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Abstract: Migraine is a chronic neurological disorder that affects approximately 12% of the population.
The cause of migraine headaches is not yet known, however, when the trigeminal system is activated,
neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P (SP) are released,
which cause neurogenic inflammation and sensitization. Advances in the understanding of migraine
pathophysiology have identified new potential pharmacological targets. In recent years, transient
receptor potential (TRP) channels have been the focus of attention in the pathophysiology of various
pain disorders, including primary headaches. Genetic and pharmacological data suggest the role of
TRP channels in pain sensation and the activation and sensitization of dural afferents. In addition,
TRP channels are widely expressed in the trigeminal system and brain regions which are associated
with the pathophysiology of migraine and furthermore, co-localize several neuropeptides that are
implicated in the development of migraine attacks. Moreover, there are several migraine trigger
agents known to activate TRP channels. Based on these, TRP channels have an essential role in
migraine pain and associated symptoms, such as hyperalgesia and allodynia. In this review, we
discuss the role of the certain TRP channels in migraine pathophysiology and their therapeutic
applicability.

Keywords: migraine; neurogenic inflammation; pain; TRP channel; TRPV1; TRPV4; TRPM8; TRPA1;
migraine therapy

1. Migraine and Other Headache Disorders
1.1. Headache Disorders

The term headache disorder covers a wide range of neurological conditions that cause
painful symptoms in the head and can vary in frequency and intensity. Adequate treatment
is possible only on the basis of the correct diagnosis. Different types of headaches can be
divided into two main groups, primary and secondary headaches.

Primary headaches are one of the most common neurological disorders, with a wide
range of life-long manifestations. It is caused by the over-functioning of the pain-sensitive
structures of the head or related problems. In this case, the headache is not a symptom of
an underlying disease or condition. The most common types of primary headaches include
tension-type headache, cluster, migraine, or other trigeminal autonomic cephalalgias [1,2].

According to the International Classification of Headache Disorders, a secondary
headache is defined as a headache that occurs in close temporal relation to another disorder
known to cause a headache or meets other criteria for a cause-and-effect relationship with
the disorder. Possible causes of secondary headaches include brain aneurysm or tumor,
infections of the central nervous system (encephalitis, meningitis), neck or brain injury, and
idiopathic intracranial hypertension, etc. [3].
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Tension-type headache is a common headache disorder that affects around 42% of
adults worldwide. These headaches often cause mild-to-moderate pain around the head,
face, or neck. The pain is commonly bilateral, described as aching or pressure, as “a band
around the head”, or vice-like. It usually is not associated with visual disturbances, nausea,
or vomiting, and physical activity does not make the headache pain worse. Triggers of
tension headache attacks include stress, alcohol, dental problems, smoking, caffeine, and
fatigue. For the treatment of tension-type headaches, over-the-counter analgesics such as
paracetamol, ibuprofen, nonsteroidal anti-inflammatory drugs (NSAIDs), or aspirin are
effective treatment strategies. If tension-type headaches are frequent and long-lasting and
over-the-counter pain relievers are ineffective, tricyclic antidepressants (amitriptyline) and
beta-blockers may be a good choice for headache treatment [4].

Cluster headache is an extremely grievous trigeminal autonomic cephalalgia. The
pain is unilateral and localized around the orbital, supraorbital, or temporal regions. The
headache attack lasts for 15 to 180 min and is associated with lacrimation, eyelid edema,
nasal congestion, or rhinorrhea. Cluster headaches usually happen every day, in bouts
lasting several weeks or months at a time (typically 4 to 12 weeks) before they subside.
People often feel restless and agitated during an attack because the pain is so intense. The
goal of therapy is to decrease the severity of pain, shorten the attack period, and prevent
headaches. Acute treatments are oxygen, triptans, and local anesthetics, while preventive
therapies are calcium channel blockers, corticosteroids, lithium carbonate, etc. [5,6].

Simultaneous activation of the trigeminal and autonomic nervous systems is a common
feature of all trigeminal autonomic cephalalgias. It produces the clinical picture of short-
lasting, strictly unilateral headache attacks with ipsilateral autonomic symptoms such as
lacrimation, ptosis, nasal congestion or rhinorrhea, and conjunctival injection [5].

This review focuses on migraine.

1.2. Migraine

A migraine is a primary headache characterized by attacks of a moderate to severe
headache that last for 4–72 h, a unilateral, throbbing headache accompanied by a variety of
other symptoms, such as phono- and photophobia, nausea, and vomiting [7]. These asso-
ciated symptoms notably affect the quality of life and entail economic costs [8]. Recently,
migraine was identified by the Global Burden of Disease study as the most disabling neu-
rological disorder [9]. Migraine attacks can also be accompanied by an aura phenomenon,
which consists of visual, sensory, or speech symptoms. These appear gradually, last up
to 60 min, and are completely reversible [10].

Many internal and external stimuli, such as stress, weather, and consumption of
certain foods and alcohol, can induce migraine attacks [11,12]. Marmore de Lima et al.
found that odors, especially perfume and cigarette smoke, were the second most common
triggers for migraine attacks [13]. Moreover, Nicoletti et al. reported that high-dose ethanol
causes neurogenic inflammation, which can be induced by the activation of transient
receptor potential vanilloid 1 (TRPV1) and the release of neuropeptides in trigeminal
nociceptors [14].

The generation of migraine headaches remains elusive, but the activation and sensiti-
zation of the trigeminal system are important during migraine attacks [15]. As a result, a
number of proinflammatory neuropeptides and neurotransmitters, including calcitonin
gene-related peptide (CGRP), substance P (SP), neurotensin, and hemokinin A are released
from the sensory fibers and cause a series of inflammatory tissue responses [16–19].

