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A B S T R A C T   

Yttria stabilized zirconia (YSZ) ceramics have been used for various engineering applications including structural 
ceramics, biomedical materials, and thermal barrier coatings. The versatile and excellent properties of YSZ stem 
from its unique microstructure consisting of monoclinic, tetragonal, and cubic phases, whose stability depends on 
yttria concentration and temperature. However, there are no empirical interatomic potentials (EIPs) that can 
reproduce the structures and energies of ZrO2 and YSZ polymorphs, limiting the atomic-scale investigation of 
lattice defect structures and their interactions that affect the YSZ microstructure and properties. Here, using a 
genetic algorithm and ab initio training datasets, we have optimized EIPs to sufficiently reproduce the structures 
and stability of ZrO2 and YSZ polymorphs, as well as the properties of the tetragonal and cubic phases at finite 
temperature. The potentials have also been applied to the search for a tetragonal grain boundary structure, 
showing that the obtained grain boundary structure is consistent with that obtained by ab initio calculations. The 
developed EIPs will aid in revealing the microstructure-property relationships in YSZ by performing large-scale 
and systematic calculations, which are practically difficult to perform with ab initio and machine-learning- 
potential calculations.   

1. Introduction 

Zirconia ceramics, denoted by the chemical formula ZrO2, have been 
used for a variety of applications, including structure ceramics, 
biomedical materials, thermal barrier coatings, and solid electrolytes in 
solid oxide fuel cells [1–6]. Pure ZrO2 exists as a monoclinic phase 
(P21/c) at room temperature, but transforms to tetragonal (P42/nmc) 
and cubic (Fm-3m) phases at higher temperatures [7–9]. The most 
important phases for engineering are the tetragonal and cubic phases, 
which are stabilized by cations with ionic radii larger than Zr4+ and/or 
cations with lower valences than Zr4+ that create oxide-ion vacancies for 
charge neutrality [9–11]. The most widely used dopant for ZrO2 is yttria 
(Y2O3), and Y2O3-doped ZrO2 is called as yttria-stabilized zirconia (YSZ) 
[1–5]. 

The versatile and excellent properties of YSZ originate from their 
dopant concentration and microstructure [2]. YSZ with 2-4 mol% Y2O3, 
called as yttria stabilized tetragonal zirconia polycrystal (Y-TZP), ex
hibits high strength and toughness simultaneously [12]. Y-TZP is actu
ally a tetragonal-cubic dual phase, with the fraction of tetragonal phase 

of 80-100% [13]. The tetragonal-to-cubic phase transformation is 
induced by the grain boundary (GB) segregation of Y3+ ions during 
annealing [2,13]. The high toughness of Y-TZP is due to the 
tetragonal-to-monoclinic phase transformation, which is accompanied 
by a volume expansion of ~4% and suppresses crack propagation [14]. 
For thermal barrier coating applications, the Y2O3 composition ranges 
from 3.9 to 4.5 mol%, slightly higher than Y-TZP [15,16]. This is to 
avoid the tetragonal-to-monoclinic phase transformation because the 
volume change causes the spallation of the coating system. The addition 
of 8-10 mol% Y2O3 results in a fully cubic YSZ [9] with a high con
centration of oxide-ion vacancies and a highly symmetric structure, 
resulting in high oxide-ion conductivity. Even in this case, the perfor
mance varies significantly depending on the microstructure with 
different distributions of yttrium ions [17]. 

The microstructure of ZrO2 and YSZ, such as GB atomic structure, GB 
segregation of Y, and their impacts on material properties, has been the 
subject of computational studies using empirical interatomic potentials 
(EIPs) [18–22], in conjunction with experimental observations using 
transmission electron microscopy (TEM) [23–25]. However, the 
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computational research has mainly focused on cubic YSZ, leaving a 
limited understanding of the microstructure of tetragonal and 
tetragonal-cubic dual phases. This is due to the lack of computationally 
inexpensive interatomic potentials that can sufficiently reproduce a 
variety of ZrO2 and YSZ polymorphs, including the monoclinic, tetrag
onal, and cubic phases. While ab initio calculations can accurately 
reproduce the structural features of ZrO2 polymorphs [26,27], it is un
fortunately difficult to investigate the large number of lattice defect 
structures associated with Y2O3 dopant in a realistic time. 

Recently, machine learning potentials (MLPs) have been developed 
for ZrO2 and ZrO2-Y2O3 system, which were trained with the data 
generated by ab initio calculations [28–32]. Verdi et al. reported MLPs 
that can reproduce the monoclinic, tetragonal, and cubic ZrO2 structures 
and the monoclinic-to-tetragonal, and tetragonal-to-cubic phase trans
formations with high accuracy [28,29]. Guan et al. developed an MLP 
for Y2xZr1-xO2-x and investigated their structural features and effects on 
oxide-ion conductivity [31,32]. Although their applicability to lattice 
defect structures has not been verified, the development of these MLPs 
will be useful for revealing the YSZ microstructure and its influence on 
mechanical, thermal, and ionic conduction properties [33]. However, 
while MLPs are several orders of magnitude faster than ab initio calcu
lations, they are several orders of magnitude slower than EIPs due to 
their highly flexible but complex functional form [34,35]. EIPs that can 
reproduce ZrO2 and YSZ polymorphs are still necessary to systematically 
and statistically investigate the YSZ microstructure, which contains a 
large number of lattice defects. 

