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Abstract

We prove asymptotic formulas for the expectation of the vertex number and missed
area of uniform random disc-polygons in convex disc-polygons. Our statements are the
r-convex analogues of the classical results of Rényi and Sulanke [10] about random
polygons in convex polygons.
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1 Introduction and results

LetK be a convex body (compact convex set with non-empty interior) in d-dimensional
Euclidean space Ed, and let Xn = {x1, . . . , xn} be independent random points from K

chosen according to the uniform probability distribution (the Lebesgue measure in K
normalised by the volume of K). The convex hull K∗n = [Xn] of Xn is a (uniform) random
polytope in K. The behaviour of the geometric properties of K∗n have been investigated
extensively. In particular, the study of the asymptotic properties of K∗n started when, in
the plane, Rényi and Sulanke [9, 10] determined the behaviour of the expectations of the
vertex number of K∗n and the Area(K \K∗n) missed by K∗n, as n→∞ in the case when
K is a convex polygon or a sufficiently smooth disc. For a detailed overview of known
results about this classical model we refer to the surveys by Bárány [3], Reitzner [8],
Schneider [13], and the references therein.

In this paper we work in the Euclidean plane E2 and consider a modification of
the classical probability model of random polygons in which we use intersections of
congruent circles to generate an analogue of the classical convex hull.

Let B denote the origin centred closed unit ball of E2, and let S1 = ∂B be its boundary.
For a fixed r > 0, an r-disc-polygon is a compact convex set in E2 that is bounded by a
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On random disc-polygons in a disc-polygon

finite number of radius r circular arcs. Let X ⊂ E2 be a finite point set that is contained
in a closed circle of radius r. The intersection of all radius r closed circular discs that
contains X, denoted by [X]r, is an r-disc-polygon. The vertices and edges of a disc-
polygon are defined in the natural way. It is known, see, for example, [4] that if P is an
r-disc-polygon and X ⊂ P , then [X]r ⊂ P . Furthermore, for each boundary point x ∈ ∂P ,
there exists a point v ∈ E2 such that x ∈ rS1 + v and P ⊂ rB + v. We call such rB + v

a supporting disc of P . Note that if x is a vertex of P , then there are infinitely many
vectors v with this property, therefore, in this case the supporting disc is not unique.

Let P be an r-disc-polygon in E2, and let Xn = {x1, x2, . . . , xn} be a sample of n
independent random points in P chosen according to the uniform probability distribution.
The closed r-hull P rn = [Xn]r is a uniform random r-disc-polygon in P .

Let f0(·) be the number of vertices of a convex (disc-)polygon, and let Area(·) denote
the area. In [10] Rényi and Sulanke proved that if P is a (classical) convex polygon, then

lim
n→∞

Ef0(P ∗n)

lnn
=

2

3
f0(P ). (1.1)

In fact, their formula is more precise than (1.1) but we state it here in this simpler form
as it fits the following discussion better. It is a natural question: what is the asymptotics
of Ef0(P rn) if P is an r-disc-polygon? Our main result is the following theorem that
answers this question:

Theorem 1.1. If P is a convex r-disc-polygon different from rB, then

lim
n→∞

Ef0(P rn)

lnn
=

2

3
f0(P ), (1.2)

and

lim
n→∞

nEArea(P \ P rn)

lnn
=

2

3
f0(P ) Area(P ). (1.3)

The case P = rB is rather different, and it was treated in Theorem 3.1 in [5], where
we showed that Ef0(P rn) converges without any normalisation.

The quantity Area(P \ P rn) is often called the missed area of P , and the limit formula
(1.3) follows from (1.2) by the r-convex analogue of Efron’s identity, cf. [5]. Subsequently,
we will prove (1.2) in detail.

We would like to point out that our argument is very different from the one used
by Rényi and Sulanke in [10], where affine invariance played a key role in the proof
of (1.1). This is not an option in our case as the model is not invariant under affine
transformations. Therefore, in order to evaluate (3.1), one needs to use techniques
that are more essentially based on the geometric properties of the model. This extra
geometric information is described in Section 2 and it mainly concerns the behaviour of
small disc-caps which determines how to divide the domain of integration in (3.1).

