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Abstract
The direct bonding of A5052 aluminum (Al) alloy to the engineering polymer poly(ether ether ketone) (PEEK) using 
an atmospheric pressure plasma-assisted process was demonstrated. The effect of plasma irradiation on the bonding 
surface of metal resin on the bonding strength following thermal press fitting method was investigated. Specimens 
bonded by plasma irradiation on the PEEK surface only showed a high tensile shear stress of 15.5 MPa. With increas-
ing plasma irradiation time, the bond strength of the samples bonded to the PEEK surface by plasma irradiation 
increased. The increase in the bond strength between metals and polymers following direct bonding is caused by the 
addition of oxygen functional groups on the polymer. In contrast, specimens in which only the Al was exposed to the 
plasma showed a decrease in bond strength compared with unirradiated samples. This reduction in bond strength is 
attributed to the forming magnesium oxide, which forms in the early stages of participation due to plasma irradiation.
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1  Introduction

Multi-material hybrid structures exhibit various useful 
properties, including both low density and high perfor-
mance. In particular, metal-polymer hybrids are expected 
to replace metals in industrial applications because they 
can reduce weight compared with pure metals and so 
lower costs, such as by providing improved fuel effi-
ciency in the aerospace and automotive sectors [1–5]. 
Thermoplastics are also advantageous because they can 
be joined without the use of adhesives [6, 7] or items 
such as screws and rivets [8, 9]. To date, these materials 
have been joined via thermal press fitting using ultra-
sonic [10–12], induction [13], laser [14–17] or solid fric-
tion [18] heat sources. The metals-polymers direct bond-
ing is known to result primarily from hydrogen bonds 
between oxides formed on metal surfaces and polar 

functional groups (amino groups, hydroxyl groups, car-
boxyl groups, etc.) present on polymers. Thus, the addi-
tion of functional groups to the surface of polymer using 
some surface treatment methods is required to obtain 
high strength, high quality direct metal-polymer bond-
ing. At present, these surface treatment methods include 
chemical etching using acids and bases [19] and expo-
sure to ultraviolet radiation [20], coronas [21] or plasmas 
[22]. Among these, plasma treatments are considered to 
be superior in that these techniques can modify only the 
polymer surface [22].

The present study performed surface treatments 
employing an atmospheric pressure plasma jet excited by 
radio frequency (RF) power. The oxygen radical density 
in such plasmas is two orders of magnitude higher than 
that in conventional high-voltage low-frequency atmos-
pheric pressure plasma jets [23, 24]. On this basis, the 
process demonstrated herein was expected to efficiently 
add polar functional groups on polymer surfaces. In a 
prior work, stainless (SUS304) steel and polycarbonate 
(PC) were joined by joining technology by a combination 
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of atmospheric pressure RF plasma jet and thermal press 
fitting [25].

In engineering plastics including PC and PEEK, it is 
difficult to modify the polymer surfaces using a low-
frequency pulse plasma source because the irradiated 
surface is not heated to the temperature required for the 
surface reaction of radicals generated by low-frequency 
pulse plasma irradiation [25]. The atmospheric pres-
sure RF-excited atmospheric plasma jet used in this 
study is more efficient than the common low-frequency 

high-voltage pulsed atmospheric plasma, since the 
plasma jet not only produces high-density plasmas but 
also promotes surface reactions by heating through 
plasma irradiation, thus allowing the surface treatment 
of the polymer and the metal without preheating the sur-
face with other heating sources [25]. The results of this 
previous research demonstrated the feasibility of bonding 
metal-polymer dissimilar materials using this technology.

Modern automobile bodies often incorporate alu-
minum (Al) alloys or hybrids of Al alloys with other 

Fig. 1   Diagrams showing (a) 
the apparatus used to generate 
an atmospheric pressure RF 
plasma jet, (b) the dimensions 
of the specimen and (c) tensile-
shear configuration for A5052 
and PEEK direct joining with 
thermal press fitting via pre-
plasma treatment
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materials to achieve both weight reduction and rigidity 
[1, 26–29]. Thus, the development of technologies for 
the joining of Al alloys to materials such as engineering 
plastics is desirable. In the work reported herein, direct 
joining of an Al alloy (A5052) to the engineering plastic 
(poly ether ether ketone: PEEK) was performed using the 
plasma-assisted process and the influence of irradiating 
an atmospheric pressure plasma on the bonding strength 
of A5052-PEEK joints was investigated.

