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Abstract—Tsunami risk is considered as the probability of a

particular coastline being struck by a tsunami that may cause a

certain level of impact (destructiveness). The impact metric of a

tsunami is expressed in terms of tsunami intensity values, K,

assigned on a 12-degree scale. To calculate tsunami risk we are

based on the tsunami history of the region codified in tsunami

catalogues. The probabilistic model adopted was used successfully

for hazard assessment of earthquakes (Kijko et al. in Bull Seismol

Soc Am 79:645–654, 2016) and of tsunamis (Smit et al. in Envi-

ronmetrics 30:e2566, 2019) by considering seismic magnitude and

tsunami height as metrics of the respective hazards. In this model,

instead of hazard metrics we inserted risk metric, i.e. wave impact

in terms of intensity values. The procedure allows utilization of the

entire data set consisting not only from the complete (recent) part

of tsunami catalogue but also from the highly incomplete and

uncertain historical part of the catalogue. Risk is assessed in terms

of probabilities of exceedance and return periods of certain inten-

sity values in specific time frames. We applied the model using

catalogues for the Mediterranean and connected seas. Sensitivity

analysis showed that using complete data sets generally provided

more realistic results than using entire data sets. Results indicated

that the risk level depends on the seismicity level and not on the

size of individual ocean basin. The highest tsunami risk level was

found in the eastern Mediterranean (EM), with a significantly lower

risk in the western Mediterranean (WM). In the Marmara Sea

(MS), the tsunami risk was low, and the lowest was in the Black

Sea (BS). The risk in the small Corinth Gulf (CG, Central Greece)

was comparable to that of WM. The return period of damaging

tsunamis (i.e. K C 7) was 22 years in the entire Mediterranean

basin and 31, 118, 135, 424, and 1660 years in the EM, WM, CG,

MS, and BS basins, respectively.

Keywords: Tsunami intensity, tsunami hazard, tsunami risk,

probability of exceedance, return period, Mediterranean Sea,
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1. Introduction

Tsunami waves can have a significant effect on

human life, communities, property, and the natural

environment. The devastating tsunamis of 26

December 2004 in the Indian Ocean and 11 March

2011 in Japan, both generated by subduction-related

earthquakes of moment magnitudes Mw9.3 and

Mw9.0, respectively, clearly showed the lethal and

destructive potential of mega or large tsunamis. In the

Mediterranean region and its connected seas, at least

44 impactful tsunamis, with an assigned intensity

equal to or larger than 6, according to the 12-grade

intensity scale of Papadopoulos and Imamura (2001),

have been documented from the fifth century BC up

to the present (Papadopoulos et al., 2014). Most of

these tsunamis were produced by earthquakes, but

some have been associated with other causes, such as

volcanic eruptions and coastal or submarine land-

slides (Maramai et al., 2014). Considerable potential

for tsunami generation exists in the Mediterranean

region, although the risk varies between the

tsunamigenic zones (Papadopoulos & Fokaefs, 2005).

An early definition of the term ‘‘risk,’’ as related

to earthquakes, derives from UNESCO initiatives

(Algermissen et al., 1979; Fournier d’Albe, 1982). In

this definition, risk is considered as the convolution

of three main attributes, namely hazard, vulnerability,

and value exposed to hazard. This definition was later

generalized and applied to other risks including tsu-

namis (e.g., Papadopoulos & Dermentzopoulos,
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1998; Curtis & Pelinovsky, 1999). This definition of

risk is consistent with definitions in more recent

glossaries (EC-Working Paper, 2010; UNISDR,

2009). According to the tsunami glossary (IOC,

2019), tsunami risk is the probability of a particular

coastline being struck by a tsunami multiplied by the

likely destructive effects of the tsunami and by the

number of potential victims. However, the mode of

convolution is not standardized, as it depends on the

type of risk being considered and the availability of

relevant data. For example, the expected tsunami

impact on the population requires treatment that is

quite different from that for assets, such as buildings,

infrastructure, or financial values. Consequently, the

general concept of tsunami risk assessment has been

used with various alternatives. For example, vulner-

ability could be replaced either by exposure, or

exposure could be included as an additional compo-

nent in the risk definition.

Numerous statistical, probabilistic and scenario-

based methods have been proposed for tsunami vul-

nerability, exposure and hazard assessment (Burbidge

et al., 2008; Charvet et al., 2014; Dall’Osso et al.

2016; Davies et al., 2017; Dias et al., 2009; Gardi

et al., 2011; Geist & Parsons, 2006; Gibbons et al.,

2020; González et al., 2021; González-Riancho et al.,

2014; Grezio et al., 2017, Horspool et al., 2014;

Leelawat et al., 2014; Leone et al., 2011; Løvholt

et al., 2015; Li et al., 2016; Koravos et al., 2015;

Nadim & Glade, 2006; Orfanogiannaki & Papado-

poulos, 2007; Pagnoni & Tinti, 2016; Power et al.,

2012; Rehman & Cho, 2016; Rikitake & Aida, 1988;

Sabah & Sil, 2020; Smit et al., 2017, 2019; Suppasri

et al., 2013a, 2013b; Valencia et al., 2011). In par-

ticular, assessing the physical vulnerability of

buildings and infrastructure is a complex issue asso-

ciated closely with damage or fragility functions

(e.g., Papathoma & Dominey-Howes, 2003; Papath-

oma et al., 2003). However, a lack of consensus has

been noted on many aspects of fragility and vulner-

ability modeling (Behrens et al., 2021; Tarbotton

et al., 2015). Chmutina et al. (2021) emphasized that

despite the rhetoric of vulnerability, the measurement

of progress toward disaster risk reduction represented

in the UN Sendai Framework for Disaster Risk

Reduction (2015–2030) remains event/hazard

centric.

In the Mediterranean Sea region (Fig. 1) several

methods have been tested for the tsunami hazard

assessment (e.g., Basili et al., 2021; Batzakis et al.,

2020; Bayraktar & Sozdinler, 2020; Dall’Osso et al.

2010; Fokaefs & Papadopoulos, 2007; Gailler et al.,

2016; Glimsdal et al., 2019; González et al., 2021;

Karafagka et al., 2018; Lorito et al., 2007, 2015;

Mitsoudis et al., 2012; Necmioglu & Özel, 2015;

Omira et al., 2010; Pagnoni & Tinti, 2016; Papado-

poulos, 2003; Papadopoulos et al. 2009; Samaras

et al., 2015; Shaw et al., 2008; Sørensen et al., 2012;

Tonini et al., 2011; Tinti & Armigliato, 2003; Tinti

et al., 2005a, 2005b; Yavuz, 2021; Yolsal et al., 2007;

Zaytsev et al., 2019).

At the current research stage, both probabilistic

and scenario-based methods for tsunami hazard

assessment are subject to various aleatory and epis-

temic uncertainties owing to gaps in the available

tsunami datasets and the applied hazard assessment

techniques (e.g., Behrens et al., 2021). Tsunami

hazard estimates rely heavily on historical records

owing to the small amount of tsunami data contained

in the brief instrumental period. Catalogues incor-

porating paleo-earthquakes and paleo-tsunamis,

determined from geological signatures, can provide

helpful information for estimating return periods of

large events (e.g., Papadopoulos et al., 2014; Paris

et al., 2020; Pinegina et al., 2003; Priest et al., 2017).