A few EIPs have been developed to reproduce the structures and 
properties of ZrO2 polymorphs. Atomic interactions in ZrO2 are often 
described by Coulomb-Buckingham interatomic potentials, which are 
commonly used for ionic materials [36,37]. Bandura et al. reported EIPs 
that combine Coulomb-Buckingham potential with inverse Gaussian, 
Fermi-Dirac, and Morse potentials [38]. The developed EIPs successfully 
reproduce the structures and energies of monoclinic, tetragonal, cubic, 
and also high-pressure orthorhombic I and II phases [39] in static cal
culations. However, the applicability of their EIPs to the dynamical 
behaviors of ZrO2 at finite temperatures such as phase transformations 
and thermal expansion, and to the defect configuration such as tetrag
onal grain boundary structures, has not been investigated. The inter
atomic potential for yttrium ions has also not been developed, making 
the computational approach to YSZ polymorphs and microstructures 
impossible. 

To address these issues, we have developed EIPs that can simulate 
the ZrO2 and YSZ polymorphs and their properties at finite temperature. 
Their potential parameters were optimized by a genetic algorithm [40] 
to reproduce a variety of data generated by ab initio calculations. The 
genetic algorithm optimized potentials (GAOPs) can reproduce mono
clinic, tetragonal, cubic, orthorhombic I and II, and other hypothetical 
ZrO2 structures and their stability. In particular, they are capable of 
reproducing the properties of the tetragonal and cubic phases, which are 
of great engineering importance. The high temperature stability of the 
tetragonal phase, the tetragonal-to-cubic phase transformation, and the 
Y2O3 concentration dependence of the tetragonal and cubic phase sta
bility are in good agreement with experiments. In addition, the tetrag
onal GB structure derived using GAOPs is found to be consistent with 
that of ab initio calculations. The developed GAOPs will accelerate our 
understanding of the ZrO2 and YSZ microstructures, including the 
tetragonal GB structures, Y segregation at GBs, and their impact on 
material properties, in combination with more accurate MLP-based and 
ab initio calculations. 

2. Methods 

2.1. Interatomic potentials 

In this study, interatomic potentials for Zr-Y-O system are defined as 
follows according to Bandura et al. [38]: 
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where Φij and rij are the potential energy and distance of atoms i and j. 
ΦBuck

ij , ΦGauss
ij , and ΦFermi

ij are the short-range interatomic potentials in the 
form of Buckingham, inverted Gaussian, and Fermi-Dirac. A, B, C, ρ, and 
r0 are the parameters of the short-range potentials. ΦCoulomb

ij is the long- 
range Coulombic potential. qi and qj are the effective charges of atoms i 
and j, and ε0 is the vacuum permittivity. To maintain the charge 
neutrality, the effective charges of Zr, O, and Y were defined as pro
portional to q as 4q, -2q, and 3q, reflecting ratios of their formal charges. 
The cutoff distance for short-range potentials was set to 12.0 Å. The 
parameter ranges considered in the genetic algorithm optimizations are 
listed in Tables 1 and 2. 

Table 1 
Parameter ranges of interatomic potentials and their optimal values for GAOP1.   

Parameter Range Optimized value 

Charge q (e) 0.500 - 1.000 0.511 
Zr-Zr AGauss (eV) -1.000 - 1.000 0.125  

BGauss (Å− 1) 0.200 - 10.000 9.228  
rGauss
0 (Å) 2.500 - 5.000 3.281 

Zr-O ABuck (eV) 100.00 - 20000.00 15026.89  
ρBuck (Å) 0.1000 - 0.5000 0.1969  
CBuck (eVÅ6) Fixed 5.1  
AGauss (eV) -1.000 - 1.000 0.677  
BGauss (Å− 1) 0.200 - 10.000 1.902  
rGauss
0 (Å) 1.500 - 3.500 2.187  

AFermi (eV) -5.000 - 0.000 -0.647  
BFermi (Å− 1) 0.500 - 5.000 2.467  
rFermi
0 (Å) 1.500 - 3.500 1.626 

O-O ABuck (eV) 100.00 - 20000.00 3207.39  
ρBuck (Å) 0.1000 - 0.5000 0.2993  
CBuck (eVÅ6) Fixed 32.0 

Y-O ABuck (eV) 100.00 - 20000.00 1809.00  
ρBuck (Å) 0.0100 - 0.5000 0.2714  
CBuck (eVÅ6) 1.000 - 100.000 14.374  

Table 2 
Parameter ranges of interatomic potentials and their optimal values for GAOP2. 
In addition to the parameters of GAOP1 shown in Table 1, Zr-Zr Buckingham and 
Fermi-Dirac potentials are included, and the Y-O Buckingham potential is 
modified from GAOP1.   

