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ABSTRAK 

Kesesakan di bandar-bandar utama telah menjadi perkara biasa di kalangan 

masyarakat. Terperangkap dalam lalu lintas selama berjam-jam dalam keadaan duduk 

memerlukan kerja berulang iaitu menekan pemecut secara manual dan menghentikan 

pedal secara berlebihan, yang, jika dilakukan tanpa postur duduk yang betul, boleh 

mengakibatkan keletihan yang cepat, terutamanya untuk kaki dan belakang pemandu. 

Oleh itu, penyelidikan ini adalah untuk mengautomasikan mekanisme menekan dengan 

memodelkan penggerak untuk pedal menekan menumpukan untuk pemanduan kelajuan 

rendah dalam kelewatan lalu lintas jalan raya. Projek ini membentangkan pengenalan 

sistem dan kawalan sistem penekan pedal kereta automatik untuk pemanduan kelajuan 

rendah dalam kelewatan lalu lintas jalan raya. Dua parameter seperti daya dan kelajuan 

rendah akan diperhatikan untuk kedua-dua pengawal dan keupayaan untuk 

mengurangkan gangguan akan disimulasikan. Output pengawal akan menentukan daya 

brek kereta. Pautan selari disambungkan kepada penggerak supaya ia memberikan tindak 

balas yang bertentangan dengan pedal kereta. Pengenalpastian sistem diambil daripada 

tingkah laku dinamik sistem dan dimodelkan menggunakan data input-output yang 

diperoleh terus daripada pelantar eksperimen. Kerja ini menggunakan rangkaian saraf 

untuk memodelkan sistem kerana sistem itu mempamerkan tingkah laku yang sangat 

tidak linear. Makalah ini membandingkan kawalan kelajuan rendah dengan kedua-dua 

pengawal: PID konvensional dan pengawal logik kabur berkenaan dengan ralat overshoot 

dan keadaan mantap. Pengawal PID dan pengawal Fuzzy telah direka bentuk, 

disimulasikan dan dibandingkan dalam keupayaan mereka untuk mengawal kelajuan 

kereta. Kedua-dua pengawal kemudiannya dilaksanakan dan diuji dalam sistem penekan 

pedal kereta automatik. Keuntungan pengawal ditala menggunakan algoritma 

metaheuristik iaitu Algoritma Swarm Partikel (PSO) untuk nilai optimum parameter 

pengawal kabur. Parameter pengawal dioptimumkan berdasarkan Ralat Integral Squared 

(ISE), Kesilapan Mutlak Integral (IAE), Kesalahan Absolute Time Integral (ITAE) dan 

Kesalahan Mean Squared) MSE. Penilaian perbandingan kedua-dua pengawal dilaporkan 

dan dibincangkan. Ini menunjukkan bahawa pengawal logik Fuzzy berprestasi lebih baik 

daripada pengawal PID dengan pengurangan 1.2724% dalam ralat keadaan mantap dan 

3.64% dalam overshoot masing-masing. 
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ABSTRACT 

Congestion in major cities has been a typical occurrence among communities. 

Being stuck in traffic for hours in a sitting position necessitates recurrent chores of 

manually pressing the accelerator and stop pedals excessively, which, if performed 

without the proper sitting posture, can result in quick weariness, especially for the driver's 

leg and back. Therefore, this research is to automate the pressing mechanism by 

modelling an actuator for pedals pressing concentrating for low-speed driving in a road 

traffic delay. This project presents system identification and control of automatic car 

pedal pressing system for low-speed driving in a road traffic delay. Two parameters such 

as force and low speed will be observed for both controllers and the ability to attenuate 

disturbance will be simulated. Output of the controller will determine the force of the car 

brake. The parallel linkage is connected to the actuator such that it provides an opposite 

reaction to the car pedal. The system identification is taken from the dynamic behavior 

of the system and modelled using input-output data acquired directly from the 

experimental rig. The work utilized a neural network to model the system as the system 

exhibits highly nonlinear behavior. This paper compares the low-speed control with both 

controllers: conventional PID and fuzzy logic controller with respect to overshoot and 

steady state error. A PID controller and a Fuzzy controller were designed, simulated, and 

compared in their ability to control the speed of the car. Both controllers were then 

implemented and tested in automatic car pedal pressing system. The controller gains were 

tuned using metaheuristic algorithm which is Particle Swarm Algorithm (PSO) for optimal 

values of fuzzy controller parameters. The controller parameters are optimized based on 

Integral Squared Error (ISE), Integral Absolute Error (IAE), Integral Time Absolute Error 

(ITAE) and Mean Squared Error) MSE. The comparative assessment of both controllers was 

reported and discussed. It shown that Fuzzy logic controller performs better than PID 

controller with 1.2724% reduction in steady state error and 3.64% in overshoot respectively. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Project Background 

Vehicle traffic congestion occurs when there are too many vehicles on the road 

and the traffic flow is impeded. Traffic congestion disrupts users' regular activities and 

produces pandemonium on the road. Time spent on the road has numerous negative 

implications on productivity, social behaviour, the environment, and economic costs. 

Congestion is worsening, resulting in situations where traffic flow is always 

unpredictable and uncontrollable, such as floods, accidents, and road repair [1]. 

There is no doubt that an automatic car would not have made sense without an 

effective and real-time responsive car pedal pressing system. The cause of many of these 

accidents is driver distraction and failing to react in a timely manner. An advanced system 

of auxiliary functions has been devised to aid in the avoidance of such an accident and 

the reduction of the effects of a collision should one occur. This is accomplished by 

shortening the overall stopping distance [2]. As a result, the car pedal should have a solid 

software system to aid a driver when driving. 

Road congestion studies show that about half of traffic delay is bottlenecks (traffic 

demand exceed roadway capacity). The other half is attributable to temporary disruptions 

of the transportation system like traffic incidents, work zones, poor signal timing and bad 

weather [3]. 
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Figure 1-1 Percentage of road traffic congestion in 2019 

Most of the drivers' actions are based on their prior experience rather than precise 

mathematical calculations. The model of car pedal pressing is a highly nonlinear function, 

therefore finding a correct model is difficult. Many researchers have developed fuzzy 

logic systems for autonomous driving controllers because they mimic the performance of 

a skilled human operator in language tulles without requiring the use of a mathematical 

model [4]. Because of the increasing traffic density, car pedal pressing control systems 

for passenger cars are becoming less useful. It is rarely possible to travel at a 

predetermined speed. An intelligent car pedal pressing control system, on the other hand, 

must behave similarly to a skilled human driver to get approval. As a result, the following 

distance and control dynamics must be adjusted to meet the needs of each unique driver. 

Because the driver's experience may be easily translated into rules, applying fuzzy logic 

to intelligent car pedal pressing control appears to be an appropriate technique to achieve 

this human behaviour [5]. 

Artificial neural networks (ANN) system identification is also used as a learning 

system, well recognized by the computer science community and with many applications. 

The controller uses ANNs to create a model of the tracks to estimate the car's trajectory 

and goal speed. Data received from a human was used to train the ANNs. The results of 

this research are promising in terms of forecasting trajectory on new tracks; nonetheless, 

the target speed is slower than that of humans on the same tracks [6]. 
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1.2 Problem Statement 

Congestion in major cities has been a typical occurrence among communities. 