Glutamate is an essential neurotransmitter in the central nervous system and plays a
role in nociceptive processing in both physiologic and pathologic conditions. Activation
of primary nociceptive afferents leads to glutamate release. Increased levels of glutamate
have been observed in blood and cerebrospinal fluid in migraine patients both interictally
and ictally, which supports its role in migraine [20]. Important endogenous regulators
of glutamatergic neurotransmission include certain metabolites of the kynurenine path-
way formed during the catabolism of tryptophan. The N-methyl-D-aspartate receptor
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(NMDA) antagonist kynurenic acid (KYNA) is one of the end products of this path, which
can inhibit the activation of the trigeminal system [21,22]. KYNA and its derivative can
block the nitroglycerin (NTG)-induced release of c-fos (an activation marker) [23] and
CGRP [24], as well as the electrical stimulation of trigeminal ganglion-induced PACAP
overexpression [22]. Aside from the translational investigations, clinical studies prove the
role of the kynurenine pathway in the pathophysiology of primary headaches. Alterations
of kynurenine metabolism were shown in the plasma of migraineurs [25] and patients
suffering from cluster headache [26].

The activation of nociceptors innervating the vascular system of the brain and meninges
may also be responsible for the development of headache [18,27,28]. Inflammatory media-
tors can enhance transient receptor potential (TRP) channels through different signaling
pathways, which contributes to the maintenance of inflammatory hyperalgesia [29–31].
These changes may be behind the long and severe headache that develops during a mi-
graine. In addition to headaches, 25–30% of patients also experience an aura phenomenon
during some attacks, which is manifested by temporary visual, sensory, language, or brain-
stem disturbances [32]. According to our current knowledge, cortical spreading depression
(CSD) is responsible for the aura [33]. CSD is a slowly propagating wave of transient neu-
ronal and glial depolarization. Associated with this wave of depolarization characteristic of
CSD are local ionic shifts and the release of neurotransmitters. This includes an increase in
extracellular potassium and a decrease in extracellular sodium, chloride, and calcium [34].
Studies have reported that CSD induces macrophage activation, mast cell degranulation,
and dural vessel dilation, and all of these changes can induce a headache [35,36].

Thanks to the advances in neuroimaging, the view that the hypothalamus plays
an important role in the development of the most common symptoms after the onset
of the headache phase of a migraine attack is increasingly accepted. It is possible that
the hypothalamus can regulate descending modulation of trigeminovascular processing
in a state-dependent manner. It is supported by the activation of several hypothalamic
nuclei in response to dural nociceptive stimulation. Moreover, the frequent occurrence of
hypothalamic-related disturbances, such as altered appetite regulation, sleep–wake states,
and nociceptive processing further supports the role of the hypothalamus in migraine [32].
Recent findings suggest that spontaneous oscillations of the complex brain networks,
including the hypothalamus, brainstem, and dopaminergic networks, cause changes in the
activity of subcortical and brainstem areas, thereby changing sensitivity thresholds and
triggering headache attacks [37].

Despite the significant socio-economic burden of migraine, the effective treatment of
migraine remains unresolved. Differentiating migraine from other headache disorders is
important. It can mean faster relief through more targeted treatments based on the type of
headache. The ideal migraine preventive treatment should be effective and well tolerated,
with only a few mild side effects and without contraindications. Current drugs have not
been able to achieve these goals. The most frequently used treatments are triptans and
NSAIDs [38,39], but they are not always effective. Moreover, triptans are contraindicated in
people with cardiovascular disease, and their excessive use can lead to medication overuse
headache (MOH) [7,40,41]. To eliminate these negative properties, ditans, 5-HT1F receptor
agonists, were developed, but currently, only one ditan can be used in the clinic as an
antimigraine agent and does not exceed the effectiveness of triptans.

The latest antimigraine drugs include monoclonal antibodies targeting CGRP or its
receptor. According to the available data, monoclonal antibodies targeting the CGRP path-
way appear to be effective and well tolerated and showed fewer side effects in clinical trials
when compared to existing treatments. They also offer a lower risk of drug interactions [42].
However, objective biomarkers of treatment response are still lacking, and the long-term
safety risks of these medicines are still unknown.

Therefore, further investigations are needed to understand the underlying mechanisms
of migraine and discover new therapeutic options, which may improve diagnosis and
provide more personalized treatment for this condition.
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2. Transient Receptor Potential Channels

Mammalian TRP channels are divided into seven subfamilies based on their homol-
ogy of amino acid sequences: canonical or classic (TRPC), vanilloid (TRPV), melastatin
(TRPM), nonmechanoreceptor potential C (NOMP-like, TRPN1) polycystin (TRPP), mucol-
ipin (TRPML), and ankyrin (TRPA) [43,44] (Figure 1).
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Figure 1. The transient receptor potential family encodes integral membrane proteins that function
as ion channels. TRP channels are divided into seven subfamilies based on their homology of amino
acid sequences. Most TRPs are nonselective cation channels and can be activated in a variety of
ways, ranging from ligand binding, voltage, and temperature changes to covalent modification of
nucleophilic amino acids. Activated TRP channels cause the depolarization of the cell membrane and
are involved in the transcellular transport of many cations (Ca2+, Mg2+), and they also contribute to
the functioning of endosomes and lysosomes.

