,&m,&n , x , avg_xbarb , 0 . 0 5 , 2 . 6 3 2 3 , avg_xbarb , sigma_xbarb ) ;

62

63 TOL=0.05; ∗5% to l e r an c e f o r e r r o r ;

64 lambda=0.1;

65 z0=avg_xbarb ;

66 sim=1e3 ;

67 ARL_0=500;

68 ARL_1 = tune_L( sim ,&m,&n , x , z0 , lambda , 2 , avg_xbarb , sigma_xbarb ) ;

69 ARL_2 = tune_L( sim ,&m,&n , x , z0 , lambda , 3 , avg_xbarb , sigma_xbarb ) ;

70 perc_e r r o r 1 = ( abs (ARL_1−ARL_0)/ARL_0) ;

71 perc_e r r o r 2 = ( abs (ARL_2−ARL_0)/ARL_0) ;

72

73 i t_matrix = (1 | | 2 | | ARL_1 | | perc_e r r o r 1 ) // (2 | | 3 | | ARL_2 | | perc_

e r r o r 2 ) ;

74 k=3;

75 max_i t = 10 ;

76 f l a g =0;

77

78 do i t = 1 to max_i t u n t i l ( f l a g =1) ;

79 L_i_1 = i t_matrix [ k−1 ,2 ] ;

80 L_i_2 = i t_matrix [ k−2 ,2 ] ;
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81 ARL_i_1 = i t_matrix [ k−1 ,3 ] ;

82 ARL_i_2 = i t_matrix [ k−2 ,3 ] ;

83 L_i = ( (ARL_0−ARL_i_1)∗ (L_i_1−L_i_2)/ (ARL_i_1−ARL_i_2) )+L_i_1 ;

84 ARL_i = tune_L( sim ,&m,&n , x , z0 , lambda ,L_i , avg_xbarb , sigma_xbarb ) ;

85 perc_e r r o r = ( abs (ARL_i − ARL_0) )/ARL_0 ;

86 i t_matrix = i t_matrix // ( k | | L_i | | ARL_i | | perc_e r r o r ) ;

87 k=k+1;

88

89 i f perc_e r r o r <= TOL then f l a g =1;

90 end ; ∗end do i t ;

91 p r i n t lambda ;

92 p r i n t i t_matrix ;

93

94 qu i t ;

95 r e s e t l i n e ;

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



APPENDIX A. SAS PROGRAMS USED IN THE MINI-DISSERTATION 113

A.2.2 SAS code for illustrative example 2

1 opt ions nodate l s =100 formdlim="_" pageno=1;

2

3 %l e t m=20;

4 %l e t n=5;

5 %l e t seed =123456;

6

7 proc iml ;

8 r e s e t nolog ;

9 m=&m;

10 n=&n ;

11 c a l l randseed (&seed ) ;

12 r e f = j (m, n , . ) ;

13 c a l l randgen ( r e f , "GAMMA" ,1) ;

14 bigN=m∗n ;

15 vec_X = shape ( r e f , bigN , 1 ) ; ∗performs vec operator on r e f sample matrix ;

16 ∗pr in t vec_X;

17

18 ∗naive boots t rap e s t imato r s f o r muxbar_0 and sigmaxbar_0 ;

19

20 B=1e5 ; ∗number o f r e p l i c a t i o n s ;

21 xmed_b = J (B, 1 , . ) ;

22 rep=J (B, 1 , 0 ) ;

23 do i = 1 to B;

24 u=in t ( ranuni ( J (n , 1 , 0 ) )#bigN+1) ;

25 x_b = vec_X[ u , 1 ] ;

26 ∗pr in t x_b ;

27 xmed_b [ i ,1 ]=median (x_b) ;

28 ∗pr in t xbar_b ;

29 end ; ∗end do i ;

30

31 ∗pr in t xbar_b ;

32 xmed0_hat = mean(xmed_b) ;

33 sigmahat_0 = sq r t ( var (xmed_b) ) ;

34 p r i n t xmed0_hat sigmahat_0 ;

35

36 ∗Get Control Limits by us ing Bootstrap Samples ;

37 sim=10000; ∗number o f s imu la t i on s ;
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38

39 L=2.656; ∗guess f o r L ;

40 lambda=0.05;

41 run l=j ( sim , 1 , . ) ;

42 do i = 1 to sim ;

43 f l a g =0;

44 k=0;

45 z_0=xmed0_hat ;

46 do j = 1 to 5e3 un t i l ( f l a g =1) ;

47 k=k+1;

48 u=in t ( ranuni ( j (n , 1 , 0 ) )#bigN )+1;