2 � Experimental procedures

An atmospheric pressure RF plasma jet using Ar gas was 
employed for plasma-assisted direct joining. The plasma 
source consisted of a quartz tube wound with a wide (15 
mm) metal strip serving as the electrode, to which high-
frequency power was applied, and a narrow (5 mm) strip 

acting as a ground electrode (Fig. 1(a)). The narrow elec-
trode (grounding electrode) was located at the quartz tube 
end along the path of gas flow, while the wide electrode to 
which RF power is applied was situated 5 mm from the top 
edge of the narrow electrode. A quartz tube (outer diam-
eter: 6 mm and inner diameter: 4 mm) was used and high-
frequency (60 MHz) sine wave power was applied to the 
power electrode. The pure Ar was feed to the plasma source 
at 3slm in gas flow rate [23, 24].

The test pieces used in this work comprised sheets 
of Al alloy (A5052) or PEEK (Mitsubishi chemical 
advanced materials, Ketron 1000), both having 500 mm 
× 15 mm × 5 mm in dimensions. Figure 1(b) and (c) 
shows the dimensions of the specimen and tensile-shear 
configuration for A5052 and PEEK direct joining with 
thermal press fitting via pre-plasma treatment. Figure 2 
shows the procedure for metal-polymer direct joining 
based on atmospheric pressure RF plasma jet irradiation. 

Fig. 2   Procedure for metal-
polymer direct joining based 
on atmospheric pressure RF 
plasma jet irradiation
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In this process, the plasma jet was applied to the surfaces 
of one or both materials as a pre-treatment. After expo-
sure to plasma, A5052 was heated by a heater until the 
temperature of A5052 reached 320°C, close to the melt-
ing point of PEEK, and then thermal press fitting was 
performed. The test pieces of metal and polymer were 
joined such that the two materials overlapped by 10 mm.

In order to evaluate bond strength, specimens were 
also bonded using an epoxy adhesive and the tensile 
shear stress for these samples was compared with that for 
specimens jointed using the thermal press fitting. Tensile 
tests were demonstrated employing a tensile tester (Auto-
graph AGS-X, Shimadzu Corp.). In this measurement, 
a shear force acted on the bond interface at a crosshead 
speed of 1.66 × 10−3 mm/s and a tensile shear stress was 
evaluated by measuring the maximum load at failure of 
specimens bonded under various conditions the maxi-
mum load at failure for specimens bonded under various 
conditions.

To investigate the physical properties of surfaces after 
irradiation of plasma, the surface morphology of A5052 

was assessed using scanning electron microscopy (SEM, 
Hitachi SU-70) together with energy dispersive X-ray 
spectroscopy (EDX, INCA PentaFETx3, Oxford Instru-
ments) and atomic force microscopy (AFM, KEYENCE 
VN-8000). To evaluate the chemical properties of sur-
faces after plasma irradiation, the chemical bonding state 
of a surface of plasma-exposed polymer was analyzed 
using X ray photoelectron spectroscopy (XPS, AXIS165, 
Shimadzu).

3 � Results and discussion

The plasma irradiation effect of the A5052 and PEEK 
surfaces on the bond was assessed by applying plasma 
treatments to only the A5052 or the PEEK or to both. 
Figure 3 summarizes the tensile shear strength for the 
various A5052-PEEK samples bonded using a combina-
tion of the thermal press fitting method and the plasma-
assisted joining. The results of a sample of untreated 
A5052 and PEEK bonded by thermal press fitting and 
adhesive are also shown in Fig. 3 for comparison. The 
tensile shear strength of specimens of untreated A5052 
and PEEK bonded by thermal press fitting and adhesive 
was 10.2 and 8.6 MPa. In bonding with epoxy adhesives, 
it is known that the bonding is achieved by hydrogen 
bonding or ionic bonding between functional groups such 
as OH and NH in the epoxy resin and oxygen functional 
groups present on the metal/polymer surface [30, 31]. 
Therefore, it is considered that adhesive and t thermal 
press fitting result in almost the same bond strength 
because adhesion and thermal bonding are similar bond-
ing mechanisms. The average bond strength for the sam-
ples for which only the A5052 was exposed to the plasma 
was 0.6 MPa. In contrast, exposing only the PEEK to the 
plasma produced a significant increase in bond strength 
to 15.5 MPa, and the bond strength was greater than 
that for the unirradiated samples by a factor of 1.5. On 
the other hand, the bond strength of the sample plasma-
treated with both A5052 and PEEK was 12.1 MPa, which 
was slightly lower than that of the sample irradiated only 
with PEEK. Figure 4 presents photographic images of the 
fracture surfaces of specimens bonded with and without 
plasma irradiation after tensile testing. The plasma irra-
diation on the A5052 side caused greater delamination, 
and cohesive breakdown was observed only in a small 
area. On the other hand, the sample without plasma irra-
diation on the A5052 side showed cohesive breakdown 
of PEEK in a larger area than in the sample with plasma 

Fig. 3   Tensile shear strength for samples jointed by the thermal 
press fitting after plasma irradiation or the thermal press fitting with 
untreated A5052 and PEEK
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irradiation on A5052 side, although delamination of the 
interface was also pronounced. These results indicate that 
the plasma treatment of PEEK is effective in improving 
bond strength in the direct bonding of A5052-PEEK. In 
contrast, specimens in which the metal had been irradi-
ated exhibited decreased bond strength.

