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ABSTRAK 

Tesis ini mencadangkan kaedah pengenalan baru yang dikenali sebagai improved 
archimedes optimization algorithm (IAOA) untuk mengenal pasti model Hammerstein 
yang berterusan. Dua pengubahsuaian telah digunakan untuk menyelesaikan beberapa 
kelemahan archimedes optimization algorithm (AOA) asal. Seterusnya, kaedah yang 
dicadangkan digunakan dalam mengenal pasti pembolehubah subsistem linear dan bukan 
linear dalam model Hammerstein yang berterusan menggunakan data input dan output 
yang diberikan. Untuk mengesahkan kecekapan kaedah yang dicadangkan, satu contoh 
berangka dan dua eksperimen dunia sebenar, iaitu Twin-rotor system (TRS) dan electro-
mechanical positioning system telah dijalankan. Keputusan dianalisis dari segi keluk 
penumpuan fungsi kecergasan, pembolehubah de indeks viation, domain masa dan 
respons domain frekuensi bagi model yang dikenal pasti, dan ujian jumlah pangkat 
Wilcoxon. Keputusan yang diperolehi menunjukkan bahawa kaedah yang dicadangkan, 
menghasilkan penyelesaian dengan ketepatan dan ketekalan yang lebih baik jika 
dibandingkan dengan kaedah metaeuristik terkenal yang lain seperti Particle Swarm 
Optimizer, Grey Wolf Optimizer, Multi-Verse Optimizer, Archimedes Optimization 
Algorithm dan kaedah hybrid dinamakan Average Multi-Verse Optimizer and Sine 
Cosine Algorithm. 
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ABSTRACT 

This thesis proposed a novel identification method known as the improved archimedes 
optimization algorithm (IAOA) for identifying the continuous-time Hammerstein model. 
Two modifications were employed to solve several demerits of the original archimedes 
optimization algorithm (AOA). The first modification was an alteration of the density 
decreasing factor to solve the imbalance of the exploration and exploitation phases. The 
second one was the introduction of safe updating mechanism to solve the local optima 
issue. Next, the proposed method was utilized in identifying the variables of the linear 
and nonlinear subsystems in a continuous-time Hammerstein model using the given input 
and output data. To verify the efficiency of the proposed method, a numerical example 
and two real-world experiments, namely the twin-rotor system and the electro-
mechanical positioning system were carried out. The results were analysed in terms of 
the convergence curve of the fitness function, the variable deviation index, time-domain 
and frequency-domain responses of the identified model, and the Wilcoxon’s rank-sum 
test. The obtained results showed that the proposed method, yields solutions with better 
accuracy and consistency when compared with other well-known metaheuristics methods 
such as the Particle Swarm Optimizer, Grey Wolf Optimizer, Multi-Verse Optimizer, 
Archimedes Optimization Algorithm and a hybrid method named the Average Multi-
Verse Optimizer and Sine Cosine Algorithm. 

 



v 

TABLE OF CONTENT 

DECLARATION 

TITLE PAGE  

ACKNOWLEDGEMENTS ii 

ABSTRAK iii 

ABSTRACT iv 

TABLE OF CONTENT v 

LIST OF TABLES viii 

LIST OF FIGURES ix 

LIST OF SYMBOLS x 

LIST OF ABBREVIATIONS xi 

CHAPTER 1 INTRODUCTION 1 

1.1 Research Background 1 

1.2 Motivation and Problem Statement 3 

1.3 Research Objectives 4 

1.4 Scope of Research 4 

1.5 Overview of the Thesis 5 

CHAPTER 2 LITERATURE REVIEW 7 

2.1 Introduction 7 

2.2 Overview of Nonlinear System Identification 7 

2.3 Metaheuristics Methods for Nonlinear System Identification 9 

2.3.1 Hammerstein Model Identification 10 



vi 

2.4 Archimedes optimization algorithm (AOA) and it’s variants 12 

2.4.1 AOA 12 

2.4.2 Variants of AOA 14 

2.5 Research Gap 15 

2.6 Summary 16 

CHAPTER 3 METHODOLOGY 18 

3.1 Introduction 18 

3.2 Problem Formulation 18 

3.3 Archimedes Optimization Algorithm (AOA) 19 

3.4 Improved Archimedes Optimization Algorithm (IAOA) 24 

3.4.1 Modified Density Decreasing Factor 24 

3.4.2 Safe updating mechanism 25 

3.5 Application of IAOA for Identifying the Hammerstein Model 27 

3.6 Summary 29 

CHAPTER 4 RESULTS AND DISCUSSION 31 

4.1 Introduction 31 

4.2 Performance Criteria 31 

4.3 Numerical Example for identifying the Hammerstein Model 32 

4.4 Twin-Rotor System (TRS) 38 

4.5 Electro-mechanical Positioning System 43 

4.6 Summary 48 

CHAPTER 5 CONCLUSION 50 

5.1 Concluding Remarks 50 



vii 

5.2 Research contribution 51 

5.3 Recommendations and Future Research Works 51 

REFERENCES 52 

 

 



viii 

LIST OF TABLES 

Table 4.1 Coefficients of AOA, AMVO-SCA, PSO, GWO, and MVO 33 

Table 4.2 The best-identified design variables and its corresponding variable 
deviation index with several levels noise variances 34 

Table 4.3 The analysis of statistical performance value of the fitness function 
and variable deviation index with several noise variances 37 

Table 4.4 Wilcoxon’s rank test of the fitness function for IAOA and AOA 
methods 37 

Table 4.5 The best-identified design variables of IAOA and other methods 41 

Table 4.6 The analysis of the fitness function’s statistical performance value 
for all methods. 43 

Table 4.7 The best-identified design variables of IAOA and other methods 46 

Table 4.8 The analysis of the fitness function’s statistical performance value 
for all methods 48 

 



ix 

LIST OF FIGURES 

Figure 2.1 Nonlinear Block-oriented structure models 8 

Figure 2.2 Bar chart of popularity of metaheurtsic methods in identificaiton of 
nonlinear systems based on block-orientated models. Source: (Jui et 
al., 2022) 10 

Figure 3.1 Flowchart of AOA 23 

Figure 3.2 Value of 𝑑 when varying 𝛼 25 

Figure 3.3 Graphical representation of IAOA with safe updating mechanism 26 

Figure 3.4 Block diagram of IAOA implementation for continuous-time 
Hammerstein Model identification 29 

Figure 4.1 Convergence curve of the mean fitness function from 25 trials with 
several noise variances 34 

Figure 4.2 Identified nonlinear function 𝛽𝑢𝑡 with different noise variances 35 

Figure 4.3 Identified linear dynamic system 𝑌(𝑤) with different noise 
variances 36 

Figure 4.4 Twin-rotor system schematic diagram Source: (Toha et al., 2012) 39 

Figure 4.5 Block diagram of the Hammerstein model to identify the TRS. 39 

Figure 4.6 Twin-rotor system’s random input and vertical channel output 40 

Figure 4.7 Convergence curve of the mean fitness function from 25 
independent runs 41 

Figure 4.8 Identified output responses of the vertical channel of the twin-rotor 
system 42 

Figure 4.9 Error produced by the identified continuous-time Hammerstein 
Models 42 

Figure 4.10 Power spectrum density of the vertical channel 42 

Figure 4.11 Prototype of the EMPS Source: (Brunot, 2019) 44 

Figure 4.12 Input and output signals of the EMPS 45 

Figure 4.13 Block diagram of the Hammerstein model to identify the EMPS 45 

Figure 4.14 Convergence curve of the mean fitness function from 25 
independent runs. 46 

Figure 4.15 EMPS experimental results 47 

 



x 

LIST OF SYMBOLS 

𝑢(𝑡) Input of the nonlinear function 

𝛽(𝑢(𝑡)) Output of the nonlinear function 

�̅�(𝑢(𝑡)) Estimated output of the nonlinear function 

ℝ Real numbers 

�̅�(𝑤) Estimated linear dynamic subsystem 

𝑍𝑏 Coefficient of the polynomial function 

𝑋𝑒 Coefficient of the polynomial function 

𝜁𝑖 Coefficient of the polynomial function 

𝜐(𝑡) Noise signal 

𝑃(�̅�, �̅�) Quadratic output estimation error 

𝑜(𝑡) Output of the linear subsystem 

�̅�(𝑡) Estimated output of the linear subsystem 

�́�(𝑡) Hammerstein model output 

𝑃(𝜗) Fitness function 

𝑁 Total number of samples 

𝑡𝑠 Sampling time 

𝑢𝑏𝑖 Upper boundary  

𝑙𝑏𝑖 Lower boundary  

𝜗𝑖 ith
 element of the design variable 

δ Variable deviation index 

𝑘 Current iteration 

𝑘𝑚𝑎𝑥 Maximum iteration 

𝑟𝑎𝑛𝑑 Random vector 

 𝑥𝑖  Position of object 

 𝑥𝑏𝑒𝑠𝑡  Best position of object 

𝑎𝑐𝑐 Acceleration of object 

𝑣𝑜𝑙 Volume of object  

𝑑𝑒𝑛 Density of object 

𝑚𝑎𝑥 Maximum 

𝑚𝑖𝑛 Minimum 

𝐹 Flag 

𝑇𝐹 Transfer operator 

𝑑 Density decreasing factor 



xi 

LIST OF ABBREVIATIONS 

ACO Ant Colony Optimizer 

  AMVO-SCA Average Multi-Verse Optimizer and Sine Cosine Algorithm 

AOA Archimedes Optimization Algorithm 

BFO Bacterial Foraging Optimization 

BSO Brainstorm Optimization  

CBO Colliding Bodies Optimization 

COVID-19 Coronavirus  

CPSO Clonal Particle Swarm Optimizer 

DEA Differential Evolution Algorithm  

EO Equilibrium Optimizer 

GA Genetic Algorithm 

GA-PSO Genetic Algorithm-Particle Swarm Optimizer 

GOA Grasshopper Optimization Algorithm 

GSA Gravitational Search Algorithm 

GSO Glow-worm Swarm Optimization  
GWO Grey Wolf Optimizer 

   GWO-CFA Grey wolf optimizer based chaotic firefly algorithm 

       IAOA Improved Archimedes Optimization Algorithm 

LMS Least Means Square 

MPPT Maximum Power Point Tracker  

MVO Multi-Verse Optimizer  

MIMO Multi Input Multi Output 

NARMAX       Nonlinear Auto Regressive Moving Average with exogenous     

      input 

NFL No Free Lunch 

PSO Particle Swarm Optimizer 

PSO-CS Particle Swarm Optimization-Cuckoo Search 

SCA Sine Cosine Algorithm 



1 

CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research Background 

Mathematical modelling is the process of creating a mathematical representation 

of a system that can accurately predict the output from the given input. One such method 

of creating a mathematical model is through the process of system identification which 

utilizes the observed input and output data. Most of the actual dynamic systems cannot 

be fully described with a linear model as they contain nonlinear characteristics (Eskinat 

et al., 1991). For example, in ground vibration testing of airplanes, nonlinear stiffness 

and nonlinear damping results in resonance frequencies and damping effects that differs 

with different excitation levels. In addition, in biological systems like our eyes, nose, 

tongue, and ears that governs our senses through stimuli follows a type of nonlinear 

compression called the Weber-Fechner laws (Dehaene, 2003). As such, the use of 

nonlinear system identification is the preferred method in forming mathematical models. 

Nonlinear system identification can be broadly categorized into five models which are 

the Volterra series, block-structured, neural network, Nonlinear Auto Regressive Moving 

Average with exogenous input (NARMAX) and state-space models.  

Among the models, the block-structured model is popular in nonlinear modelling 

applications as the structure is straightforward to comprehend, easy to apply as the linear 

time invariant dynamics and the static nonlinearities are separated (Eskinat et al., 1991). 