49 UCL_i = xmed0_hat + L∗sigmahat_0∗ s q r t ( ( ( lambda )/(2−lambda ) )∗

(1−((1− lambda )∗∗(2∗k ) ) ) ) ;

50 LCL_i = xmed0_hat − L∗sigmahat_0∗ s q r t ( ( ( lambda )/(2−lambda ) )∗

(1−((1− lambda )∗∗(2∗k ) ) ) ) ;

51 x_bi = vec_x [ u , 1 ] ;

52 xmed_bi = median (x_bi ) ;

53 z_i = lambda∗xmed_bi + (1−lambda )∗z_0 ;

54 z_0 = z_i ;

55 ∗pr in t xbar_bi LCL_i UCL_i ;

56 i f ( z_i>=UCL_i ) | ( z_i<=LCL_i ) then f l a g =1;

57 end ; ∗end do j ;

58 run l [ i ,1 ]=k ;

59 end ; ∗end do i ;

60 ∗pr in t run l ;

61 a r l=run l [ : , ] ;

62 p r i n t a r l ;

63

64 qu i t ;

65 r e s e t l i n e ;
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A.3 SAS programs used in Chapter 4

A.3.1 SAS code for finding L for the NBEWMA Chart

A.3.1.1 The N (0, 1) case

1 opt ions l s =100 pageno=1 nodate formdlim="_" ;

2

3 %l e t m=1000;

4 %l e t n=10;

5 %l e t seed=1234;

6 %l e t sim=10000;

7 proc iml ;

8 r e s e t nolog ;

9 m=&m;

10 n=&n ;

11 seed=&seed ;

12 sim=&sim ;

13

14 /∗ Di s t r i bu t i on ∗/

15 x=j (m, n , . ) ;

16 c a l l randseed ( seed ) ;

17 c a l l randgen (x , "NORMAL" ,0 ,1 ) ;

18 x=shape (x ,m∗n , 1 ) ;

19 bigN=m∗n ;

20

21 /∗ Ca l cu l a t e s the exact boots t rap mean and var iance ∗/

22 xbarbar = mean(x ) ;

23 sigmahat_xbar0 = sq r t (sum( ( x−xbarbar )##2)/ (m∗n∗n) ) ;

24

25 p r i n t xbarbar sigmahat_xbar0 ;

26

27

28 s t a r t generate (n) ;

29 u=ranuni ( j (n , 1 , 0 ) ) ;

30 x = quan t i l e ( ’T ’ ,u , 3 ) ;

31 re turn (x ) ;

32 f i n i s h generate ;

33 L=2.638;

34 lambda=0.05;
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35 ARL_0=500;

36 max=ARL_0∗10 ;

37 run l=j ( sim , 1 , . ) ;

38 do i = 1 to sim ;

39 k=0;

40 f l a g =0;

41 z0=xbarbar ;

42 do j = 1 to max un t i l ( f l a g =1) ;

43 k=k+1;

44 LCL = xbarbar−L∗sigmahat_xbar0∗ s q r t ( ( ( lambda )/(2−lambda ) )∗(1−((1−

lambda )∗∗(2∗k ) ) ) ) ;

45 UCL = xbarbar+L∗sigmahat_xbar0∗ s q r t ( ( ( lambda )/(2−lambda ) )∗(1−((1−

lambda )∗∗(2∗k ) ) ) ) ;

46 u = in t ( ranuni ( j (n , 1 , 0 ) )#(bigN−1) )+1;

47 x_b = x [ u ] ;

48 xbar_b = mean(x_b) ;

49 z1 = lambda∗xbar_b + (1−lambda )∗z0 ;

50 i f ( z1<=LCL) | ( z1>=UCL) then f l a g =1;

51 z0=z1 ;

52 end ;

53 run l [ i ]=k ;

54 end ;

55 ARL=mean( run l ) ;

56 p r i n t a r l ;

57 qu i t ;

58 r e s e t l i n e ;

A.3.1.2 Necessary amendment to the SAS v9.4 program in Section A.3.1.1 when the

underlying process distribution is non-normal

The code required to amend Line 17 of the program listed in Section A.3.1.1 is given below for specific

cases.

t(3) distribution

c a l l randgen (x , "T" , 3 ) ;

Exp(1) distribution

c a l l randgen (x , "GAMMA" , 1 ) ;
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Gamma(3, 1) distribution

c a l l randgen (x , "GAMMA" , 3 ) ;

L(0, 1) distribution

∗Def ine Signum Function ;

s t a r t sgn (x ) ;

ind1 = −1#(x<0 ) ;

ind2 = (x>0 ) ;

product = ind1 + j ( nrow (x ) , nco l ( x ) , 0 ) + ind2 ;

re turn ( product ) ;

f i n i s h sgn ;