However, the possibility of overweighting of large

earlier tsunamis should be treated with caution (Geist

& Parsons, 2006).

Tsunami risk assessment traditionally includes

qualitative or quantitative scenario-based methods

(e.g., Pararas-Carayannis, 1988; Qinghai & Adams,

1988; Sato et al., 2003; Strunz et al., 2011). Such

methods have been tested in the Mediterranean

region by, e.g., Papadopoulos & Dermentzopoulos,

1998; Charalambakis et al., 2007; Jelı́nek et al., 2012;

Pagnoni et al., 2015; Pagnoni & Tinti, 2016; Tri-

antafyllou et al., 2019). Methods for Probabilistic

Tsunami Risk Assessment (PTRA) have been pro-

posed based on various approaches (e.g., Attary et al.,

2019; Dominey-Howes et al., 2010; Goda & Song,

2019; Grezio et al., 2012; Jaimes et al., 2016; Løvholt

et al., 2015; Renou et al., 2011). Compared with

hazard assessment data, for which only the physical

parameters of the events are required, less progress

1786 I. Triantafyllou et al. Pure Appl. Geophys.



has generally been noted in PTRA with respect to

Probabilistic Tsunami Hazard Assessment (PTHA).

Such lack of progress is ascribed to vulnerability,

exposure, and value data being required for the risk

assessment. However, relevant data sets are limited or

even lacking for many coastal areas worldwide.

Therefore, no standard methods for the PTRA

assessment have been concluded yet. To support

future research, various types of gaps in research and

in the data required to conduct PTRA need to be

considered (Behrens et al., 2021). A recent analysis

of various tsunami data sources and repositories has

shown the potential contribution of ontology engi-

neering as an example of computer science methods

that enable improvements in tsunami-related data

management (Nacházel et al., 2021). However, cur-

rently, only a limited number of search tools can be

implemented practically for ontology learning (Babič

et al., 2022).

In many ways, PTHA, which has gained ground

over the last few years, follows the experience

obtained from the Probabilistic Seismic Hazard

Assessment (PSHA) (see reviews by Geist & Parsons,

2006; Smit et al., 2017; Basili et al., 2021; Behrens

et al., 2021). The PTHA methods are becoming a

standard basis for the PTRA. However, PTRA

methods are still less abundant and standardized

compared with those employed for PTHA, as no

broadly accepted approaches have been defined

(Behrens et al., 2021).

In the Mediterranean region (Fig. 1), PTRA has

been attempted by some authors who considered

tsunamis as random events, the size of which,

expressed in terms of tsunami intensity, is distributed

according to the exponential-law model, similar to

that traditionally applied for the frequency–magni-

tude relationship of earthquakes (Gutenberg &

Richter, 1944). This approach has been employed for

the entire Mediterranean basin and smaller parts of

the basin (Fokaefs & Papadopoulos, 2007; Papado-

poulos, 2003, 2009; Papadopoulos et al., 2007, 2010).

Other approaches to PTRA in the Mediterranean

region and connected seas have been published by

Hancilar (2012), Grezio et al. (2012) and Yavuz et al.

(2020).

The various models applied for PTHA provide

highly uncertain hazard estimates owing to incom-

plete, heterogeneous, and doubtful tsunami datasets.

From this standpoint, techniques developed for seis-

mic hazard assessment by utilizing incomplete and

uncertain earthquake catalogues are of particular

interest (Kijko & Sellevoll, 1989, 1992; Kijko &

Smit, 2017; Kijko et al., 2016). Such approaches are

suitable for hazard assessment based on rare tsunami

events and have been applied by, e.g., Smit et al.,

(2017, 2019). In these applications, the historical

Figure 1
Oceanographic basins examined in this study. Rectangle indicates the Corinth Gulf basin
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tsunami wave height, h, was adopted as a metric of

tsunami hazard.

In the current study, we introduce a data-driven

methodology on the PTRA. The tsunami risk metric

adopted was tsunami intensity, which directly esti-

mates the destructive effects of a tsunami. This option

allows probabilisitic estimation of the expected risk

in terms of destructiveness by avoiding the need to

estimate hazard, vulnerability and exposure sepa-

rately. The mathematical model used follows the

approach introduced successfully for the PSHA from

incomplete and uncertain earthquake catalogues

(Kijko & Sellevoll, 1989, 1992; Kijko et al., 2016)

and later extended for the PTHA from incomplete

and uncertain tsunami catalogues (Smit et al.,

2017, 2019). Intensity data sets have been compiled

from tsunami catalogues covering both the historical

and instrumental record of tsunamis in the Mediter-

ranean and the connected seas (Fig. 1). Our approach

was initially introduced in the EC-FP7 ASTARTE

tsunami research project for test sites in Greece

(Papadopoulos, 2016; Triantafyllou, 2021). Here, the

technique was implemented fully using tsunami data

for the regional PTRA in the Mediterranean.

Although most tsunamis are produced by earth-

quakes, the adopted method is not restricted to

seismic tsunamis, therefore, we considered PTRA

regardless of the tsunami generation mechanisms,

i.e., seismic or others. In the main basins of the

Mediterranean region and in certain time intervals,

PTRA has been calculated in terms of exceedance

probabilities and tsunami return periods, with various

intensity levels. The approach developed and the

results obtained are of strategic interest to initiatives

aimed at the mitigation of tsunami risk, such as the

Tsunami Early Warning and Mitigation System in the

North-eastern Atlantic, Mediterranean, and Con-

nected Seas (NEAMTWS/IOC/UNESCO).

2. Methodology

2.1. Tsunami Impact and Intensity

Tsunamis have the potential to wreak havoc

wherever they strike, causing death and destroying

various assets such as buildings, infrastructure,

lifelines, vessels, materials and objects, and coastal

cultivated areas. The destructive force of tsunamis

can cause social disruption and financial and envi-

ronmental losses. These environmental effects

include the destruction of flora and fauna, ground

erosion, sediment transport, and the deposition of

medium- to fine-grained material, boulders, and

megaclasts.

‘‘Intensity’’ is a concept often used to describe the

effects of various natural processes, e.g., the 12-de-

gree Beaufort Wind Force scale is a well-known

example. For earthquakes, several macroseismic

intensity scales have been in use since the end of

the nineteenth century, including the 12-degree

Mercalli–Sieberg scale (Sieberg, 1912), which was

later transformed into the Modified Mercalli (MM)

scale (Wood & Neumann, 1931), and the European

Macroseismic Scale (EMS-98) (Grünthal, 1998).

Sieberg (1923) introduced a 6-degree tsunami

intensity scale that was later refined by Ambraseys

(1962). A relevant effort in Japan (e.g., Iida et al.,

1967; Imamura, 1949) concluded with the concept of

the Imamura–Iida 6-degree magnitude scale based on

the maximum wave height observed at the coast (see

review in Papadopoulos et al., 2020). This scale was

modified by Soloviev (1970), who proposed the

concept of tsunami intensity, S, expressed by:

S ¼ log2
p
2 Hð Þ ð1Þ

where H (in m) is the mean tsunami height measured

at the coast closest to the source. However, S is a

metric of tsunami magnitude rather than tsunami

intensity, as H is still a physical feature and does not

describe impact at all. The Soloviev scale is, there-

fore, preferred for tsunami hazard assessment (e.g.,

Smit et al., 2017) but not for tsunami risk assessment.