It is a natural question to ask how Theorem 1.1 is related to the corresponding
classical result (1.1) of Rényi and Sulanke [9]. Our method can also be used, with some
modifications, to prove (1.1). However, whether (1.2) implies (1.1) in the limit as r →∞
is unclear.

We call a compact convex set K ⊂ E2 R-convex, or an R-convex disc (the terms R-
spindle convex and R-hyperconvex are also used in the literature), if it is the intersection
of all radius R closed circular discs that contain K. This condition is known to be
equivalent to the property that K slides freely in a circle of radius R, that is, for any
x ∈ RS1 there exists a vector p ∈ E2 with x ∈ K + p ⊂ RB. The concept of R-convexity
goes back, at least, to Mayer [7], and it has been investigated recently quite intensively.
The importance ofR-convexity comes, in part, from its connection to various old problems
in which intersections of congruent balls appear, like the Kneser-Poulsen conjecture.
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On random disc-polygons in a disc-polygon

For more information on the properties of R-convex sets we refer to [4], [5] and the
references therein.

Our probability model has a natural modification for R-convex discs. If K is an
R-convex disc for some R ≤ r, and Xn = {x1, . . . , xn} are independent random points
chosen from K according to the uniform probability distribution, then it is known that the
random r-disc-polygon Kr

n = [Xn]r is contained in K, see [5]. The asymptotic behaviour
of the expectations Ef0(Kr

n) and EArea(K \Kr
n) have been determined by Fodor, Kevei

and Vígh in [5] in the case when K is a convex disc such that its boundary ∂K is C2
+ and

r > 1/κm, where κm = minx∈∂K κ(x) > 0 and κ(x) denotes the curvature of ∂K at x. It is
known that under these conditions K is R-convex for R ≥ 1/κm, see [12, Theorem 3.2.12
on p. 164]. The following statements were proved in [5]:

lim
n→∞

Ef0(Kr
n) · n−1/3 = 3

 
2

3 Area(K)
Γ

Å
5

3

ã
c(K, r), (1.4)

lim
n→∞

EArea(K \Kr
n) · n2/3 =

3

 
2 Area(K)2

3
Γ

Å
5

3

ã
c(K, r), (1.5)

where

c(K, r) =

∫
∂K

Å
κ(x)− 1

r

ã1/3
dx.

The symbol Γ(·) denotes Euler’s gamma function, and integration on ∂K is with respect
to arc-length.

The formulas (1.4) and (1.5) are generalisations of the corresponding classical results
of Rényi and Sulanke from [9] in the sense that the asymptotic formulas of Rényi and
Sulanke follow from (1.4) and (1.5) in the limit as r →∞, see Section 3 of [5] for details.

Finally, we conjecture that for any r-convex disc K ⊂ E2 different from rB the
following inequalities hold for any n

c1(K) log n < Ef0(Kr
n) < c2(K)n1/3, (1.6)

for suitable constants c1(K) and c2(K), and that the orders in (1.6) are optimal: the
left-hand inequality of is realised by r-disc-polygons and the right-hand inequality by
smooth r-convex discs. We note that, due to the different behaviour of rB, it has to be
excluded from the inequality (1.6), cf. Theorem 1.3 in [5].

The corresponding inequalities in the classical convex case for the number fk(·)
of k-dimensional faces were established using floating bodies and the Economic Cap
Covering Theorem by Bárány and Larman [1] and by Bárány [2]: for any convex body
K ⊂ Ed it holds that

C1(d)(log n)d−1 < Efk(K∗n) < C2(d)n
d−1
d+1 (1.7)

for suitable constants C1(d) and C2(d) and any n. Here the left-hand inequality is of right
order for polytopes and the right-hand one for smooth convex bodies.

Unfortunately, the analogue of the Economic Cap Covering Theorem is not known for
the r-convex case, even in the plane. We conjecture that it is true, however, the methods
used in its proof do not seem to translate to the r-convex setting.