∗End Def ine Signum Function ;

∗Star t Laplace Quant i le Function ;

s t a r t lap_p i t c (u ,mu, b ) ;

u=u−0.5 ;

X = mu − b#sgn (u)#log(1−2#abs (u ) ) ;

r e turn (x ) ;

f i n i s h lap_p i t c ;

∗End Laplace Quant i le Function ;

c a l l randgen (x , "UNIFORM" , 0 , 1 ) ;

x = lap_p i t c (x , 0 , 1 ) ;

Logistic(0, 1) distribution

/∗ Log i s t i c D i s t r i bu t i on Quant i le Function ∗/

s t a r t quan t i l e_l o g i s t i c (p ,mu, s ) ;

q = mu + s#log (p/(1−p ) ) ;

r e turn (q ) ;

f i n i s h quan t i l e_l o g i s t i c ;

c a l l randgen (x , " Uniform " , 0 , 1 ) ;

x = quan t i l e_l o g i s t i c (x , 0 , 1 ) ;
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A.3.2 SAS code used to monitor the IC and OOC performance of the

NBEWMA chart

A.3.2.1 N (0, 1) case

1 opt ions l s =100 pageno=1 nodate formdlim="_" ;

2

3 %l e t m=1000; ∗number o f subgroups ;

4 %l e t n=10; ∗sample s i z e ;

5 %l e t seed=1234;

6 %l e t sim=10000; ∗number o f s imu la t i on s ;

7

8 proc iml ;

9 r e s e t nolog ;

10 m=&m;

11 n=&n ;

12 seed=&seed ;

13 sim=&sim ;

14

15 /∗ Di s t r i bu t i on ∗/

16 x=j (m, n , . ) ;

17 c a l l randseed ( seed ) ;

18 c a l l randgen (x , "NORMAL" ,0 ,1 ) ;

19 x=shape (x ,m∗n , 1 ) ;

20 bigN=m∗n ;

21

22 /∗ Ca l cu l a t e s the exact boots t rap mean and var iance ∗/

23 xbarbar = mean(x ) ;

24 sigmahat_xbar0 = sq r t (sum( ( x−xbarbar )##2)/ (m∗n∗n) ) ;

25

26 p r i n t xbarbar sigmahat_xbar0 ;

27

28 ∗Generates random of s i z e n from d i s t r i b u t i o n ;

29 s t a r t generate (n) ;

30 u=ranuni ( j (n , 1 , 0 ) ) ;

31 x = quan t i l e ( ’NORMAL’ ,u , 0 , 1 ) ;

32 re turn (x ) ;

33 f i n i s h generate ;

34

35 L=2.638;
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36 lambda=0.05; ∗smoothing parameter ;

37

38 ARL_0=500; ∗nominal IC ARL_0 ;

39 max=ARL_0∗20 ;

40 run l=j ( sim , 1 , . ) ;

41 do de l t a = −1.5 to 1 .5 by 0 . 2 5 ;

42 sigma=1;

43 s h i f t = de l t a∗ ( sigma/ s q r t (n) ) ;

44 do i = 1 to sim ;

45 k=0;

46 f l a g =0;

47 z0=xbarbar ;

48 do j = 1 to max un t i l ( f l a g =1) ;

49 k=k+1;

50 LCL = xbarbar−L∗sigmahat_xbar0∗ s q r t ( ( ( lambda )/(2−lambda ) )∗

(1−((1− lambda )∗∗(2∗k ) ) ) ) ;

51 UCL = xbarbar+L∗sigmahat_xbar0∗ s q r t ( ( ( lambda )/(2−lambda ) )∗

(1−((1− lambda )∗∗(2∗k ) ) ) ) ;

52 x = generate (n) ;

53 x = x + s h i f t ;

54 xbar = mean(x ) ;

55 z1 = lambda∗xbar + (1−lambda )∗z0 ;

56 i f ( z1<=LCL) | ( z1>=UCL) then f l a g =1;

57 z0=z1 ;

58 end ;

59 run l [ i ]=k ;

60 end ;

61 ARL=mean( run l ) ;

62 SDRL=sq r t ( var ( run l ) ) ;

63 c a l l qnt l (q , runl , { 0 . 0 5 , 0 . 25 , 0 . 5 , 0 . 75 , 0 . 95} ) ;

64 output1 = de l t a | | a r l | | s d r l | | (q ‘ ) ;

65 output = output // output1 ;

66 end ;

67 p r i n t output [ colname={"de l t a " "ARL" "SDRL" "p5" "p25" "p50" "p75" "p95