Even though the government and state agencies have made numerous steps to address 

traffic congestion, the situation appears to be worsening as car production and sales 

continue to rise year after year, regardless of traffic congestion. Being stuck in traffic for 

hours in a sitting position necessitates recurrent chores of manually pressing the 

accelerator and stop pedals excessively, which, if performed without the proper sitting 

posture, can result in quick weariness, especially for the driver's leg and back. It will have 

a long-term harmful impact on the driver's health, especially in terms of the physical, 

psychological, and emotional health. Therefore, this research is to automate the pressing 

mechanism by modelling an actuator for pedals pressing concentrating for low-speed 

driving in a road traffic delay.  

It is known that the intelligent techniques have a strong capability of learning and 

cognition, as well as a good tolerance to uncertainty and imprecision. Due to these 

properties, they can be applied successfully to Intelligent Vehicle Systems. Fuzzy Logic 

is very adequate to build qualitative (or linguistic) models, of many kinds of systems 

without an extensive knowledge of their mathematical models. The car pedal is one of 

the most important actuators for driving. Even if there are few examples of successful 

PID control of an automatic car pedal pressing system, the most of them are study cases. 

In real-world circumstances, the complexity and unpredictability of an actual system 

become crucial problems for keeping the system stable. To maintain system stability, 

intelligent controller is suggested for the automatic car pedal pressing system. 

Other than that, optimization is often done to tune the input and output scaling 

factors of controller because they have significant effects on the dynamic of controller. 

The performance of controller was increased by scaling the input and output factors of 

controller. The system in this project is about automatic car pedal pressing, PID Fuzzy 

logic controllers and optimization used in Particle Swarm Optimization (PSO) process. 

The presence of proportionality constant, integral constant and derivative which are 

found in regular PID controller along with integral order and derivative order found in 

fractional-order PID controller increases the difficulty of designing controller. Thus, PSO 

is implemented to obtain the control gain parameters. 
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1.3 Objective 

This project aims to control the car pedal pressing system using fuzzy logic 

control technology with the aid of artificial neural network algorithms and techniques. 

To achieve the main goal, the objectives of this project are determined: 

• To develop system identification based on input and output data of pedal pressing 

system hardware rig by using Artificial Neural Network (ANN) 

• To develop intelligent controller for the automatic car pedal pressing system by 

using fuzzy logic and compare with PID controller in term of system performance 

• To implement PSO algorithm for control gain parameters to achieve optimum 

system performance 

1.4 Project Scope 

There are several scopes acquired to be fulfilled in this work. In general words, 

these scopes are covering up the objectives to achieve the expected outcome while 

accomplishing the project.  

 

• Develop system modelling for testing, validation of neural network 

• Provide performance of neural network with different number of delay signals 

• To optimize input and output gains (scale factor) for designed controllers using 

Particle Swarm Optimization   

• Provide good input-output graph for this project 

• To compare performance of different fitness function between PID and Fuzzy 

Logic controller 

• Conduct simulation in MATLAB Simulink. 
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1.5 Thesis Outline 

This thesis covers five chapters including Introduction, Literature Review, 

Methodology, Result and Discussion and Conclusion.  

Chapter 1 is introducing the overall project that is automatic car pedal pressing 

system. In this chapter, the project background, problem statement, objective as well as 

project scope will be showcased. 

Chapter 2 presents the findings based on literature review of this project that 

includes the type of controllers and optimization method. The reference sources from the 

research papers, books, articles, journals, and websites.  

Chapter 3 is about the methodology used in this project. It shows the layout for 

the entire project. It starts with flow chart to give an overview of project provide 

procedure and information in the steps of project.  

Chapter 4 shows and discusses the result obtained in this project. Result including 

system identification, optimization performance and the optimized controller 

performance indices.  

Chapter 5 provides the conclusion for the whole project. The limitation and future 

improvements will be discussed in this chapter. It is used to enhance the system so that 

is feasible in real-world situation. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Automatic Car Pedal Pressing System 

 
The automatic car pedal pressing is a self-driving car that uses intelligent 

decision-making and control technologies to transfer all real-time driving functions to the 

automobile automation system. The development and implementation of self-driving 

automobiles has piqued the interest of leading automotive and technology companies. 

Despite this, the majority of research has been focused on automating specific driving 

operations such as parking, braking, and cruise control [7]. Few studies and research have 

focused on producing semi-autonomous or fully autonomous vehicles, but most of these 

designs ignore key aspects that influence driving automation, such as vehicle and weather 

conditions. 

Using the fully parameterized technique, the brake pedal dynamic behaviour can 

be chosen nearly arbitrarily in terms of pedal force and pedal movement. The advantage 

is that regardless of the wheel braking mechanism used, automakers can apply their 

preferred braking experience at the pedal. After numerically solving the necessary 

dynamic model for the brake pedal, the time indexed reference position of the pedal in 

relation to the braking force is obtained [8]. 

The car pedal pressing control problem is highly non-linear and has been used to 

manifest the ability to control techniques. Since car pedal pressing is a non-linear 

problem, it may be managed with the right strategy. Various control techniques, both 

conventional and intelligent, have been incorporated in the system, all of which can 

stabilise the car pedal pressing. 
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Figure 2-1 Schematic diagram of car pedal pressing 

2.2 System Model 

As the one of the strategies in any system study, system modelling is a vital stage 

in conducting research. Iterating between modelling and simulation will improve the 

system's design quality early on, lowering the number of faults discovered later in the 

design phase. Due to the very non-linear behaviour of car pedal pressing, developing an 

appropriate mathematical dynamic model is a difficult challenge. Differential equations, 

which are difficult to acquire, are used to explain the system dynamics of car pedal 

pressing, or in other words, the car braking system. Additionally, there is another 

approach that simply requires experimental input and output data to demonstrate system 

dynamics. 

2.2.1 Mathematical Modelling 

A system model of car pedal pressing system can be created by using 

mathematical approach. The mathematical model of dynamic stabilization system for 

autonomous car in [9] shows equations of linear movement and limit speeds, equation 

system for wheel speeds on the turn, virtual sensor algorithms for car speed, turn angle, 

and the additional component of yaw rate, for identifying top values of friction 

coefficients between wheels and road surface, and for controlling brakes by actuator. 

Next, reference in [4] shows the engine dynamic, skidding, slip and friction of the car is 
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disregard. Therefore, they are using Newton’s second law of motion, the force F causes 

acceleration of the car. The car brake system is described by differential equations that 

explain the system behaviour related to force and acceleration of the car. In this paper, 

the approach is about Newton’s second law of motion is used to model the car pedal 

pressing system because it can provide precise mathematical model of the car. 

 

2.2.2 System Identification 

During the system identification stage, which is a function approximation method, 

the dynamic model of the system is built based on observable input-output data [10]. This 

is because to its ease of use and ability to discover nonlinear relationships from a set of 

data. Studies show that system identification can be performed either in open-loop or 

closed-loop depending on the characteristics of the system. System identification on a 

control in self-driving car is conducted by collecting the input-output data from open-

loop system and carry out [11]. Due to its capacity to handle restrictions and operate near 

to state boundaries in multiple-input multiple-output (MIMO) systems, model predictive 

control (MPC) has proven to be an efficient solution for trajectory reference tracking, 

particularly in self-driving cars. 

The input layer of the network receives training inputs in a forward sweep, 

allowing the output of each element to be computed layer by layer. Backpropagation 

training is the process of teaching the network to correlate input vectors with appropriate 

output vectors using input and target vectors. The neural network's usefulness in building 

dynamic models that are realistic of genuine nonlinear plants based on the interactions 

between the inputs and outputs is exploited, according to the study. Experimentation, 

model structure selection, model estimate, and model validation are the four processes in 

the system identification process. 