In block structured models, there exist three different types, which are the Hammerstein 

model where the nonlinear block comes before the linear block, the Wiener model where 

the linear block comes before the nonlinear block, and the Hammerstein-Wiener model 

in which the linear block is located between two nonlinear blocks (Schoukens & Ljung, 

2019). The Hammerstein model are widely used by researchers to model nonlinear 

systems due to its versatility in the identification of real experimental plants and processes 
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(Jui et al., 2022) like the as the pH neutralization process (Zou et al., 2013), the dynamics 

of electrically stimulated muscles (Farahat & Herr, 2005), solid oxide fuel cells (Jurado 

et al., 2006), wind speed forecasting (Ait Maatallah et al., 2015), and detecting valve 

stiction (Yan et al., 2017). Furthermore, the Hammerstein model can represent many 

kinds of nonlinearities of a process plant without much difficulty (Manenti, 2011). Hence, 

it is worth to choose the Hammerstein model for nonlinear system identification of actual 

process plants. 

  In previous literature, deterministic methods for instance the Least Mean Square 

(LMS) (Chaudhary & Raja, 2015) and the Gradient Search Algorithm (F. Ding et al., 

2011) were used to solve the identification of Hammerstein models. This type of method 

usually produces quality results but that’s not always the case as they are not adaptive 

and they might produce high computational burden for large-scale and complex problems 

(Madić et al., 2013).  

In recent years, metaheuristic methods are widely popular due to their adaptivity 

and ability in finding more accurate solutions (Yang, 2010). At-present, many different 

kinds of metaheuristics methods utilized in the identification of the Hammerstein model, 

such as Genetic Algorithm (GA) (Akramizadeh et al., 2002), Particle Swarm Optimizer 

(PSO) (Nanda et al., 2010), Clonal PSO (CPSO) and Immunized PSO (IPSO) (Nanda et 

al., 2010), Gravitational Search Algorithm (GSA) (Cuevas et al., 2018)., differential 

evolution algorithm (DEA) (Mete et al., 2016), and Colling Bodies Optimization (CBO) 

(Panda & Pani, 2014). In addition to that hybrid metaheuristic methods have also been 

applied to identify the Hammerstein models such as Grey wolf optimizer based chaotic 

firefly algorithm (GWO-CFA) (Ganguli et al., 2019), Particle Swarm Optimization-

Cuckoo Search (PSO-CS) (J. Ding et al., 2019) and Genetic Algorithm-Particle Swarm 

Optimizer (GA-PSO) (Hachino et al., 2009). 

  One of the alternative algorithm that could identify the Hammerstein model is 

called the Archimedes Optimization Algorithm (AOA) proposed by Hashim et al. 

(Hashim et al., 2022). This metaheuristic method is based on the Archimedes’ principle 

which explains the law of buoyancy, particularly the relation between an object immersed 

in a fluid and the buoyant force applied on it. The AOA method has been successfully 

shown to outperform other popular metaheuristic methods such as PSO, GA, sine-cosine 

algorithm (SCA) and Equilibrium Optimizer (EO) in multiple benchmark test. The merits 
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of AOA came from its simple structure and a smaller number of coefficients, while it has 

been utilized in solving a broad range of optimization problems for instance identifying 

the optimal coefficients of different fuel cells (Houssein et al., 2021), tuning a maximum 

power point tracker (MPPT) controller for wind energy generation system (Fathy et al., 

2022), optimizing an intelligent control of power system stabilizer (Aribowo et al., 2021), 

diagnosing Coronavirus (COVID-19) from X-Ray images on chest of the human body 

(Chen & Rezaei, 2021), and designing a microstrip patch antenna (Singh & Kaur, 2022). 

As a result, AOA is an excellent method to identify a continuous-time Hammerstein 

model.  

1.2 Motivation and Problem Statement 

In this research, the main focus is to develop an improved version of the 

Archimedes optimization algorithm for identifying the unknown variables of the 

continuous-time Hammerstein model. The modifications done to the AOA is to improve 

the effectiveness of the method. Two demerits had been identified in the original AOA 

method. 

Firstly, AOA is vulnerable to uneven exploration and exploitation phases, which 

result in a decrease in its searching capabilities. Exploration and exploitation are two 

conflicting mechanisms in theory, where favouring one phase will result in the 

deterioration of the other phase. Specifically, excessive exploration makes it impossible 

for the algorithm to find an accurate global optimum value. In contrast, excessive 

exploitation, on the other hand, slowed the convergence process toward the global 

optimum solution. Thus, an adequate balance between the exploration and exploitation 

phases is necessary in the original AOA. Secondly, since the updated object position is 

exclusively dependent on its prior or best object position, there is a high considerable risk 

of AOA becoming stuck in the local optima. If the best object location is entrapped in the 

local optimal zone, it will attract other objects into the same zone and be trapped together. 

Similarly, if the current object location is entrapped in the local optimal zone, escaping 

the zone is difficult since the object lacks information of the best object position. Hence, 

it is worthwhile to thoroughly analyse and pursue these difficulties in order to deliver a 

better version of the AOA. 
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The demerits above, of the AOA would reduce the variable identification 

accuracy of the continuous-time Hammerstein model. Particularly, if the optimization 

method lacked the capability to escape from the local optima and an appropriate balance 

of both the exploration and exploitation phase. The resulting identification accuracy 

would be lower. In addition, according to the theorem of no free lunch (NFL), there is no 

equally successful global optimizer that can provide answers to all optimization issues. 

Therefore, it is paramount that we have a wide range of optimization algorithms, to solve 

various kinds of optimization issues. Hence, the original AOA method would need to be 

improved upon to achieve a higher identification accuracy of the continuous-time 

Hammerstein model. 

1.3 Research Objectives 

The main goal of this study is to develop an improved archimedes optimization 

algorithm for identifying a continuous-time Hammerstein model, and the proposed 

approach is produced by modifying the original archimedes optimization algorithm. The 

optimal outcomes of the suggested algorithms are then compared to popular 

metaheuristics methods. The following are the precise objectives envisioned for this 

work: 

1. To propose an improved archimedes optimization algorithm (IAOA) for solving 

the local optima demerit and the imbalance in exploration and exploitation phases 

of the original archimedes optimization algorithm (AOA). 

2. To establish a structure for the identification of continuous-time Hammerstein 

model  based on the Improved Archimedes optimization algorithm (IAOA)  

3. To investigate the efficacy of the IAOA for continuous-time Hammerstein model 

identification in terms of the quadric output estimation error and variable 

deviation index 

1.4 Scope of Research 

  This study provides an improved archimedes optimization algorithm (IAOA) for 

the identification for the continuous-time Hammerstein model. Two modifications are 

introduced to the original AOA. Firstly, is the modification to the density decreasing 
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factor equation. Secondly, the safe updating mechanism is introduced to the original 

AOA method. 

To establish the structure for this identification for a Hammerstein model in 

continuous time which contains nonlinear function which comes before the linear 

subsystem, the nonlinear function is assumed to be unknown. Contrarily, the linear 

subsystem is known. Then, the proposed improved archimedes optimization algorithm 

(IAOA) will be utilized to identify the variables of the linear and nonlinear subsystems 

from the given input and output data. 

To validate the proposed IAOA method, three experiments were conducted. This 

includes one numerical example and two real world experiments. The two experiments 

are Electro-Mechanical Positioning System (EMPS) and the Twin-Rotor System (TRS). 

In all three experiments the results are assessed through five criteria, which are the 

convergence curve of the fitness function, variable deviation index, time-domain and 

frequency-domain responses, and Wilcoxon’s rank-sum test. All findings acquired from 

the proposed IAOA method will be then compared with AOA (Hashim et al., 2022), 

Average Multi-Verse Optimizer and Sine Cosine Algorithm (AMVO-SCA) (Jui & 

Ahmad, 2021), PSO (Kennedy & Eberhart, 1995), GWO (Mirjalili, Mirjalili, et al., 2014), 

and Multi-verse Optimizer (MVO) (Mirjalili et al., 2016).  

Only a few studies had been published up to this point that discussed the 

identification of continuous-time nonlinear models. As a result, the efficacy of the 

proposed IAOA method for continuous-time nonlinear system identification problems is 

worth investigating. 

1.5 Overview of the Thesis 

Overall, this thesis contains five chapters which includes the current chapter. In 

chapter one the problem statement, motivation, objectives and scope of the thesis is 

described. The following is how the remaining chapters are organised: 

In chapter 2, an overview of the nonlinear system identification models are 

presented. Various kinds of metaheuristic method utilized in the identifications of 

Hammerstein model is then discussed. Next, a review on the Archimedes Optimization 

Algorithm (AOA) and some of its variants are discussed. Moreover, the justification for 
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adopting the Hammerstein model for nonlinear system identification, as well as the MVO 

algorithm for identifying the parameters of the linear and nonlinear subsystems of the 

Hammerstein system, will be discussed. 

In chapter 3, discusses about the methodology of the thesis and proposed a novel 

optimization method called the improved archimedes optimization algorithm (IAOA). 

Firstly, is the formulation of the identification problem of the Continuous-time 

Hammerstein model. Then, an overview of the original archimedes optimization 

algorithm (AOA) was presented. Next, the proposed improved archimedes optimization 

algorithm (IAOA) is discussed. Finally, the continuous-time Hammerstein model 

identification method is presented. 

For Chapter 4, it presents the results and discussions of the thesis, in which the 

efficacy of the newly proposed IAOA is compared with other methods. Firstly, the IAOA 

efficacy will be validated by a numerical method and two real-world experiments, which 

are Electro-Mechanical Positioning System (EMPS) and the Twin-Rotor System (TRS in 

terms of the convergence curve of the fitness function, variable deviation index, time-

domain and frequency-domain responses, and Wilcoxon’s rank-sum test. All findings 

acquired from the proposed IAOA method will be then compared with AOA (Hashim et 

al., 2022), Average Multi-Verse Optimizer and Sine Cosine Algorithm (AMVO-SCA) 

(Jui & Ahmad, 2021), PSO (Kennedy & Eberhart, 1995), GWO (Mirjalili, Mirjalili, et 

al., 2014), and Multi-verse Optimizer (MVO) (Mirjalili et al., 2016). 

The thesis' conclusion and the research's future recommendation are presented in 

Chapter 5. 
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CHAPTER 2 

 

 

Literature Review 

2.1 Introduction  

This chapter presents the literature on nonlinear system identification models and 

the various types of metaheuristics methods utilized in identification of such nonlinear 

models. Firstly, an overview of the nonlinear system identification models is  presented 

in Section 2.2. Secondly, Section 2.3 different metaheuristic methods that was utilized in 

the identification of nonlinear Hammerstein models were discussed. Thirdly, in Section 

2.4 the original AOA and its variants were presented. Finally, the research gap in section 

2.5 was discussed. 

2.2 Overview of Nonlinear System Identification  

System identification is the process of which a mathematical model is modelled 

using the given input and output signals of a system. This methodology could be applied 

in both linear and nonlinear models. The real world is nonlinear and time-varying, 

therefore, linear models which does not consider the nonlinearities of the system would 

often yield imprecise models which does not accurately reflects the behaviour of the 

system . The demand for nonlinear system identification extends well beyond the control 

field. Nonlinear models are useful for gaining a fundamental understanding of a variety 

of issues, such as brain activity modelling and chemical interactions. This demonstrates 

that there are numerous reasons to switch from linear to nonlinear models. However, 

rising demands for increased performance and efficiency force systems towards nonlinear 

functioning, necessitating the use of nonlinear models in their design and control. 

System identification is a critical component of any control system design, yet 

identifying nonlinear systems is difficult at the moment. In recent years, due to their 
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simple block-oriented structure nonlinear block-oriented systems are a popular field of 

research in nonlinear system modelling . There are four main types of  nonlinear  block-

oriented structure models which are the Hammerstein, Wiener, Hammerstein-Wiener, 

and Wiener-Hammerstein models. The general block diagrams of the models are shown 

in Figure 2.1.  Here, the nonlinear subsystems are represented by v(·) and  w(·), and the 

liner subsystems are represented by R(𝑠)  and W(𝑠) . In the Hammerstein model the 

nonlinear block comes before the linear block, as illustrated in Figure 2.1(a). For the 

Wiener model the nonlinear block comes after the linear block, as illustrated in Figure 

2.1(b).  Because system outputs are dependent on inputs in a nonlinear fashion, the 

correlation between input and output can be decomposed into numerous connected 

components. The relevance of the linear transfer function is reflected in this process. The 

Hammerstein-Wiener model achieves this arrangement through the coupling of the 

dynamic linear and static nonlinear blocks. The Hammerstein-Wiener model structure 

block diagram is shown in Figure 2.1(c).  For the Wiener-Hammerstein model which is 

shown in Figure 2.1(d), it consists of a nonlinear subsystem which is sandwiched between 

two linear subsystems. 