Following the longstanding seismological tradi-

tion, Papadopoulos and Imamura (2001) introduced a

12-degree tsunami intensity scale that describes the

various levels of tsunami destructive effects in the

built and natural environments (e.g., damage in

buildings or in vessels, people washed away etc.)

(Table S1). From the description of tsunami effects a

numerical (integer) intensity value is assigned scaling

from 1 to 12. Tsunami intensity is not a scaled height

metric. The intensity of a tsunami event in a

particular inundation place is assessed only on the

1788 I. Triantafyllou et al. Pure Appl. Geophys.



basis of the wave impact, it is not determined from

the wave height at all. Therefore, tsunami intensity,

K, is a metric of damage, i.e. a metric of risk and not

a metric of hazard. On the other hand, there is a rough

correlation of K with wave height. This is exactly the

long tradition gained from the use of macroseismic

intensity scales in seismology since the late of

nineteenth century. In seismology, intensity roughly

scales with ground acceleration but is not determined

from the ground acceleration.

2.2. PTRA from Incomplete and Uncertain Impact

Records

In most instances, instrumental records of earth-

quake occurrences are more complete, homogeneous,

and accurate than historical earthquake data. Unfor-

tunately, the instrumental records are relatively short,

covering, at best, a period of * 120 years. However,

the return periods of strong earthquakes in specific

fault segments or zones are significantly longer than

120 years. Accordingly, reliable seismic hazard

assessment requires incorporating data from earth-

quake catalogues preceding the instrumental era.

However, including historical events in the analysis

increases the incompleteness and heterogeneity of the

catalogue and the errors involved in earthquake

parameters, such as location, depth, and magnitude.

Moreover, the dates of pre-instrumentally recorded

earthquakes are often not well known.

In view of these challenging issues, a maximum

likelihood approach has been introduced that utilizes

incomplete (extreme) and complete catalogue seg-

ments with different magnitude thresholds (Kijko &

Sellevoll, 1989) (Fig. 2). This approach also incor-

porates the calculations of magnitude heterogeneity

and an estimation of the maximum magnitude

expected in a fault or fault zone (Kijko & Sellevoll,

1992), as well as the uncertainties involved in the

earthquake occurrence model (Kijko et al., 2016).

This method appears quite promising for assess-

ing PTHA (Smit et al., 2017, 2019), as tsunami

catalogues comprise highly incomplete, heteroge-

neous, and uncertain data files, which, as a rule,

contain a relatively small number of events. Regard-

less the quality of the data, prehistoric and historical

information can be combined with the more complete

data files of the instrumental period (Fig. 2). In

PTHA, the approach focuses on the empirical

assessment of three main tsunami recurrence param-

eters, namely (1) the mean tsunami activity or

occurrence rate, k; (2) the b-value, i.e., the slope of

the log-linear domain of the frequency–size relation-

ship; and (3) the coastline-characteristic maximum

expected tsunami wave height, hmax. In this approach,

the wave height is a metric of the tsunami hazard.

Replacement of tsunami height with an appropriate

metric of destructiveness, such as tsunami intensity,

K, transforms the PTHA method into a PTRA

method. The mean tsunami activity rate, k, describes
the number of tsunamis expected to occur within a

specified stretch of coastline with damaging effects

corresponding to a threshold value equal to or larger

than Kmin within a unit of time, e.g., one year.

Among the various intensity scales available, the

12-degree scale proposed by Papadopoulos and

Imamura (2001) has been implemented in the current

study, as this scale provides a superior resolution for

a more detailed description of the intensity levels.

Based on worldwide data (Shuto, 1993), this scale

also provides an empirical relationship of the inten-

sity with the wave height, h. Such empirical

relationships provide a rough idea on how K scales

with h. Figure 3 shows the scaling of K with h for

various intensity measures worldwide, as well as in

the Mediterranean region. Compared with the other

intensity measures considered, a superior K/h corre-

lation was found for the EM basin (formula 2). The

relation and correlation coefficient, r, are given by:

h mð Þ ¼ 1:83� K2:99; r2 ¼ 0:83 ð2Þ

2.3. Temporal Distribution

The temporal distribution of tsunamis is assumed

to follow a random (Poisson) model (e.g., Geist &

Parsons, 2006), which is the most simplified and

popular model adopted for earthquake occurrence

(e.g., Lomnitz, 1973). For the Poisson model, the

probability that n tsunami events will be observed

along a certain stretch of coastline within a specified

time interval, t, is

P n=k; tð Þ ¼ ktð Þn=n!½ � eð�ktÞ ð3Þ

Vol. 180, (2023) Probabilistic Tsunami Risk Assessment 1789



where k : k(Jmin) is the mean (annual) activity rate

of tsunamis, with an intensity greater than or equal to

Jmin.

2.4. Size–Frequency Relationship

In the tsunami size distribution model, parameter

b plays the same role as parameter b in the

frequency–magnitude relationship for earthquakes

(Gutenberg & Richter, 1944):

log N ¼ a� bM ð4Þ

N is either the discrete frequency of magnitudes,

M, in each magnitude bin or the cumulative fre-

quency of magnitudes C M; a and b are parameters

determined by the earthquake catalogue data. Param-

eter b is an expression of the relative number of small

magnitude earthquakes to the large magnitude ones,

whereas a is a measure of the seismicity level.

Considering tsunami intensity, K, instead of earth-

quake magnitude, M, and setting b = b ln(10) and

A = ln a, relation (4) is transformed to

N Kð Þ ¼ eA�bK ð5Þ

From (5), the tsunami size expressed in terms of

intensity, K, scales according to an exponential law.

The Hard Bounds Model (Kijko & Sellevoll, 1992)

was followed here to account for the uncertainty

involved in tsunami intensity determination, implying

that the real, unknown tsunami intensity is assumed

to occur within fixed boundary limits. In the current

analysis, these limits were determined independently

by an empirical expert judgment for each tsunami

event.

Figure 2
Generalized illustration of data used to assess model recurrence parameters based on prehistoric (paleo-), historical, and instrumental datasets.

Horizontal dimension expresses time. Vertical dimension expresses event size (e.g., magnitude or intensity). Vertical length and horizontal

width of black rectangles represent uncertainty in size and time of occurrence of the observed wave, respectively. Prehistoric data are subject

to uncertainty relevant to the time of occurrence, exact size of the event, and incompleteness in terms of the probability of detecting an event.