" } ] ;

68 c r e a t e a a r l from output [ colname={"de l t a " "ARL" "SDRL" "p5" "p25" "p50" "

p75" "p95 " } ] ;

69 append from output ;

70 qu i t ;
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71

72 PROC EXPORT DATA= WORK. Aarl

73 OUTFILE= "c : \ Masters \NBEWMA_N01 . csv "

74 DBMS=CSV REPLACE;

75 PUTNAMES=YES;

76 RUN;

77

78 r e s e t l i n e ;

A.3.2.2 Necessary amendment to the SAS v9.4 program in Section A.3.2.1 when the

underlying process distribution is non-normal

The code required to amend Line 18 of the program listed in Section A.3.2.1 is given below for specific

cases.

t(3) distribution

c a l l randgen (x , "T" , 3 ) ;

Exp(1) distribution

c a l l randgen (x , "GAMMA" , 1 ) ;

Gamma(3, 1) distribution

c a l l randgen (x , "GAMMA" , 3 ) ;

L(0, 1) distribution

∗Def ine Signum Function ;

s t a r t sgn (x ) ;

ind1 = −1#(x<0 ) ;

ind2 = (x>0 ) ;

product = ind1 + j ( nrow (x ) , nco l ( x ) , 0 ) + ind2 ;

re turn ( product ) ;

f i n i s h sgn ;

∗End Def ine Signum Function ;

∗Star t Laplace Quant i le Function ;

s t a r t lap_p i t c (u ,mu, b ) ;
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u=u−0.5 ;

X = mu − b#sgn (u)#log(1−2#abs (u ) ) ;

r e turn (x ) ;

f i n i s h lap_p i t c ;

∗End Laplace Quant i le Function ;

c a l l randgen (x , "UNIFORM" , 0 , 1 ) ;

x = lap_p i t c (x , 0 , 1 ) ;

Logistic(0, 1) distribution

/∗ Log i s t i c D i s t r i bu t i on Quant i le Function ∗/

s t a r t quan t i l e_l o g i s t i c (p ,mu, s ) ;

q = mu + s#log (p/(1−p ) ) ;

r e turn (q ) ;

f i n i s h quan t i l e_l o g i s t i c ;

c a l l randgen (x , " Uniform " , 0 , 1 ) ;

x = quan t i l e_l o g i s t i c (x , 0 , 1 ) ;

The code required to amend Line 31 of the program listed in Section A.3.2.1 is given below for

specific cases.

t(3) distribution

x = TINV(u , 3 ) ;

Exp(1) distribution

x = quan t i l e ( ’GAMMA’ ,u , 1 )

Gamma(3, 1) distribution

x = quan t i l e ( ’GAMMA’ ,u , 3 )

L(0, 1) distribution

x = lap_p i t c (u , 0 , 1 ) ;
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Logistic(0, 1) distribution

x = quan t i l e_l o g i s t i c (u , 0 , 1 ) ;
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Appendix B

Results used in the mini-dissertation

B.1 Closed-Form Expressions for the Expected Value and Vari-

ance of X̄∗

We may represent the in-control bootstrap distribution as:

x∗ P (X∗ = x∗)

X11
1
mn

X12
1
mn

...
...

X1n
1
mn

X21
1
mn

...
...

X2n
1
mn

...
...

Xm1
1
mn

Xm2
1
mn

...
...

Xmn
1
mn

We treat the Xij ’s as fixed. Now,

EF̂0
(X∗i |χ) =

1

mn

m∑
i=1

n∑
j=1

Xij = ¯̄X,

where

χ = (X11, X12, . . . , X1n, X21, X22, . . . , X2n, . . . , Xm1, Xm2, . . . , Xmn) .

Using the above result, it follows that

123
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EF̂0

(
X̄∗|χ

)
= EF̂0

(
1

n

n∑
i=1

X∗i |χ

)

=
1

n

n∑
i=1

EF̂0
(X∗i |χ)

=
1

n

n∑
i=1

¯̄X

= ¯̄X.

The variance of X∗i is calculated as

V (X∗i |χ) = EF̂0

((
X∗i − ¯̄X

)2
|χ
)

=
1

mn

m∑
i=1

n∑
j=1

(
Xij − ¯̄X

)2
,

subsequently

V
(
X̄∗|χ

)
= V

(
1

n

n∑
i=1

X∗i |χ

)

=
1

n2

n∑
i=1

V (X∗i |χ)

=
V (X∗i |χ)

n

=
1

mn2

m∑
i=1

n∑
j=1

(
Xij − ¯̄X

)2
.
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