2.2.3 Neural Network  

For the model structure selection, the neural network nonlinear autoregressive 

exogenous inputs (NARX) model has been proven too readily represent any nonlinear, 

discrete, time-invariant system. Although high system order is good, increasing it may 

have an impact on some dynamic features such as stability. It's also easier to use, non-

recursive (unlike nonlinear models-based output error (OE) and Autoregressive Moving 
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Average with exogenous inputs (ARMAX), which rely on current and future outputs), 

and more stable because it doesn't require feedback [12]. 

For the model estimation, the neural network structures are selected for use in the 

network training of the model. The model estimation method is guided by two factors: 

the NN structure's simplicity and computing ease. Therefore, an input layer, a hidden 

layer, and an output layer were created in a feedforward multilayer perceptron neural 

network (MLPNN) structure. The Levenberg-Marquardt method was used to train the 

network because of its rapid convergence and durability. This is since it has the smallest 

mean square error (MSE) and the most epochs. The Levenberg-Marquardt training 

algorithm is preferred above the other approaches because it improves with time [13]. 

For the model validation, the fitness analysis of three one-step ahead predictions 

for sigmoidnet, wavenet, and neuralnet structures to the validation data is presented in 

[14], which shows that the performance of the trained network based on the validation 

data with the quality of the identification is indicated by the mean square error. 

 

2.3 Strategic Control Approach 

The car pedal pressing system is essential in the evaluation and comparison of 

various control theories. Control system deals with the dynamic behaviour of systems, 

and it modifies the system's inputs to produce the desired effect on the output. A proper 

control system, such as a conventional controller or an intelligent controller, is necessary 

to control the car pedal pressing system. 

 

2.3.1 Conventional Controller 

The Proportional-Integral-Derivative (PID) control offers various advantages, 

including a simple structure, good overall control performance, robust design, and easy 

implementation [15]. In contrast, the PID approach necessitates the use of supporting 

algorithms to discover and finetune its hyper-parameters. The difficulty of obtaining 

excellent, ideal values for these hyper-parameters that appropriately fit the environment 

is due to the complexity of vehicle dynamics, uncertainty of external disturbances, and 

the vehicle's nonholonomic restriction [16]. 
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Reference in [17] shows that a further step towards the prospects of autonomous 

driving is presented. The major objective is to create a car that can autonomously follow 

a pre-defined trajectory or route determined by the autonomous car's projected path 

planner in both highway and urban traffic while maintaining the best level of comfort. 

Sensors are used in the suggested control system to provide the real speed of the 

controlled car as well as the relative position of the car in relation to the provided 

trajectory. The controller then calculates the optimal steering wheel motions. These 

actions regulate the vehicle's direction, and they're computed using a Proportional-

Integral-Derivative (PID) control algorithm. 

2.3.2 Intelligent Controller 

Because of the autonomous car's complexity and nonlinearity, developing a 

controller using traditional methods is particularly difficult when the autonomous car's 

effective parameters and inputs are unknown. Fuzzy logic control (FLC) approaches, on 

the other hand, are well-known for their applicability and capability in the language 

description of complex systems, and they can be utilised to create and convert 

linguistically conveyed human experience into appropriate automatic control strategies 

[18]. 

Reference in [19] shows car brake pedal system is the most important system in 

a car. The automated car braking system's goal is to provide an automated control system 

that keeps a safe driving distance from objects while in traffic. At a given range, the 

system properly recognises a barrier ahead and devises a strategy to avoid a collision by 

slowing the car. Driving becomes more enjoyable and less stressful as a result. The 

system is created with MATLAB's fuzzy logic toolbox and then simulated to test how 

well the car's braking system works. 
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2.4 Summary 

The discussion for system modeling and strategies control approaches are 

summarized in the tables below 

Table 2-1 Summary of system modelling method 

Authors Year of 

Publication 

Plant Modelling Method 

Bassey, E.F. 

Udofia, K.M. 

2019 Automatic car 

braking system 

Mathematical 

modelling 

A. M. Saikin, S. E. 

Buznikov, N. S. 

Shabanov, and D. S. 

Elkin 

2018 Autonomous 

vehicle dynamic 

stabilisation 

system 

 

Mathematical 

modelling 

Dalimus, Zaini 2014 Car braking 

system 

Mathematical 

modelling 

Salt Ducaju, Julian M, 

Tang Chen, Tomizuka 

Masayoshi, Chan Ching 

Yao 

2020 Self -driving car 

system 

System 

Identification 

Albelihi, K. Vrajitoru, D. 2019 Autonomous car 

driving system 

System 

Identification with 

neural network 

Dahunsi O. A, Pedro J. 

O, Nyandoro O. T. 

2010 Servo- Hydraulic 

vehicle 

suspension 

System 

System 

Identification with 

neural network 

Germann St, Isermann R. 1995 Autonomous car 

speed control 

system 

Neural network 
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Table 2-2 Summary of control approaches 

Authors Year of 

Publication 

Plant Controller 

Widaa,Abdulrahman 

H.A. Talha, Waddah 

Abdelbagie 

2017 Autonomous 

(self-driving) car 

system 

Fuzzy Logic 

Muller, R. Nocker, G. 1992 Automated car 

speed system 

Fuzzy Logic 

Mamat, M. Ghani, N. M. 2009 Automated car 

braking system 

Fuzzy Logic 

H.L Zhan, L. Deng, S.J 

Xue 

2012 Smart Car Speed 

Control System 

Fuzzy Logic and 

PID 

Hirulkar, Sachin 

Damle, Manish 

Rathee, Vishal 

Hardas, Bhalchandra 

2014 Automated car 

braking system 

Fuzzy Logic and 

PID 

P. Zhao, J. Chen, Y. 

Song, X. Tao, T. Xu, T. 

Mei 

2012 Autonomous 

vehicle system 

PID 

Farag, Wael 2019 Self-driving cars 

system 

PID 

 

 

 

 



13 

CHAPTER 3 

 

 

METHODOLOGY 

3.1 Car Pedal Pressing Hardware Configuration 

The car pedal is pressing or releasing depend on the distance between the 

cupboard (front car) and speed of the actuator. The components that used to set up this 

car pedal hardware are Arduino Uno, car pedal with linear actuator, 12V power supply, 

ultrasonic sensor, and L298 motor driver. Figure 3.1 shows the car pedal pressing testing 

with all components used to build up this hardware. 

 

Figure 3-1 Car pedal pressing testing 

3.1.1 Data Collected in Simulation and Hardware System 

Since the car pedal pressing is open-loop unstable in simulation, it is 

recommended to have a controller for stabilization to increase system run time. Data 

collected method is used to collect the data from input and output. The input of car pedal 
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pressing is force when pressing the pedal whereas the low speed of the car is collected as 

the output data in simulation. The input and output data are labelled as shown in figure 

3.2. 

In the car pedal pressing hardware system, the cupboard (front car) is held and 

maintained at 1 meter away from ultrasonic sensor. After that, the cupboard (front car) 

will start to go toward ultrasonic sensor, the actuator starts to retract, and car pedal is 

pressing. When the cupboard (front car) goes away from the ultrasonic sensor, the 

actuator starts to extend, and car pedal is releasing. Then, the system is always repeat the 

same action in a few minutes to collect the input and output data in form of distance and 

speed of the actuator when retracting and extending with applying the PID or fuzzy logic 

controller in this process. 