Parameter Range Optimized value 

Charge q (e) 0.500 - 1.000 0.511 
Zr-Zr ABuck (eV) 1.00 - 30000.00 15555.86  

ρBuck (Å) 0.1000 - 0.5000 0.2674  
CBuck (eVÅ6) 0.01 - 200.00 78.63  
AFermi (eV) -1.000 - 1.000 0.087  
BFermi (Å− 1) 0.500 - 10.000 8.704  
rFermi
0 (Å) 2.500 - 6.000 4.710 

Y-O ABuck (eV) 1.00 - 30000.00 2027.32  
ρBuck (Å) 0.0100 - 0.5000 0.2678  
CBuck (eVÅ6) 0.010 - 200.000 15.830  
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2.2. Datasets 

Two EIPs for ZrO2 and YSZ polymorphs were generated by a genetic 
algorithm, namely GAOP1 and GAOP2. GAOP2 is the modified version 
of GAOP1 to improve the reproducibility of various crystal structures. 

The training dataset for GAOP1 includes (1) relative energies, lattice 
constants, and atomic positions of monoclinic, tetragonal, cubic, 
orthorhombic I and II phases (brookite and cotunnite) and one hypo
thetical ZrO2 structure that often appeared in our preliminary parameter 
fitting trials (hy-ZrO2), (2) lattice constants and atomic positions of Y2O3 
phase, (3-5) relative energies, forces acting on atoms, and stresses in (3) 
respective 50 deformed models of tetragonal and cubic ZrO2, (4) 100 
configurations of tetragonal ZrO2 at 1000 K obtained by ab initio mo
lecular dynamics (MD) simulations, and (5) respective 50 deformed 
models of 3 mol% Y2O3 tetragonal YSZ (3YSZ) and 10 mol% Y2O3 cubic 
YSZ (10YSZ). For (1-2), the conventional unit cells of ZrO2 polymorphs 
and Y2O3 were used. For (3-5), cubic ZrO2 supercells of 2×2×2 con
ventional unit cells and tetragonal ZrO2 supercells of similar size were 
constructed. 32 Zr and 64 O ions are contained in the supercells with a 
lattice parameter a of approximately 10 Å. 3YSZ models were con
structed by randomly replacing 2 Zr atoms with Y atoms (2YZr) and 
introducing 1 oxygen vacancy (VO) in the tetragonal ZrO2 supercell. In 
case of 10YSZ, 6YZr and 3VO are introduced into the cubic ZrO2 super
cell. In 3YSZ and 10YSZ, twenty and two models with random YZr and 
VO configurations were constructed for the training and test datasets, 
respectively. 

The training dataset for GAOP2 is the same for GAOP1 except for (1). 
The training for GAOP2 considers relative energies, lattice constants, 
and atomic positions of 19 different polymorphs, namely monoclinic, 
tetragonal, cubic, orthorhombic I and II, hy-ZrO2, and 13 other struc
tures found in Materials Project database (mp-556605, 754403, 754741, 
755089, 755759, 755769, 775909, 775910, 775935, 775980, 776386, 
776404, and 776427) [41]. The lattice parameters and atomic positions 
of ZrO2 polymorphs, 3YSZ, and 10YSZ models were optimized so that 
the atomic residual forces were less than 1.0×10− 2 eVÅ− 1. 

Structural deformations, i.e., random lattice distortion and atomic 
displacements, were introduced into each tetragonal and cubic ZrO2, 
and 3YSZ and 10 YSZ model according to Seko et al. [42]: 

A′ = A + εAR, (6)  

f ’ = f + εf A
’ − 1η, (7)  

where A and A’ are the lattice vectors of the supercell. f and f’ are the 
fractional coordinates of the atoms in the supercell. R and η are a (3×3) 
matrix and a three-dimensional vector, respectively, that contains 
random numbers between -1 and 1 and introduces lattice distortion and 
atomic displacements. εA and εf control the magnitude of the lattice 
distortion and atomic displacements. For tetragonal and cubic ZrO2, 50 
deformations were generated for training and 5 for testing. For 3YSZ and 
10YSZ, 5 deformations were generated for each model. The values of εA 
and εf for the Nth distortion and displacements were set to εA = 0.250 N/ 
Ntotal Å and εf = 0.125 N/Ntotal Å to include various deformations. 

Ab initio MD simulations for a tetragonal supercell were performed 
for 14 ps with a timestep of 2 fs (7000 steps). The isothermal-isobaric 
(NPT) ensemble was employed with Langevin thermostat and 
Parrinello-Rahman barostat. The target temperature and pressure were 
set to 1000 K and 0 GPa. From MD simulations, 100 (10) atomic con
figurations at 50-step intervals from 1550 to 6500 steps (from 6550 to 
7000 steps) were extracted and used for the training (test) data. 

All ab initio calculations were performed using density functional 
theory (DFT) calculations with the plane-wave basis projector 
augmented wave (PAW) method [43] as implemented in the Vienna Ab 
initio Simulation Package (VASP) [44,45]. The computational conditions 
are the same for structure optimization, energy, force, and stress eval
uation, and MD simulation. The generalized gradient approximation 

(GGA) in the form of PBEsol [46] was employed. The plane-wave energy 
cutoff was set to 500 eV. The total energy convergence was set to 
1.0×10− 6 eV/cell. The first Brillouin zone was sampled with 
Monkhorst-Pack k-point grids [47] with a grid spacing of 0.4 Å− 1 

(2×2×2 grids for the supercells). The PAW potentials used in this study 
have the following valence configurations: [4s2 4p6 5s2 4d2] for Zr, [4s2 

4p6 5s2 4d1] for Y, and [2s2 2p4] for O. The rest electrons were treated as 
fixed core electrons. 