TRP channels respond to a wide spectrum of physical and chemical stimuli, including
temperature, stretch/pressure, chemicals, oxidation/reduction, osmolarity, and pH [45,46].
Activation of TRP channels causes cations to cross the membrane and depolarize cells,
leading to a wide range of cellular responses [47,48]. TRP channels play a variety of
physiological roles, and they are involved in several diseases affecting the peripheral
(PNS) and central nervous system (CNS) [49,50]. The assumption that they play a role in
migraines is based on their expression on meningeal nociceptors and their response to
several endogenous and exogenous stimuli [51,52].

Many TRP channels are expressed in nociceptive sensory neurons, and these TRP
channels are involved in the generation and transmission of pain, so they may represent a
new therapeutic option for pain relief [53,54]. The use of TRP channels in migraine therapy
is supported by the clinical success of CGRP receptor antagonism, as activation of TRP
channels can induce CGRP release [55,56].

Evidence suggests that sex hormones directly regulate nociceptor activity at the tran-
scriptional, translational, and functional levels. Sex hormones can modulate the expression
of TRP channels via their channel activity or by activating intracellular signaling pathways,
which contribute to the sex dimorphism that occurs in migraine [57,58].
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To date, several studies have been published on TRP channels and migraine, support-
ing the role of these channels in the activation of meningeal nociceptors [51,55,59–62]. In
this review, we summarized the TRP channels that—according to our current knowledge—
are involved in migraine pathophysiology and the therapeutic potential of these channels
in the treatment of primary headaches.

2.1. Transient Receptor Potential Vanilloid 1 (TRPV1)
2.1.1. Characterization of TRPV1 and Role in Pain and Headaches

One of the first TRP channels to be investigated was TRPV1, which is a nonselective
cation channel responsive to high temperature (>43 ◦C) and capsaicin (the main pungent
ingredient in “hot” chili peppers) [63], which have been shown to activate sensory nerves
and induce neurogenic inflammation (NI) [64]. TRPV1 is also sensitive to endocannabinoids,
endovanilloids, nerve-growth factor (NGF), and prostaglandins (PGs), which may be
relevant for migraine [65]. The hydrogen ion, acid, or low pH also can activate the TRPV1
channel [66] (Figures 2 and 3).
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Several studies have shown that approximately 40–50% of trigeminal sensory neurons
express TRPV1 [67]. Furthermore, it is expressed in small amounts in the hypothala-
mus, hippocampus, entorhinal cortex, raphe nucleus, and the periaqueductal gray matter
(PAG) [68–71]. TRPV1 receptor is present in small and medium-diameter neurons of the
dorsal ganglion (DRG) and trigeminal ganglia (TG), colocalized with CGRP and SP in the
latter [63]. In addition, TRPV1 and NMDAR are coexpressed in the TG [72]. However,
TRPV1 has also been described in brain areas that are not associated with pain or heat
sensations, such as the ventral tegmental area or the striatum [73,74].
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Figure 3. Transient receptor potential vanilloid 1 receptor activation. Activation of TRPV1 and
the resulting influx of cations can further activate voltage-gated ion channels to generate action
potentials to be required for pain or itch signaling. Several inflammatory mediators lower the
activation threshold of TRPV1 via phosphorylation mainly through the activation of the cAMP-
dependent protein kinase A (PKA) pathway. Furthermore, protein kinase C (PKC)-dependent cascade
is also involved. TRPV1: transient receptor potential vanilloid 1 receptor, ECs: endocannabinoids,
EVs: endovanilloids, PGs: prostaglandins, NGF: nerve growth factor.

Upon activation of TRPV1, CGRP and SP are released, causing vasodilation and
triggering NI in the meninges [75,76]. Furthermore, in sensory neurons, activation of
TRPV1 by NO leads to peripheral sensitization and nociception [77].

After tissue damage, endogenously released inflammatory mediators such as bradykinin,
serotonin (5-HT), PGs, or histamine can influence TRPV1 activity, mainly indirectly through
the stimulation of their receptors and the generation of second messengers [78,79]. TRPV1
is a molecular component of pain sensation and modulation [80]. Activation of TRPV1 and
the resulting influx of cations can further activate voltage-gated ion channels to generate
action potentials required for pain or itch signaling [67]. The sensitization and endoge-
nous regulatory pathways of TRPV1 can exert their effects through the phosphorylation
sites of protein kinases C (PKC) and A (PKA) and Ca2+/calmodulin-dependent kinase II
(CAMKII) [30,81]. Prolonged or repeated activation of TRPV1 prompts a desensitization
or inhibition process [79], thereby losing the sensitivity to capsaicin and other chemical
agonists, further reducing the sensitivity to heat [82].

2.1.2. Preclinical Data

Caterina et al. reported that TRPV1−/− mice responded normally to noxious me-
chanical stimuli. At the same time, pain behavior induced by vanilloids was not observed.
In these knock-out mice, painful heat perception was reduced, and little thermal hyper-
sensitivity was detected [80]. Based on these, it can be said that TRPV1 is essential for the
sensation of pain and thermal hyperalgesia. Moreover, Davis and colleagues have found
that TRPV1 has a major role in the sensitization to thermal stimuli during inflammation
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but not in the normal sensation of noxious heat [83]. With repeated administration of
capsaicin, pain receptors can become more sensitive to chemical stimuli, so that in desensi-
tized animals, mustard oil or xylene does not cause pain or inflammatory response [63,84].
Intraplantar injection of Complete Freund’s adjuvant caused local inflammation and in-
creased the number of TRPV1-positive cells in the DRG [85]. In guinea pig, ethanol—a
trigger of headache—can activate TRPV1 on primary afferent neurons, thereby leading to
neurogenic inflammation and CGRP-mediated vasodilation [14]. In the nitroglycerin model
of migraine, chronic intraperitoneal administration of ghrelin can reduce mechanical and
thermal hypersensitivity and the associated increased CGRP and TRPV1 mRNA expression
in the TG [86]. In another animal model of migraine, after application of inflammatory
soup on the dura mater, the TRPV1 immunoreactivity is increased in the dorsal horn of the
spinal cord, which was modulated by sumatriptan [87].