To investigate the cause of the decrease in bond strength 
due to plasma irradiation of A5052, the physical and chem-
ical analysis of the A5052 surface before and after plasma 
irradiation was performed. The physical and chemical 
states of material surfaces are known to play important 
roles in the direct joining of dissimilar materials. The 

Fig. 4   Photographic images of fracture surfaces after tensile testing of specimens bonded with and without plasma irradiation
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surface morphology of A5052 surfaces before and after 
irradiation of the plasma was observed using AFM. Fig-
ure 5 plots the surface roughness, Ra, as estimated from 
AFM images as a function of exposure time. With increas-
ing plasma irradiation time, the Ra of the A5052 surface 
increased slightly, from 208 nm at 0 min (that is, the pris-
tine surface) to 247 nm after 5 min. Considering the physi-
cal aspects of joining dissimilar materials, it is generally 
known that an increase in surface roughness Ra increases 
the bond strength due to the mechanical interlocking 
(anchor effect). However, when A5052 is irradiated with 
plasma, bonding strength is dramatically improved with 
plasma irradiation compared to PEEK without plasma irra-
diation. On the other hand, there is only a slight increase 
in surface roughness due to plasma irradiation. Therefore, 
these data suggest that the influence of physical effects 
including anchor effect on the difference in bond strength 
with and without plasma irradiation of PEEK is small. In 
a previous study, it was confirmed that plasma irradia-
tion adds oxygen functional groups (C=O and O-C=O) to 
the PEEK surface, and that the oxygen functional groups 
increase with increasing plasma irradiation time. [32] In 
this experiment, there was no significant increase in the 
surface roughness of A5052 due to plasma irradiation, and 
the bond strength increased only due to plasma irradiation 
on the PEEK side. These results indicate that the addi-
tion of functional group on PEEK surface, not the anchor-
ing effect on the A5052 side, contributed to the increase 
in bond strength. These data therefore confirm that the 

increased bond strength of the samples after plasma expo-
sure was primarily a result of chemical effects rather than 
physical effects.

Variation in the chemical composition of the surface 
of A5052 after irradiation of the plasma was also investi-
gated by SEM-EDX. Figure 6 provides SEM images and 
SEM-EDX elemental maps of Al (blue), Mg (purple), O 
(red), Cr (yellow) and Fe (green) acquired from the sur-
face of A5052 before and after 5 min of plasma exposure. 
These images indicate that minimal physical change was 
induced by irradiation. However, the O maps show some 
slight oxidation while the Mg maps indicate a significant 
increase in the amount of Mg across the entire metal sur-
face after plasma treatment. Figure 7 summarizes the Mg/
Al and O/Al ratios estimated from SEM-EDX elemental 
maps as functions of the plasma irradiation time. These 
results demonstrate that the plasma treatment increased 
the concentrations of both O and Mg on the A5052 sur-
face. The increase in the relative atomic concentration of 
O is due to oxidation on A5052 by reactive oxygen spe-
cies generated by the plasma jet.