             

Figure 2.1 Nonlinear Block-oriented structure models 

 



9 

2.3 Metaheuristics Methods for Nonlinear System Identification  

Metaheuristic methods for nonlinear system identification are widely popular   

due to their adaptivity and ability in finding more accurate solutions (Yang, 2010).  

Metaheuristic methods can be divided into two main class, which single-agent-based or 

multi-agent-based. The search procedure in the single-agent-based class begins with the 

randomization of a single solution. Then, as the iterations progress, it will get better. The 

objective searching process in the latter class, on the other hand, will begin with a 

collection of random initial solutions, which will be improved throughout the course of 

iterations. 

In addition, depending on the source of a method's inspiration, the multi-agent-

based class can be divided into two categories, which are swarm based or evolution based. 

In swarm-based strategies, which replicate the social behaviour of groups of animals. In 

comparison to evolution-based methods, swarm-based methods have a few advantages. 

Swarm-based methods, for example, keep the search space information over iterations, 

whereas evolution-based methods destroy any knowledge as soon as a new population 

forms. Particle Swarm Optimization is the most prominent swarm-based method, which 

was inspired by the social behaviour of flocking birds. To identify the optimal solution, 

it employs a number of particles that fly about the search space. In the meantime, they're 

all tracing their pathways to find the optimal location. 

Furthermore, the laws of natural evolution are the inspiration for evolution-based 

methods. The search begins with a population that was produced at random and has 

evolved over generations. The best individuals are always united to generate the next 

generation of individuals, which is a strength of these systems. Over numerous 

generations, the population can be optimised in this way. Genetic Algorithms (GA), 

which replicates Darwinian evolution, is the most prominent evolution-inspired methods. 

In addition to GA some other widely utilized metaheuristic methods includes, Genetic 

Programming (GP), Probability-Based Incremental Learning (PBIL), Asexual 

Reproduction Optimization (ARO), Differential Evaluation (DE), and Evolution Strategy 

(ES). In Figure 2.2 a bar chart from the study  (Jui et al., 2022) was shown. It  presents 

the number of times each metaheuristic methods were utilized in the identification of 

nonlinear system using various kinds of block-orientated models from 2011 to 2021. The 

list of metaheuristic methods utilized includes Glow-worm Swarm Optimization (GSO), 
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Differential Evolution Algorithm (DEA), Bacterial Foraging Optimization (BFO), 

Genetic Algorithm (GA), Brainstorm Optimization (BSO). Ant Colony Optimization 

(ACO), and Particle Swarm Optimization (PSO). From this we can clearly see that PSO 

is the most utilized in the identification of nonlinear system followed with GA and then 

DE. While the rest of the metaheuristic methods were rarely applied in the identification 

of nonlinear system. 

 

Figure 2.2 Bar chart of popularity of metaheurtsic methods in identificaiton of 
nonlinear systems based on block-orientated models. 
Source: (Jui et al., 2022) 

2.3.1 Hammerstein Model Identification  

This section discusses the various metaheuristic methods utilized in the 

identification of Hammerstein model. One of such metaheuristic methods that have been 

applied to identify the Hammerstein model is the Genetic Algorithm (GA) (Akramizadeh 

et al., 2002). Here, they have used the GA-based method to tune the parameters in 

hyperbolic function and discrete-time linear system simultaneously such that mean 

square error between the actual and approximated outputs is minimized. Particle Swarm 

Optimizer (PSO) is another popular metaheuristic method that was also used in the 

identification of Hammerstein models (Nanda et al., 2010). In their approach, they 

modified the PSO method into Clonal PSO and Immunized PSO to identify the nonlinear 
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subsystem that was represented by a single layer Functional Link Artificial Neural 

Network (FLANN) and the linear subsystem that was represented in discrete-time 

transfer function (Nanda et al., 2010). Through this approach, they manage to achieve 

better results than GA in terms of identification accuracy. Furthermore, the Gravitational 

Search Algorithm (GSA) was also used in identification of the Hammerstein model and 

the structure of the model was based on the Adaptive Network-based Fuzzy interference 

System (ANFIS) (Cuevas et al., 2018). In the ANFIS structure, the nonlinear subsystem 

is consisted of the antecedent of fuzzy inference system, while the linear subsystem is 

represented by the discrete-time transfer functions. Nevertheless, the proposed ANFIS 

structure may produce high computational burden due to redundancy gain between 

nonlinear and linear subsystems.  

In addition to that, modern metaheuristics algorithm was also used in the 

identification of Hammerstein models which is the differential evolution algorithm 

(DEA)  (Mete et al., 2016). Here, the structure of the Hammerstein model is based on a 

nonlinear second order Volterra model (SOV) and a finite impulse response (FIR) for 

both nonlinear and linear subsystems, respectively. Similar to (Mete et al., 2016), the 

structure of SOV-FIR still consists of redundant gains between linear and nonlinear 

subsystems, which may increase the computational burden. Besides that, the Colling 

Bodies Optimization (CBO) method has also been used in the identification of 

Hammerstein model where the nonlinear subsystem is based on t-th order polynomial 

function and the linear subsystem is based on discrete-time function or polynomials of 

delay operators (Panda & Pani, 2014). The results demonstrate superior performance of 

the CBO with reasonable convergence speed as compared to Bacterial Foraging 

Optimization and Adaptive PSO methods.  

Furthermore, due to limitation of the standalone metaheuristic methods, some 

studies also utilized hybrid metaheuristic methods where they combined two or more 

different methods to create a powerful approach in solving the identification of 

Hammerstein models. One such hybrid metaheuristic method is the Grey wolf optimizer 

based chaotic firefly algorithm (GWO-CFA) (Ganguli et al., 2019). Here, the GWO was 

utilized to perform the global search (exploration) whereas CFA was used to execute the 

local search (exploitation) such that a proper exploration and exploitation phases balance 

is obtained. By using this hybrid approach, they achieved results that has better accuracy 



12 

compared to popular metaheuristic methods like PSO, GWO, and Ant Lion optimization 

method (ALO) in the identification of Hammerstein models. Next, the Particle Swarm 

Optimization-Cuckoo Search PSO-CS) is also another hybrid metaheuristic method that 

was utilized in the identification of Hammerstein models (J. Ding et al., 2019). Through 

this approach, they produced a Hammerstein model with a higher accuracy compared to 

standalone metaheuristic. Moreover, the Genetic Algorithm-Particle Swarm Optimizer  

(GA-PSO) was also utilized in the identification of Hammerstein models (Hachino et al., 

2009). In this approach, GA was used during the global optimization phase while PSO 

was used during the local optimization phase utilizing the strengths of each method. It 

was demonstrated that the hybrid GA-PSO method can produce better performances in 

terms of Akaike informatic criterion and means of the output errors as compared to its 

standalone methods. Even so, all these hybrid approaches impose higher complexity with 

larger number of coefficients compared to standalone metaheuristics methods (Ting et 

al., 2015).  The increment of complexity will lead to higher computational load and the 

users would require more effort in tuning the higher number of coefficients. 

2.4 Archimedes optimization algorithm (AOA) and it’s variants 

Archimedes optimization algorithm was introduced in 2020 by Hashim et al. 

(Hashim et al., 2022). This method was utilized to solve various kinds of optimization 

issues, but it is not without its demerits. In this section the original AOA is discussed 

along with its variants where modifications are made to AOA to improves its 

performance. 

2.4.1 AOA 

Ahmed Fathy and Abdullah G. Alharbi applied AOA in simulating a maximum 

power point tracker (MPPT) (Fathy et al., 2022). The metaheuristics method is used in 

their study to adjust the duty cycle of the converter MOSFET in order to maximise the 

output power from the wind energy generation system. The results obtained from the 

AOA method will then be compared to different metaheuristic methods such as electric 

charged particle optimization (ECPO), cuckoo search (CS) and grasshopper optimization 

algorithm (GOA). In their findings they found that the AOA-MPPT controller 

outperformed all considered metaheuristic methods. In the fixed wind-speed setting, the 

AOA-MPPT controller extracted maximum power of 102.2039 W at a duty cycle of 
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0.0911, whereas the GOA-MPPT controller extracted maximum power of 101.1967 W. 

The AOA-MPPT controller extracts 102.136 W for operation at variable wind-speed, 

while the GOA-MPPT controller extracts 101.7 W. The AOA-MPPT controller retrieved 

12.7988 W for in the practical case study, while ECPO-MPPT obtained 9.8654 W. They 

concluded that AOA be used to tackle numerous optimization problems for other 

renewable energy systems and the smart grid due to it AOA’s robustness and 

performance. 

In another study conducted by in the study (Chen & Rezaei, 2021) they applied 

AOA as a new optimal diagnosis system for COVID-19 based on X-ray images of 

patients chest. In the study, the optimization of feature selection and the multilayer 

perceptron model (MLP )was based on AOA. This optimized MLP model based on AOA 

was used to determine the suspected cases of the COVID-19. The results obtained were 

compared with four state-of-the-art methods to examine the model efficiency, which are 

a neural network named CheXNet (Mangal et al., 2020), a deep learning method in 

(Ismael & Şengür, 2021), a DeTraC deep convolutional neural network in (Abbas et al., 

2021) and a convolutional neural network developed  using machine learning in (Abbas 

et al., 2021). In their findings they found that AOA method outperforms all the other 

methods in diagnosis of COVID-19 in terms of accuracy, specificity, precision, recall and 

F1-score. 

Furthermore, in (Li et al., 2021), AOA was utilize to determine the optimal 

configuration of a distributed generation (DG) connection on the power loss and voltage 

profile. The study deals with the subject of DG optimal configuration while 

simultaneously dealing with DG locations and capacity. After optimization, the 

configuration methods ensure that the system operates in an optimal condition while 

satisfying the goal of minimising power loss. The performance of the configuration 

produced by AOA method is then compared with other metaheuristic methos such as 

Particle Swarm Optimization (PSO) well as the Improved Genetic Algorithm (IGA). In 

their findings, AOA has a faster convergence time and more stable outcomes. Meanwhile, 

while dealing with DG comprehensive optimization problems, AOA has a faster running 

time and a better global search capability than the other two methods. Moreover, AOA 

also yields configurations which minimize power loss and better voltage profiles when 

compared to the other two methods. 
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2.4.2 Variants of AOA 

In some optimization problems the original AOA was not able to produce 

excellent results. Therefore, some modifications were applied to AOA to improve its 

performance. Firstly, in (Desuky et al., 2021) few modifications were made to the original 

AOA to enhance its classification performance for the issue of feature selection. They 

called this the Enhance Archimedes Optimization Algorithm (EAOA). In their 

modification, a new coefficient was added to the original AOA to enhance its balance 

between exploration and exploitation phase. This coefficient is dependent on the step size 

of every object’s position while revising the object’s position over the course of 

iterations. Furthermore, 23 benchmark functions are used to compare the EAOA 

method’s ability to solve optimization issues to other metaheuristics methods, which are 

the original AOA, PSO, ALO, Whale Optimization Algorithm (WOA) and Giza 

Pyramids Construction method (GPC). In their findings, they discovered that the EAOA 

method has higher exploitation capability for unimodal functions and greater exploration 

capability for multimodal and fixed-dimensional multimodal functions. In addition, when 

compared with other methods EAOA is able to escape the entrapment of local optima 

and have a higher rate of convergence. Moreover, in terms of the feature selection issue 

EAOA also yields shorter time for classification, while having the best performance when 

compared to the original AOA and other compared methods. 