Due to uncertainties in the time of occurrence of prehistorical data these times are represented by gray bars. Historical data, consisting of the

largest observed events, as well as instrumental datasets are subject to incompleteness and uncertainty relevant to the observed event size,

varying levels of certainty regarding the exact location of an event, and varying probabilities of all events above a certain minimum size being

observed. White rectangles in the instrumental group represent time intervals within which data are available, while Time gaps (Tgs) represent

missing event records (figure adapted from Smit et al., 2019)

Figure 3
Empirical relationship between tsunami wave height, h, and

tsunami intensity, K. PI Papadopoulos–Imamura 12-degree scale,

worldwide data, PF Papadopoulos and Fokaefs (2005), EM Eastern

Mediterranean (formula 2), M Entire Mediterranean basin, WM

Western Mediterranean

1790 I. Triantafyllou et al. Pure Appl. Geophys.



2.5. Maximum Likelihood Estimation

The coastline-characteristic tsunami risk parame-

ters h = (k,b,Jmax) are estimated using the maximum

likelihood estimation (MLE) technique. Likelihood

functions are defined for both the historical and the

instrumental parts of the catalogue, LH(h) and LI(h),
respectively, with LI(h) consisting of the likelihood

function of each of the s sub-catalogues. Utilizing the

additive property of the log-likelihood function L(h)
(Rao, 1973), the MLE function for the entire

catalogue takes the form

L hð Þ ¼ LH hð Þ � LI hð Þ ð6Þ

Aleatory and epistemic uncertainties are intro-

duced in the tsunami models using mixing

distributions. For example, a mixing Poisson-gamma

distribution based purely on empirical data was

chosen for the uncertainty in the occurrence model

(Smit et al., 2017) as an alternative formalism to the

classic Bayesian method. The uncertainties involved

in the recurrence parameters are estimated through

formalism called Weighted Maximum Likelihood

(Schoenberg, 1997).

In PTRA, assuming that the tsunami intensities

observed along a stretch of coastline are continuous

and independent random values distributed according

to an exponential law, the probability distribution

function (PDF), f, (K) and the cumulative distribution

function (CDF), F(K), of tsunami intensity take the

same functional forms (e.g., Burroughs & Tebbens,

2005) as those for earthquake magnitude (e.g.,

Cosentino et al., 1977; Kagan, 2002). Consequently,

both PDF and CDF are defined for a minimum

intensity threshold value, Kmin, and are truncated

from the top by the coastline-characteristic maximum

possible tsunami intensity, Kmax, so that:

f Kð Þ ¼ b exp �b K� Kminð Þ½ �=1
� exp �b Kmax � Kminð Þ½ �;Kmin �K�Kmax

ð7Þ

and

F Kð Þ ¼ 1� exp �b K� Kminð Þ½ �=1
� exp �b Kmax � Kminð Þ½ �;Kmin �K�Kmax

ð8Þ

In both (7) and (8), for K\Kmin we have

f(K) = 0 and F(K) = 0; for K[Kmax, f(K) = 0 and

F(K) = 1. A similar formalism is applied to the

distribution of the tsunami wave height, h, if PTHA

is considered.

The most difficult parameter to assess is the

coastline-characteristic maximum possible tsunami

intensity, Kmax. In PTHA, parameter hmax was

assessed (Smit et al., 2017) in a way similar to that

of the regional characteristic maximum possible

earthquake magnitude, Mmax, in PSHA (Kijko &

Sellevoll, 1989, 1992). As Kmax cannot be calculated

using the sample likelihood function L(h), the

procedure suggested by Cooke (1979) was followed,

where the possible maximum intensity is determined

as the maximum observed intensity in the entire

catalogue, plus various additional terms (for more

details and mathematical formulation see Kijko,

2004; Kijko & Singh, 2011; Smit et al., 2017).

The three coastline-characteristic tsunami risk

parameters (k, b, Kmax) were estimated by maximiz-

ing the likelihood function expressed by Eq. (6). The

likelihood functions were derived separately for the

historical and instrumental parts of the entire tsunami

catalogue. Details on the mathematical formulation

can be found in Smit et al. (2017).

3. Data

3.1. Basins Examined

In this study, we conducted PTRA in the

Mediterranean Sea region and connected seas. We

discriminated between three large and three small

basins in this geographic region (Fig. 1). The entire

Mediterranean Sea, with a surface area of approxi-

mately 2,500,000 km2, is the largest basin and is

separated into two main basins, namely the eastern

(EM) and the western (WM) basins. However, the

complex physiography of the Mediterranean Sea

complicates the allocation of tsunami sources

between the eastern and western basins. We assumed

that the area to the west of the Tunisia–Sicily passage

is part of the WM basin and includes the Tyrrhenian

Sea. We considered the Adriatic Sea as belonging

geographically to the EM basin, which, in this
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allocation, has a surface area equivalent to * 3/5 of

the entire Mediterranean basin surface area.

Tsunamis produced in the Strait of Messina, at the

southern tip of the Italian peninsula, were included in

the geographic area of the EM basin. This decision

was based on the good propagation of these tsunamis

toward the south Ionian Sea, such as the strong

tsunami of 28 December 1908. Careful consideration

was given to the distinction of tsunamis that occurred

in the Tyrrhenian Calabria or Ionian Calabria, Italy,

for allocation either to the WM or to the EM basins,

respectively.

The Black Sea, including the Azov Sea, the

Marmara Sea, and the Gulf of Corinth, are the three

smaller basins, with surface areas of 436,402 km2,

11,350 km2, and 2500 km2, respectively (Fig. 1). The

Gulf of Corinth, Central Greece, is a nearly closed

basin of small dimensions and, therefore, constitutes

a special case. This basin has an elongated shape,

stretching from east to west, with a length of * 115

km and maximum width of * 25 km (Fig. 1). At its

eastern end, the Gulf of Corinth is practically closed

and its only connection with the Aegean Sea is the

narrow Isthmus of Corinth, with a length of 6.3 km.

At its western end, the Gulf of Corinth has a narrow

opening to the Ionian Sea through the 2.7 km long

Rio–Antirrion Strait. The rate of tsunami occurrence

is significant in the Gulf of Corinth because of the

high level of seismicity in the area and its suscep-

tibility to coastal and submarine landslides that also

produce tsunamis (Papadopoulos, 2003). Although

powerful and destructive tsunamis have been reported

from both the northern and southern coasts of the

Gulf of Corinth, even the strongest tsunamis cannot

propagate with significant amplitudes outside the

basin (e.g., Stefatos et al., 2005).

3.2. Catalogue of Tsunami Intensities

Various tsunami catalogues contain tsunami

impact data deriving from numerous studies, reports,

and books. Non-parametric or semi-parametric tsu-

nami catalogues for the Mediterranean Sea and its

connected seas have been published systematically

since the 1960s (e.g., Ambraseys, 1962; Antonopou-

los, 1979; Galanopoulos, 1960). The cataloguing

continued in the 1980s, with the introduction of

parametric catalogues (e.g., Papadopoulos & Chalkis,

1984). The cataloguing of tsunamis followed the

standard format proposed by EC-supported research

projects, leading to the establishment of a standard-

ized European Tsunami Catalogue from the

beginning of the 1990s (e.g., Fokaefs & Papadopou-

los, 2007; Maramai et al., 2014; Papadopoulos,

2001, 2003; Papadopoulos et al., 2007, 2010, 2011;

Tinti & Maramai, 1996; Tinti et al., 2004). These

catalogues list information on tsunami parameters,

parameters of the causal sources (e.g., earthquakes),

and tsunami effects on the anthropogenic and natural

environments.

We consulted numerous descriptive and/or para-

metric catalogues and other relevant information with

the aim to compile a catalogue of tsunami impact and

to assign tsunami intensities for the largest possible

number of tsunami events. In addition to the

catalogues and studies mentioned before, we

also consulted those by Guidoboni et al. (1994),

Yalçıner et al. (2002), Papadopoulos (2009), Guido-

boni and Comastri (2005), Salamon et al. (2007),

Ambraseys (2009), Altinok et al. (2011), Papadopou-

los et al. (2014), Dogan et al. (2019), Bocchini et al.

