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ABSTRACT
To address the embrittlement challenges posed by gas blisters in anisotropic materials, the stable shape of constant-pressure blisters in
anisotropic materials (hexagonal, tetragonal, and rhombohedral) was energetically investigated based on continuum theory (micromechan-
ics), considering the blister as Eshelby’s ellipsoidal inclusion. The non-negligible change in the blister shape was confirmed in terms of the
anisotropic factor η ≡ C3333/C1111. Although the spherical shape of the blister is preferable for isotropic and cubic materials (η = 1), the x3 nor-
mal penny and capsule shapes were theoretically confirmed to be the most stable ones for η > 1 and η < 1, respectively. The penny and capsule
shape blisters generate larger stress fields around themselves than the sphere shape blisters, thus inducing crack formation. The embrittlement
due to the gas (typically hydrogen or helium) inside the blister for the anisotropic materials was more significant than isotropic and cubic
embrittlement.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0182632

I. INTRODUCTION

Gas bubbles, typically helium or hydrogen bubbles, are found
in solid materials. The formation of such bubbles is being exten-
sively investigated owing to the recent demand for hydrogen stor-
age and nuclear materials in modern human society.1–6 Bubbles
form in such materials via the clustering of abundant vacancies,
which are created by interactions of moving dislocations during
deformation or irradiation, in addition to the rapid diffusion of
the helium or hydrogen atom in the material. Clustered vacan-
cies form a void and rapidly diffused atoms tend to accumulate
in it, thereby forming bubbles.7–14 Bubble formation in a material
can significantly degrade its mechanical properties; essentially, these
bubbles introduce local stress fields due to their internal pres-
sure, thereby causing embrittlement of the material and facilitating
blistering.3,15–19

The blisters, which are large-sized (ranging from hundreds of
micrometers to a few millimeters) bubbles, are usually observed
experimentally and are considered the starting points of cracks
due to the stress field generated around them.17,20,21 The stress
fields formed around the blisters depend on their shape, i.e., penny,

capsule, or needle-like blisters generate larger stresses than spheri-
cal blisters around the sharp edge. Thus, to prevent embrittlement,
the morphology of blisters formed in solid materials must be under-
stood. The experimental observation of the detailed shape of the blis-
ters is difficult, and theoretical investigations are necessary. In this
study, we highlighted the relationship between the elastic anisotropy
and the shape of the blisters formed in the solid material based on
a conventional continuum theory, viz., micromechanics. Consider-
ing the blisters as an ellipsoidal secondary phase with a significantly
small elastic constant C̃ijkl ≈ 0 in the matrix materials, we predicted
the shape of the blister in terms of energy and investigated the
stress field around it in the anisotropic materials using the famous
Eshelby’s ellipsoidal inclusion theory, which takes the anisotropy
and the heterogeneity of elastic constants into consideration.22–25

II. METHODOLOGY

In this study, we consider the blister as an ellipsoid ( x2
1

a2
1
+ x2

2
a2

2
+ x2

3
a2

3

= 1, where x = [x1, x2, x3] indicates a position inside the matrix
material and ai is the half axis of the ellipsoid in each direction).
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We assumed that the blister is an elastic body with C̃ijkl ≈ 0 and the
stress tensor σgas

i j = Pδi j (where δij is the Kronecker delta), which
indicates the hydrostatic stress due to the gas pressure P. The rela-
tionship between the elastic constant of the matrix Cijkl and C̃ijkl is
shown below, based on Eshelby’s equivalent inclusion theory using
the Einstein summation convention,26–28

σgas
i j = Cijkl(Sklmnϵ̃mn − ϵ̃kl) = C̃ijkl(Sklmnϵ̃mn − ϵgas

kl ), (1)

where Sklmn is Eshelby’s tensor, ϵgas
kl is the corresponding eigen-

strain due to the gas pressure, and ϵ̃mn is the fictitious eigenstrain,
which takes the elastic heterogeneity between the blister and matrix
material into consideration. Kinoshita et al. reported the general
form of Eshelby’s tensor for an anisotropic matrix and inclusion as
follows:26,29

Sklmn =
1

8π
Cpqmn∫

1

−1
dζ3∫

2π

0

× ( ξlξqNkp(ξ1, ξ2, ξ3) + ξkξqNlp(ξ1, ξ2, ξ3)
D(ξ1, ξ2, ξ3)