 

Figure 3-2 Input-Output collected from car pedal pressing hardware 

3.2 Block Diagram 

Figure 3.3 presents the illustration in simulation using MATLAB Simulink; the 

reference input is set between 2 m/s (8km/h) to 7m/s (25km/h) in low speed during traffic 

jam. Once on the traffic jam road and at our desired output, pressing a pedal that switches 

the controller from manual mode to automatic mode. 

The low speed of the car now we close the loop and switch from manual to 

automatically becomes the set point. The controller then continually computes and 

transmits corrective actions to the pedal to maintain measured low speed at set point. PID 

and Fuzzy logic controller is implemented to control the car pedal with actuator. Since 
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the scaling of membership function in PID fuzzy logic controller is uncertain, particle 

swarm optimization is added to help the tuning of membership function scaling.  

 

Figure 3-3 Block Diagram of Car Pedal Pressing System in Simulation 

3.3 Flow Chart 

Figure 3.4 shows the system flow chart of this project. It begins with experimental 

data acquired from car pedal pressing system that was previously constructed and used 

as the project's system model. The input and output data of car pedal pressing system are 

the force when pressing the car pedal and low speed of the car respectively. 

Following that, these experimental data are sent into system identification 

analysis to do further model estimation. Black-box identification is used to estimate and 

validate nonlinear models from single-input/single-output (SISO) experimental data to 

find the one that best represents the system dynamics. Moreover, construct the artificial 

neural network for system identification. The experimental data will be trained and tested 

for various configurations to provide an accurate system with the lowest MSE.  

Lastly, fuzzy logic and PID controller are designed and constructed to control car 

pedal pressing system. In this project, both controllers are designed with normalized 

membership function and compensate with scale factor to scale the range of gain range. 

Particle Swarm Optimization was used to optimal gains for both controllers. Performance 
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indices such as MSE, IAE, ISE and ITAE will be accessed to determine the optimization 

of controllers. Both controllers have similarity which is to minimise the error.  

 

Figure 3-4 Flow Chart of the project 

 

3.4 System Modelling 

Due of its simplicity and effectiveness in non-linear system identification, the 

system identification approach was used for producing the system model of the car pedal 

pressing mechanism. To create an accurate plant model, input and output data are 

collected, then the data will be sent to neural network system for training, testing, and 

validation. The trained network may not always respond the same way as the actual 
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system, so that network testing and validation are essential for determining the trained 

network's accuracy.  

3.4.1 System Identification 

The ability of system identification to find an accurate model of dynamical 

systems has gotten a lot of attention. As a result, there was a strong desire to apply the 

system identification technique to create a dynamic model that characterised the car pedal 

pressing system using data from a real plant. Using these methods, the produced models 

were able to develop the system's dynamic characteristics while avoiding the 

complications of mathematical and physical model development. 

There are a few phases involved in system identification in general. Data 

collection, model structure selection, model estimation, and model validation are the four 

steps. Data acquisition plays a vital part in modelling the dynamic system since it allows 

for the collection of several sets of data. The major aim of identification is to estimate the 

model parameters after the model structure has been identified. The estimated model must 

have properties that are comparable to those of the true model and be able to predict 

future output values. After obtaining a model of the system, it is necessary to verify the 

model. Model validity tests are processes for determining if a fitted model is adequate 

[20].  

In the figure 3.5, data obtained from a previously built car pedal pressing system 

that was used as the project's system model. The input and output data of car pedal 

pressing system are the force when pressing the car pedal and low speed of the car 

respectively. The Non-linear Autoregressive with External Input (NARX), state space 

and transfer function model had been estimated in the process of system identification. 

The highest fit of estimation to system is NARX model which is 88.1%, followed by state 

space model which is 87.09% and the lowest fit of estimation to system is transfer 

function which consist of 31.35%. 

 



18 

 

Figure 3-5 Black-Box Identification 

3.4.2 Artificial Neural Network 

System modelling generally applies two basic processing elements when using 

the perceptron-based neural networks and the neuron-based function. The nonlinear 

model of a neuron is called the perceptron. The basic neural model is the two elementary 

components which are a linear combiner and a non-linear activation function. A linear 

combiner calculates the product of input vector, x of the neuron and the parameter vector, 

w. And a non-linear activation function was subject to the output of the linear combiner. 

the ANN identification technique has been increasingly used to a variety of nonlinear 

systems. Non-linear Autoregressive with External Input (NARX) has an algebraic link 

between prediction and past data only, and so has a predictor without feedback, which 

simplifies the model. Though the NARX model structure exhibited reasonable 

approximation, the model's predictor with feedback could lead to overfitting estimation. 

Due to its simplicity and high fit of estimation after identifying the system, the 

NARX model is used as the model framework in this project since car pedal pressing is 

extremely nonlinear. The nonlinear generalisation of the ARX model, which is a standard 

tool in linear black-box identification, is the NARX model. The neural network is used 
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to estimate the nonlinear component of the ARX structure. Neural Networks are 

mathematically designed to mimic the biological neurons in the brain.  

 

 

Figure 3-6 Neural Network Time Series Toolbox in MATLAB 

Total of 9842 samples of datasets which collected from the car pedal pressing is 

used for neural network training, testing, and validating. The data is divided into three 

parts where training data consists of 70% of the dataset, testing and validating data are 

15% each. This step is critical for determining the model's accuracy in simulating actual 

car pedal pressing. After the network has been trained, it will be tested and validated, and 

the model with the lowest MSE will be determined. 
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Figure 3-7 Data for Training, Validation dan Testing 

In NARX neural network structure, the number of delay signals, the number of 

neurons in the hidden layer, and the error are the three essential elements to consider 

during the procedure. The third factor is assessed along the process of getting the best 

number of delay signals and the structure for each model. 

 

Figure 3-8 NARX neural network with 10 neurons in hidden layer and 2 number of 

delay signals. 

3.4.2.1 Multi-layer perceptron 

The back propagation for multi-layer perceptron (MLP) neural network for 

modelling three sets of a Single Input Single Output (SISO) car pedal pressing system. 
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Because of its capacity to offer a basic model and estimate a highly sophisticated formula 

linkage, the MLP is the most popular of the neural network family. 

The MLP is made up of one layer of nodes that serves as the input layer and a 

second layer that serves as the NN's output layer, with multiple intermediate or hidden 

layers in between. By its faster convergence time, Levenberg-Marquardt (LM) is used for 

network training, despite requiring more memory than other algorithms.  

 

Figure 3-9 Multi-Layer Perceptron (MLP) structure 

 

3.4.2.2 Best Validation Performance  

According to Figure 3.10, the best validation performance achieved during the 

training process is Mean Squared Error (MSE) of 0.44628 at epoch 65. This shows that 

the neural network has highest accuracy with the smallest error at the epoch of 65. 



22 

 

Figure 3-10 Best validation performance achieved during the training process 

3.4.2.3 Regression Plot 

The regression graphs in Figure 3.11 show the network outputs in relation to 

targets for training, validation, and test sets. For a perfect fit, the dataset should fall along 

a 45-degree line to make the network outputs identical to the targets. For all datasets, the 

fit is reasonable, all R values of 0.90 or higher in each case. The neural network achieves 

the best fit with the training data sets, with R values of 0.99. 
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Figure 3-11 Regression plot and R values of the neural network 

3.4.2.4 Error Histogram 

The error histogram is defined as the histogram of the errors between target and 

predicted values after training a feedforward neural network, as shown in Figure 3.12. 