(2020), Triantafyllou et al., (2020, 2021), and

Triantafyllou and Papadopoulos (2021).

In total, 256 instrumental and pre-instrumental

tsunami events were included in our PTRA analysis.

Table 1 shows the allocation of these events to the six

basins examined. Table S2 shows the full chronolog-

ical list of tsunamis and their respective intensities.

The data set we compiled covers the period from

prehistoric times up to 2021. The quasi-exponential

Table 1

Number of tsunami events considered in each basin examined

Period M EM WM BS MS CG

Instrumental (1900–2021) 65 49 16 12 4 6

Historical (fifth century BC to

AD 1899)

129 92 37 10 13 11

Prehistoric (before fifth century

BC)

3 3 0 0 0 3

Total (256 events) 197 144 53 22 17 20

M and EM do not include the CG

M Entire Mediterranean, EM Eastern Mediterranean, WM Western

Mediterranean, BS Black Sea, MS Marmara Sea, CG Corinth Gulf
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increase in the number of events with time illustrates

the gradual decrease of the data completeness

threshold (Figs. 4 and 5).

Table S2 shows the catalogue list of 256 tsunami

events, each with an estimated maximum tsunami

intensity, Kmax, and respective standard deviation,

which is a measure of the uncertainty related to Kmax.

As the Hard Bounds Model was adopted for the

uncertainty related to tsunami intensity, we intro-

duced values of the form Kmax ± j, where j = 0, 0.5,

1, 2. In a few instances, incomplete event dates are

available for pre-instrumental tsunamis, e.g., only the

year of occurrence of the tsunami is known. In such

instances, 1 July of the given year is considered

conventionally as the event date. The 15th of a given

month was adopted when only the day is missing

from a certain date.

Descriptions of historical tsunamis are often

subject to inconsistencies, incomplete information,

and vagueness. Therefore, a reliability score, Rel, is

assigned for a tsunami event based on the event data.

Following previous authors (e.g., Iida, 1984; Papa-

dopoulos, 2003; Tinti & Maramai, 1996), a reliability

score from 0 to 4 was chosen. We assumed that

Rel = 0, 1, 2, 3, and 4 corresponds roughly to

reliability levels 0%, 25%, 50%, 75%, and 100%,

respectively. For instrumentally recorded tsunamis,

i.e., events that occurred from 1900 onward, as a rule,

Rel = 4. Only events assigned Rel C 1 were consid-

ered in the calculations.

The instrumental period of the tsunami record

conventionally starts in 1900, following the start of

the instrumental period of seismology, implying

determination of more accurate earthquake focal

parameters. The instrumental period of tsunami

recording in the Mediterranean region practically

started only after the establishment of the

NEAMTWS/IOC/UNESCO, by the end of 2005.

The creation of NEAMTWS accelerated the deploy-

ment of modern, digital tide-gauge networks in the

Mediterranean region. However, analog instruments,

not suitable for accurately recording tsunamis, were

operated for several years before 2005. Nevertheless,

the macroscopic observation of tsunamis gradually

improved after 1900.

3.3. Remarks on Data

One of the most important tsunamis listed in the

catalogues consulted is the tsunami associated with

Figure 4
Cumulative number of tsunami events, N, versus time in the entire Mediterranean basin (M), in the Eastern Mediterranean (EM), and the

Western Mediterranean (WM) basins
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the catastrophic earthquake of AD * 148 (or 142) on

Rhodes Island. A careful re-examination of the

documentary sources available showed that the actual

generation of a tsunami remains doubtful (Triantafyl-

lou & Papadopoulos, 2021). Therefore, this tsunami

event was assigned a reliability of only 2 in contrast

with the higher reliability assigned by previous

authors. Further, we carefully examined the catas-

trophic earthquake and tsunami that reportedly

occurred in the northern Evoikos Gulf, Central

Greece, in AD 552. The event was reported by the

contemporary Byzantine historian, Procopius, which

is the only literary source. However, thorough

examination indicated that the report of a tsunami

was false (Papadopoulos et al., 2023); therefore, this

event was not included in the list of tsunamis we

considered. The date of the AD mid-eighth century

earthquake and tsunami that occurred in the Levan-

tine Sea has been an issue of dispute (e.g.,

Ambraseys, 2009; Guidoboni et al., 1994; Salamon

et al., 2007). Following Salamon et al. (2007), we

adopted the date of 18 January 746 (Triantafyllou

et al. 2023).

3.4. Sensitivity Analysis

Initial calculations of the probabilities of excee-

dance, P, and return periods, R, of certain tsunami

intensity values for each of the six basins examined

were performed using the full data set. However, we

also conducted a sensitivity analysis procedure for

each basin by removing the less complete segment of

data from the full data set and recalculating P and R

using only the more complete part of the data set.

Recalculation was performed for the three large

basins, i.e., the entire Mediterranean, EM, and WM,

as well as for the Black Sea basin using only the

instrumental data set after removing the pre-instru-

mental events from the respective tsunami catalogues

(Tables 1, S2). As regards the Marmara Sea, only

four events are included in the instrumental part of

the catalogue; therefore, sensitivity analysis was

conducted using the more complete catalogue seg-

ment covering the period from AD 1265 onward

(Table S2). As only six events are listed in the

instrumental period of the catalogue of the Gulf of

Corinth, for sensitivity analysis we used the more

complete segment of the catalogue, i.e., AD 1742

onward (Table S2).

4. Results

Our results are summarized in Tables 2 and 3 for

the return periods and exceedance probabilities,

respectively. An essential common feature

Figure 5
Cumulative number of tsunami events, N, versus time in the Black Sea (BS), Marmara Sea (MS), and Corinth Gulf (CG)
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characterizes the results we obtained for the various

basins, namely the level of the estimated tsunami risk

is driven mainly by the level of seismic activity

within the basin rather than the size of the basin. This

finding is independent of the data sets employed, i.e.,

the full data sets or the complete data sets. Although

tsunamis are not only generated by earthquakes but

also by other causes, e.g., landslides and volcanic

eruptions, seismic activity was the main cause of

tsunami generation in all the basins examined.

Compared with the entire Mediterranean Sea basin,

the EM basin provides clear evidence of that feature

(Table 2, Fig. 6). In the two basins, the return period,

R, for the same level of intensity, K, is quite close,

which is ascribed to the seismic activity in the EM

being much higher than in the rest of the Mediter-

ranean. Therefore, the results obtained for the entire

Mediterranean basin are driven mainly by the data

sets for the EM basin. This explanation is relevant

also for the significantly longer return periods of

intensities in the WM basin compared with those in

the EM.