2 Caps of disc-polygons

As both (1.2) and (1.3) are invariant under simultaneous scaling of K and the gener-
ating circles of P rn , we may and do assume from now on that r = 1 and omit r from the
notation. Accordingly, we use the [X]S symbol for the 1-hull of the set X. In particular,
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On random disc-polygons in a disc-polygon

the 1-hull of two points x, y ∈ E2, with |x− y| ≤ 2 is denoted by [x, y]S and is called the
spindle of x and y. Subsequently, a disc-polygon always means a convex 1-disc-polygon.

Let P be a disc-polygon and let B◦ denote the origin centred unit radius open circular
disc. A subset D of P is a disc-cap of P if D = P \ (B◦ + p) for some point p ∈ E2. Note
that D is either an edge of P or ∂B + p intersects ∂P in at most two points, and D

contains at least one vertex of P . The boundary of a nonempty disc-cap D consists of
at most two connected arcs: one arc is a subset of ∂P , and the other arc is a subset of
∂B + p.

For x ∈ ∂P , let N (x) ⊂ S1 denote the set of all outer unit normal vectors of P at x. If
x ∈ ∂P is not a vertex of P , then N (x) = {ux} contains a single element. If x is a vertex,
then N (x) determines a closed and connected arc of S1.

Lemma 2.1. Let P be a disc-polygon. Let D = P \ (B◦ + p) be a non-empty disc-cap of
P with non-empty interior. Then there exists a unique unit vector u and a number t > 0

such that B + p = B + x0 − (1 + t)u, where x0 is the unique point on ∂P with u ∈ N (x0).

We call u the outer unit normal, x0 the vertex, and t the height of D. Lemma 2.1
was proved in [5] for the C2

+ case, and in higher dimension in [6] also for the C1 case.
Essentially the same argument works here too but for the sake of completeness we
provide a short proof.

Proof. Let x0 be a point of P whose distance from p is maximal. First we show that x0
is unique. Assume on the contrary that x1 6= x0 are both at maximal distance from p.
Then the spindle [x0, x1]S is also in P , and one of the midpoints of the unit circular arcs
connecting x0 and x1 is farther from p than x0, a contradiction.

Let u = (x0 − p)/|x0 − p| ∈ S1. The line through x0 that is perpendicular to u clearly
supports P at x0 hence u ∈ N (x0). Thus, B + p = B + x0 − (1 + t)u for some t > 0.

On the other hand, if B + p = B + x− (1 + t)u for some x ∈ ∂P , u ∈ N (x) and t > 0,
then B + x− u supports P at x, and (1 + t)B + p also supports P at x. This yields that x
is the farthest point of P from p, and the uniqueness of x0 and u follows.

Let D(u, t) denote the disc-cap with normal u and height t. (Due to the strict convexity
of P , u determines x0 uniquely.) Note that for each u ∈ S1, there exists a maximal positive
constant t∗(u) such that (B + xu − (1 + t)u) ∩ P 6= ∅ for all t ∈ [0, t∗(u)]. Here xu is the
unique point in ∂P with u ∈ N (xu). Let A(u, t) = Area(D(u, t)) and let `(u, t) denote the
arc-length of ∂D(u, t) ∩ (∂B + xu − (1 + t)u).

We recall the following notations from [5]. Let x and y be two points from P . The
two unit circles passing through x and y determine two disc-caps of P , which we denote
by D−(x, y) and D+(x, y), respectively, such that Area(D−(x, y)) ≤ Area(D+(x, y)). For
brevity of notation, we write A−(x, y) = Area(D−(x, y)) and A+(x, y) = Area(D+(x, y))

and simply A = Area(P ).

Lemma 2.2. Let P be a disc-polygon with at least three vertices. Then there exists a
constant δ0 > 0, depending only on P , such that A+(x1, x2) > δ0 for any two distinct
points x1, x2 ∈ P .