2.3. Fitting process of potential parameters 

We firstly explain the details of GAOP1. Our fitting process can be 
divided into two steps, one for the potentials of ZrO2 and one for an 
additional Y-O interaction. In the first step, the effective atomic charges, 
and potential parameters for Zr-O (Buckingham, Gaussian, Fermi-Dirac), 
O-O (Buckingham), and Zr-Zr (Gaussian) interactions were optimized by 
a genetic algorithm. The first training dataset contains the data (1, 3, 4) 
as described in subsection 2.2. In the second step, the potential pa
rameters for Y-O (Buckingham) were optimized. The second training 
dataset contains the data (2, 5) as described in subsection 2.2. 

The fitting process of GAOP2 was also divided into two steps. First, 
Zr-Zr potentials in the form of Buckingham and Fermi-Dirac were added 
to GAOP1, with the other parameters fixed. The data (1) were changed 
to include a larger number of crystal structures as described in subsec
tion 2.2, and the additional potential parameters for Zr-Zr interaction 
were optimized. Then, Y-O Buckingham potential parameters were 
refitted with the modified Zr-Zr interatomic potentials as the second 
step. The training dataset was the same with those used in the second 
fitting of GAOP1. 

2.4. Genetic algorithm 

We employed the code POPs [40], which utilizes a genetic algorithm 
to optimize empirical potentials. The genetic algorithm generates Np 
individuals with random genotypes representing potential parameters, 
evaluate the fitness of the individuals by the objective function Z, and 
searches for the optimal genotypes with low Z by repeating the gener
ation Ng times while recombining and mutating the genotypes of in
dividuals. See the reference for more details [40]. 5% of the superior 
individuals were passed into the next generation. The rate of mutation 
was set to 40% to reduce the probability of the potential parameters into 
local minima. Np and Ng were set to 1000. In the second fitting for the 
Y-O interaction, the search was terminated after a few to several dozen 
generations because there were only three parameters to optimize and 
the objective function Z rapidly converged. The first and second fittings 
were performed 200 times and 20 times, respectively, in GAOP1, and 
both 40 times in GAOP2, using different initial populations with random 
genotypes. 

We defined the objective function Z as follows: 

Z = Ze1 + Zl + Zp + Ze2 + Zf + Zs, (8)  

where Ze1, Zl, and Zp are the errors of relative energy, lattice constant, 
and fractional coordinate of ZrO2 polymorphs, estimated from the 
training data (1-2). Ze2, Zf, and Zs are the errors of relative energy, force, 
and stress of deformed ZrO2 and YSZ models, estimated from the 
training data (3-5). The energies, lattice constants, fractional co
ordinates, forces, and stresses of EIPs were calculated using the Large- 
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [48]. 
To calculate the above objective function Z, the POPs code was slightly 
modified by the author. 

Ze1, Zl, and Zp are the functions for reproducing the crystal structures 
of ZrO2 polymorphs and Y2O3 and are defined as follows: 

Ze1 =
∑M1

i
we1i
(
EDFT

i − EEIP
i

)2
, (9) 
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Zl =
∑M1

i
wli

∑6

j

(
lDFT
ij − lEIP

ij

)2
, (10)  

Zp =
∑M1

i
wpi

∑N1

j
‖ pDFT

ij − pEIP
ij ‖

2
, (11)  

where M1 is the number of ZrO2 polymorphs and Y2O3 for fitting, Ni is 
the number of atoms contained in the ith crystal structure. EDFT

i and EEIP
i 

are the DFT and EIP energies, referenced to the energies of the fully 
relaxed monoclinic ZrO2. lDFT

ij and lEIP
ij are the jth DFT and EIP lattice 

vector components of the ith configuration. pDFT
ij and pEIP

ij are the DFT 
and EIP fractional coordinates of the jth atom in the ith configuration. 
we1i, wli and wpi are the weights of Ze1, Zl, and Zp for the ith crystal 
structure. 

Ze2, Zf, and Zs are the functions for reproducing the physical response 
of ZrO2 and YSZ against atomic displacements and lattice distortions and 
are defined as follows [40]: 

Ze2 = we2

∑M2
i

(
EDFT

i − EEIP
i

)2

M2
∑M2

i

(
EDFT

i
)2 , (12)  

Zf = wf

∑M2
i
∑Ni

j ‖ FDFT
ij − FEIP

ij
2
‖

∑M2
i Ni

∑M2
j ‖ FDFT

ij ‖
2 , (13)  

Zs = ws

∑M2
i
∑6

j

(
SDFT

ij − SEIP
ij

)2

6M2
∑M2

i
∑6

j

(
SDFT

ij

)2 , (14)  

where M2 is the number of deformed and MD configurations, Ni is the 
number of atoms contained in the ith configuration. EDFT

i and EEIP
i are the 

DFT and EIP energies, referenced to the energies of the fully relaxed 
configuration (monoclinic ZrO2 or YSZ models with the lowest energy). 
FDFT

ij and FEIP
ij are the DFT and EIP force vectors of the jth atom in the ith 

configuration, and SDFT
ij and SEIP

ij are the jth DFT and EIP stress tensor 
components of the ith configuration. we2, wf, and ws are the weights of 
Ze2, Zf, and Zs. 