The return periods calculated in all the basins

from the entire data sets and for several levels of K

are systematically longer than those calculated from

the complete data sets (Table 2, Fig. 6). This dis-

crepancy is caused by the nature of the applied data

when historical and prehistoric data are present in

addition to complete data. As these data sets are

highly incomplete and inaccurate compared with the

complete data sets, the return periods calculated from

the complete data sets are more realistic. For

instance, in the entire Mediterranean Sea basin, R of

89, 189, and 1 250 years were calculated for inten-

sities 7, 8, and 10, respectively, using the full data set

(Table 2). However, the respective R values obtained

using only the complete (instrumental) data sets are

much shorter, i.e., 22, 38, and 180 years for the

respective K levels. These values are more realistic,

as they are close to the values of R = n/T for the

Table 2

Mean return period, R, of tsunami intensity, K, in the basins examined

Tsunami intensity, K 2 3 4 5 6 7 8 9 10 11

Tsunami height, h (m) 0.2 0.5 1.2 2.3 3.9 6.2 9.2 13 18 24

Jmax ± rmax/tsunami b

Return period, R (years)

Entire Mediterranean Sea basin

11.00 ± 1.00/0.37 ± 0.03 1.8 4.2 9.4 20 46 89 189 430 1250 16,800

11.00 ± 1.00/0.20 ± 0.03 2.1 3.4 5.3 8.5 14 22 38 72 180 2150

Eastern Mediterranean Sea basin

11.00 ± 1.00/0.35 ± 0.03 2.6 5.6 12 25 51 103 213 474 1350 17,900

11.00 ± 1.00/0.20 ± 0.04 2.8 4.6 7.3 12 19 31 54 102 254 3060

Western Mediterranean Sea basin

8.00 ± 1.01/0.33 ± 0.05 6.8 15 31 66 150 439 5940 – – –

8.00 ± 1.22/0.17 ± 0.06 7.0 11 18 30 55 135 1600

Black Sea basin

9.00 ± 1.24/0.34 ± 0.06 – 20 44 95 208 485 1440 19,600 – –

7.00 ± 1.33/0.26 ± 0.08 11 22 46 128 1660 – –

Marmara Sea basin

9.00 ± 1.09/0.22 ± 0.06 18 31 53 92 166 329 850 1050 – –

9.00 ± 1.49/0.10 ± 0.00 61 83 115 164 249 424 955 10,600

Corinth Gulf basin

10.00 ± 0.50/0.39 ± 0.06 – 16 38 88 201 461 1120 3420 47,700 –

10.00 ± 0.50/0.28 ± 0.07 8.7 17 32 60 118 250 685 8850

h is the respective wave height from the empirical formula (2). The activity rate, k (events/year), is k = 1/R. Jmax ± rmax is the expected

maximum intensity along with the respective estimated standard deviation rmax. Tsunami b is the estimated value of parameter b inserted in

formula (4). In each basin the upper and lower row of return period, R, has been calculated from the full and complete data sets, respectively

Vol. 180, (2023) Probabilistic Tsunami Risk Assessment 1795



complete data sets, i.e., 30, 40, and 122 years, where

T = 122 years is the time length of the instrumental

catalogue and n is the number of tsunami events with

intensity 7 (n = 4), 8 (n = 3), and 10 (n = 1). Details

on our results are presented in the next lines.

4.1. Tsunami Intensity Return Period

4.1.1 Mediterranean Basins

In the entire Mediterranean Sea basin, as well as in

the EM basin, the maximum observed intensity and

maximum expected intensity are Kmobs = 10 and

Kmax = 11, respectively (Table 2). However, the

respective values in the WM basin are significantly

lower, namely Kmobs = 7 and Kmax = 8. In the entire

Mediterranean Sea, the calculated return periods, R,

of the various tsunami intensity levels from the

complete data set are 14 and 22 years for slightly

damaging (K = 6) and damaging (K = 7) tsunamis,

respectively (Table 2, Fig. 7). The R values for

heavily damaging (K = 8), destructive (K = 9), and

very destructive (K = 10) tsunamis increase to 38, 72,

and 180 years, respectively. However, as regards the

full data set that covers both the instrumental and the

pre-instrumental periods, only five tsunamis of esti-

mated intensity 10 ± 1 are known, all having

occurred in the EM basin (Table 2). One event

occurred during the 122 years of the complete data

period (1900–2021), implying that one or more

Table 3

Probabilities of exceedance of tsunami intensity level, K, calculated for the most complete time segments of the tsunami catalogues (see text

for sensitivity analysis) in the basins examined in time intervals T (years)

K 2 3 4 5 6 7 8 9 10 11

h 0.15 0.50 1.2 2.3 3.9 6.2 9.2 13 18 23

Probability of exceedance

T Entire Mediterranean Sea basin

1 0.37 0.26 0.17 0.11 0.07 0.04 0.03 0.01 0.006 0.0005

10 0.98 0.93 0.83 0.68 0.51 0.34 0.23 0.14 0.05 0.005

50 1.0 1.0 0.99 0.99 0.96 0.87 0.72 0.49 0.24 0.02

100 1.0 1.0 1.0 0.99 0.99 0.98 0.91 0.73 0.42 0.05

Eastern Mediterranean Sea basin

1 0.29 0.19 0.12 0.08 0.05 0.03 0.02 0.01 0.004 0.0003

10 0.96 0.87 0.72 0.56 0.40 0.23 0.17 0.09 0.04 0.003

50 1.0 0.99 0.99 0.98 0.91 0.78 0.59 0.38 0.17 0.02

100 1.0 1.0 0.99 0.99 0.99 0.94 0.82 0.60 0.31 0.03

Western Mediterranean Sea basin

1 0.13 0.09 0.06 0.03 0.02 0.007 0.0006

10 0.75 0.59 0.43 0.29 0.17 0.07 0.006

50 0.99 0.98 0.93 0.80 0.59 0.31 0.03

100 1.0 0.99 0.99 0.95 0.82 0.52 0.06

Black Sea basin

1 0.09 0.05 0.02 0.008 0.0006

10 0.59 0.37 0.19 0.08 0.006

50 0.98 0.89 0.65 0.32 0.03

100 1.0 0.98 0.87 0.54 0.06

Marmara Sea basin

1 0.02 0.01 0.009 0.006 0.004 0.002 0.001 0.0001

10 0.15 0.11 0.08 0.06 0.04 0.02 0.01 0.0009

50 0.55 0.45 0.35 0.26 0.18 0.11 0.05 0.005

100 0.79 0.67 0.57 0.45 0.33 0.21 0.10 0.009

Corinth Gulf basin

1 0.10 0.06 0.03 0.02 0.009 0.004 0.002 0.0001

10 0.67 0.45 0.30 0.15 0.08 0.04 0.01 0.001

50 0.99 0.94 0.77 0.56 0.34 0.18 0.07 0.006

100 0.99 0.99 0.94 0.79 0.56 0.33 0.14 0.01

Parameter h (in m) is the respective wave heights from the empirical formula (2)
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powerful tsunamis that likely occurred in the pre-

instrumental period had not been recorded. The

calculated R for devastating tsunamis (K = 11) is

much longer, namely 2 150 years, but the associated

uncertainty is significant (Fig. 7). No tsunami of such

extremely high intensity is included in our database.

In the EM basin, the intensity return periods are

longer but comparable to those calculated for the

entire Mediterranean Sea (Table 2, Fig. 7). This

result is ascribed to most tsunami events occurring in

the EM basin, including the larger events contained in

the data set for the entire Mediterranean. In the WM

basin, however, the return periods are significantly

longer, namely 30, 55, 135, and 1 600 years for

K = 5, 6, 7, and 8, respectively (Table 2, Fig. 8 left).

4.1.2 Black Sea Basin

The tsunami risk is significantly lower in this basin.

The values of Kmobs = 6 and Kmax = 7 are consider-

ably lower than are those in the Mediterranean Sea.