Bins refer to the number of vertical bars shown on the graph. In this case, the whole error 

range is separated into 20 smaller bins. The number of samples from our dataset that fall 

into each category is represented on the Y-axis. We have a bin in the middle of the plot 

that corresponds to an error of 0.1513, and the height of that bin for the training dataset 

is approximately 6000, and the height of that bin for the validation and testing dataset is 

between 6000 and 9000. It means that many samples from our different datasets have an 

inaccuracy in the range illustrated below. In this situation, the zero-error point is 

contained within the bin with a centre of 0.1513. 
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Figure 3-12 Error Histogram of the neural network 

3.5 Controller Designing 

It will deal with a Fuzzy Logic Controller (FLC) for an automated car pedal 

pressing mechanism in the control system. The system's response is simulated using 

MATLAB's Fuzzy Logic and PID tuner Toolbox. This controller's job is to brake an 

automatic car pedal when it gets too close to another car within a certain range. The Fuzzy 

Logic Controller is created in MATLAB using the Fuzzy Logic Toolbox. 

 

3.5.1 Conventional PID Controller 

The fundamental block diagram of a PID system in Figure 3.13 is used to create 

a PID. A plant is a system that must be managed. The controller, on the other hand, is the 

device that provides the plant with stimulation and is designed to control the entire system 

behaviour. 
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Figure 3-13 Basic block diagram of PID system 

This is a technique for improving the controller's performance by auto-tuning it 

off-line using repeated attempts. Because the controller's convergence cannot be assured 

throughout the trials, they cannot be carried out on an actual plant. The final tuning of 

PID controller is given in trial where (Kp = 2.2267, KI = -0.0565 and KD = 19.6979). 

 

Figure 3-14 PID Tuner Toolbox in MATLAB 
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3.5.2 Intelligent Fuzzy Logic Controller 

The MATLAB Fuzzy logic toolbox is used to create a fuzzy logic controller. The 

editor includes the FIS editor, membership function editor, and rule base editor when 

using the Fuzzy Inference System Editor (FIS). 

There are two inputs and one output designed through the toolbox for the car pedal 

pressing design. As seen in Figure 3.16, all membership functions are generalised in the 

-1 to 1 range. All the input and output crisp data are sent into the fuzzy logic controller 

and they undergo with gaussian membership. Gaussian membership is chosen to 

accommodate the fuzzy logic set because it is more flexible and easier to represent and 

optimize. 

 

Figure 3-15 FIS Editor 

The Membership Function Editor is a tool that displays all the membership 

functions associated with all the fuzzy inference system's input and output variables and 

allows users to alter them. It's used to specify the forms of all the membership functions 

for each variable. In the design of fuzzy logic controllers, the Mamdani type is used so 

that it creates a scaling factor for optimization to take place. 
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Figure 3-16 Membership Function Editor 

 

Figure 3-17 Fuzzy Rules Design  
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Table 3-1 Fuzzy Logic Rule Base 

E/dE NB NS Z PS PB 

NB PB PB PB PS Z 

NS PB PB PS Z NS 

Z PB PS Z NS NB 

PS PS Z NS NB NB 

PB Z NS NB NB NB 

 

3.6 Simulink Setup 

After adjusting the PID controller, the Simulink model of the PID controller is 

completed, as shown in Figure 3.18. If the PID controller parameters, which are the gains 

of the proportional and derivative components, are chosen wrong, the regulated process 

input may become unstable. Its output diverges regardless of whether it oscillates and is 

only limited by saturation or mechanical breaking. The adjustment of a control loop's 

control parameters to the optimum values for the desired control response is known as 

tuning. 

When the fuzzy logic controller is finished, MATLAB Simulink is used to put it 

up. This is done to imitate the automobile pedal controller's interaction with the system. 

As a result, the car brake system's performance is assessed. Figure 3.19 shows the fuzzy 

logic Simulink model. 
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Figure 3-18 PID Simulink Model 

 

Figure 3-19 Fuzzy Logic Simulink Model 

3.7 Controller Optimization 

The controller optimization process will be carried out by particle swarm 

optimization. Previously, this project required designed controller; PID and Fuzzy Logic 

controller are normalised with membership function, it seems that a scaling factor must 

be found to scale the membership functions. To obtain the best scaling factor, PSO 
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process considerably improves the efficiency of finding the scale factor due to fact that 

searching them by trial-and-error. 

3.7.1 Particle Swarm Optimization 

Swarm intelligence and theory in general, such as bird flocking, fish schooling, 

and even human social behaviour, inspired this optimization technique[21].The two most 

used methods are known as gbest model and pbest model in particle swarm optimization. 

In iteration, pbest and gbest are obtained after the end of first iteration and if the new 

pbest value is smaller than current gbest value in later iteration, it will replace it. This 

process is repeated until the iteration end and the final gbest value is the optimal value 

that wanted. 

Table 3.2 shows the PSO parameter that is used for the optimization process, 

Table 3.3 shows the range of scaling factors for both controllers  

Table 3-2 Setting for PSO algorithm 

PSO Parameter Value 

Number of particles 100 

Number of iterations 30 

Learning factor 1 0.12 

Learning factor 2 0.2 

Minimum weight 0.4 

Maximum weight 0.9 

 

Table 3-3 Range of scale factor for PID and Fuzzy Logic controller 

Scale Factor Value 

K1 [0.001 1] 

K2 [0.001 0.1] 

K3 [1 1000] 

K4 [1 1000] 
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3.7.2 Performance Indices 

A performance index is a quantitative measure of the performance of a system 

and is chosen so that emphasis is given to the important system specifications. When the 

system parameters are altered to the point where the index hits an extreme value, usually 

a minimal value, the system is considered an optimum control system.[22]. Various 

performance indexes such as ISE, IAE, ITAE and MSE are accessed with the 

optimization of PID Fuzzy logic controller for the car pedal pressing system.  

We can try to alter the control system settings to minimise some performance 

index of our choosing to improve the performance of a closed-loop control system. There 

are some common equations for ISE, IAE, ITAE, and MSE performance indicators[23], 

and they will be used in the optimization of controller for car pedal pressing system. 

These equations are implemented as the criterion for controller optimization individually. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Input-Output Data Collected in MATLAB Simulink  

The Figure 4.3 and 4.4 show the input-output with both controllers. From the 

result, the speed driving in the road traffic should be low, the reference input will be set 

between 2 m/s (8km/h) to 7m/s (25km/h) in speed. Since the input of the PID and fuzzy 

logic controller (pedal position signal)., the controllers see the error is growing when 

there is traffic jam. The speed of the car will be lagging a few seconds when traffic jam 

occurs. After traffic jam disappears, it increases the signal to the actuator which in turn 

increases the engine force and the speed of the car. It means that the car pedal is pressed 

to increase the speed. The input and output in figures 4.3 and 4.4 are desired speed of the 

car and actual speed of the car. 