The weights we1i, wli, wpi were set to 5000, 200, and 500 for mono
clinic, tetragonal, and cubic phases, and 500, 20, and 50 for other 
phases. The weights we2, wf, ws were set to 50000, 1500000, and 30000 
(see Discussion S1 for details). For GAOP2, adjustments of we1i were 
made to improve the reproducibility of energies for more important 
(experimentally observed) crystal structures, while reproducing the 
relative stabilities of various crystal structures, as follows: 2000 for 
monoclinic, tetragonal, and cubic, 4000 for SrBr2-type structure (mp- 
775910), 400 for orthorhombic I and II, hy-ZrO2, and phases with lower 
energies than the cubic phase in DFT calculation, 20 for others. 

2.5. Thermal properties 

Phonon band structures and element-projected density of states 
(DOS) of monoclinic, tetragonal, and cubic ZrO2 were calculated using 

Fig. 1. Comparison of EIP and DFT energies for 19 ZrO2 polymorphs with six different EIPs. The energies are referenced to that of the monoclinic phase obtained 
with each calculation condition. (a, b) The developed (a) GAOP1 and (b) GAOP2. (c) The EIPs reported by Schelling et al. [37] (d-f) The EIPs reported by Bandura 
et al. [38], namely (d) BIGFD, (e) BMFD1, and (f) BMFD2. 
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the finite displacement method implemented in Phonopy [49,50]. The 
second-order force constants were derived from the forces of supercells 
with an atomic displacement distance of 0.01 Å. For these force calcu
lations, supercells with the cell sizes larger than 10 Å were used to avoid 
the self-interactions between displaced atoms. 

To estimate the temperatures of phase transformations and melting 
of ZrO2, MD simulations were performed using the LAMMPS code. We 
created the supercells of pure tetragonal and monoclinic ZrO2 and yttria- 
doped tetragonal YSZ, which have the cell length of approximately 30 Å 
and contain more than 2500 atoms. For pure ZrO2, MD simulations were 
carried out for 5 ns with a timestep of 1 fs (5,000,000 steps), slowly 
increasing the temperature from 1 to 5000 K. We employed the NPT 
ensemble using Nosé-Hoover thermostat. For YSZ, the models were 
heated from 1 to 4000 K in a shorter time of 0.4 ns. Instead, the tem
peratures of tetragonal-to-cubic phase transformation and melting were 
averaged among 10 models with random defect configurations for each 
Y2O3 compositions (1.0 - 10.0 mol%). 

2.6. Grain boundary structure 

We used a rigid-body translation (RBT) approach to find the most 
energetically stable atomic configuration for a tetragonal GB Σ5(210)/ 
[001]pc for a pseudo-cubic (pc) orientation. Here, [110], [1-10], and 
[001] orientations in the tetragonal structure correspond to [100]pc, 
[010]pc, and [001]pc orientations, respectively. The cell size of the GB 
models is approximately 46×11×5 Å with the two grain boundaries on 
the yz plane. The models contain 80 Zr and 160 O atoms. Initial GB 
models were generated by shifting one grain for the directions parallel to 
the GB plane (y- and z-axes) and varying the separation of two grains (x- 
axis). The increments of RBTs for y- and z-axes were 1/4 and 1/8 in 
fractional coordinates (approximately 1.3 and 1.4 Å, respectively), and 
the separations between the two grains were set to 0.57, 1.07, and 1.57 
Å. By performing structure optimizations for these models, we obtained 
the energetically stable Σ5(210)/[001]pc GB using DFT and EIP calcu
lations. Note that the orientation of the tetragonal grains may change 
during the optimization process, and those GBs were excluded from the 
results. The GB energy ΔEGB of these models was calculated with the 
following equation [51]: 

ΔEGB =
EGB − NGB

Nbulk
Ebulk

2A
, (15)  

where Ebulk and EGB is the energy of the tetragonal unit cell and the GB 
model, Nbulk and NGB is the number of atoms contained in the unit cell 
and the GB model, and A is the GB cross-sectional area in the GB model. 

For DFT calculations, we optimized the structure of pure tetragonal 
ZrO2 unit cell with a plane-wave energy cutoff of 550 eV to obtain the 
lattice constants with high precision. The structure optimizations of GB 
models were performed with a lower energy cutoff of 420 eV and fixed 
lattice constants, to reduce the computational cost. The first Brillouin 
zone was sampled with Monkhorst-Pack k-point grids of 1×2×4 [47]. To 
accurately calculate the GB energy, a DFT calculation was rerun for the 
lowest energy GB model with the plane-wave energy cutoff of 550 eV, 
where the cell shape and size were optimized including the direction 
perpendicular to the GB. 