For tsunami intensities 5, 6, and 7, the respective

return periods in this basin are long, namely 46, 128,

and 1 660 years (Table 2, Fig. 8 right).

4.1.3 Marmara Sea Basin

In this basin, the level of tsunami risk is the lowest of

all the considered areas for K B 6 (Table 2, Fig. 9

left). The calculated R values are 115, 164, and

249 years for intensities 4, 5, and 6, respectively, i.e.,

longer than the R values in the other basins.

However, R = 424 years is indicated for K = 7,

which is much shorter than that in the Black Sea,

whereas R for K = 8 is much shorter (955 years) than

that in the WM basin. These results are ascribed to

the maximum observed intensity Kmobs = 8 and the

maximum estimated intensity Kmax = 9 in the Mar-

mara Sea basin, which exceed the respective values in

the WM and Black Sea basins by one and two

intensity degrees, respectively.

4.1.4 Gulf of Corinth

A significant level of tsunami risk characterizes the

Gulf of Corinth, although it is a small basin, with a

surface area, S, of only 2500 km2. The maximum

intensity assigned is as high as Kmobs = 9, whereas

the maximum estimated intensity is Kmax = 10. In

addition, the calculated R for several K levels is

much shorter than that found in the much larger

basins of the Black Sea (S = 436,402 km2) and the

Figure 6
Return period, R (in years), of intensity level, K, in the large (left) and small (right) basins examined. Basin notation as in Figs. 4 and 5.

Sensitivity analysis results using only complete data sets are notated with ‘‘s’’
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Marmara Sea (S = 11,350 km2) (Table 2) (Figs. 8, 9).

Tsunami intensity return periods in the Corinth Gulf

are comparable to those in the WM basin for K B 7,

but much shorter for K = 8. The high tsunami activity

in the Corinth Gulf is ascribed to both a high level of

seismicity and the landslide susceptibility along the

shores of the area (Papadopoulos, 2003).

4.2. Probabilities of Exceedance

The probabilities of exceedance, P, of certain

tsunami intensity levels in the basins examined are

illustrated in Figs. 10, 11, 12 and summarized in

Table 3. Figure 13 shows a comparison of P calcu-

lated for various basins. In the entire Mediterranean

basin, high probabilities of exceedance have found

for slightly damaging (K = 6, P = 0.96) and damag-

ing (K = 7, P = 0.87) tsunamis in a time frame of

50 years (Fig. 10). The exceedance probabilities of

heavily damaging (K = 8), destructive (K = 9), and

very destructive (K = 10) tsunamis within the time

frame of 100 years are 0.91, 0.73, and 0.42, respec-

tively. The respective probabilities in the EM basin

are lower but comparable (Fig. 10). However, in the

rest of the basins, the probabilities of exceedance of

certain tsunami intensity values are significantly

lower than those in the EM basin (Figs. 11, 12). As

expected, the probabilities are relatively high in the

Gulf of Corinth basin despite its small size, e.g.,

P = 0.56 for exceeding K = 6 and K = 7 in time

frames of 50 and 100 years, respectively.

5. Discussion

The tsunami risk assessment performed with the

described methodology considered several oceano-

graphic basins in the Mediterranean and connected

seas and is, therefore, of interest in the context of

regional scale. However, it is important for devel-

oping strategic plans that require the prioritization of

actions aimed at long-term tsunami risk mitigation,

including further development of monitoring net-

works and relevant infrastructures that can support

early warning systems, such as the NEAMTWS/IOC/

UNESCO. More local or site-specific tsunami risk

assessments employing the proposed methodology

are also possible, provided that tsunami impact data

are available. It is our intention to present relevant

results in a future study.

Our results are directly comparable to only a few

relevant studies published for PTRA in the oceano-

graphic basins examined. For example, the approach

to PTRA for the Corinth Gulf and the entire

Figure 7
Return periods of tsunami intensity in the entire Mediterranean (left) and the Eastern Mediterranean (right), calculated from the complete data

sets (C). The shaded area represents one standard deviation confidence interval
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Mediterranean basin (Papadopoulos, 2003, 2009) was

a model combining the random distribution of tsu-

nami events in time with the tsunami frequency–

intensity distribution following exponential-law.

However, the 6-degree tsunami intensity scale was

considered in those studies. Therefore, for a direct

comparison of results, we converted intensities, k, on

the 6-degree scale to intensities, K, on the 12-degree

scale, according to the empirical conversion rela-

tionship proposed for the entire Mediterranean basin

by Papadopoulos and Fokaefs (2005). Namely, k of 3,

4, 5, and 6 were converted to K of 5, 7, 9, and 11,

respectively. After these conversions, we found that

the tsunami risk in terms of the mean return period,

R, and the probabilities of exceedance of certain

tsunami intensity levels, K, in the entire

Figure 8
Return periods of tsunami intensity in the Western Mediterranean (left) and the Black Sea (right), calculated from the complete data sets (C).

Uncertainty intervals were computed as noted in Fig. 7

Figure 9
Return periods of tsunami intensity in the Marmara Sea (left) and the Corinth Gulf (right), calculated from the complete data sets (C).

Uncertainty intervals were computed as noted in Fig. 7

Vol. 180, (2023) Probabilistic Tsunami Risk Assessment 1799



Mediterranean and the Gulf of Corinth is generally

overestimated by the simple random/exponential-law

model adopted by Papadopoulos (2003, 2009) in

comparison with the results obtained by the

methodology applied in the present study. For

example, in the entire Mediterranean basin, the pre-

vious authors found R equal to 4, 13, 41, and

132 years for K C j, with j = 5, 7, 9, and 11,

respectively, whereas we calculated R equal to 8.5,

22, 72, and 2 150 years.

An indirect comparison of our results can be

conducted with PTHA studies performed in the

Mediterranean basin. For instance, Sørensen et al.

(2012) found that for a wave height h = 10 m

somewhere in the entire Mediterranean basin, the

probability of exceedance, P, is approximately 0.3,

0.4, and 0.83 in time frames, T, of 1, 30, and

100 years, respectively. These results are comparable

to ours (Table 3), which indicated P equal to 0.3,

0.72, and 0.91 for the exceedance of tsunami intensity

8, with the corresponding h = 9.2, in T of 1, 50, and

100 years, respectively. However, the results of

Sørensen et al. (2012) are not consistent with our P

for low wave heights in short time frames. For

Figure 10
Probabilities of exceedance of certain tsunami intensity levels in the entire Mediterranean and the Eastern Mediterranean basins, calculated

from the complete data set (C) in time frames of 1 year (left) and 10, 50, and 100 years (right). Uncertainty intervals were computed as noted

in Fig. 7
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example, for h = 1 m and T = 1 year, they found

P = 0.73, whereas ours is only P = 0.17 for the

exceedance of intensity 4, corresponding to

h = 1.2 m. For h = 2 m and T = 1 year, their result is

P = 0.37, and ours is only P = 0.11 for the excee-

dance of intensity 5, which corresponds to h = 2.3 m.

This inconsistency implies that the Monte Carlo

procedure followed by Sørensen et al. (2012) for

producing a synthetic tsunami catalogue, combined

with their tsunami simulations, tended to overesti-

mate the probability of exceedance of relatively low

or moderate tsunami heights in short time frames.