 

Figure 4-1 Input-Output graph with Conventional PID Controller 
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Figure 4-2 Input-Output graph with Fuzzy Logic Controller 

4.2 Neural Network for System Modelling 

The device identification process by changing the number of delay signals was 

investigated to predict the one-step-ahead (OSA) reaction. In the meantime, the model 

structure in the hidden layer is set to 10 neurons. The summary of performance for neural 

network system identification is shown in Table 4.1 and Table 4.2. While the relationship 

between number of delay or hidden neuron and mean square error for neural network are 

shown in Figure 4.5 and Figure 4.6 

Table 4-1 Performance of NN with different number of delay signals 

Number of Delay EPOACH Mean Square Error 

(MSE) 

1 23 0.43721 

2 65 0.44628 

3 7 0.46296 

4 8 0.46678 

5 6 0.48319 

6 11 0.51659 

7 5 0.62752 

8 10 0.50075 

9 8 0.43983 

10 18 0.42550 
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Figure 4-3 Relationship Between Number of Delays and MSE 

 

From Table 4.1, it can be observed that as the number of delays increases until 7 

delay then MSE decreases the system input and output signals from 7 delay. For the last 

3 delay signal setting, the value of MSE and the amount of convergence iteration were 

transformed into an increasing trend. Therefore, it can be inferred that using the input and 

output signal of 2 delays, the excellent one-step-ahead prediction is acquired. 

 
Table 4-2 Performance of NN with different number of hidden neurons 

Number of Hidden 

Neurons 

EPOACH Mean Square Error 

(MSE) 

2 9 0.61249 

4 7 0.42800 

6 17 0.55152 

8 8 0.47994 

10 6 0.41389 

12 8 0.48265 

14 8 0.40715 

16 7 0.51921 

18 18 0.50297 

20 8 0.41471 
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Figure 4-4 Relationship Between Number of Hidden Neurons and MSE 

Neural network is checked with different number of neurons in the hidden layer. 

Table 4.2 displays the results of the system prediction as the number of neurons in the 

hidden layers advanced.  

4.3 Controller After Optimization 

In this project, PID and Fuzzy Logic controller design were performed and 

manipulated with scaling factors by using optimization method. Optimal controller 

parameters that provide the best control from the PID and Fuzzy Logic controller 

parameters that make the system stable by using the optimization method are obtained. 

The performance indices for both controllers are very different as table 4.3 and 4.4 below. 

Table 4-3 Scaling factor of PID controller 

 K1 K2 K3 K4 Cost 

MSE 0.5733 -0.1001 459.2665 -16.1983 7.0326 

IAE 0.3491 -0.0762 623.8969 -29.9177 9.0568 

ISE 0.4836 -0.0481 636.8295 -18.0069 5.6286 

ITAE 0.4465 -0.1066 467.2691 -23.9742 14.0564 
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Figure 4-5 MSE performance for PID controller 

 

Figure 4-6 IAE performance for PID controller 
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Figure 4-7 ISE performance for PID controller 

 

 

Figure 4-8 ITAE performance for PID controller 

Table 4.4 shows the scaling factors with the minimum cost for each performance 

index for Fuzzy Logic controller. The cost function decreased as the iteration increased 

because the new gbests value tends to produce smaller error hence the cost function 
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become smaller.  Figure 4.11, Figure 4.12, Figure 4.13, and Figure 4.14 show the 

convergence of PSO and lead to their minimum cost value respectively. 

Table 4-4 Scaling factor of Fuzzy Logic controller 

 K1 K2 K3 K4 Cost 

MSE -0.0261 -0.0011 786.0065 234.7067 2.7115 

IAE -0.0470 -0.0036 507.4040 129.6444 14.4872 

ISE -0.4014 -0.0071 1.1909 -27.6994 5.2540 

ITAE -0.0334 -0.0024 954.31 183.8143 4.1064 

 

 

Figure 4-9 MSE performance for Fuzzy Logic controller 
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Figure 4-10 IAE performance for Fuzzy Logic controller 

 

Figure 4-11 ISE performance for Fuzzy Logic controller 
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Figure 4-12 ITAE performance for Fuzzy Logic controller 

4.4 System Performance with Applying Both Controllers 

 

Figure 4-13 System Performance with applying both controllers 
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Table 4-5 Comparison System Performance with applying both controllers 

 PID Controller Fuzzy Logic Controller 

Rise Time (s) 0.3556 0.0897 

Settling Maximum (s) 8.6300 7.1144 

Settling Minimum (s) 3.3998 2.8339 

Overshoot (%) 10.9625 3.6438 

Steady State Error (%) 1.4821 1.2724 

 

Table 4.5 shows the result performance for PID Controller and Fuzzy Logic 

Controller. For rise time, Tr, PID Controller achieved in 0.3556s which are also less low 

than the Fuzzy Logic Controller. But, for overshoot, Fuzzy Logic was much better than 

PID Controller which Fuzzy Logic Controller had 3.64% compared to PID Controller 

which had 10.96% overshoot. It means, it has proved that Fuzzy Logic was a better 

controller than PID Controller based on the performances of overshoot parallel with 

objective where the objectives are to reduce or eliminate overshoot. Compared to FLC, 

less overshoot occurred meaning that the system follows the response with less error. 

Even though the rise time for Fuzzy Logic Controller is quite slower than PID Controller, 

but it was not worst, because the delay time has been just 0.3s only. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Introduction 

In the nutshell, the project accomplished the objectives discussed in chapter 1 

successfully. System identification of nonlinear automatic car pedal pressing has been 

done using neural network. A detuned controller was built for identifying purposes, 

allowing more of the car pedal pressing system dynamics to be viewed. A feedforward 

network with varied numbers of hidden layer neurons was tested. The MSE between the 

system and the neural model is low, and the neural network model can predict car pedal 

pressing. It was discovered that while utilising a closed loop controller, some specific 

hidden neuron counts have less of an impact on model correctness than when using a 

detuned controller. 

System identification technique is opted to complete the first step of system 

control analysis. NARX neural network system identification is useful because input and 

output data of plant are all it needs. Then, two different controllers (Conventional PID 

and Intelligent fuzzy logic) are designed to achieve the desired result. Conventional PID 

and intelligent fuzzy logic controller, both utilized and showed promising results in the 

stabilization control of car pedal pressing system with system performance. 

Finally, the taxing process of tuning controller manually is omitted with the 

implementation of PSO. Optimization technique is extremely helpful in the progress of 

determining optimal scaling factors for controllers. Moreover, optimization based on 

different criteria also impacts the effectiveness of controllers and it opens a lot of options 

in choosing the suitable controller for automatic car pedal pressing system. 
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5.2 Future Recommendation 

This project can be done especially the settling time for the using both controllers. 

Both controllers were able to track the reference well though with overshoots and both 

controllers had risen time values that were less than the required. From the project, MSE 

obtained for the decided system model is acceptable and it represents the actual system 

doubtlessly, but simulation is still the result on paper but not on the real world, the goal 

of project is meant for real-world usage after all. 

Next, the optimization method will be done for both controllers in the future. The 

optimization method including genetic (GA), firefly (FA) and artificial bee colony 

algorithm (ABC) to optimize the controller error. Moreover, the membership function 

and the rules can be optimized as well for fuzzy logic controller. There is a countless 

possibility for the proposed controller to performs even better. 

Lastly, various performance index such as ISE, IAE, ITAE and MSE will be 

accessed with the optimization of PID-Fuzzy logic controller for the control of automatic 

car pedal pressing system. Error and time are very important factors that must be 

considered at the same time. A performance index is a single measure of the performance 

of a system that highlights the response characteristics that are considered important. 

5.3 Impact to Society and Economic 

The method discussed in this project creates a new point of view to the problem, 

as the technology and knowledge advanced, intelligent control such as neural network 

able to replace the conventional mathematical approach in system modelling which save 

times and reduce mistake. Fuzzy logic controller on the other hand also able to handle 

the non-linear and uncertainties of system which classic controller such as PID controller 

incapable of doing before system linearization. Furthermore, the PSO approach reduces 

the time of tuning controller significantly and increase controller reliability. The 

intelligent control helps to reduce human workload and provide an unswerving outcome. 