3. Results and Discussion 

3.1. Developed potentials 

Fig. 1(a) compares the relative energies of ZrO2 polymorphs in DFT 
calculations and classical force field calculations using the developed 
GAOP1 (see Table 1 for the parameters). The ZrO2 polymorphs include 
monoclinic, tetragonal, cubic, orthorhombic I and II phases as well as 
various hypothetical structures taken from the Materials Project data
base. In Fig. 1(a), the plotted points are aligned on the black line, 
indicating that the relative energies (stabilities) of the ZrO2 polymorphs 
are well reproduced by GAOP1. Notably, the order of stability is 
reproduced for the experimentally observed crystal structures, namely 
monoclinic, tetragonal, cubic, and orthorhombic I and II structures. The 
largest deviation from the DFT calculation is in the structure of mp- 
754751, which has an oxygen polyhedron of trigonal prism [52]. For 
this structure, other EIPs also have significantly larger energies than that 
of the DFT calculation as seen in Fig. 1(b-f), suggesting that EIPs based 
on the Coulomb-Buckingham potential are difficult to reproduce the 
stability of this crystal structure. The most severe computational prob
lem with GAOP1 is that the SrBr2-type structure is predicted to be too 
stable. The DFT calculations show that this structure has an energy be
tween tetragonal and cubic phases, but it is the second most stable 

Fig. 2. Reproducibility of crystal structures by EIPs. (a, b) RMSEs of (a) lattice vector components and (b) fractional coordinates of atoms compared with DFT 
calculations. See subsection 3.1 for the definition of RMSEs. The crystal structures are also shown in (b). Light-blue and red balls represent Zr4+ and O2− ions, 
respectively. 
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Fig. 3. Comparison of energies, forces, and stresses calculated using the EIPs and DFT. (a) The developed GAOP2. (b-d) The potentials reported by Bandura et al. 
[38], namely (b) BIGFD, (c) BMFD1, and (d) BMFD2. The values calculated from the models used for the GAOP2 training and testing are plotted with gray and 
colored points, respectively. The diagonal line means that the values calculated by the EIPs and DFT are equal. The RMSEs of energies, forces, and stresses are also 
indicated in the panels. 
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structure after the monoclinic phase in GAOP1. Since this SrBr2-type 
structure is a unique structure that may appear at tetragonal grain 
boundaries as discussed later, the overestimation of the stability for this 
structure may cause problems in searches of lattice defect structures. 

To reproduce the order of phase stability more accurately, we 
created GAOP2 optimized with the training data including the energies 
and structures of 19 ZrO2 polymorphs (see Table 2 for the parameters). 
The relative energies obtained using GAOP2 are shown in Fig. 1(b). 
Although the energies were estimated lower than those of the DFT cal
culations, relative energies (stabilities) of ZrO2 polymorphs were more 
precisely reproduced, except for mp-754741. 

The reproducibility of phase stability was also evaluated for four 
other EIPs considering multiple ZrO2 phases. Using the simple Coulomb- 
Buckingham potential reported by Schelling et al.[37], the relative sta
bilities of ZrO2 polymorphs were not successfully reproduced, with some 
crystal structures having lower energies than the monoclinic phase 
(Fig. 1(c)). A few structures were transformed to other crystal structures 
during the structural optimization. The three EIPs reported by Bandura 
et al. (called BIGFD, BMFD1, and BMFD2) [38], in which the 
Coulomb-Buckingham potential was combined with several additional 
potential functions, were found to have a monoclinic structure as the 
most stable phase (Fig. 1(d)-(f)). The phase stability of the ZrO2 poly
morphs was also well reproduced by the three EIPs, especially by 
BMFD1, but there were a few phases with the overestimated energies 
than by GAOP2. These comparisons indicate that the GAOP2 developed 
in this study performs better than the previous EIPs in terms of repro
ducing the relative stability of the ZrO2 polymorphs. 

The reproducibility of ZrO2 structures were compared between 
GAOP2, BIGFD, BMFD1, and BMFD2 (Fig. 2). The root mean squared 
errors (RMSEs) of the lattice vectors and fractional coordinates of atoms 

were defined as follows: 

RMSE (lattice vector) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑6

i

(
lEIP
i − lDFT

i

)2

/

6

√
√
√
√ , (16)  

RMSE (atom coordinate) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i
‖pEIP

i − pDFT
i ‖2

/

3N

√
√
√
√ , (17)  

where lEIP
i and lDFT

i are the ith EIP and DFT lattice vector components, 
pEIP

i and pDFT
i and are the EIP and DFT fractional coordinates of the ith 

atom, and N is the number of atoms in a ZrO2 structure. The lattice 
vectors are in good agreement with the DFT calculations for all EIPs, 
with RMSEs of 0.15 Å or less, except for the mp-775980 structure with 
BIGFD. For the fractional atomic coordinates (with the values between 
0 and 1), the RMSEs were less than 0.02 in most cases, with no signifi
cant discrepancies. The large deviation was seen in the structure of mp- 
755759, with the RMSE of ~ 0.05 in GAOP2. This is because the 
structure transformed into a tetragonal structure during the structural 
optimization, although this transformation was not observed for other 
three EIPs. This is a drawback of GAOP2, but it was found that a wide 
variety of ZrO2 structures can be reproduced by GAOP2 and other three 
EIPs. 