However, our result, i.e., tsunami risk is highest in the

EM basin among the rest basins examined, is con-

sistent with their conclusion that the tsunami hazard

in this basin is undoubtedly higher than that in the

WM basin.

In the entire NEAM Region, Basili et al. (2021)

found that maximum inundation heights (MIHs) of

several meters are rare but not impossible. Consid-

ering a 2% probability of exceedance in 50 years,

corresponding to R&2 475 years, the points of

interest with MIH[ 5 m are fewer than 1% and are

all in the Mediterranean and particularly on the coasts

of Libya, Egypt, Cyprus, and Greece, i.e. within the

Eastern Mediterranean basin.

Figure 11
Probabilities of exceedance of certain tsunami intensity levels in the Western Mediterranean and the Black Sea basins, calculated from the

complete data set (C) in time frames of 1 year (left) and 10, 50, and 100 years (right). Uncertainty intervals were computed as noted in Fig. 7
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Since our analysis covers a long span of time,

from the prehistoric to instrumental eras, one point of

concern related to our method could be how the

tsunami intensity metric (K) varies with historical

time for equivalent tsunamis given that the descrip-

tors of the tsunami intensity scale include

observations from shore, felt reports on vessels, and

various damage indicators. Historical changes in

population density at the coast, vessel and building

construction, coastal development, etc. should affect

the impact for a given tsunami event (i.e., fixed

source location, parameters). For this reason, a sen-

sitivity test was performed, i.e. calculations of the

probabilities of exceedance, P, and return periods, R,

of certain tsunami intensity values for each basin

have been made not only from the respective full data

set but also from only the respective complete data

set.

The PTRA methodology proposed in this study

has the advantage of being based solely on observa-

tional impact data in terms of tsunami intensity, and,

at the same time, incorporating data incompleteness,

heterogeneity, and uncertainty. Intensity is an

appropriate risk metric, as it integrates the overall

destructive effects of tsunami events. Moreover, the

methodology accepts the aggregation of data for

Figure 12
Probabilities of exceedance of certain tsunami intensity levels in the Marmara Sea and the Corinth Gulf, calculated from the complete data set

(C) in time frames of 1 year (left) and 10, 50, and 100 years (right). Uncertainty intervals were computed as noted in Fig. 7
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tsunamis generated by earthquakes as well as by other

causes, such as landslides, volcanic eruptions, and

more. The disadvantage is that no data are available

in many specific coastal areas. However, an alterna-

tive could be the organization of synthetic tsunami

impact catalogues.

6. Conclusions

We successfully developed methodology for

Probabilistic Tsunami Risk Assessment (PTRA) in

the oceanographic basins of the entire Mediterranean,

as well as of the Eastern Mediterranean (EM),

Western Mediterranean (WM), Black Sea (BS),

Marmara (MS) seas, and of the Gulf of Corinth in

Central Greece. Tsunami intensity, K, according to

the 12-grade Papadopoulos and Imamura (2001) scale

was used as a risk metric employing tsunami impact

data collected from instrumental and pre-instrumental

observation periods regardless of the causes of the

tsunami events, i.e., seismic or other. The method-

ology incorporates the incompleteness and

uncertainties involved in the data files. The PTRA

was approached in terms of return periods, R, and

probabilities of exceedance, P, of certain K values in

certain time frames, T. After sensitivity analysis, for

each basin examined more realistic results were

Figure 13
Comparison of the probabilities of exceedance, P, of certain tsunami intensity, K, in the large (black symbols) and small basins in time frames

of 1, 10, 50, and 100 years, calculated using the respective complete data sets. Basin notation: Entire Mediterranean (M), Eastern

Mediterranean (EM), Western Mediterranean (WM), Black Sea (BS), Marmara Sea (MS), and Corinth Gulf (CG)
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obtained by using the respective complete data file

compared with results based on the full data sets

incorporating both instrumental and pre-instrumental

data. The tsunami risk level in the various basins

examined was summarized based on the more real-

istic results obtained by employing the complete data

files.

In the entire Mediterranean basin, the calculated P

values were 0.04, 0.34, 0.87, and 0.98 for exceedance

of intensity K C 7, i.e., a damaging tsunami, in T of

1, 10, 50, and 100 years, respectively. The P values

found for the EM basin were quite close, namely

0.03, 0.23, 0.78, and 0.94, ascribed to most strong

submarine earthquakes capable of tsunami generation

occurring in the EM. For K C 7, the R values in the

entire area and the EM were 22 and 31 years,

respectively.

In the WM basin, the tsunami risk was signifi-

cantly lower compared with that in the EM. The P

values found were 0.007, 0.07, 0.31, and 0.52 for

K C 7 in T of 1, 10, 50, and 100 years, respectively.

The return period of K C 7 was as long as 135 years.

Among the three smaller basins, the Gulf of

Corinth, which is by far the smallest one, had the

highest risk, as probability, P, was 0.009, 0.08, 0.34,

and 0.56 for K C 7 in T of 1, 10, 50, and 100 years,

respectively. The return period of K C 7 was as long

as 118 years. These findings indicated that the tsu-

nami risk in this small area was comparable to that in

the much larger WM basin. The result is ascribed to

the Gulf of Corinth being characterized by a high rate

of tsunamigenic earthquakes and high susceptibility

to coastal and submarine landslides, which also often

cause tsunamis (Papadopoulos, 2003).

The tsunami risk was low in the MS, given that

for K C 7, the value of R = 424 years was large

enough, whereas P was as low as 0.002, 0.02, 0.11,

and 0.21 for K C 7 in T of 1, 10, 50, and 100 years,

respectively. In the BS, the lowest tsunami risk

indicator, P, was 0.0006, 0.006, 0.03, and 0.06 for

K C 7 in T of 1, 10, 50, and 100 years, respectively,

while the return period of K C 7 is extremely long,

i.e., R = 1 660 years. Accordingly, the tsunami risk

level does not depend on the size of the basin but on

the level of seismicity, which is the main cause of

tsunamis.
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Gailler, A., Schindelé, F., & Hébert, H. (2016). Impact of Hellenic

Arc tsunamis on Corsica (France). Pure and Applied Geophysics,

173, 3847–3862.

Galanopoulos, A. G. (1960). Tsunamis observed on the coasts of

Greece from antiquity to present time. Annali Di Geofisica, 13,

369–386.

Vol. 180, (2023) Probabilistic Tsunami Risk Assessment 1805

https://doi.org/10.1080/13632469.2019.1616335
https://doi.org/10.1080/13632469.2019.1616335
https://doi.org/10.3390/info13010004
https://doi.org/10.3390/info13010004
https://doi.org/10.3389/feart.2020.616594
https://doi.org/10.3389/feart.2020.616594
https://doi.org/10.3390/jmse8110886
https://doi.org/10.5194/nhess-20-1741-2020
https://doi.org/10.3389/feart.2021.628772
https://doi.org/10.3389/feart.2021.628772
https://doi.org/10.1007/s00024-019-02246-9
https://doi.org/10.1007/s13753-021-00382-2
https://doi.org/10.1007/s13753-021-00382-2
https://doi.org/10.1093/biomet/66.2
https://doi.org/10.1093/biomet/66.2
https://doi.org/10.1007/s00024-019-02151-1
https://doi.org/10.1007/s00024-019-02151-1


Gardi, A., Valencia, N., Guillande, R., & André, C. (2011).
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