Furthermore, as automatic cars are expected to be safer than car with human 

control, the chance of getting an accident will be reduced. This reduction in car accidents 

will impact transport-related sectors such as insurance industries and car repair centres, 

again impacting millions of jobs. 
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Automatic cars can help lower- and middle-income people get access to mobility 

by lowering transportation costs: According to some analysts, this mode of transportation 

will become over 50% cheaper compared to present expenses, making it potentially 

cheaper than public transportation. Public transport might become redundant, as 

automatic cars will become cheaper than public transport, safer in terms of less accidents, 

and could be more comfortable in terms of privacy and hygiene. In fact, in the event of a 

global pandemic, where public transportation is scarce, autonomous cars could be a 

viable option for maintaining economic activity while lowering the risk of virus spread. 

 

 



45 

REFERENCES 

[1] S. Manogaran, M. Ali, K. M. Yusof, and R. Suhaili, “Analysis of vehicular 

traffic flow in the major areas of Kuala Lumpur utilizing open-traffic,” AIP Conf. 

Proc., vol. 1883, no. September 2017, 2017, doi: 10.1063/1.5002031. 

[2] V. Car, “Geneva 2005 – Volvo Cars focuses on preventive safety,” [Online]. 

Available: https://www.media.volvocars.com/global/en-

gb/media/pressreleases/5032. 

[3] A. Info, “The tried (and not so tried) methods cities are considering to reduce 

traffic,” 2019. https://www.ameinfo.com/tech-and-mobility/reduce-traffic-

congestion-solutions/. 

[4] M. Mamat and N. M. Ghani, “Fuzzy logic controller on automated car braking 

system,” 2009 IEEE Int. Conf. Control Autom. ICCA 2009, no. 0, pp. 2371–

2375, 2009, doi: 10.1109/ICCA.2009.5410301. 

[5] R. Muller and G. Nocker, “Intelligent cruise control with fuzzy logic,” IEEE 

Intell. Veh. Symp. Proc., no. 49, pp. 173–178, 1992, doi: 

10.1109/IVS.1992.252252. 

[6] K. Albelihi and D. Vrajitoru, “An application of neural networks to an 

autonomous car driver,” Proc. 2015 Int. Conf. Artif. Intell. ICAI 2015 - 

WORLDCOMP 2015, pp. 716–722, 2019. 

[7] A. M. T. Amr O. Abdel-rhman, “Car braking using fuzzy control,” B.Sc. Proj., 

2012. 

[8] A. Hildebrandt, O. Sawodny, R. Trutschel, and K. Augsburg, “Nonlinear control 

design for implementation of specific pedal feeling in brake-by-wire car design 

concepts,” Proc. Am. Control Conf., vol. 2, pp. 1463–1468, 2004, doi: 

10.23919/acc.2004.1386782. 

[9] A. M. Saikin, S. E. Buznikov, N. S. Shabanov, and D. S. Elkin, “The 

mathematical model of dynamic stabilization system for autonomous car,” IOP 

Conf. Ser. Mater. Sci. Eng., vol. 315, no. 1, pp. 0–8, 2018, doi: 10.1088/1757-

899X/315/1/012023. 

[10] L. K. H. M.Norgaard, O.Ravn,N.K.Poulsen, “Neural Networks for Modelling 

and Control of Dynamic Systems,” A Pract. Handb., 2000. 



46 

[11] J. M. Salt Ducaju, C. Tang, M. Tomizuka, and C. Y. Chan, “Application Specific 

System Identification for Model-Based Control in Self-Driving Cars,” IEEE 

Intell. Veh. Symp. Proc., no. Iv, pp. 384–390, 2020, doi: 

10.1109/IV47402.2020.9304586. 

[12] J. D. B. and D. E. Seborg, “Determination of Model Order for NARX Models 

Directly from Input - Output Data,” J. Process Control, vol. 8, p. 5, 2009. 

[13] H. D. and M. Beale, “Neural Networks Toolbox User’s Guide: For use with 

MATLAB,” MathWorks, Inc, Massachusetts, 2002. 

[14] O. A. Dahunsi, J. O. Pedro, and O. T. Nyandoro, “System identification and 

neural network based pid control of servo- Hydraulic vehicle suspension 

System,” SAIEE Africa Res. J., vol. 101, no. 3, pp. 93–105, 2010, doi: 

10.23919/saiee.2010.8531554. 

[15] W. Q.-G. H. C. C. K.K. Tan, “Advances in PID Control, London, UK,” 

Springer-Verlag, 1999. 

[16]  and T. M. P. Zhao, J. Chen, Y. Song, X. Tao, T. Xu, “Design of a Control 

System for an Autonomous Vehicle Based on Adaptive-PID,” Int. J. Adv. Robot. 

Syst., vol. 9, 2012. 

[17] W. Farag, “Track Maneuvering using PID Control for Self-driving Cars,” Recent 

Adv. Electr. Electron. Eng. (Formerly Recent Patents Electr. Electron. Eng., vol. 

13, no. 1, pp. 91–100, 2019, doi: 10.2174/2352096512666190118161122. 

[18] C. Morgenstern, “Autonomous Cars: Should We Continue On This Path?,” 2012. 

[19] S. Hirulkar, M. Damle, V. Rathee, and B. Hardas, “Design of automatic car 

breaking system using fuzzy logic and PID controller,” Proc. - Int. Conf. 

Electron. Syst. Signal Process. Comput. Technol. ICESC 2014, pp. 413–418, 

2014, doi: 10.1109/ICESC.2014.81. 

[20] A. Jamali, I. Z. M. Mat Darus, P. M. Samin, and M. O. Tokhi, “Intelligent 

modeling of double link flexible robotic manipulator using artificial neural 

network,” J. Vibroengineering, vol. 20, no. 2, pp. 1021–1034, 2018, doi: 

10.21595/jve.2017.18575. 

[21] H. Liu, B. Li, Y. Ji, and T. Sun, “Applied Soft Computing Technologies: The 

Challenge of Complexity,” Appl. Soft Comput. Technol. Chall. Complex., no. 

January 2004, 2006, doi: 10.1007/3-540-31662-0. 



47 

[22] T. I. Signals, “Chapter 5 The Performance of Feedback Control Systems.” 

[23] R. Dorf, M. C. Systems, and P. Prentice-hall, “ME 360 Control Systems 

Performance Indices for Closed-Loop Control[1] R. Dorf, M. C. Systems, and P. 

Prentice-hall, ‘ME 360 Control Systems Performance Indices for Closed-Loop 

Control,’ pp. 5–7, 2005.,” pp. 5–7, 2005. 