In the following study (Akdag, 2022), a new and improved AOA is introduced to 

solve the optimal power flow optimization issue. The first modification made to the 

original AOA is the introduction of an additional step in selecting the best object’s 

position in each iteration and updating the current object’s position for the following 

iteration. The goal of this modification is to increase population variety in AOA and 

improve the balance between exploitation and exploration phases. Furthermore, this 

strategy employs a distinct method for constructing a neighbourhood for each object in 

which neighbour data can be shared. Secondly, is the usage of a different dimension 

learning-based strategy to build a neighbourhood for each object in which neighbour data 

can be transferred between objects. In this modification, it can improve the balance 

between local and global search of the original AOA. In their findings, for the optima 

power flow issue found in three different power systems their proposed method yields 

results that outperforms the original and other compared metaheuristics methods. Where 
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the proposed method managed to obtain minimized fuel cost and fuel-based emission 

minimization and improvement in voltage profiles when compared to other methods. 

 An enhanced Archimedes optimization algorithm based on local escaping 

operator and orthogonal learning (I-AOA)  is presented in (Houssein et al., 2021). This 

I-AOA was utilized in identification of parameters of a polymer electrolyte membrane 

(PEM) fuel cell. Two strategies were introduced in the I-AOA method, which are the 

local escaping operator (LEO) and orthogonal learning (OL). In LEO it improves the 

quality of solutions by repositioning the individuals in the population them when certain 

criteria are met. This allows the method from being entrapped in the local optima and 

also improves the method’s convergence characteristics. Next, OL is one of the most 

popular strategies for optimising the process of finding the best agents in order to get the 

best global solution. As a result, by introducing OL it would improve the balance of the 

exploration and exploitation phase of the original AOA. Here, they evaluated the 

performance of the I-AOA by utilizing the CEC’2020 test suite and three engineering 

issues , which are rolling element bearing, pressure vessel, and tension compression 

spring design issues.  The results obtained from I-AOA is then compared with other 

metaheuristic methods such as the original AOA, WOA, SCA, PSO, Moth-Flame 

Optimization Algorithm (MFO), Harris hawk’s optimization (HHO), and Tunicate 

Swarm Algorithm (TSA). In their findings, they found that for most of the benchmark 

functions I-AOA yields the best results, and in all three engineering issues I-AOA also 

yields the lowest fitness function values when compared with all the other methods. 

Moreover, to verify the performance of I-AOA, the proposed method was utilized in 

identifying the optimal parameters of the PEM fuel cell. They found that, I-AOA yields 

the lowest fitness function value when compared with other methods.  

 

2.5 Research Gap 

In the studies mentioned in Section 2.4. It was found that they picked AOA as the 

metaheuristic methods of choice to solve the optimization issues due to its, less control 

coefficients, simplicity  and it most cases it outperforms other metaheuristic methods 

such as GA, GOA,WOA, SCA, PSO and even some methods utilizing neural networks 

and deep learning. Nevertheless, in some studies it was shown that AOA still have some 
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demerits and modifications is needed to improved its performance. Firstly, AOA suffers 

from the problem of uneven exploration and exploitation phase, which decreases its 

searching capabilities in some optimization issues. This limits its ability in solving a wide 

range of optimization issues. Secondly, there is a high considerable risk that AOA would 

be entrap in the local optima. This is because of how AOA updates its object’s position 

where it is dependent on its prior or best object position. Hence, it is worthwhile to 

thoroughly analyse and pursue these difficulties in order to deliver a better version of the 

AOA. 

Based on the above literatures in Section 2.3, there are three notable issues can be 

highlighted. Firstly, in majority of past studies, the models of linear subsystems were 

described in discrete-time, while parameters of actual dynamic systems can be directly 

expressed from continuous-time domain. Secondly, the issue of identified parameters 

redundancy between linear and nonlinear subsystems still occurs in their Hammerstein 

model structure which could result to high computational burden thus degrade the 

estimation accuracy. Thirdly, most of the metaheuristic methods used in the identification 

of Hammerstein models are too complex and also utilized large number of pre-defined 

coefficients, which may increase the computational time and effort to determine the 

optimum setting of coefficients. With these three issues in mind, it is worth it to explore 

an enhanced version of the metaheuristic method as a tool to identify a more proper and 

practical structure of the Hammerstein model. 

2.6 Summary 

In the real world, nonlinearities are found in most systems. Building realistic 

models for such systems and processes remains a difficult task. Because of its simple 

structure and effective representation of nonlinear dynamic systems, the block-oriented 

Hammerstein model has been embraced by many researchers to simulate practical 

systems. Furthermore, the treatment of an optimization problem is a problem that is 

widely studied and debated by academics from a broad spectrum of domains. As the 

complexity of genuine nonlinear plants and processes grows, so does the need for novel 

metaheuristics methods to model the nonlinear system. Even though present optimization 

methods may successfully and efficiently identify nonlinear systems, the so-called no-

free-lunch (NFL) theorem permits more academics to create and propose new 

optimization algorithms that will be more powerful in the future. As a result, the NFL 
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pushes us to create an algorithm for identifying the Hammerstein system that will 

outperform current optimization methods. Undoubtedly, certain metaheuristic methods 

for the identification of Hammerstein method are yet to be implemented, such as the AOA 

method. As a result, the fundamental justification for using the metaheuristics  method to 

identify the Hammerstein model is that it successfully solves the nonlinear system 

identification problem. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

In this chapter the new Improved Archimedes Algorithm (IAOA) is proposed for 

the identification of a continuous-time Hammerstein model. Firstly, the Hammerstein 

model identification problem is formulated in Section 3.2. Then, in Sections 3.3 the 

original Archimedes Optimization Algorithm (AOA) is briefly discussed. After that, the 

Improved Archimedes Algorithm (IAOA) is discussed in Sections 3.4. The Improved 

Archimedes Algorithm (IAOA) is proposed in this chapter for identifying a continuous-

time Hammerstein model. In Section 3.2, the Hammerstein model identification problem 

is formulated. The original Archimedes Optimization Algorithm (AOA) is briefly 

discussed in Sections 3.3. After that, the Improved Archimedes Algorithm (IAOA) is 

discussed in Sections 3.4. Here, two modifications are proposed to the original AOA. In 

our first modification, a new design variable is introduced in the density decreasing factor 

equation from the original AOA is discussed in the subsection 3.4.1. The second 

modification is the addition of a safe updating mechanism to the original AOA is 

discussed in the subsection 3.4.2. Finally, the identification method for the continuous-

time Hammerstein systems is stated in Section 3.5. 

3.2 Problem Formulation 

  A nonlinear function 𝛽 and a linear dynamic system Y with differential operator 

𝑤(:=  𝑑
𝑑𝑡
) make up the Hammerstein model. The output signal is denoted by the symbol 

𝑜(𝑡),  whereas the output signal disrupted by noise signal 𝜐(𝑡)  is denoted by the 

notation �́�(𝑡).  The output function of  �́�(𝑡) can be represented as follows: 



19 

�́�(𝑡) = 𝑌(𝑤)𝛽(𝑢(𝑡)) + 𝜐(𝑡), 3.1 

where 

𝑌(𝑤) =  
𝑍𝑏𝑤𝑏 +  𝑍𝑏−1𝑤𝑏−1 + ⋯+ 𝑍0
𝑤𝑒 + 𝑋𝑒−1𝑤𝑒−1 + ⋯+ 𝑋0

, 
3.2 

and the nonlinear function’s output is as follows: 

𝛽(𝑢(𝑡)) =  ∑𝜁𝑖𝜔𝑖(𝑢(𝑡)),
𝐿

𝑖=1

 
3.3 

where 𝜔(. ) could be a polynomial or non-polynomial function. Several assumptions are 

made in this identification: 

i. b, e and i are known, 
ii.  𝑋𝑖(𝑖 =  1, 2, . . . , 𝑒 − 1) ,  𝑍𝑖(𝑖 =  1, 2, . . . , 𝑏 −  1) and 𝜁𝑖(𝑖 = 1, 2, . . . , 𝐿)  are real 

numbers, 
iii.  𝑍𝑏  = 1, to acquire 𝑌(𝑤) and 𝛽(𝑢(𝑡)) uniquely, 
iv.  𝛽(0) = 0. 

 
The identified model is evaluated using the fitness function below, which is based on 

a quadratic output estimation error, 

𝑃(�̅�, �̅�) = ∑(�́�(𝜂𝑡𝑠) − �̅�(𝜂𝑡𝑠))2,
𝑁

𝜂=0

 

 

3.4 

where the symbol �̅� is the identified linear dynamic system of 𝑌 and the symbol �̅� is the 

identified nonlinear function of 𝛽and �̅�(𝑡)  = �̅�(𝑤)�̅�(𝑢(𝑡)). Furthermore, the sampling 

time is denoted by the symbol 𝑡𝑠 for (𝑢(𝑡), �́�(𝑡)(𝑡 = 0, 𝑡𝑠, 2𝑡𝑠, . . . . . . , 𝑁𝑡𝑠) and η = 0, 1, 

…, N.  

3.3 Archimedes Optimization Algorithm (AOA) 

Archimedes optimization algorithm (AOA) which is introduced in (Hashim et al., 

2022) is inspired based on the law of physics known as Archimedes’ principle. The 

Archimedes’ principle states that when an object is completely or partial immersed in a 

fluid, the fluid exerts an upward force on the object equal to the weight of the fluid 

displaced by the object. AOA is a population-based method, where the individuals in the 
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population are immersed objects. These objects have varied density, volume and 

acceleration which affects the buoyancy of the objects. The idea of AOA is to reach a 

point where all objects is in equilibrium state with the fluid. This is reached when the net 

force of the fluid is equals to zero. The step-by-step procedure of the original AOA is 

given below: 

Step 1-Initialization: The positions of all objects are initialized using Eq. (3.5):  

 𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖), 3.5 

for 𝑖 =1, 2, ..., n, where 𝑥𝑖  is the 𝑖th object’s position in a population with 𝑛 number of 

objects. The upper and lower bounds of the search space are denoted by 𝑢𝑏𝑖  and 𝑙𝑏𝑖 , 

respectively. Next, the density (𝑑𝑒𝑛), volume (𝑣𝑜𝑙), and acceleration (𝑎𝑐𝑐) of the 𝑖th 

objects are initialized using Eq. (3.6):  

𝑑𝑒𝑛𝑖 = 𝑟𝑎𝑛𝑑, 

𝑣𝑜𝑙𝑖 = 𝑟𝑎𝑛𝑑, 

     𝑎𝑐𝑐𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 ×  (𝑢𝑏𝑖 − 𝑙𝑏𝑖), 

 

3.6 

where 𝑟𝑎𝑛𝑑 is random vector in which its element is independently generated between 

[0, 1].  

 Step 2-Update density and volume: The updated density and volume are given by 

 Eq. (3.7): 

    𝑑𝑒𝑛𝑖𝑘+1 = 𝑑𝑒𝑛𝑖𝑘 + 𝑟𝑎𝑛𝑑 × (𝑑𝑒𝑛𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑛𝑖𝑘),    

    𝑣𝑜𝑙𝑖𝑘+1 = 𝑣𝑜𝑙𝑖𝑘 + 𝑟𝑎𝑛𝑑 × (𝑣𝑜𝑙𝑏𝑒𝑠𝑡 − 𝑣𝑜𝑙𝑖𝑘),       

3.7 

where 𝑘 is the iteration number, 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 and 𝑣𝑜𝑙𝑏𝑒𝑠𝑡  are the best object’s density and 

volume found so far, and 𝑟𝑎𝑛𝑑  is another random vector where its element is 

independently generated between [0, 1]. 

Step 3-Transfer operator and density factor: Initially, the objects collide. Then, 

the objects will try to reach the equilibrium state. This is implanted in AOA by using the 

transfer operator 𝑇𝐹 which converts the search from exploration phase to exploitation 

phase. This phenomenon is expressed in Eq. (3.8): 
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  𝑇𝐹 = 𝑒𝑥𝑝 (
𝑘 − 𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥
),  

3.8 

where 𝑘𝑚𝑎𝑥 is the maximum number of iterations. Here, 𝑇𝐹 is designed to be gradually 

increased over iteration until it reaches 1. Moreover, the density decreasing factor, 𝑑, 

helps AOA on local search mechanism, which is expressed using Eq. (3.9): 

𝑑 = 𝑒𝑥𝑝 (𝑘 −𝑘𝑚𝑎𝑥
𝑘𝑚𝑎𝑥

) − ( 𝑘 
𝑘𝑚𝑎𝑥

). 3.9 

Note that the decreasing factor 𝑑 is introduced to give AOA the ability to converge in 

previously identified promising region. It’s worth noting that careful control of 𝑇𝐹 and 𝑑 

will provide a balance in the exploration phase and exploitation phase in AOA. 