Proof. We note that [x1, x2]S cannot cover P because P is not a spindle. Thus, by
compactness, there exists a constant δ0 > 0, depending only on P , such that Area(P \
[x1, x2]S) > 2δ0 for any two distinct points x1, x2 ∈ P . Now, the statement of the lemma
follows from the fact that P = D−(x1, x2) ∪D+(x1, x2) ∪ [x1, x2]S .

Note that the statement of Lemma 2.2 does not hold if P has only two vertices, that
is, if it is a spindle P = [v1, v2]S .
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On random disc-polygons in a disc-polygon

Lemma 2.3. Let P = [v1, v2]S be a disc-polygon with two vertices. Then there exists
constants c = c(P ) and δ = δ(P ) such that if x1, x2 ∈ P with A−(x1, x2) ≤ A+(x1, x2) < δ

then
|x̄1x2| > c,

where |x̄1x2| denotes the arc-length of the shorter unit circular arc joining x1 and x2.

Proof. Similarly as before,

Area [x1, x2]S ≥ Area [v1, v2]S −A−(x1, x2)−A+(x1, x2) > Area [v1, v2]S − 2δ,

and the assertion follows.

Assume that for a sufficiently small t the cap D(u, t) = P \ (B◦ + p) contains a single
vertex v of P , and denote by e and e∗ the two edges of P that meet at v. Let c be the
centre of the unit circle that determines e, and n = v − c. The circle S1 + p intersects
S1 + c in y, and the segment pv in z, cf. Figure 1. Let β be the angle of u and n, and let
`1 = `1(β, t) denote the shorter circular arc connecting y and z.

Lemma 2.4. With the notation above

lim
(t,β)→(0+,0+)

Å
sin `1 · sinβ

t
− cos `1

ã
= 0. (2.1)

Proof. We use the notations of Figure 1.
By the Pythagorean theorem

|y − c|2 = 1 = (sin `1 + sinβ)2 + (cos `1 − (1 + t− cosβ))2.

After simplifying and rearranging the terms we get

sin `1 sinβ + (cos `1 − 1)(cosβ − 1) = (cosβ + cos `1 − 1)t− t2

2
.

Dividing by t > 0 and using the sin2 x+ cos2 x = 1 identity lead to

sin `1 · sinβ
t

Å
1 +

sin `1 · sinβ
(1 + cos `1)(1 + cosβ)

ã
= cosβ + cos `1 − 1− t

2
. (2.2)

As β → 0+ and t→ 0+ the claim follows.

Keeping β > 0 fixed, from (2.2) we obtain

`1(β, t) ∼ t cotβ, as t→ 0 + . (2.3)

Let A1(β, t) denote the area of the set bounded by the arcs vy and yz, and the segment
vz, see Figure 1.

Lemma 2.5. For any ε > 0 there exists δ > 0 such that if t ≤ δβ and β < δ, then

1− ε
2

t`1(β, t) ≤ A1(β, t) ≤ 1 + ε

2
t`1(β, t).

Proof. First note that the assumptions and Lemma 2.4 imply that `1 is small. Let i denote
the length of the arc ıvy, and put f(x) = x − sinx. Then f(i)/2 is the area of the set
between the arc ıvy and the segment vy. Therefore,

A1(β, t) = Area(yvz) +
1

2
(f(i)− f(`)). (2.4)
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On random disc-polygons in a disc-polygon

Figure 1: Computing `1

We claim that
f(i)− f(`1) ≤ εt`1.

By the triangle inequality in yvz we obtain

2 sin
i

2
− 2 sin

`1
2
≤ t.

We have

t ≥ 2 sin
i

2
− 2 sin

`1
2

= (i− `1) cos ξ ≥ i− `1
2

,

where ξ ∈ (`1/2, i/2). Thus, i− `1 ≤ 2t. Furthermore, with ξ′ ∈ (`1, i)

f(i)− f(`1) = (i− `1)f ′(ξ′) ≤ (i− `1)
i2

2
≤ i2t ≤ 4`21t, (2.5)

where, in the last inequality we used that i ≤ 2`1. Since `1 is small, for small enough
δ > 0

(1− ε/2)
t`1(β, t)

2
≤ Area(yvz) ≤ (1 + ε/2)

t`1(β, t)

2
,
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On random disc-polygons in a disc-polygon

thus the result follows from (2.4) and (2.5).