 

 



48 

APPENDIX A  

SYSTEM IDENTIFICATION WITH NEURAL NETWORK 

X = mydata(in_new,false,false);  

T = mydata(out_new,false,false);  

 

trainFcn = 'trainlm';  

inputDelays = 1:7;  

feedbackDelays = 1:7;  

hiddenLayerSize = 8;  

 

net = 

narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn);  

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};  

net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'};  

[x,xi,ai,t] = preparets(net,X,{},T);  

net.divideFcn = 'divideblock';  

net.divideMode = 'time';  

 

net.divideParam.trainRatio = 70/100;  

net.divideParam.valRatio = 15/100;  

net.divideParam.testRatio = 15/100;  

net.performFcn = 'mse';  

 

net.plotFcns = {'plotperform','plottrainstate', 'ploterrhist', 

'plotregression', 'plotresponse', 'ploterrcorr', 'plotinerrcorr'};  

[net,tr] = train(net,x,t,xi,ai);  

 

y = net(x,xi,ai);  

e = gsubtract(t,y);  

performance = perform(net,t,y)  

trainTargets = gmultiply(t,tr.trainMask);  

valTargets = gmultiply(t,tr.valMask);  

testTargets = gmultiply(t,tr.testMask);  

netc = closeloop(net);  

 

netc.name = [net.name ' - Closed Loop'];  

[xc,xic,aic,tc] = preparets(netc,X,{},T);  

yc = netc(xc,xic,aic);  

closedLoopPerformance = perform(net,tc,yc)  

numTimesteps = size(x,2);  

knownOutputTimesteps = 1:(numTimesteps-5);  

predictOutputTimesteps = (numTimesteps-4):numTimesteps;  

 

X1 = X(:,knownOutputTimesteps);  

T1 = T(:,knownOutputTimesteps);  

[x1,xio,aio] = preparets(net,X1,{},T1);  

[y1,xfo,afo] = net(x1,xio,aio);  

x2 = X(1,predictOutputTimesteps);  

[netc,xic,aic] = closeloop(net,xfo,afo);   

[y2,xfc,afc] = netc(x2,xic,aic); 49  
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multiStepPerformance = perform(net,T(1,predictOutputTimesteps),y2)  

 

if (false)  

genFunction(net,'myNeuralNetworkFunction');  

y = myNeuralNetworkFunction(x,xi,ai);  

end  

 

if (false)  

genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');  

x1 = cell2mat(x(1,:));  

x2 = cell2mat(x(2,:));  

xi1 = cell2mat(xi(1,:));  

xi2 = cell2mat(xi(2,:));  

y = myNeuralNetworkFunction(x1,x2,xi1,xi2);  

end  

 

if (false)  

gensim(net);  

end 
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APPENDIX B 

PARTICLE SWARM OPTIMIZATION 

%Initialization 

  
clear all 
close all 
clc 

  
rng default 

  
global K1 K2 K3 K4; 

         
global K1_min K1_max K2_min K2_max K3_min K3_max K4_min K4_max;  

  

  
warning ('off','all'); 

  
n = 100;                   %no. of agent          
bird_setp = 30;            %no. of iteration 
dim = 4;                   %no.of problem  
c1 = 0.12;           
c2 = 0.2;            
wmax = 0.9;       
wmin = 0.4;         

  
GBestFitness = []; 
current_position=[]; 
fitness=0*ones(n,bird_setp); 
                      %-----------------------------% 
                      %    initialize the parameter % 
                      %-----------------------------%                                       
R1 = rand(dim, n); 
R2 = rand(dim, n); 
current_fitness =0*ones(n,1); 

  
               %------------------------------------------------% 
               % Initializing swarm and velocities and position % 
               %------------------------------------------------% 
K1_min=0.001; 
K1_max=1;  
K2_min=0.001; 
K2_max=0.01; 
K3_min=1; 
K3_max=1000; 
K4_min=1; 
K4_max=1000; 

  
for m=1:n 
current_position(1,m)=abs (K1_min+(K1_max - K1_min)*rand(1,1)); 
current_position(2,m)=abs (K2_min+(K2_max - K2_min)*rand(1,1)); 
current_position(3,m)=abs (K3_min+(K3_max - K3_min)*rand(1,1)); 
current_position(4,m)=abs (K4_min+(K4_max - K4_min)*rand(1,1)); 
end                                                           

  
velocity = .3*randn(dim,n) ; 
local_best_position  = current_position ; 
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               %-------------------------------------------% 
               %     Evaluate initial population           %            
               %-------------------------------------------% 

  
for i = 1:n 
current_fitness(i) = trackspid(current_position(:,i));     
end 

  
local_best_fitness  = current_fitness ; 
[global_best_fitness,g] = min(local_best_fitness) ; 

  
GBestFitness(1) = global_best_fitness; 

  
plot((GBestFitness),'ro'); xlabel('iteration'); ylabel ('Cost 

function'); 
text (0.5,0.95,['Best = ', num2str(GBestFitness)], 

'Units','normalized'); 
drawnow; 

  
for i=1:n 
    globl_best_position(:,i) = local_best_position(:,g) ; 
end 
                      %-------------------% 
                      %  VELOCITY UPDATE  % 
                      %-------------------% 

  
velocity = rand*wmax*velocity + c1*(R1.*(local_best_position-

current_position)) + c2*(R2.*(globl_best_position-current_position)); 

  
                      %------------------% 
                      %   SWARMUPDATE    % 
                      %------------------% 

                                                           
current_position = current_position + velocity ; 

  
                   %------------------------% 
                   %  evaluate a new swarm  % 
                   %------------------------%   

                                        
%% Main Loop 

 
iter = 0 ;              % Iterations’counter 
while  ( iter < bird_setp ) 
iter = iter + 1; 
inertia=(wmax-((wmax-wmin)/bird_setp)*iter); 

  
for i = 1:n, 
current_fitness(i) = trackspid(current_position(:,i)) ;     
end 

  
for i = 1 : n 
        if current_fitness(i) < local_best_fitness(i) 
           local_best_fitness(i)  = current_fitness(i);   
           local_best_position(:,i) = current_position(:,i)   ; 
        end    
 end 
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 [current_global_best_fitness,g] = min(local_best_fitness); 

      

if current_global_best_fitness < global_best_fitness 
   global_best_fitness = current_global_best_fitness; 

    
    for i=1:n 
        globl_best_position(:,i) = local_best_position(:,g); 
    end 

    
end 

  
GBestFitness(iter)=global_best_fitness; 
plot((GBestFitness),'ro-'); xlabel('Iteration'); ylabel('Cost 

function'); 
text(0.5,0.95,['Best = ' num2str(GBestFitness(iter))], 

'Units','normalized'); 
drawnow; 

  
 velocity = inertia *velocity + c1*(R1.*(local_best_position-

current_position)) + c2*(R2.*(globl_best_position-current_position)); 
 current_position = current_position + velocity;  

  
 sprintf('The value of interation iter %3.0f ', iter ) 

  
 global_best_fitness 
 globl_best_position(:,n) 

  
end  

                       
global_best_fitness 
globl_best_position(:,n) 

 
function F = trackspid(pid) 

  
global K1 K2 K3 K4; 

         
global K1_min K1_max K2_min K2_max K3_min K3_max K4_min K4_max;  

  
       K1 = pid(1); 
       K2 = pid(2); 
       K3 = pid(3); 
       K4 = pid(4); 
                simopt = 

simset('solver','ode4','SrcWorkspace','Current','DstWorkspace','Curren

t'); 
       [tout,xout,yout] = sim('PID_fuzzy_test',[0 100],simopt); 
       [n,~]=size(e1); 

        

       cost_value=0; 
       for i=1:n 
       %cost_value=cost_value+(e1(i))^2 ;  % ISE 
       cost_value=cost_value+abs(e1(i));  % IAE 
       % cost_value=cost_value+t(i)*abs(e1(i));  % ITAE 
       % cost_value=cost_value+t(i)*(e1(i))^2;  % MSE 
        end 

          
       F = cost_value;        
    end 