Step 4.1- Exploration phase: If 𝑇𝐹 ≤ 0.5, collision between objects occurs. Then, 

a random material (𝑚𝑟) is selected and the object’s acceleration is updated for iteration 

k+1  using Eq. (3.10): 

    𝑎𝑐𝑐𝑖𝑘+1 =  𝑑𝑒𝑛𝑚𝑟 + 𝑣𝑜𝑙𝑚𝑟 × 𝑎𝑐𝑐𝑚𝑟

𝑑𝑒𝑛𝑖
𝑘+1×𝑣𝑜𝑙𝑖

𝑘+1 , 3.10 

where 𝑑𝑒𝑛𝑚𝑟,  𝑣𝑜𝑙𝑚𝑟, and 𝑎𝑐𝑐𝑚𝑟 are the density, volume, and acceleration of a random 

material.  

Step 4.2-Exploitation phase: On the other hand, if 𝑇𝐹 > 0.5, there is no collision 

between objects. Then, object’s acceleration is updated for iteration 𝑘 + 1  using Eq. 

(3.11): 

         𝑎𝑐𝑐𝑖𝑘+1 =  𝑑𝑒𝑛𝑚𝑟+𝑣𝑜𝑙𝑚𝑟 ×𝑎𝑐𝑐𝑏𝑒𝑠𝑡
𝑑𝑒𝑛𝑖

𝑘+1×𝑣𝑜𝑙𝑖
𝑘+1 , 3.11 

where 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 is the acceleration of the best object. 

Step 4.3- Normalize acceleration: The normalization of acceleration is performed 

using Eq. (3.12) to calculate the percentage of change: 

             𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚𝑘+1 = 𝑢 × 𝑎𝑐𝑐𝑖
𝑘+1−𝑚𝑖𝑛 (𝑎𝑐𝑐)

𝑚𝑎𝑥(𝑎𝑐𝑐)−𝑚𝑖𝑛 (𝑎𝑐𝑐)
+ 𝑙, 3.12 

where 𝑢 and 𝑙 are range of normalization, which is set to 0.9 and 0.1, respectively. The  

𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚𝑘+1  determines the percentage change of each object’s step. If the object is close 

to the global optimum, the acceleration value will be low which means that the object 
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will be in the exploitation phase. Otherwise, it is in the exploitation phase. This shows 

how the search agent change from exploration to exploitation phase.  

Step5-Update position: If 𝑇𝐹 ≤ 0.5, the 𝑖th object’s position is updated using Eq. 

(3.13): 

     𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 + 𝐶1 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚𝑘+1 × (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖𝑘) × 𝑑, 3.13 

where 𝐶1 is a constant that equals to 2, 𝑥𝑟𝑎𝑛𝑑 is a random object’s position and 𝑟𝑎𝑛𝑑 is 

random vector in which its element is independently generated between [0, 1]. If 𝑇𝐹 >

0.5, the object’s position is instead updated using Eq. (3.14): 

     𝑥𝑖𝑘+1 = 𝑥𝑏𝑒𝑠𝑡 ×  𝐹 × 𝐶2 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚𝑘+1 × (𝑇 × 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑘) × 𝑑, 3.14 

where  𝑥𝑏𝑒𝑠𝑡 is the best object’s position and 𝐶2 is a constant that equals to 6. Here, the 

variable 𝑇 is defined by 𝑇 =  𝐶3 ×  𝑇,  𝑤here 𝐶3 is a constant that equals to 2. Note that 

𝑇 increases with each iteration and has a range of [𝐶3 ×  0.3, 1]. In Eq. (3.14):, 𝐹 is the 

flag which changes the direction of motion expressed using Eq. (3.15): 

𝐹 = {+1 𝑖𝑓 𝑃𝑟 ≤ 0.5,
−1 𝑖𝑓 𝑃𝑟 > 0.5, 

3.15 

for 𝑃𝑟 = 2 × 𝑟𝑎𝑛𝑑 −  𝐶4 , where 𝑟𝑎𝑛𝑑  is random vector where its element is 

independently generated in the range of [0, 1], and 𝐶4 is a constant that equals to 0.5. 

Step 6- Evaluation: Finally, evaluate each object’s position using fitness function 

f and saves the best solutions found so far that are corresponded to the best solution 𝑥𝑏𝑒𝑠𝑡, 

𝑑𝑒𝑛𝑏𝑒𝑠𝑡,  𝑣𝑜𝑙𝑏𝑒𝑠𝑡, and 𝑎𝑐𝑐𝑏𝑒𝑠𝑡. 

The AOA flowchart is shown in Figure 3.1. 
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Figure 3.1 Flowchart of AOA 
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3.4 Improved Archimedes Optimization Algorithm (IAOA) 

The original AOA is quite versatile and was utilized to solve a wide range of 

optimization problems, but it still has several demerits. Firstly, the imbalance in the 

exploration and exploitation phases, which will result in a decrease in its searching 

capabilities. Secondly, its ability to escape from local optima is hampered due to the way 

AOA update its object’s positions which is by relying exclusively on its prior or best 

object position. Based on the demerits of AOA, the following changes are proposed to 

solve those issues 

3.4.1 Modified Density Decreasing Factor 

In the original AOA, the density decreasing factor,  𝑑  in Eq. (3.9) decreases 

nonlinearly until it reaches 0, which is important to provide a proper balance between the 

exploration and exploitation phases. Nevertheless, the original density decreasing factor 

is too restrictive as well as the existing exploration and exploitation phases are limited to 

certain optimization problems only. In other words, the user doesn’t have flexibility to 

control the exploration and exploitation phases according to the handled optimization 

problem. To address this demerit, a tuneable coefficient 𝛼 is introduced in the density 

decreasing factor equation. The modified density decreasing factor equation is shown in 

Eq. (3.16): 

         �̃� = 𝑒𝑥𝑝 (
𝑘 − 𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥
)
𝛼

− (
𝑘 

𝑘𝑚𝑎𝑥
) . 

3.16 

This modification allows the alteration of the ratio of exploration and exploitation phases 

throughout preliminary tuning of the coefficient 𝛼. Precisely, to increase the exploration 

phase, 𝛼 can be set to be greater than 1 (𝛼 >  1.0), which will increase the value of  �̃� 

and thus provide large perturbation step to the object's position. Nevertheless, this setting 

will reduce the duration for exploitation phase. Conversely, by setting 𝛼 < 1.0,  the 

exploitation phase is increased, where small value of  �̃� is generated that will produce 

only small perturbation to the object's position. As a consequence, this setting might 

reduce the convergence speed since the duration of exploitation phase is much larger than 

exploration phase. Therefore, an optimal selection of 𝛼 can provide a proper balance 

between the exploration and exploitation phases, thus provides more flexibility for the 

algorithm in handling various types of optimization problems. The response of �̃� for the 
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whole iterations corresponds to different values of 𝛼  is clearly illustrated in Error! 

Reference source not found. below. As can be noticed, in comparison to its original AOA 

(𝛼 = 1) , this modification allows the tuning of ratio between the exploration and 

exploitation phases, which allows the method to be more compatible with a wider range 

of real-world applications. 

 

Figure 3.2 Value of �̃� when varying 𝛼 

3.4.2 Safe updating mechanism 

 To solve the demerits of being trapped in a local optima found in the original 

AOA method, a safe updating mechanism is introduced. Specifically, some of the 

elements in the updated object's position vector after Eq. (3.13) and Eq. (3.14) will 

maintain its best object's position randomly according to a pre-defined probability. The 

safe updating mechanism is shown in Eq. (3.17) below: 

𝑥𝑖,𝑗𝑘+1 = {
𝑥𝑏𝑒𝑠𝑡,𝑗 if 𝑟𝑎𝑛𝑑 >  𝐸,
𝑥𝑖,𝑗𝑘+1 otherwise,

 
3.17 

where 𝐸 is a probability constant. Note that this kind of updated mechanism is inspired 

from a safe experimentation dynamics algorithm in (Ghazali et al., 2019) which is in the 

class of game theoretic method. Here, a safe updating mechanism is guaranteed since 

only parts of the object’s position is perturbed according to Eq. (3.13) and Eq. (3.14), 

which is when 𝑟𝑎𝑛𝑑 ≤  𝐸. Otherwise, it will maintain the element of the best object’s 
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position vector, 𝑥𝑏𝑒𝑠𝑡 . Further explanation is given with the aid of the illustration in 

Figure 3.3, where X and Y axes reflect the independent design variables/elements inside 

a previously created contour plot. Consider object 𝑥𝑖 labelled by a red rectangle has been 

trapped in the local optimal region. Based on the original AOA method, this object 𝑥𝑖 is 

most likely to remain trapped in that region due to weakness of its updating mechanism, 

which is solely guided by an object’s current position 𝑥𝑖 or object’s best position 𝑥𝑏𝑒𝑠𝑡. 

Even so, this problem can be lessened thru the safe updating mechanism in which some 

elements of 𝑥𝑖 will be changed according to the element in best object’s position 𝑥𝑏𝑒𝑠𝑡. 

In the example given, the second element of the object 𝑥𝑖 which is represented by the x-

axis has been randomly changed according to the second element in 𝑥𝑏𝑒𝑠𝑡 . Hence, it 

allows 𝑥𝑖 to exit from the local optimal region and be perturbed to a new position (see 

the green rectangle). It’s worth to mention that this example uses only two elements for 

ease of understanding. The same concept can be extended for a larger number of 

elements. Finally, the proposed hybrid technique which combining the good features 

from both modified density decreasing factor and safe updating mechanism methods is 

revealed by the pseudocode in Algorithm 1.     

 

Figure 3.3 Graphical representation of IAOA with safe updating mechanism 
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3.5 Application of IAOA for Identifying the Hammerstein Model 

  This section discusses how IAOA method is utilized in the identification of 

continuous-time Hammerstein model. Specifically, the identification of the problem is 

identified by expressing the fitness function as: 

𝑃(𝜗) = ∑(�́�(𝜂𝑡𝑠) − �̅�(𝜂𝑡𝑠))2
𝑁

𝜂=0

, 
3.18 

for the design variable  

𝜗 =  [�̅�0,  �̅�1, . . . , �̅�𝑏−1,  �̅�0,  �̅�1, . . . , �̅�𝑒−1,  𝜁1̅,  𝜁2̅, . . . , 𝜁 ̅𝐿] ∈  ℝ𝑚, 3.19 

where the variable 𝑚 =   𝑏 + 𝑒 + 𝐿 . When 𝜗 is fixed, the value of  𝑃(𝜗) is calculated 

by running �́�(𝜂𝑡𝑠) and �̅�(𝜂𝑡𝑠), which performs as follows. Firstly, the continuous-time 

input signal of  𝑢(𝑡)(𝑡 =  0,  𝑡𝑠, 2𝑡𝑠, . . . . . . , 𝑁𝑡𝑠) is executed. Then, the continuous-time 

signal �̅�(𝑡) is computed using: 

�̅�(𝑡) =  
𝑍𝑏𝑤𝑏 +  𝑍𝑏−1𝑤𝑏−1 + ⋯+ 𝑍0
𝑤𝑒 + 𝑋𝑒−1𝑤𝑒−1 + ⋯+ 𝑋0

�̅�(𝑢(𝑡)). 
3.20 

Then, with a fixed sampling time of η = 0, 1, …, N, signal  �̅�(𝑡) is sampled to �̅�(𝜂𝑡𝑠). 

Finally, the continuous-time Hammerstein model is identified using the IAOA method. 

The following is a summary of the step-by-step procedure:     



28 

Step 1: Identify the design variable 𝜗 in Eq. (3.19). 