The chemical bonding state of the surface of A5052 
before and after irradiation of the plasma was examined 
using XPS. Figure 8 presents Al 2p, Mg 2p and O 1s 
XPS spectra of treated and untreated specimens. The Al 
2p spectra could be deconvoluted into peaks related to 
Al (metal) at 71.8 eV and Al2O3 at 74.5 eV [33]. The 
Mg 2p spectra were deconvoluted into peaks related to 
Mg (metal), magnesium oxide (MgO) and hydroxides/
oxides at 49.6, 50.8 and 51.6 eV, respectively [34, 35]. 
The O 1s spectra were deconvoluted into peaks associ-
ated with oxides and hydroxides at 531.3 and 532.8 eV 
[36]. The Al 2p spectrum of the pristine A5052 exhibited 
peaks related to AlOx and metallic Al while the Mg 2p 
spectrum showed only a low-intensity peak. The O 1s 
spectrum contained peaks attributed to a natural oxide 
film. Following plasma irradiation, the data indicated an 
increase in the amount of MgO on the A5052 surface. 
These results demonstrate that the alloy was initially cov-
ered with an AlOx coating without Mg but that a MgO 
layer was formed as Mg diffused to the surface as a con-
sequence of the heat input from the plasma [37–39]. The 
presence of MgO as the major phase can be explained by 
the rapid growth rate of MgO. It is possible that in the 
early stages of oxidation, Mg has diffused rapidly through 
local paths of easy diffusion in the alloy surface forming 
MgO. Surface inhomogenities (rolling defects), disloca-
tions, and grain boundaries could serve as short-circuit 
paths for diffusion of Mg. Usually, MgO does not form a 
continuous layer [40, 41].
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Fig. 6   SEM images and SEM-
EDX elemental maps of Al 
(blue), Mg (purple), O (red), Cr 
(yellow) and Fe (green) on the 
surface of (a) untreated A5052 
and (b) A5052 exposed to 
plasma for 5 min
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This MgO is thought to have decreased the bond strength. 
Other work has shown that the adhesion and ageing of paints 
[42, 43] and adhesives [44] on metals having a MgO surface 
layer are frequently poor because of the friability and sus-
ceptibility to hydrolysis of the oxide [39]. Typically, MgO 
formed on Al-Mg alloys such as A5052 via diffusion of Mg 
will show low cohesive strength and is easily chemically fed 
to form oxides and thus to generate weakly bonded layers 
[45]. The present results suggest that the migration of Mg to 
the surface as a consequence of heating by the plasma with 
subsequent oxidation by radicals induced the formation of 
MgO. This, in turn, lowered the bond strength between the 
A5052 and PEEK.

The effect of exposing the PEEK side of A5052-PEEK 
specimens to the plasma was also investigated. Figure 9 
plots the tensile shear strength of A5052-PEEK joints 
as a function of the time span over which the PEEK was 
treated with the plasma, with no treatment applied to 
the A5052. With increasing irradiation time, the bond 
strength evidently underwent a moderate increase from 
10.2 MPa at 0 min to 15.5 MPa after 5 min and then was 
almost constant.

In a previous study, the effect of plasma irradiation on the 
chemical state of PEEK surfaces was assessed using XPS 

[32]. These prior XPS analyses indicated the O-C=O bond 
formation due to irradiation of the plasma, as well as C-O 
and C=O bonds that were originally present in the PEEK. 
The amount of each of these groups on the PEEK surface 
was found to increase as the plasma irradiation time was 
increased. It has been determined that O=C-O groups on 
the polymer increase the bond strength between metals and 
polymers following direct bonding [46–48]. Hence, these 
results suggest that oxidation of the PEEK by radicals in 
the atmospheric pressure RF plasma jet generated oxygen-
containing surface functional groups that increased the bond 
strength.

4 � Conclusions

Direct bonding of an Al alloy to PEEK via non-thermal 
atmospheric pressure plasma-assisted joining technology 
has been demonstrated. The effect of plasma irradiation 
on the bond strength following thermal press fitting was 
investigated. The tensile shear strength of A5052-PEEK 
joined by thermal press fitting with plasma-assisted join-
ing was established by comparison with specimens made 
using conventional thermal press fitting and adhesive 
bonding. The tensile shear stress for samples bonded 
after irradiation of the plasma of only the PEEK was as 
high as 15.5 MPa, 50% higher than that of the unirradi-
ated sample. This improved bond strength can be attrib-
uted to the addition of oxygen-based functional groups 
on the surface of PEEK by radicals generated by plasma 
jet. In contrast, plasma treatment of the A5052 side led to 
a decrease in bond strength as a consequence of the gen-
eration of MgO, which formed on Al-Mg alloys such as 
A5052 via diffusion of Mg that will show low cohesive 
strength and is easily chemically fed to form oxides and 
thus to generate weakly bonded layers. This reduction 
in bond strength is attributed to the forming magnesium 
oxide, which forms in the early stages of participation 
due to plasma irradiation. The effect of exposing the 
PEEK side of A5052-PEEK specimens to the plasma was 
also investigated. With increasing irradiation time, the 
bond strength evidently underwent a moderate increase 
from 10.2 MPa at 0 min to 15.5 MPa after 5 min and then 
was almost constant. These results suggest that oxidation 
of the PEEK by radicals in the atmospheric pressure RF 
plasma jet generated oxygen-containing surface func-
tional groups that increased the bond strength.

Fig. 7   Variation of the ratios of O and Mg to Al on an A5052 surface 
(as estimated from SEM-EDX elemental maps) with plasma irradia-
tion time
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Fig. 8   Al 2p, Mg 2p and O 1s XPS spectra of an A5052 surface (a) without and (b) with plasma irradiation
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