The energies, forces acting on atoms, and stresses for the deformed 
cubic and tetragonal structures and MD tetragonal structures were 
compared between the DFT and EIP calculations (Fig. 3). The energies, 
forces, and stresses have a significant impact on the dynamical structural 
stability and the reproducibility of the physical properties such as me
chanical and thermal properties. Note that only GAOP2 contains the 
data of 3YSZ and 10YSZ, because the other EIPs do not include the 

Fig. 4. Phonon band structures and element-projected phonon density of states for monoclinic, tetragonal, and cubic ZrO2 obtained by (a) DFT calculations and (b) 
GAOP2. The negative number of the vertical axis indicates imaginary frequency. 
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potentials for yttrium (see Fig. S1 for plots that separately show the data 
of ZrO2 and YSZ in GAOP2). As shown in Fig. 3, GAOP2 showed the 
lowest RMSEs of the four EIPs in energy, force, and stress. The RMSE for 
the training and test datasets were comparable, indicating that no 
overfitting occurred. For the other EIPs, the errors were more pro
nounced for the significantly deformed models and MD structures. The 
energies were overestimated by the three EIPs, with large errors in stress 
for BIGFD and in force for BMFD1 and BMFD2. This comparison shows 
that GAOP2 has a better reproducibility of energy, force, and stress in 
tetragonal and cubic phases compared with the other EIPs. In summary, 
the developed GAOP2 are the potentials that sufficiently reproduces the 
relative stability, crystal structures, and responses to structural 
deformation. 

3.2. Phase stability and thermal properties 

Fig. 4 shows phonon band structures and element-projected phonon 
DOS for the monoclinic, tetragonal, and cubic phases that are of prac
tical importance, calculated by DFT and GAOP2 calculations. The shape 
of phonon dispersions seems to be consistent between GAOP2 and DFT 
calculations, although the phonon frequencies are overestimated, and 

optical phonon modes are more dispersive in GAOP2 (see Fig. S2 for 
possible reasons). In particular, the monoclinic and tetragonal phases 
are dynamically stable, and the imaginary mode of the cubic phase that 
indicates the spontaneous transformation from the cubic phase to the 
tetragonal phase is reproduced. This result demonstrates that GAOP2 
can reproduce the dynamical stability of monoclinic, tetragonal, and 
cubic phases at 0 K. 

To investigate the stability of the tetragonal and cubic phases under 
finite temperature, the tetragonal phase was heated from 1 K to 5000 K 
by MD simulations using GAOP2. Fig. 5(a) shows the change in lattice 
volume and the lattice parameter ratio c/a during the temperature in
crease (Here a pseudo cubic structure is considered for the length of a- 
and c- axes as seen in the inset of Fig. 5(a)). The tetragonal structure 
thermally expanded while maintaining the c/a ratio of about 1.015, 
which is underestimated compared to the experimental ratio of ~1.025 
[53]. The calculated linear coefficients of thermal expansion (CTE) at 
1200 - 1800 K are 10.7 × 10− 6 K− 1 for a-axis and 10.9 × 10− 6 K− 1 for 
c-axis, which are consistent with the experimental values (~11 × 10− 6 

K− 1 for a-axis and ~15 × 10− 6 K− 1 for c-axis) [54]. The tetragonal phase 
was transformed to the cubic phase at about 2380 K. This transformation 
temperature is slightly underestimated compared to the experimentally 
reported temperature of ~ 2570 K [53], but agreed well with the 2386 K 
determined by an MLP [28]. Further heating of the cubic phase resulted 
in melting at about 3600 K, overestimated compared to the experimental 
value of ~3000 K [8]. By using BIGFD, BMFD1, and BMFD2, the c/a 
ratio decreased rapidly with increasing temperature, and the tetragonal 
phase transformed to the cubic phase at temperatures between 100 and 
900 K (Figs. S3-5). The melting points were above 4000 K, and the cubic 
phase did not melt even at 5000 K in BMFD2. These results indicate that 
GAOP2 is the only EIP capable of reproducing the dynamic behaviors of 
tetragonal and cubic phases in the high temperature range. 

We also performed similar MD simulations to investigate the struc
tural stability of the monoclinic phase under finite temperature (Fig. 5 
(b)). The monoclinic phase remained until 2610 K in GAOP2, after 
which it transformed into a disorder phase with a mixture of different 
coordination environments. The monoclinic-to-tetragonal trans
formation was not observed in GAOP2, although it has experimentally 
been reported at 1400-1500 K [53]. This may be attributed to the fact 
that the deformed and MD structures of the monoclinic phase were not 
included in the training dataset. However, it should be noted that 
including such data may reduce the reproducibility of other structures 
and properties (see Discussion S1). The transformation to the disorder 
phase is possibly because the monoclinic phase could not transform 
completely to one of the structures shown in Fig. 2(b), due to the 
mismatch in cell geometry or number of atoms contained in the super
cell. Similarly, the EIPs of BIGFD, BMFD1, and BMFD2 cannot reproduce 

Fig. 5. Volume and c/a ratio of ZrO2 as a function of temperature, starting from 
the structures of (a) tetragonal and (b) monoclinic phases. GAOP2 was used for 
the calculation. 