Step 2: Execute the IAOA method in the pseudocode of Algorithm 1by setting 𝜗:= 𝑥𝑖 

and 𝑃(�̅�, �̅�) = 𝑓𝑖. 

Step 3: When 𝑘𝑚𝑎𝑥 is reached, we obtained the best object’s position 𝑥𝑏𝑒𝑠𝑡. Then, the 

best design variables, 𝜗:= 𝑥𝑏𝑒𝑠𝑡  is the solution for the continuous-time Hammerstein 

model. 

The continuous-time Hammerstein model identification flow using the proposed 

IAOA method is depicted in Figure 3.4. The identification of the continuous-time 

Hammerstein block and the proposed IAOA method block are the two key blocks in this 

diagram.  In the former block, the goal is to obtain the identified model by using the given 

input 𝑢(𝑡) and output �́�(𝑡) data. The fitness function is calculated in Eq. (3.4), which is 

corresponded as the outcome from this block. Then, the proposed IAOA method block 

uses this fitness function by defining 𝑃(�̅�, �̅�) as the fitness value 𝑓𝑖 . In the proposed 

IAOA method block, the pseudocode in Algorithm 1 is employed to acquire the updated 

design variable of each object’s position 𝑥𝑖. The updated design variable is then utilized 

in the identified model in the identification of the continuous-time Hammerstein model 

block by denotating 𝜗:= 𝑥𝑖 . This two-way flow between these two blocks is repeated 

until the maximum number of iterations are reached to determine the optimal design 

variables of the identified model.  
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Figure 3.4 Block diagram of IAOA implementation for continuous-time 
Hammerstein Model identification 

3.6 Summary 

This chapter discusses about a general framework of the continuous-time 

Hammerstein model based on the improved archimedes optimization algorithm. Firstly,  

the proposed method for the identification of the continuous-time Hammerstein model 

problem was formulated where the Hammerstein model input and output data was given, 

and the linear and nonlinear subsystems needed to be identified so that the fitness function 

can be minimized. Next, the original archimedes optimization algorithm was briefly 
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discussed. Next, the modifications of the proposed IAOA method are discussed where 

two modifications are proposed. In the first modification, the searching capability of the 

AOA is improved by introducing the coefficient 𝛼  to the density decreasing factor 

equation, which allows the alteration of the ratio of the exploration and exploitation 

phases. In the second modification, the local optima problem of the original AOA was 

solved by introducing the safe searching mechanism which allows the algorithm to escape 

from being trapped in a local optima. Finally, the application of the proposed IAOA 

method on the identification of continuous-time model of Hammerstein model is 

discussed, where the proposed method is applied on the Hammerstein model 

identification.   
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

This chapter presents the results of a performance investigation of the continuous-

time Hammerstein model using the proposed IAOA method. The effectiveness of the 

proposed IAOA method is demonstrated here with one numerical example and two real 

world experiments, which are the Twin-Rotor System (TRS) and the Electro-Mechanical 

Positioning System (EMPS). The proposed IAOA method is then compared to the 

original AOA, AMVO-SCA, PSO, GWO, and MVO methods to evaluate its efficiency. 

4.2 Performance Criteria 

The following performance criteria are taken into account in this study: 

1. The convergence curve of the best fitness function from 25 independent runs, 

variable deviation index 𝛿, identified linear dynamic system �̅� (𝑤) bode plot, plot 

of the identified nonlinear function �̅�(𝑢(𝑡)), responses of the identified TRS and 

EMPS model in time and frequency domain. The variable deviation index 𝛿 is 

calculated as follows: 

   𝛿 = ‖[
𝜗1 − �̂�1

�̂�1
, . . . ,

𝜗𝑚 − �̂�𝑚
�̂�𝑚

 ]
𝑇

‖
2

, 
4.1 

where �̂�𝜖 ℝ𝑚  is the actual design variable vector. Furthermore, 𝜗𝑖  is the 𝑖 th 

component of the identified design variable 𝜗 and �̂�𝑖 is the 𝑖th component of the 

design variable vector �̂�. 
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2. The evaluation of statistical fitness function performance values and variable 

deviation index values from 25 independent runs based on the mean, best, worst, 

and standard deviation (Std.) in comparison with IAOA, AOA, AMVO-SCA, 

PSO, GWO, and MVO methods for varied noise levels. 

3. The statistical difference between the Algorithms is assessed using a non-

parametric statistical test called Wilcoxon's rank test (García et al., 2009) at a 

significance level of 5%. The Wilcoxon's test is performed here using the fitness 

value across 25 independent runs. This statistical test uses two separate 

experimental results methods to calculate the 𝑝 and ℎ values, which will be used 

as significance level indicators. The experimental results of both methods are 

regarded statistically different when 𝑝 < 0.05 or ℎ =  1. We may also say that 

the efficiency of the two methods is substantial. Nevertheless, when 𝑝 >  0.05 or 

ℎ =  0, the experimental results of both techniques are deemed similar. 

4.3 Numerical Example for identifying the Hammerstein Model 

The linear and nonlinear subsystems of the numerical example , which were taken 

from (Jui & Ahmad, 2021), are given as follow:  

𝑌(𝑤) =
𝑍(𝑤)
𝑋(𝑤)

, 

 

 

X(𝑤) =  𝑤6  +  10.0000𝑤5  +  54.7700𝑤4  +  156.8000𝑤3  +  87.0843𝑤2  +  
25.2810𝑤 +  4.0197, 

4.2 

𝑍(𝑤) = 𝑤3,  

𝛽(𝑢(𝑡)) =  125( 𝑢(𝑡)  +  0.5𝑢2(𝑡)  +  0.25𝑢3(𝑡)). 
 

4.3 

For this numerical example, 𝑢(𝑡) is a variable amplitude of Pseudo Random Binary 

Sequence (PBRS) signal, with amplitude ranging from [−1,1]. Meanwhile, in this study 

different levels of white noise signals 𝜐(𝑡) with zero mean are utilized. Specifically, we 

established three levels of noise variances, which are 𝜎𝑣2 = 0.01, 𝜎𝑣2 = 0.25 and 𝜎𝑣2 =

1.0 . The sampling rate is 𝑡𝑠 = 1 × 10−3 for signal �́�(𝑡)  with 𝑁 = 24000 . This 

numerical example optimization settings are 𝑙𝑏𝑖 = 1 for every 𝑖, 𝑢𝑏𝑖 = 160 for every 𝑖, 

𝑘𝑚𝑎𝑥 = 400, and 𝑛 = 25, while the coefficients of IAOA are 𝐶1 = 2, 𝐶2 = 6, 𝐶3 = 2, 

𝐶4  = 0.5 , 𝐸 = 0.93  and 𝛼 = 2 . We conduct 25 independent runs using the same 



33 

coefficients to assess the efficiency of the proposed IAOA method against the 

randomization effect. Meanwhile, Table 4.1 Coefficients of AOA, AMVO-SCA, PSO, 

GWO, and MVO. Table 4.1 shows the coefficients of the AOA (Hashim et al., 2022), 

AMVO-SCA (Jui & Ahmad, 2021), PSO (Rauf et al., 2020), GWO (Mirjalili, 

Mohammad, et al., 2014) and MVO (Mirjalili et al., 2016) methods. The number of 

agents, maximum iterations, upper and lower bounds of all the compared methods are set 

to be the same as IAOA method for a fair comparison assessment. 

Table 4.1 Coefficients of AOA, AMVO-SCA, PSO, GWO, and MVO 

Algorithms AOA  AMVO-SCA  PSO  GWO  MVO  

Coefficients 𝐶1 = 2 
𝐶2 = 6 
𝐶3 = 2 
𝐶4 = 0.5 

𝑤𝑚𝑎𝑥 = 1 
𝑤𝑚𝑖𝑛 = 0.2 

𝑝 = 4 
 

𝑤𝑚𝑎𝑥 = 0.9 
𝑤𝑚𝑖𝑛 = 0.4 
𝑐1 = 1.45 
𝑐2 = 1.45 

 
𝑎 = [2,0] 

𝑤𝑚𝑎𝑥 = 1 
𝑤𝑚𝑖𝑛 = 0.2 

𝑝 = 6 
 

Reference  (Hashim 
et al., 
2022) 

(Jui & 
Ahmad, 
2021) 

(Rauf et al., 
2020) 

(Mirjalili, 
Mohammad, 
et al., 2014) 

(Mirjalili et 
al., 2016) 

 

  The convergence curve of mean fitness function (from 25 independent runs) for 

the original AOA and proposed IAOA methods with noise variance of 𝜎𝑣2 = 0.01, 𝜎𝑣2 =

0.25  and 𝜎𝑣2 = 1.0  are shown in Figure 4.1(a), Figure 4.1(b) and Figure 4.1(c), 

respectively. The blue line represents the response of the proposed IAOA method while 

the dotted red line represents the response of the original AOA. The convergence curves 

of all levels of noise indicate that the proposed IAOA method is able to successfully 

minimize the specified fitness function in Eq. (3.18) and obtain better optimal solution as 

compared to the original AOA method. This can be clearly seen in the plots of Figure 

4.1. The best-identified design variable values and their corresponding variable deviation 

index 𝛿 for multiple noise variances out of 25 independent runs are tabulated in Table 

4.2. The tabulated values demonstrates that by using the proposed IAOA method, the 

identified design variable vector 𝜗  is near to the actual design variable vector �̂� , 

particularly when noise variance is small. 
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Figure 4.1 Convergence curve of the mean fitness function from 25 trials with several 

noise variances 

Table 4.2 The best-identified design variables and its corresponding variable 
deviation index with several levels noise variances 

𝜗∗ Design 
variables 

𝜗 �̂� 
𝜎𝑣2 = 0.01 𝜎𝑣2 = 0.25 𝜎𝑣2 = 1.0 

𝜗1∗ �̅�0 3.8087 3.5173 1.8540 4.0197 
𝜗2∗ �̅�1 25.9138 21.8049 38.1805 25.2810 
𝜗3∗ �̅�2 89.3507 103.7365 102.5055 87.0843 
𝜗4∗ �̅�3 159.9760 155.3825 160.0000 156.8000 
𝜗5∗ �̅�4 56.3632 59.1699 54.4352 54.7700 
𝜗6∗ �̅�5 10.1784 10.6524 10.1838 10.0000 
𝜗7∗ 𝜁1̅ 130.9863 123.2149 95.7953 125.0000 
𝜗8∗ 𝜁2̅ 64.5855 67.0685 63.7901 62.5000 
𝜗9∗ 𝜁3̅ 30.5725 36.9534 45.5866 31.2500 
𝛿  0.09752 0.3475 0.9210 - 
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Meanwhile, the results of the nonlinear function �̅�(𝑢(𝑡)) plot and the bode plot 

of the linear dynamic system �̅�(𝑤) for the proposed IAOA method can be seen clearly in 

Figure 4.2 and Figure 4.3, respectively. Both plots  in Figure 4.2 and Figure 4.3 are plotted 

using the best design variable (out of 25 independent runs). The thick solid-black colour 

line represents the actual response for both figures, while the identified response for the 

noise variances 𝜎𝑣2 = 0.01, 𝜎𝑣2 = 0.25 and 𝜎𝑣2 = 1.0 are represented by blue, red and 

yellow colour lines, respectively. In the nonlinear function plot responses in Figure 4.2, 

it is demonstrated that the proposed IAOA method can almost perfectly approximate the 

actual plot response of the nonlinear function �̅�(𝑢(𝑡)).  Nonetheless, the difference 

between the actual plot and the identified plot widens as the noise variance increases, 

particularly for the noise variance of 𝜎𝑣2 = 1.0. Furthermore, the bode plot responses 

obtained by the proposed IAOA method are also almost identical to the actual bode plot 

response. According to the findings, it can be justified that the proposed IAOA method 

can closely predict the linear and nonlinear subsystems of the Hammerstein model, 

especially for low level of noise variance. 