)dθ, (2)

where

D(ξ1, ξ2, ξ3) = Ppqr(Cpj1lξjξl)(Cqm2nξmξn)(Crs3tξsξt),

Nkm(ξ1, ξ2, ξ3) =
1
2

PkstPmnr(Csjnlξlξj)(Cturvξuξv),

which correspond to the determinant and cofactor of Kkm
= Cklmnξlξn, respectively, while Ppqr denotes the permutation tensor.
Using ζ3 and θ, ξ = [ξ1; ξ2; ξ3] can be described as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1

ξ2

ξ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1 − ζ2

3 cos θ
a1√

1 − ζ2
3 sin θ

a2
ζ3

a3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The Sklmn value can be numerically calculated using Eq. (2). Sub-
sequently, for a given σgas

i j , anisotropic Cijkl, and C̃ijkl (≈ 0), the
simultaneous equation (1) can be solved to derive ϵ̃kl and ϵgas

kl by
changing the blister shape (the value of ai). Using the calculated ϵgas

kl ,
the increment in elastic energy ΔE (per unit volume of blister) due
to the existence of the blister can be described as follows:

ΔE = −1
2

σgas
i j ϵgas

i j . (3)

By comparing the ΔE values for different blister shapes, we deter-
mined the stable blister shape with a minimum of ΔE for the
materials with the anisotropic Cijkl. Notably, a small non-zero value
must be assigned to C̃ijkl. ϵgas

kl cannot be derived using Eq. (1),
and ΔE cannot be calculated if C̃ijkl is simply set at zero. Fur-
thermore, although we investigated the stable shape in terms of
elastic energy, some readers may have the concern that the effect
of the surface tension (or chemical surface energy) of the materials

on the blister plays a role in determining the blister morphology.
Because the size of the observed blisters is usually in the range
from a few hundred micrometers to a few millimeters, the domi-
nant energy type involved in this case is the elastic energy, because
the elastic energy is volume-dependent and the surface energy is
area-dependent. Considering that the surface energy (or surface ten-
sion) of conventional materials is of the order of 0.1–1.0 J/m2,30

the reduction in pressure due to surface tension is lower than the
order of MPa and the increase in chemical energy due to the exis-
tence of surface ranges from 1.0 × 10−8 to 1.0 × 10−6 J for blisters,
which are much smaller than the gas pressure (of the order of GPa)
inside the blisters17 and the order of elastic energy changes (between
1.0 × 10−6 and 1.0 × 10−3 J), which was calculated using our
following result.

As mentioned above, the stress field around the blister is critical
to understanding the embrittlement of materials, causing cracking.
Thus, we calculated the stress field in the matrix material due to
the pressure inside the blister using the following equations.25,31 We
numerically calculated the gradient of the displacement ∂ui

∂x j
at a cer-

tain position x in the matrix due to the blister using the derived ϵ̃kl
as follows:

∂ui

∂xj
(x) = Cklmnϵ̃mn∫

1

−1
dζ3∫

2π

0
( ξjξlNik(ξ1, ξ2, ξ3)

D(ξ1, ξ2, ξ3)

× ( 1
4π

U(x ⋅ ξ − 1) − 1
2πx̃

δ(x ⋅ ξ − 1)))dθ. (4)

Here, U(z) is a step function and δ(z) is a delta function, which
are described as follows:

U(z) =
⎧⎪⎪⎨⎪⎪⎩

1 (z ≤ 0),
0 (z > 0),

δ(z) =
⎧⎪⎪⎨⎪⎪⎩

1 (z = 0),
0 (otherwise).

This limits the range of the integration to x ⋅ ξ ≤ 1 and x ⋅ ξ = 1 for
the first and second terms on the right-hand side, respectively, and

x̃ =
√
(x1/a1)2 + (x2/a2)2 + (x3/a3)2. The center of the inclusion is

defined at x = [0, 0, 0] in this equation. Based on this equation and

εij(x) =
1
2
(∂ui

∂xj
+ ∂uj

∂xi
),

the distribution of the total strain can be derived, and eventually,
the stress distribution can be derived as σ(x) = Cijklεkl(x) for the
outside of the blister. In general, the position x can be located on
both the inside and outside of the blister in the matrix. The above-
mentioned equation expresses εi j(x) = Sijklϵ

gas
kl for the position x

inside the ellipsoidal inclusion because x always satisfies x ⋅ ξ < 1
during integration.

For the detailed setting of the model, P = −1.0 GPa was used,
thus referring to the order of the pressure inside the hydrogen
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FIG. 1. Elastic energy increment ΔE map with respect to η and a3 for ν3 = 0.2, 0.3, and 0.4. Green lines indicate the minimum of ΔE for each η. Note that the zero standard
of ΔE is that of the spherical blister for each (η, ν3).
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blisters in the literature.17 To simplify the problem, only the
anisotropy along the x3 direction was considered. Thus, the
isotropic-form elastic constants, i.e.,

Cijkl = λδijδkl + μ(δikδjl + δilδjk),

were employed with λ = 60 GPa and μ = 40 GPa except C3333, C1133,
C3311, C2233, and C3322. Thus, we employed

C3333 = ηC1111

and

C1133 = C3311 = C2233 = C3322 = ν3(C1111 + C1122).