Fig. 6. Transformation temperature from cubic to tetragonal phase and c/a 
ratio at 0 K as a function of Y2O3 concentration. GAOP2 was used for the cal
culations. Bars indicate the standard deviation of transformation temperature 
or c/a ratio among 10 models with different defect configurations. 

S. Fujii et al.                                                                                                                                                                                                                                     



Acta Materialia 262 (2024) 119460

9

transformation from the monoclinic to the tetragonal phase, but a 
transition from monoclinic to cubic phase, where the tetragonal phase 
was skipped, occurred at high temperatures above 3000 K (Figs. S3-5). 

The stability of tetragonal and cubic structures in YSZ was also 
investigated by MD simulations with GAOP2. Fig. 6 shows the temper
ature of the tetragonal-to-cubic phase transformation and the c/a ratio 
at 0 K, as a function of mol% Y2O3. Both decreased linearly with 
increasing yttria content, and the cubic phase was formed even at 0 K 
when Y2O3 mol% reached 7%. The experimental trends of the tetragonal 
structure at low mol% Y2O3 and the cubic structure at high mol% Y2O3 
are well reproduced by GAOP2. The mol% Y2O3 at which the cubic 
structure is formed is close to the experimental results (8-10 mol% Y2O3) 
[9]. The reproducibility of the relative stability of the tetragonal and 
cubic phases in YSZ is considerably improved by GAOP2, since the 
Schelling potential shows that YSZ is cubic at 0 K with 4 mol% Y2O3 
[37]. Upon further heating, YSZ expanded while maintaining its cubic 
structure until melting. The melting point decreased with increasing 
yttria content and reached about 3150 K for 8YSZ (Fig. S6). The melting 
point is in good agreement with experimental results, although the 
decrease in melting point is not observed for mol% Y2O3 below 10% in 
the experiments [7,9]. In summary, GAOP2 is an EIP that can simulate 
monoclinic, tetragonal, and cubic ZrO2 as well as tetragonal and cubic 
YSZ even at finite temperature, although the reproducibility of the 
monoclinic-to-tetragonal phase transformation is limited. 

3.3. Application to a tetragonal grain boundary 

Finally, as an application of the constructed GAOP2, we explored the 
structure of a GB in the tetragonal phase by rigid body translations. 
Fig. 7(a) shows the most stable GB structure of Σ5(210)/[001]pc ob
tained by DFT calculations. At the GB plane, a local coordination envi
ronment similar to the SrBr2-type structure was formed (see Fig. 2(b)). 
The most stable GB structures obtained by EIPs (GAOP1, GAOP2, BIGFD, 
BMFD1, and BMFD2) are also shown in Fig. 7(b). The SrBr2-type local 
coordination environment is reproduced by GAOP1, GAOP2, and 
BMFD2, although there are slight structure differences from DFT cal
culations, especially in the positions of oxide ions about 6Å away from 
the GB plane. With BIGFD and BMFD1, no SrBr2-type structures were 
found by the search under the same conditions, but the structure opti
mization started with the most stable DFT structure yielded lower GB 
energies than those in Fig. 7(b) (1.61 Jm− 2 for BIGFD and 1.58 Jm− 2 for 
BMFD1). The GB energy for GAOP2 is closest to the DFT calculation, 
probably reflecting the high reproducibility of phase stability as shown 
in Fig. 1. GAOP1 has a lower grain boundary energy than the DFT 
calculation, presumably due to the underestimated energy of SrBr2-type 

structure, which is improved in GAOP2. The cation arrangements in 
cubic YSZ observed by the scanning transmission electron microscopy 
(STEM) [25] are different from the SrBr2-type structure shown in Fig. 7. 
This indicates that the SrBr2-type structure may be the coordination 
environment that occurs specifically at tetragonal GBs. The agreement 
with the DFT calculations demonstrates that GAOP2 can be used to 
explore the GB structures of the tetragonal phase due to its ability to 
reproduce the structures and stabilities of ZrO2 polymorphs. 

4. Conclusions 

We have developed an empirical interatomic potential GAOP2 
optimized for various ZrO2 polymorphs and the solid solution system of 
YSZ, including monoclinic, tetragonal, and cubic phases that are of 
practical importance. GAOP2 can reproduce the relative stability of 
ZrO2 polymorphs at 0K, energies, forces acting on atoms, and stresses in 
the tetragonal and cubic phases, and the temperature and yttria con
centration dependence of tetragonal-cubic stability, as well as the 
thermal properties. It was also found that the structure of a tetragonal 
grain boundary Σ5(210)/[001]pc derived by GAOP2 is consistent with 
that obtained by DFT calculations. The developed potential will allow us 
to systematically explore tetragonal grain boundary structures, yttria 
segregation behavior, complex defect configurations in tetragonal and 
cubic YSZ, and their impact on mechanical and thermal properties. 
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