  

Figure 4.2 Identified nonlinear function �̅�(𝑢(𝑡)) with different noise variances 
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Figure 4.3 Identified linear dynamic system �̅�(𝑤) with different noise variances 

Moreover, the analysis of the statistical performance value of the fitness function 

and the variable deviation index with different noise variances, which are 0.01, 0.25 and 

1.0 are shown in Table 4.3. Based on the 25 independent runs with different levels of 

noise variances, the mean, best, worst, and standard deviation (Std.) values of the fitness 

function and the variable deviation index are observed. The statistical results of our 

proposed method are also compared to the original AOA, AMVO-SCA, PSO, GWO, and 

MVO to determine the efficiency of the proposed method. Most of the findings in Table 

4.3 demonstrate that a high degree of noise leads to a higher fitness function value, as can 

be observed from the mean, best, worst, and standard deviation values. In terms of the 

variable deviation index, however, the increment in mean, best, worst, and standard 

deviation values is rather minimal with the increment of noise. Among all the six 

methods, the proposed IAOA method produces a smaller best value of the fitness function 

compared to other methods for all levels of noise variances. Furthermore, the proposed 

IAOA method also yields smaller worst and standard deviation of the fitness function at 

noise variance level of for almost all noise variances compared to all other methods. 

Meanwhile, in terms of mean values, the AMVO-SCA method produces slightly smaller 

value than the proposed IAOA method. However, the mean values produced by the IAOA 

method is still very competitive with the AMVO-SCA method. In terms of variable 

deviation index, the proposed IAOA method is shown to be superior method in yielding 
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smaller best, worst and standard deviation values as compared to all other methods for 

almost all variances. These findings indicate the ability of the proposed IAOA method in 

producing precise and consistence results in most of the runs. As a result, the 

effectiveness of the proposed IAOA method in producing an accurate Hammerstein 

model is quite good compared to most of the other methods even with different noise 

levels.     

Table 4.3 The analysis of statistical performance value of the fitness function and 
variable deviation index with several noise variances 

Algorithm IAOA AOA   AMVO-SCA   
𝝈𝒗
𝟐 0.01 0.25 1.0 0.01 0.25 1.0 0.01 0.25 1.0 

𝑃(𝜗) Mean 0.1619 3.9717 15.8717 0.3577 4.1272 16.0745 0.1608 3.9707 15.8616 
 Best 0.1581 3.9504 15.7960 0.1668 3.9653 15.8464 0.1585 3.9584 15.8262 
 Worst 0.1695 3.9920 15.9624 0.9114 4.6583 16.4773 0.1949 4.0157 15.8930 
 Std. 0.0029 0.0090 0.0350 0.2125 0.1847 0.1841 0.0071 0.0118 0.0172 
𝛿 Mean 1.1308 1.7703 1.9436 4.5862 4.4022 4.9474 0.7551 1.3573 1.4814 
 Best 0.0975 0.3475 0.9210 0.8448 1.3468 1.5729 0.0983 0.4197 0.4254 
 Worst 2.5228 2.8617 3.8011 10.0472 9.8189 10.3983 4.2554 3.0844 3.3482 
 Std. 0.6033 0.6164 0.6276 2.7161 2.8120 2.7882 0.7806 0.7517 0.7622 

Algorithm PSO  GWO  MVO   
𝝈𝒗
𝟐 0.01 0.25 1.0 0.01 0.25 1.0 0.01 0.25 1.0 

𝑃(𝜗) Mean 0.5562 4.3377 16.282 0.1629 3.9739 15.8753 0.1620 3.9771 15.8706 
 Best 0.1667 3.9898 15.8659 0.1586 3.9615 15.8265 0.1594 3.9602 15.8261 
 Worst 2.4391 5.8778 17.7504 0.1992 4.0056 15.9519 0.1767 4.0154 15.9067 
 Std. 0.5946 0.4354 0.4336 0.0104 0.0092 0.0323 0.0034 0.0131 0.0229 
𝛿 Mean 5.7767 6.0149 6.3934 1.0048 1.311 1.8739 1.0628 2.0303 2.3397 
 Best 1.0336 1.2778 1.5427 0.2296 0.5524 0.545 0.3161 0.6013 0.3823 
 Worst 17.995 18.2957 20.1424 4.3726 4.4314 7.7378 3.5464 6.229 9.3233 
 Std. 4.3665 4.2566 4.8494 1.0429 1.0521 1.622 0.6694 1.135 1.7663 

 
Furthermore, Table 4.4 tabulates the Wilcoxon's rank test findings for the fitness function 

between IAOA and AOA methods, with a significance level of 5%. It is shown that the p-values 
for the proposed IAOA method compared to the original AOA method are less than 0.05, as well 
as the h-values are equal to 1 for all levels of noise variances. This suggests that the obtained 
fitness function for the proposed IAOA method is statistically significant than its original version 
for all level of noises. It also indicates that when compared to the original AOA method, the 
proposed IAOA method performs statistically better in the pair-wise Wilcoxon rank test. 

Table 4.4 Wilcoxon’s rank test of the fitness function for IAOA and AOA methods 
IAOA 
vs 

Noise Variances 

 𝜎𝑣2 = 0.01 𝜎𝑣2 = 0.25 𝜎𝑣2 = 1.0 
 p-value h-value p-value h-value p-value h-value 

AOA 2.5742e-09 1 1.3090e-07 1 9.5133e-08 1 



38 

4.4 Twin-Rotor System (TRS) 

This section demonstrates the usefulness of the proposed IAOA method in 

identifying a real Twin-rotor System based on the continuous-time Hammerstein model. 

The TRS is an experimental system that contains the most important aspects of a 

helicopter, such as couplings and strong nonlinearities, and may be thought of as an 

unorthodox and sophisticated 'air vehicle.' These system properties provide substantial 

issues in modelling, control design, and implementation. The characteristics of a 

helicopter alter in a real flying environment due to changes in flight conditions. A system 

identification must be performed in various flying scenarios to upgrade the aircraft model. 

The TRS is made up of a main rotor and a tail rotor that are hinged on the structure's base 

at both ends of the horizontal beam and rotate freely in both horizontal and vertical planes. 

Furthermore, the horizontal beam may be adjusted to regulate the rotors' rotating speed 

by modifying the input voltage. The horizontal beam may rotate and move its ends on the 

spherical surfaces because of the joint. To balance the angular momentum, the system 

has a counterbalance pendulum suspended from the beam. In Figure 4.4, it depicts the 

schematic diagram of the TRS system  (Toha et al., 2012). The main rotor blade revolves 

around the yaw axis, and the tail rotor blade rotates around the pitch axis, respectively, 

to shift the system in vertical and horizontal directions. However, due to the imbalanced 

mass distribution, the system's flexible rotation creates vibrations during operation. 

Due to the vertical channel's input, vibrational motion occurs mostly at the pitch 

angle in the twin-rotor system. As a result, the vertical channel is picked as the TRS 

output. A random signal of 1 volt with a sample time of 0.1 s was employed as an input 

into the system's vertical channel. A total of 600 s of real input–output data was obtained 

to determine the TRS's vertical channel. The system was modelled using the same 

duration data. Figure 4.5 shows the block diagram of the continuous-time Hammerstein 

model that was used to verify the twin-rotor system's estimated model. In Figure 4.5, the 

symbol �̅�(𝑡) represents the estimated output, whereas �́�(𝑡)  and 𝑢(𝑡)  represent the 

experimental system's recorded output and input, respectively. Figure 4.6(a) and Figure 

4.6(b) illustrate the input signal 𝑢(𝑡) and the vertical channel output �́�(𝑡), respectively. 

It is assumed that the measurement noise is included in the vertical channel output at this 

point. 
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Figure 4.4 Twin-rotor system schematic diagram 
Source: (Toha et al., 2012)  

 

 

Figure 4.5 Block diagram of the Hammerstein model to identify the TRS. 

In this experiment, the structure of nonlinear and linear subsystems is taken from (Toha 

et al., 2012), which are based on a tangent hyperbolic and a second-order continuous-time transfer 

function, respectively. Note that the nonlinear subsystem is responsible for detecting nonlinear 

friction at the rotor shaft in order to identify an accurate response of vertical motion. The linear 

and nonlinear subsystems are both represented by: 

�̅�(𝑤) =
𝑤 + �̅�0

𝑤2  + �̅�1𝑤 + 𝑋0
, 4.4 

�̅�(𝑢(𝑡)) = 𝜁1̅tanh(𝜁2̅𝑢(𝑡)). 4.5 
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Based on the nonlinear model structure in Eq. (4.4) and Eq. (4.5), there are five unknown 

design variables that will be optimized by the IAOA method. The optimization settings for this 

TRS experiment are 𝑙𝑏𝑖 = −10 for every 𝑖 , 𝑢𝑏𝑖 = 10 for every 𝑖 , 𝑘𝑚𝑎𝑥 = 100, and 𝑛 = 50, 

while the coefficients of IAOA are 𝐶1 = 2, 𝐶2 = 6, 𝐶3 = 2, 𝐶4  = 0.5, 𝐸 = 0.92 and 𝛼 = 1.5. 

The proposed IAOA method is compared against original AOA, AMVO-SCA, PSO, GWO, and 

MVO methods utilizing the identical optimization settings in this experiment. The original AOA, 

AMVO-SCA, PSO, GWO, and MVO coefficients are set to be the same values as in Table 4.1. 

Moreover, 25 independent runs were conducted to evaluate the statistical performance of the 

IAOA method in comparison to other methods.Figure 4.7 shows the convergence curve of the 

mean fitness functions from 25 independent runs for the proposed IAOA method and the original 

AOA method. These curves show that the proposed IAOA method, when compared to the original 

AOA method yields a better fitness function at the end of iterations. This finding confirms the 

effectiveness of the proposed modifications in the proposed IAOA method in achieving better 

Hammerstein model accuracy than its original AOA method. The best-identified design variable 

values for all the methods from 25 independent runs are tabulated in Table 4.5. 

 

Figure 4.6 Twin-rotor system’s random input and vertical channel output 
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Figure 4.7 Convergence curve of the mean fitness function from 25 independent runs 

Table 4.5 The best-identified design variables of IAOA and other methods 
𝝑∗ Design 

variables 
IAOA AOA  AMVO-SCA  PSO   GWO    MVO    

𝜗1∗ �̅�0 −1.8807 −1.7525 −1.9078 −1.8089 −1.8505 −2.9032 
𝜗2∗ �̅�0 4.7637 4.7711 4.7607 4.7614 4.7654 4.7548 
𝜗3∗ �̅�1 0.1077 0.1109 0.1085 0.1140 0.1076 0.1059 
𝜗4∗ 𝜁1̅ 3.2848 −2.9407 −9.8045 1.7972 2.2563 −2.3819 
𝜗5∗ 𝜁2̅ −0.1712 0.2026 0.0574 −0.3283 −0.2512 0.2211 

   
Moreover, Figure 4.8, Figure 4.9 and Figure 4.10 show the time domain vertical channel 

response, error response, and power spectrum density for the TRS vertical channel, respectively. 

Here, the black line indicates the actual response, while the green and red lines indicate the AOA 

and the IAOA methods' responses, respectively. Meanwhile, the zoomed in views of the output 

responses and error responses are illustrated in Figure 4.8(b) and Figure 4.9(b), respectively, to 

clearly visualize the response differences between the proposed IAOA method and the original 

AOA method. Figure 4.8(b) also shows that the IAOA method was able to produce a vertical 

channel response that almost mimic the actual signal from the twin-rotor’s hardware system. 

Likewise, the error produced by the proposed IAOA method is slightly smaller compared to the 

original AOA, as shown in Figure 4.9(b). Furthermore, in Figure 4.10, the proposed IAOA 

method is also able to successfully identify one dominant resonance mode at 0.35 Hz in the actual 

power-spectral density (PSD) plot. 
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Figure 4.8 Identified output responses of the vertical channel of the twin-rotor system 

 

Figure 4.9 Error produced by the identified continuous-time Hammerstein Models 

 

Figure 4.10 Power spectrum density of the vertical channel 
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In addition, Table 4.6 demonstrates the analysis of the fitness function’s statistical 

performance value for all methods. The mean, best, worst, and standard deviation of the fitness 

function are calculated from the 25 independent runs. The tabular results demonstrate that the 

proposed IAOA method produces smaller mean, worst and standard deviation values than the 

other five methods. Nevertheless, the best fitness function values for all methods are quite 

competitive where the AMVO-SCA method yields the smallest value amongst other methods. In 

overall, it can be justified that for real experiment of nonlinear system identification, the proposed 

IAOA method still can produce an accurate continuous-time Hammerstein model with higher 

consistency in most of the runs when compared to other methods. 