The anisotropic factor η and ν3 (Poisson’s ratio for x3 elongation)
were varied from 0.5 to 2.0 and from 0.2 to 0.4, respectively. Under
these conditions, η = 1.0 and ν3 = νiso = 0.3 are for the isotropic and
cubic materials, respectively, and we can consider hexagonal, tetrag-
onal, and rhombohedral anisotropies, changing these parameters.
Notably, Poisson’s ratios for the isotropic and cubic materials are
also tunable parameters; herein, the ratio is defined as νiso = 0.3. The
effect of νiso on the shape of the blister is discussed in Appendix B.
The anisotropy for shear components is not considered because the
pressure inside the blister does not generate the shear stress. The
elastic constants of the blister were approximately defined in the
following isotropic-form:

C̃ijkl =
1

1000
[λδijδkl + μ(δikδjl + δilδjk)].

We confirmed that this condition is robust and performed the same
analysis in the following. C̃ijkl = 1

10 000 [λδi jδkl + μ(δikδ jl + δilδ jk)]
yielded almost the same ΔE map as shown in Fig. 1, and the discus-
sion is the same. Since the anisotropy along the x3 direction only
influences the change in the shape of the blister along the same
direction, the values of a1 and a2 were fixed at 1.0 and the value
of a3 was varied from 0.5 to 2.0 to model the shape change of
the blister. Notably, determining a unit for the half axes is unnec-
essary because Eshelby’s tensor is independent of the inclusion
volume. Thus, the positions in this study are unitless. We only cal-
culated the stress field in the first quadrants of x1–x2 and x1–x3
planes by setting the center of the ellipsoidal inclusion at the ori-
gin of the x coordinate system, considering the symmetry of the
ellipsoids.

III. RESULTS AND DISCUSSION
Figure 1 presents the calculated ΔE map in terms of the log-

arithms of η and the half axis of blister a3 for several ν3 values,
and Fig. 2 presents the shape dependency on elastic anisotropy: the
a3 value with the minimum ΔE (stable shape) at certain η and ν3
values. Although the spherical shape is optimal for the isotropic elas-
tic constants, as η increased (decreased), the stable blister shifted
from a conventional spherical shape to a penny (capsule) shape,
e.g., for (η, ν3) = (2.0, 0.3), the a3 = 0.72 penny is energetically opti-
mal and for (η, ν3) = (0.5, 0.3), the a3 = 1.69 capsule is optimal. The
increase (decrease) in the ν3 value helped the blister transform a
sphere into a capsule (penny). We found that the elastic anisotropy
of matrix materials significantly influences the shapes of the blis-
ters, although strong anisotropy is necessary to change the blister

FIG. 2. Change in the a3 value with the minimum ΔE with respect to η and ν3.

shape. In particular, a minimum of a 0.1-order change of η or ν3
is necessary to effect a 0.1-order change of a3 from the spherical
shape. Although this strong anisotropy is not realistic for pure met-
als, the anisotropic parameter η is expected to have a real value
to induce a change in the blister shape for compound or natural
materials (such as wood), and this may be realized for the complex
alloying metals, such as high-entropy alloys.32–34 Notably, this study
presents only the result with νiso = 0.3 for the isotropic Poisson’s
ratio. Moreover, we calculated the ΔE map for νiso = 0.375 and, in
this case, the penny-shaped blister became more favorable than in
the νiso = 0.3 case (the reader can refer to Appendix B for details).
In Figs. 3–5, the stress fields calculated for an isotropic sphere
(η, ν3, a3) = (1.0, 0.3, 1.0), a stable anisotropic penny (η, ν3, a3)
= (2.0, 0.3, 0.7), and a capsule (η, ν3, a3) = (0.5, 0.3, 1.7) are shown,
respectively. Although the magnitude of gas pressure was 1.0 GPa,
the normal stress field or the hydrostatic stress near the blister in the
material was larger than 1.0 GPa; for example, the hydrostatic stress
near the spherical blister in the isotropic case was ∼1.5 GPa. More-
over, this trend is significant for anisotropic blisters. The value of σ33
near the penny-shaped blister and σ11, σ22, and the hydrostatic stress
near the capsule-shaped blister were ∼3.0 and 2.0 GPa, respectively,
which were larger than that for the isotropic sphere. These large
stress fields may expand the material and drive new gas atoms inside
the blister, which facilitate blister growth and gradual cracking of the
material, i.e., embrittlement. These results suggest that the embrit-
tlement due to the blister is more significant for the anisotropic
material than for the isotropic or cubic materials. Additionally,
for the isotropic sphere, the normal stress fields were anisotropic,
although the hydrostatic stress field was isotropic. This trend is sim-
ilar to the stress field of a Mode I crack as per fracture mechanics35