2.1.3. Clinical Data

In headache and pain research, TRPV1 is a very promising target for the development
of new analgesics for the treatment of inflammatory and neuropathic pain.

Capsaicin is a TRPV1 agonist that helps relieve pain when used in the right amount
and frequency [88]. Creams containing capsaicin have long been used to treat postherpetic
neuralgia, diabetic neuropathy, and rheumatoid arthritis [89]. The results of a single-blinded
placebo-controlled study showed the topical administration of capsaicin on painful scalp
arteries can reduce or eliminate pain in migraine patients. It can also prevent mild migraine
attacks [90]. Another study investigated the effect of capsaicin on chronic migraineurs. It
was found that repeated intranasal capsaicin treatment reduced migraine attacks by 50–80%
in these patients [16]. This is probably due to the fact that intranasal administration
of capsaicin locally desensitizes the trigeminal nerve, resulting in a decrease in CGRP.
Other studies observed a significant reduction in cluster seizures in patients who received
capsaicin rather than placebo treatment [91,92]. However, long-term use of capsaicin may
increase the risk of skin carcinogenesis, especially when used in combination with tumor
promoters [93].

Resiniferatoxin (RTX), a chemical irritant, was originally isolated from Euphorbia
resinifera Berg [94]. RTX is an ultrapotent capsaicin analog, more potent than capsaicin, and
is currently being developed as a sensory neuron desensitizer. RTX causes a prolonged
calcium influx that causes cytotoxicity and death only in sensory neuronal cell bodies that
express the TRPV1 in the DRG [63,95]. A large clinical trial investigated the effect of in-
travesical RTX in patients with interstitial cystitis, but desensitization of TRPV1-expressing
afferents did not provide a clear improvement compared to placebo [96]. RTX is being
studied in clinical trials for pain relief in advanced cancer patients and for the treatment
of moderate to severe knee pain caused by osteoarthritis. Preliminary results suggest that
RTX exerts long-lasting analgesic effects by causing cell death of TRPV1-positive nocicep-
tor neurons [97]. The intra-articular injection of RTX is also under development, and its
effectiveness and reliability are being tested in a Phase III study.

Civamide (Zucapsaicin) is a cis-isomer of capsaicin and excites and desensitizes C-
fibers via TRPV1 on nociceptive neurons. Intranasal administration of civamide inhibits the
neuronal release of excitatory neurotransmitters such as CGRP and SP from the trigeminal
plexus centrally into meningeal and dural blood vessels [98], thereby reducing vasodilation,
plasma extravasation, and histamine and 5-HT release. As a result, NI does not develop
and can alleviate cluster headaches [99]. Diamond et al. investigated the effect of civamide
for the treatment of a single migraine headache, with or without aura, of moderate to severe
pain. After 2 h from treatment, 55.6% of patients had a decrease in pain severity, with 22.2%
of patients being pain-free, while after 4 h, 72.7% of patients reported reduced pain intensity,
and 33.0% of patients felt no pain [100]. However, initial peripheral neuropeptide release
causes unpleasant side effects, such as nasal burning, lacrimation, and rhinorrhea in most
patients [100].
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A TRPV1 antagonist, AMG-8562, effectively blocks capsaicin- and anandamide-induced
receptor activation but not heat-induced TRPV1 activation [101]. However, an unex-
pected effect of AMG-8562 is to enhance proton-induced Ca2+ influx in TRPV1-expressing
cells [101].

Another competitive TRPV1 receptor antagonist is SB-705498, which results in rapid
and reversible inhibition of capsaicin-, acid (pH 5.3)-, or heat (50 ◦C)-mediated activation of
human TRPV1 [102]. In a study by Chizh et al., a single oral dose of 400 mg SB-705498 sig-
nificantly reduced capsaicin-induced cutaneous pain and flare compared with the placebo
group [103]. However, SB-705498 was inferior to placebo against migraine headache, photo-
phobia, and phonophobia in a Phase II clinical trial [52]. While several TRPV1 antagonists
have progressed to clinical trials, they have failed to advance to Phase II trials due to
adverse side effects such as hyperthermia (AMG-517, AZD-1386, ABT-102, MK-2295) or
loss of thermal pain sensitivity (ABT-102, MK-2295) [104].

Currently, only two TRPV1 antagonists have been reported to enter Phase III trials for
atopic dermatitis (PAC-14,028) and dry eye syndrome (SYL-1001) [105] Hopefully, future
clinical studies with TRPV1 receptor antagonists provide an answer as to the role of TRPV1
in inflammatory and neuropathic pain syndromes.

Genetic studies suggest that the TRPV1 gene is linked to migraines [106,107]. Yakubova
et al. found that the frequency distribution of SNP 1911A > G AA, AG, and GG variants in
the TRPV1 gene is differently associated in episodic and chronic migraine patients than in
healthy individuals [107]. Thus, the detection of these gene variants may serve as markers
of protection against migraine chronicity and may offer an opportunity for personalized
treatment of migraine patients.