Table 4.6 The analysis of the fitness function’s statistical performance value for all 
methods. 
Algorithm IAOA AOA  AMVO-SCA  PSO  GWO  MVO  

Mean 187.0144 211.6344 218.5541 293.1188 282.1162 237.1052 
Best 178.4015 178.8350 177.9563 180.1552 179.0303 179.6864 

Worst 223.4002 347.8677 339.1072 387.7925 339.1171 366.4712 
Std. 12.0419 58.3369 69.0269 76.741 77.1528 59.6191 

 
Meanwhile, by performing the Wilcoxon's rank test of the fitness function for the 

proposed IAOA method with the original AOA method, the p-value and h-value obtained is 

0.0283 and 1, respectively. As a result of the p-value obtained is less than 0.05 and the h-value 

obtained is equal to 1, this supports the fact that the obtained fitness function for the proposed 

IAOA method is statistically significant than its original AOA method. It also indicates that the 

proposed IAOA method outperforms the original AOA method in the pair-wise Wilcoxon rank 

test statistically. 

4.5 Electro-mechanical Positioning System  

This section demonstrates the performance of the proposed IAOA method in 

identifying an Electro-Mechanical Positioning System (EMPS) based on the continuous-

time Hammerstein model. Figure 4.11 from the study (Brunot, 2019) shows an EMPS 

arrangement with a conventional drive system configuration that is routinely used in both 

prismatic joint robotics and industrial applications. A controller has been preliminarily 

attached to the system alongside a DC motor equipped with a 12500 counts per resolution 

encoder, as seen from the left side of the exhibited structure. The positioning device is 

moved by a DC motor that is attached to a star high-precision low-friction ball screw. A 

second encoder is attached to the ball screw's edge to measure a different location. The 

object for 45 positional measurement is a load in translation situated in the centre of the 
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EMPS with an associated accelerometer. It should be noted that the arithmetic data 

obtained from the encoder at the ball screw's edge and the accelerometer is inapplicable 

for this study. Instead, the input and output data's trustworthiness were secured by their 

direct adoption from (Brunot, 2019), with the quality and periodicity of the data being 

further assured by the use of the dSPACE digital control system. Both the input and 

output data were defined at a 12-second period with a 0.001-second sampling rate. 

Because processing was not accounted for, the data involved might be raw. As a result, 

both the input and output data for the investigated EMPS are based on the force indicated 

in Figure 4.12(a) and the position shown in Figure 4.12(b), respectively. Figure 4.13 also 

shows the block diagram of the continuous-time Hammerstein model, which is utilized 

as a framework to evaluate EMPS's estimated model. 

Figure 4.11 Prototype of the EMPS 

Source: (Brunot, 2019) 
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Figure 4.12 Input and output signals of the EMPS 

 
Figure 4.13 Block diagram of the Hammerstein model to identify the EMPS 

The linear and nonlinear subsystems of the EMPS are directly adopted from 

(Brunot, 2019). The linear and nonlinear subsystems are expressed as follows: 

�̅�(𝑤) =
1

𝑤2  + �̅�0𝑤 
, 4.6 

�̅�(𝑢(𝑡)) = 𝜁1̅𝑢(𝑡) + 𝜁2̅sign(𝑢(𝑡)) + 𝜁3̅. 4.7 

The nonlinear subsystem in Eq. (4.6) account for both the Coulomb friction and offset 

effects, while the linear subsystem in Eq. (4.7) is a second-order transfer function. From 

the nonlinear model in Eq. (4.6)  and  Eq. (4.7), there is a total of four unknown design 

variables to be optimized by the proposed IAOA method. The optimization settings for 

this EMPS experiment are 𝑙𝑏𝑖 = −1 for every 𝑖, 𝑢𝑏𝑖 = 100 for every 𝑖, 𝑘𝑚𝑎𝑥 = 100, 
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and 𝑛 = 50, while the coefficients of IAOA are 𝐶1 = 2, 𝐶2 = 6, 𝐶3 = 2, 𝐶4  = 0.5, 𝐸 =

0.97 and 𝛼 = 2. Similar to the TRS experiment, the proposed IAOA method is compared 

against the same five other methods with identical optimization settings. The coefficients 

of all other methods are set to the same values as in Table 4.1. Furthermore, to evaluate 

the statistical performance of the IAOA method in comparison to all other methods, 25 

independent runs were conducted. 

The convergence curve of the mean fitness functions from 25 independent runs 

for the IAOA method and the original AOA method can be observed in Figure 4.14. From 

this figure, we can conclude that the IAOA method yields a better mean fitness function 

at the end of the iterations when compared to the original AOA method. This outcome 

confirms the ability of the proposed IAOA method in yielding a continuous-time 

Hammerstein model with better accuracy for most of the runs than the original AOA 

method. The best-identified design variable values for all the methods from 25 

independent runs are tabulated in Table 4.7. 

 

Figure 4.14 Convergence curve of the mean fitness function from 25 independent runs. 

Table 4.7 The best-identified design variables of IAOA and other methods 
𝝑∗ Design 

variables 
IAOA AOA  AMVO-SCA  PSO  GWO  MVO  

𝜗2∗ �̅�0 3.0981 3.1866 3.1626 3.0283 3.1493 3.0610 
𝜗3∗ 𝜁1̅ 0.5519 0.4797 0.5485 0.5561 0.5408 0.5619 
𝜗4∗ 𝜁2̅ -0.4127 -0.3036 -0.4019 -0.4254 -0.3925 -0.4313 
𝜗5∗ 𝜁3̅ 0.0457 0.0390 0.0457 0.0460 0.0448 0.0465 
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The time domain position response, the zoomed in time domain position response 

and the error response of the EMPS experimental results are shown in Figure 4.15(a), 

Figure 4.15(b) and Figure 4.15(c) respectively. Here, the lines are labelled in a similar 

way to the TRS experiment. It is shown that the position output response obtained by the 

IAOA method closely resembles the actual position recorded from the real EMPS 

hardware, which could be clearly observed in Figure 4.15(b). This is correlate with the 

error response produced by the IAOA method that is smaller when compared with the 

original AOA method. 

 

Figure 4.15 EMPS experimental results 

Moreover, the analysis of the fitness function’s statistical performance values for 

all methods are tabulated in Error! Reference source not found.. The fitness function's 

mean, best, worst, and standard deviation are calculated from the 25 independent runs. 

From these tabulated results, the proposed IAOA method produces a smaller mean, worst, 
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and standard deviation fitness function values than all the other methods, while the best 

fitness function value is competitive with the GWO method. Altogether, the results 

obtained is similar to that of from the TRS experiment, where the proposed IAOA method 

in this experiment when compared to other methods is able to produce an accurate 

continuous-time Hammerstein model with small deviations in most of the runs. 

Table 4.8 The analysis of the fitness function’s statistical performance value for all 
methods 

Algorithm IAOA AOA  AMVO-SCA  PSO  GWO  MVO  
Mean 0.4904 1.6148 0.7151 1.3149 0.7491 1.4104 
Best 0.2093 0.2226 0.2103 0.2140 0.2087 0.2157 

Worst 0.9241 8.2644 1.6604 4.6765 1.3752 4.6393 
Std. 0.2388 1.5740 0.4704 1.3997 0.4303 1.0990 

 

Meanwhile, the Wilcoxon's rank test of the fitness function for the proposed 

IAOA method with the original AOA method was conducted. Similar to the TRS 

experiment, the obtained p-value is 0.0209, which is less than 0.005, while the obtained 

h-value equal to 1. Hence, the obtained fitness function results for the proposed IAOA 

method is statistically significant compared to the original AOA method. 

4.6 Summary 

In this chapter, the results and discussion of the proposed IAOA method on the 

three experiments was discussed. Firstly, the efficacy of the proposed method is validated 

by a numerical example and two real-world experiments. The two experiments are the 

electro-mechanical positioning system and the twin-rotor system. The efficacy of the 

proposed method is analyse based on the convergence curve of the mean fitness function 

from 25 independent runs, evaluation of variable deviation index, bode plot and nonlinear 

function plot of identified linear and nonlinear subsystem of the numerical example, time-

domain and frequency-domain responses of the identified electro-mechanical positioning 

system and twin-rotor system. In addition, the statistical performance values of the fitness 

function (mean, best, worst, and standard deviation) and the variable deviation index from 

25 independent runs of IAOA was compared with five other methods, which includes 

AOA, AMVO-SCA, GWO, and MVO. From the findings of the statistical data for the 

numerical example it was shown that the proposed IAOA method is able to yield a 

Hammerstein model which is more accurate, with lower variable deviation index when 
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compared with the other methods at various levels of noise variations. This can be further 

justified from the findings of both real-world experiments, where the proposed IAOA 

method is able to effectively model both the twin-rotor and electro-mechanical 

positioning systems.  astly,  based on the findings of the Wilcoxon’s rank-sum test in all 

three experiments, it was found that the proposed IAOA method yields statistically 

significant results when compared with the original AOA method.
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Concluding Remarks 

In this study, a novel optimization metaheuristic method for the identification of 

continuous-time Hammerstein models based on the Improved Archimedes optimization 

algorithm (IAOA) is proposed. The numerical example results suggest that the proposed 

IAOA methods have the ability to identify continuous-time Hammerstein systems, even 

with a wide range of noise variations. Precisely, the proposed method has appear to be 

effective in identifying both the linear and nonlinear subsystems of a Hammerstein model 

as both the quadratic output estimation error in the fitness function and the variable 

deviation index is quite small. More notably, the proposed method was also able to 

adequately model two real world experiments based on the continuous-time Hammerstein 

model, this includes the electro-mechanical positioning system  and the twin-rotor system 

and. In the numerical example and both real world experiments, the modelling results are 

statistically validated by the Wilcoxon rank test analysis. Through this analysis, it has 

shown that the fitness function accuracy produce by the proposed method is statistically 

significant compared to the original AOA method, which is congruence by the lower error 

between the actual and estimated output responses when compared to the original AOA 

method. Hence, the proposed modifications to solve the imbalance exploration and 

exploitations as well as the local optima issues, are efficient towards improving the 

original AOA in producing an accurate nonlinear model. Furthermore, the proposed 

IAOA method also outperforms conventional optimization metaheuristic methods in 

majority of the test experiments in terms of results  accuracy and consistency.  
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5.2 Research contribution  

(i)  The modification of the density decreasing factor is made to the original AOA 

to regulate the imbalance exploration and exploitation phases, which will 

improve the searching capabilities of AOA. 

(ii) A safe updating mechanism is introduced in the proposed IAOA method, where 

it will aid the AOA to flee from the local optima zone. This mechanism allows 

the updated object’s position to be included in the design variable of the latest 

best object’s position, which is chosen at random using a pre-defined 

probability. 

(iii) Many academics had proposed Hammerstein models in discrete time. 

Nonetheless, in the proposed Hammerstein model, a continuous-time domain 

will be established because it directly reflects parameters of real plants. As a 

result, this study will develop a new structure for continuous-time identification 

of the Hammerstein model based on IAOA method. 

(iv) The proposed Hammerstein identification structure avoids the problem of gain 

redundancy between nonlinear and linear subsystem, which lead to high 

computational burden. Thus, as compared to other existing approaches, our 

proposed framework may require less computing effort. 

(v) In comparison to other existing methods, the proposed IAOA method requires 

a reduced number of coefficients. which may diminish  the preparatory work 

required to discover the optimal coefficients for the setting of the method. 

 

5.3 Recommendations and Future Research Works 

For future research direction, the current modifications could also be applied to 

other optimization methods which have similar limitations to the original AOA method. 

Next, the proposed IAOA method could also be applied to various types of nonlinear 

systems for instance the Wiener and the Hammerstein-Wiener models, multi-input multi 

output (MIMO) or even discrete optimization problems. In addition to those, the IAOA 

method can be further utilized in solving different types real world engineering problems. 
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