and can be attributed to the corresponding normal stress compo-
nent σgas

ii of the gas pressure. Notably, owing to the possibility that
large stress fields are formed around the anisotropic blisters in this
study is simply due to the larger C3333 of the matrix, we also con-
firmed that the blister shape has a significant effect (please refer to
Appendix A).
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FIG. 3. Normal stress fields around the spherical blister using isotropic elastic constants: (η, ν3, a3) = (1.0, 0.3, 1.0).
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FIG. 4. Normal stress fields around the stable penny-shaped blister using anisotropic elastic constants: (η, ν3, a3) = (2.0, 0.3, 0.7).
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FIG. 5. Normal stress fields around the stable capsule-shaped blister using anisotropic elastic constants: (η, ν3, a3) = (0.5, 0.3, 1.7).
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FIG. 6. Stress fields around the penny-shaped blister using isotropic elastic constants: (η, ν3, a3) = (1.0, 0.3, 0.7).
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FIG. 7. Elastic energy increment ΔE map in terms of η and
a3 for ν3 = 0.2, 0.3, and 0.4 using μ = 20 GPa, which corre-
sponds to a Poisson’s ratio of the isotropic elastic constants
νiso = 0.375. Green lines indicate the minimum of ΔE for
each η. The zero standard of ΔE is that of the spherical
blister for each (η, ν3).

IV. CONCLUSION
In summary, the stable shapes of constant-pressure blisters

in anisotropic materials (hexagonal, tetragonal, and rhombohedral)
were investigated in terms of energy based on continuum theory
(micromechanics), considering the blister as Eshelby’s ellipsoidal
inclusion. The non-negligible change in the blister shape was con-
firmed in terms of the anisotropic factor η ≡ C3333/C1111. Although

the spherical shape is optimal for isotropic and cubic materials
(η = 1), the x3 normal penny and capsule shapes are theoretically
confirmed to be stable for η > 1 and η < 1, respectively. We con-
firmed that the penny- and capsule-shaped blisters generated larger
stress fields around themselves than the sphere blisters, causing
cracks. Thus, the embrittlement due to the encapsulated gas (gen-
erally, hydrogen or helium) for the anisotropic materials would be

AIP Advances 13, 125024 (2023); doi: 10.1063/5.0182632 13, 125024-9
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more significant than the isotropic and cubic ones. Although we did
not investigate the shapes in the orthorhombic, monoclinic, and tri-
clinic cases, the anisotropy of C2222 can be assumed to influence a2
and generate a more complex ellipsoidal blister (a1 ≠ a2 ≠ a3).
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APPENDIX A: STRESS FIELD AROUND THE PENNY
BLISTER IN ISOTROPIC MATERIALS

Although we found that the large stress field in the anisotropic
case is due to the shape of the blister, large stress fields around
the anisotropic blister may be simply due to the larger C3333 of
the matrix because C3333 value increases with increasing anisotropy
under the conditions of our calculations. To confirm this, we cal-
culated the stress field of the penny-shaped blister using isotropic
elastic constants (η, ν3, a3) = (1.0, 0.3, 0.7), and the result is shown
in Fig. 6. Although the stress field was lower than that of the penny-
shaped blister using anisotropic elastic constants as shown in Fig. 4
(vide supra), the stress field was larger than that of the spherical
blister shown in Fig. 3. Thus, we concluded that the blister shape
significantly influences the stress field around it.

APPENDIX B: EFFECT OF POISSON’S RATIO
OF ISOTROPIC ELASTIC CONSTANTS (νiso)

In the main text, we only presented the result with νiso = 0.3 for
isotropic Poisson’s ratio, and we did not discuss the effect of νiso on
the shape of the blister. To investigate this effect, we calculated the
ΔE map for μ = 20 GPa, which corresponds to the isotropic Poisson’s
ratio νiso = 0.375 and increased from 0.3, as shown in Fig. 7. Com-
pared with Fig. 1 in the main text, the penny (capsule)-shaped blister
was more (less) optimal. The opposite effect would be observed if we
decreased νiso from 0.3.
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