2.2. Transient Receptor Potential Vanilloid 4 (TRPV4)
2.2.1. Brief Description of TRPV4 and Its Role in Pain and Headache

TRPV4 is a polymodal cation channel activated by moderate heat (>24 ◦C to 27−35 ◦C),
low pH, endocannabinoids, lipid metabolites, osmotic pressure, and phorbol ester and
plant-derived compounds [108–110]. It plays a crucial role in mechanical-, thermal-, and
chemical-induced pain sensitivity [111]. TRPV4 is also involved in the regulation of vascular
tone and acute inflammatory signaling [112,113] and functions as part of the mechanosen-
sory complex. Based on these, the functions and trigeminal localization of TRPV4 may fit
some aspects of migraine, such as the characteristic throbbing pain that is aggravated by
routine movements, coughing, or sneezing [52]. Another finding supporting the role of
TRPV4 in migraine is that solutions applied to the surface of the dura mater that increase
or decrease osmolarity can sensitize trigeminal afferents [114–116]. TRPV4-dependent
pathways promote plasma extravasation and immune cell infiltration by increasing the
release of some neuropeptides, including CGRP and SP, and thus are considered to be
potentiators of neurogenic inflammation [117] (Figures 2 and 4).

TRPV4 is widely expressed in various regions in the PNS and CNS, including immune
cells, hippocampal neurons, nonpeptidergic, Aβ and Aδ fibers neurons of DRG, and
peptidergic C fibers, where it coexpresses with TRPV1 [118]. Aside from the neurons
TRPV4, is also present in nonmyelinating Schwann cells and satellita glial cells [119].
TRPV4 mRNA is expressed in TG, and in vitro investigations prove functional effects of
receptor on trigeminal neurons [120]. Furthermore, TRPV4 shows colocalization with CGRP,
SP, and protease-activated receptor 2 (PAR2) in rat sensory neurons [121]. In addition
to PAR2, the role of TRPV4 in inflammation has also been associated with histamine
and serotonin. Histamine- or serotonin-induced visceral hypersensitivity is significantly
reduced when TRPV4 is blocked with siRNA, indicating TRPV4-dependent histamine- or
serotonin-mediated response in sensory neurons [122].
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2.2.2. Preclinical Data

Experimental data proved that TRPV4 knock-out mice exhibit abnormal osmotic regula-
tion and reduced nociceptive responses to pressure and hypertonic stimuli [118,123,124].

In an animal model, TRPV4 contributed to formalin-induced trigeminal pain response.
TRPV4 is found in sensory neurons of the TG, which respond to formalin treatment with
Ca2+ influx in a TRPV4-dependent manner. Thus, TRPV4 may play a key role in the pro-
longed, neuron-mediated tonic phase of pain behavior [125]. In a rat model of neuropathic
pain, a taxol-induced peripheral neuropathy and mechanical hyperalgesia was reduced
by inhibition of TRPV4 activation [126]. In a rodent model of neurogenic inflammation,
inhibition of TRPV4 activation decreased the PAR2-mediated inflammatory processes in
rat primary nociceptive neurons [127,128].

4α-phorbol-12,13-didecanoate (4α-PDD), a selective TRPV4 agonist, can interact di-
rectly with the TRPV4 channel at low concentrations [129–131]. In an in vivo model, the
application of a hypotonic solution or 4α-PDD caused both facial and hind paw allodynia,
possibly due to activation of TRPV4 in dural afferents. This assumption is supported by the
fact that the administration of a TRPV4 antagonist was able to inhibit this headache-related
behavior [132].

Another TRPV4 agonist is 5′,6′-epoxyeicosatrienoic acid, which mediates TRPV4
activation in response to hypoosmotic shock or mechanical stimulation [133–135].

It has been reported that bisandrographolide A (BBA), an extract from a Chinese herb
(Andrographis paniculata), can selectively activate TRPV4. It is possible that BAA can
affect the vascular smooth muscle due to the activation of TRPV4 and cause arterial dilation
and reduce blood pressure [136].

GSK1016790A, a selective agonist of TRPV4, can activate TRPV4 in different cell types
and elicit Ca2+-dependent increases in extracellular ATP levels. However, the mechanism
of TRPV4 response to GSK1016790A is not very well known [137].
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TRPV4 antagonist RN1734 was able to inhibit the TRPV4-induced cephalic and ex-
tracephalic allodynia in freely moving rats [132]. Although TRPV4 inhibition would be
an interesting target for pain, deafness, incontinence, and osmoregulation, deficits were
observed in TRPV4-knockout mice, which questions the clinical utility of TRPV4 antago-
nists [138–140]. In addition, the essential role of TRPV4 in central osmoregulation may also
limit its therapeutic options.

Unfortunately, most of the results obtained from preclinical studies provide only
indirect evidence for a link between TRPV4 and migraine. Further studies are needed to
explore the potential role of TRPV4 in headache disorders.

2.2.3. Clinical Data

Over the past decade, drug research has focused on the development of TRPV4
antagonists for therapeutic use. GlaxoSmithKline reported a series of TRPV4 antagonists,
quinolines, and benzimidazoles, which failed to enter clinical trials.

To date, only one TRPV4 antagonist, GSK2798745, has entered clinical trials because
of effective pharmacodynamic activity in a small number of healthy participants and pa-
tients with heart failure and chronic cough. Further examinations may provide therapeutic
benefits for patients suffering from pain, macular edema, dermatological disorders, hydro-
cephalus, spinal cord injury, and cancer. There is still great interest in the development of
TRPV4 antagonists. Between 2015 and 2020, 28 patent applications were received from
12 different organizations covering 8 unique chemotypes [141]. Further clinical studies
are necessary to determine whether the therapeutic potential of TRPV4 antagonists can be
utilized for patients.

2.3. Transient Receptor Potential Melastatin 8 (TRPM8)
2.3.1. Brief Description of TRPM8 and Its Involvement in Pain and Headache

The TRPM8 is a nonselective cation channel with modest calcium permeability and
is activated by cold temperatures (8–28 ◦C), membrane depolarization, menthol, and
icilin [142].

TRPM8 is expressed on C- and Aδ- sensory nerve fibers, as well as DRG and TG neu-
rons [143]. A subset of TRPM8-positive cells may coexpress TRPV1 and/or CGRP [144–146].
Furthermore, it is present in hypothalamic and hindbrain nuclei responsible for autonomic
thermoregulation [147]. In addition, TRPM8 is also expressed in macrophages. Activation
of TRPM8 on macrophages increases the release of interleukin 10 (IL-10) and decreases the
release of tumor necrosis factor (TNF), thereby causing an anti-inflammatory response [148]
(Figures 2 and 5).

The TRPM8 has been shown to play a major physiological role in inflammation,
thermoregulation, itch, and migraine [149–152]. In addition, TRPM8 mediates normal ther-
mosensation and has a role in both cooling-mediated analgesia and cold hypersensitivity
after injury [145,153]. TRPM8 has been identified in several genome-wide association stud-
ies (GWAS) as one of the migraine susceptibility genes [154,155]. There is an association
between migraine incidence and single nucleotide polymorphisms located near the TRPM8
coding region, although this seems to be the case mainly for people of Northern European
ancestry [156]. It is currently unknown how these genetic variants affect the function
or expression of TRPM8 and what is their role in migraine. Furthermore, about 50% of
migraine patients have cold allodynia [157], which further strengthens the role of TRPM8
in the disease.

2.3.2. Preclinical Data

Since topical administration of menthol has a cooling and pain-relieving effect [158],
and cold weather can trigger migraines [159], the TRPM8 channel has become a target for
pain and headache research.
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In animal experiments, dural administration of icilin caused facial and hindpaw
allodynia in rats, indicating that activation of TRPM8 caused migraine-like behaviors.
These behaviors could be blocked with TRPM8 antagonist and sumatriptan, which further
confirms the role of TRPM8 in the development of migraine [160].

At the same time, the application of icilin to the face can reduce the thermal pain
caused by meningitis by activating TRPM8, thus able to alleviate thermal allodynia [161].

The opposite result may be explained by the fact that activation of TRPM8 causes
cold pain after injury but at the same time reduces mechanical and heat pain. Therefore,
the method of treating the patient can also be different based on the symptoms. TRPM8
agonists can be effective in complaints associated with mechanical hyperalgesia, while
TRPM8 antagonists can be effective in cold hyperalgesia [56].

In an animal model of chronic migraine, acute mechanical hypersensitivity induced
by repeated NTG administration was more persistent in females than in males, consistent
with the gender dimorphism observed in migraineurs. This faster recovery in males is
likely due to the testosterone-activated receptor TRPM8, which confers antinociception
in a sex-dependent manner [162]. This theory is supported by the fact that testosterone
administration reversed TRPM8-mediated antinociception in females. The authors believe
that repeated noxious insults contribute to the persistence of the pain response in females,
while males recover more quickly and are able to restore their normal sensitivity.
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2.3.3. Clinical Data

Several human studies suggest a role for TRPM8 in mediating pain relief [56]. Closely
related to understanding the potential role of TRPM8 in promoting pain relief is one of
its main agonists, menthol. Menthol is a common ingredient in topical creams that have
long been used to reduce pain and provide a cooling sensation [56,163]. In a clinical trial
with healthy volunteers, menthol was applied topically to the left thigh to measure skin-
cooling effects using a digital infrared camera as well as self-reports on a visual analog
scale. Menthol significantly decreased skin temperature compared to baseline for at least
one hour [164]. In a study by Andersen et al., injection of the TRPA1 agonist cinnamic
aldehyde into the forearm resulted in significant pain and neurogenic flare. However, when
used together with menthol, the pain was reduced, and the mechanical pain threshold
increased [165]. In a case report, after long-term administration of the chemotherapy borte-
zomib, neuropathic pain developed, but topical application of 0.5% menthol cream resulted
in significant improvement in the response to mechanical stimuli above the threshold and
reduced the degree of pain [166]. In another case, after postherpetic neuralgia, a patient
suffered from severe allodynia, but the use of menthol oil at a concentration of 2 or 10%
resulted in significant relief of symptoms [167].

Thus, TRPM8 may be considered a potential target for personalized medicine, and the
role of menthol may be important in migraine therapy.

2.4. Transient Receptor Potential Ankyrin 1 (TRPA1)
2.4.1. Brief Description of TRPA1 Channel and Role in Pain and Headaches

TRPA1 is a nonselective cation channel with an inward depolarizing current due
to Na+ and Ca2+ ions [168]. TRPA1 channels play a role in the detection of pungent or
irritating substances, such as allyl isothiocyanate (mustard oil), allicin, and diallyl disulfide
(garlic) [169,170]. Moreover, gingerol (ginger), eugenol (cloves), carvacrol (oregano), and
thymol (thyme) can also activate this receptor [171–173]. There are conflicting results that
mechanical stimuli and noxious cold (<17 ◦C) also affect TRPA1 function [174,175]. In
addition, evidence suggests that bradykinin and prostaglandins can indirectly activate
TRPA1 by the activation of kinase proteins and second messengers [176,177].

It is present in subpopulations of primary sensory neurons of the DRG, TG, and va-
gal ganglia (VG) [174]. TRPA1 is mainly expressed in unmyelinated C-fibers and thinly
myelinated Aδ-fibers [174]. Although TRPA1 is mainly located in nociceptive neurons of
the PNS, it is also found at different sites of the CNS, such as in the cortex, caudate nucleus,
putamen, globus pallidus, substantia nigra, hippocampus, cerebellum, amygdala, and
hypothalamus [50]. In primary sensory neurons, TRPA1 is coexpressed with SP, CGRP, and
TRPV1 in primary sensory neurons, and after neuronal activation, the release of these pep-
tides produces neurogenic inflammation and vasodilatation in the dura [169,174,178,179]
(Figures 2 and 6).

2.4.2. Preclinical Data

Several migraine triggers can activate TRPA1, and some medications already used to
treat migraine can desensitize or inhibit TRPA1 [180–182].

Acrolein can act on sensory nerve endings and cause neurogenic inflammation through
activation of TRPA1 channels [183,184]. Several studies found that the TRPA1 response
was enhanced during the acute inflammatory response provoked by Complete Freund’s
adjuvant [185–188].

Glyceryl trinitrate, which can induce migraine attacks in patients, promotes NO re-
lease, which triggers pain-like responses through TRPA1 [77]. Reactive oxygen species
(ROS), which are also involved in the pathomechanism of migraine and may mediate
CSD, can activate TRPA1 [189]. Jiang et al. demonstrated that i.c.v. administration of
anti-TRPA1 antibody can prolong the CSD latency and decrease the number of CSDs [189].
In a rodent model, TRPA1 activation leads to ROS-induced CGRP release in the TG and
the dura mater [190]. It is assumed that the activation of TRPA1 in the trigeminal nerve
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endings in the nasal mucosa when irritating substances are inhaled causes headaches [191].
In an animal model, intranasal administration of umbellules, the compound of Umbel-
laria California, evokes TRPA1-mediated and CGRP-dependent neurogenic meningeal
vasodilation [190,192]. Hydrogen sulfide, a gas stimulant of TRPA1, is involved in the
regulation of many physiological functions and may play an important role in central
nociceptive processing, causing the sensation of headache [193].
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Figure 6. Transient receptor potential ankyrin 1 receptor activation. Activation of TRPA1 in sensory
neurons induces an increase in Ca2+ and leads to the release of the neuropeptide CGRP, SP, and NOS-
derived NO, thus mediating vasodilation. TRPA1: transient receptor potential ankyrin 1 receptor,
CGRP: calcitonin gene-related peptide, SP: substance P, ROS: reactive oxygen species.

Behavioral studies suggest that TRPA1 located at the central terminal of the primary
afferent ending may play a role in maintaining pain hypersensitivity and regulates transmis-
sion to glutamatergic and gamma-aminobutyric acid (GABA)-ergic interneurons [194,195].
Intraplantar injection of 4-hydroxynonenal or cinnamaldehyde (selective agonists) can
activate TRPA1 and cause cutaneous neurogenic inflammation in rodents [196–198]. In
another in vivo animal experiment, topical administration of selective TRPA1 agonists
in vivo was found to induce nociceptive behavior [171]. Local injection of formalin (a
TRPA1 agonist) induced acute pain and prolonged tactile allodynia at the injection site.
Intrathecal administration of a low-dose TRPA1 antagonist reduced the tactile allodynia
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but not acute pain behavior [199]. In animal model of diabetes, topical administration of
streptozotocin caused TRPA1-dependent polymodal hyperalgesia, while after systemic
administration, acute sensory loss was observed [200].

However, preclinical evidence suggests that the agonism of TRPA1 may contribute to
the analgesic effect induced by acetaminophen. The reactive metabolite of acetaminophen
can decrease pain behavior due to the desensitization of sensory neurons containing
TRPA1 [201]. This result suggests that TRPA1 agonism may represent a new approach to
the development of analgesic compounds.

Several behavioral findings show that pain hypersensitivity is reduced by TRPA1
channel antagonists in various animal models. In animal models of inflammatory and
neuropathic pain, the orally administered HC-030031—TRPA1 receptor antagonist—can
inhibit mechanical hypersensitivity [187]. These results support that TRPA1 plays an
important role in nociceptive transmission.

In addition, TRPA1 polymorphism has been linked to migraine generation [178].

2.4.3. Clinical Data

There have been promising but controversial results regarding the therapeutic po-
tential of the TRPA1 receptor in the treatment of asthma, chronic obstructive pulmonary
disease, and chronic cough [202,203].

A laser Doppler imaging study demonstrates that cinnamaldehyde causes robust axon
reflex flare vasodilation in humans. Moreover, it simultaneously causes a feeling of itching
in some of the participants through cinnamaldehyde-induced mast cell degranulation or
direct activation of itch fibers via TRPA1 [204].

Hydra Biosciences/Cubist Pharmaceuticals reported a successful Phase I trial with a
TRPA1 antagonist, CB-625. However, due to its low solubility, the experiments were stopped.

Another Phase I study looked at ODM-108, a potent TRPA1 antagonist. This study
was stopped due to complex pharmacokinetics. It should be noted that there were no safety
concerns with this antagonist.

To date, only one TRPA1 antagonist, GRC1753689, has completed Phase II clinical
trials. Good results were obtained with GRC1753689 in a Phase II trial where patients
suffered from peripheral diabetic neuropathy and asthma, but it has some pharmacokinetics
problems, so it cannot progress into Phase III [62].

3. Conclusions

In the last decade, studies exploring the possible mechanisms of migraine have in-
creased exponentially. The fact that some TRP receptors are present in nociceptors and
brain regions that play a role in primary headaches has provided new insights into the
pathomechanism of migraine. Although drugs targeting TRP channels are not yet included
in the therapy of primary headaches, preclinical studies support the role of these chan-
nels in these diseases and reinforce the importance of the further development of new
and safer therapies based on the modulation of TRP channels (Figure 7). New advances
in preventive therapy are essential to reduce the personal and socio-economic burden
of migraine.
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have been repeatedly implicated in the disorder, including TRPV1, TRPV4, TRPM8, and TRPA1,
modulation of these receptors may provide future therapeutic options for migraine sufferers. Red
cross means inhibition.
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Abbreviations

4α-PDD 4α-phorbol-12,13-didecanoate
5-HT serotonin
BBA bisandrographolide A
CAMKII calmodulin-dependent kinase II
CGRP calcitonin gene-related peptide
COPD chronic obstructive pulmonary disease
CSD cortical spreading depression
DRG dorsal root ganglion
GABA gamma-aminobutyric acid
GWAS genome-wide association studies
IASP International Association for the Study of Pain
IL-10 interleukin 10
KYNA kynurenic acid
NGF nerve-growth factor
NI neurogenic inflammation
NMDA N-methyl-D-aspartate receptor
NO nitrogen oxide
NSAIDs nonsteroidal anti-inflammatory drugs
NTG nitroglycerin
MOH medication overuse headache
PACAP pituitary adenylate cyclase-activating peptide
PAG periaqueductal gray matter
PAR2 protease-activated receptor 2
PGs prostaglandins
PKC protein kinases C
PKA protein kinases A
PNS peripheral nervous system
ROS reactive oxygen species
RTX resiniferatoxin
SP substance P
TG trigeminal ganglion
TNF tumor necrosis factor
TRP transient receptor potential
TRPV1 transient receptor potential vanilloid-1 receptor
TRPV4 transient receptor potential vanilloid-4 receptor
TRPM8 transient receptor potential melastatin 8
TRPA1 transient receptor potential ankyrin 1
VG vagal ganglia
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200. Andersson, D.A.; Filipović, M.R.; Gentry, C.; Eberhardt, M.; Vastani, N.; Leffler, A.; Reeh, P.; Bevan, S. Streptozotocin Stimulates
the Ion Channel TRPA1 Directly: INVOLVEMENT OF PEROXYNITRITE. J. Biol. Chem. 2015, 290, 15185–15196. [CrossRef]

201. Andersson, D.A.; Gentry, C.; Alenmyr, L.; Killander, D.; Lewis, S.E.; Andersson, A.; Bucher, B.; Galzi, J.L.; Sterner, O.; Bevan, S.;
et al. TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid ∆(9)-tetrahydrocannabiorcol. Nat.
Commun. 2011, 2, 551. [CrossRef] [PubMed]

202. Preti, D.; Szallasi, A.; Patacchini, R. TRP channels as therapeutic targets in airway disorders: A patent review. Expert Opin. Ther.
Pat. 2012, 22, 663–695. [CrossRef] [PubMed]

203. Grace, M.S.; Baxter, M.; Dubuis, E.; Birrell, M.A.; Belvisi, M.G. Transient receptor potential (TRP) channels in the airway: Role in
airway disease. Br. J. Pharmacol. 2014, 171, 2593–2607. [CrossRef]

204. Namer, B.; Seifert, F.; Handwerker, H.O.; Maihöfner, C. TRPA1 and TRPM8 activation in humans: Effects of cinnamaldehyde and
menthol. Neuroreport 2005, 16, 955–959. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1073/pnas.0705923104
http://doi.org/10.1093/cvr/cvq118
http://doi.org/10.1016/j.phrs.2011.10.006
http://doi.org/10.1016/j.pain.2010.11.031
http://doi.org/10.1074/jbc.M115.644476
http://doi.org/10.1038/ncomms1559
http://www.ncbi.nlm.nih.gov/pubmed/22109525
http://doi.org/10.1517/13543776.2012.696099
http://www.ncbi.nlm.nih.gov/pubmed/22667456
http://doi.org/10.1111/bph.12538
http://doi.org/10.1097/00001756-200506210-00015
http://www.ncbi.nlm.nih.gov/pubmed/15931068

	Migraine and Other Headache Disorders 
	Headache Disorders 
	Migraine 

	Transient Receptor Potential Channels 
	Transient Receptor Potential Vanilloid 1 (TRPV1) 
	Characterization of TRPV1 and Role in Pain and Headaches 
	Preclinical Data 
	Clinical Data 

	Transient Receptor Potential Vanilloid 4 (TRPV4) 
	Brief Description of TRPV4 and Its Role in Pain and Headache 
	Preclinical Data 
	Clinical Data 

	Transient Receptor Potential Melastatin 8 (TRPM8) 
	Brief Description of TRPM8 and Its Involvement in Pain and Headache 
	Preclinical Data 
	Clinical Data 

	Transient Receptor Potential Ankyrin 1 (TRPA1) 
	Brief Description of TRPA1 Channel and Role in Pain and Headaches 
	Preclinical Data 
	Clinical Data 


	Conclusions 
	References