3 Proof of Theorem 1.1

We only prove (1.2) concerning the vertex (or edge) number. The asymptotic formula
(1.3) for the missed area follows directly from the Efron-type identity (5.10) in [5].

First we assume that P has at least 3 vertices. Observe that the pair of random points
x1, x2 determines an edge of Pn if and only if at least one of the disc-caps D−(x1, x2) and
D+(x1, x2) does not contain any other points from Xn. Thus, using the notation from [9],

E(f0(Pn)) =

Ç
n

2

å
Wn,

where

Wn =
1

A2

∫
P

∫
P

ñÅ
1− A−(x1, x2)

A

ãn−2
+

Å
1− A+(x1, x2)

A

ãn−2ô
dx1dx2. (3.1)

Note that if all points of Xn fall into the closed spindle spanned by x1 and x2, then x1
and x2 contribute two edges to Pn (since in this case [Xn]S = [x1, x2]S), and accordingly,
this event is counted in both terms in the integrand of (3.1).

As f0(P ) ≥ 3 is assumed, Lemma 2.2 yields that

lim
n→∞

Ç
n

2

å
1

A2

∫
P

∫
P

Å
1− A+(x1, x2)

A

ãn−2
dx1dx2

≤ lim
n→∞

Ç
n

2

å
1

A2

∫
P

∫
P

e−
δ0
A (n−2)dx1dx2

= lim
n→∞

Ç
n

2

å
e−

δ0
A (n−2) = 0.

Thus, the contribution of the second term of (3.1) is negligible, hence, in what follows,
we will consider only the first term. Note that a similar argument yields that in the
first term of (3.1) it is enough to integrate over pairs of random points x1, x2 such that
A−(x1, x2) < δ0. Furthermore, the same conclusion holds for any fixed δ ≤ δ0. Let 1(·)
denote the indicator function of an event. Then

lim
n→∞

E(f0(Pn))
1

lnn

= lim
n→∞

1

lnn

Ç
n

2

å
1

A2

∫
P

∫
P

Å
1− A−(x1, x2)

A

ãn−2
1(A−(x1, x2) < δ0)dx1dx2. (3.2)

Now, we re-parametrise the pair (x1, x2) as follows, see [5] and [11]. Let

(x1, x2) = Φ(u, t, u1, u2), (3.3)

where u, u1, u2 ∈ S1 and 0 ≤ t ≤ t0(u). Here, for u ∈ S1 we choose t0(u) > 0 to be the
largest value such that Area(D(u, t)) < δ0 for t ≤ t0(u), with δ0 from Lemma 2.2. Thus

D(u, t) = D−(x1, x2),

and
(x1, x2) = (xu − (1 + t)u+ u1, xu − (1 + t)u+ u2).

Note that u1 and u2 are the unique outer unit normal vectors of ∂B + xu − (1 + t)u at x1
and x2, respectively. This yields that, for fixed u and t, both u1 and u2 are in the same arc
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of length `(u, t) in S1. We denote this arc by L(u, t). Since A−(x1, x2) < δ0, D−(x1, x2) is
uniquely determined by Lemma 2.2. Now, the uniqueness of the vertex and height of
a disc-cap guarantees that Φ is well-defined, bijective, and differentiable on a suitable
domain of (u, t, u1, u2), cf. [5].

Let v0, . . . , vk−1 denote the vertices of P labelled cyclically on ∂P in the positive
direction, and let N (vi) = n̆imi ⊂ S1, which is a closed arc of S1. Let r : [0, 2π)→ S1 be
the usual parametrisation of the unit circle, and we introduce αi = r−1(ni), βi = r−1(mi),
for an arbitrary u ∈ S1 we use β = r−1(u), and for simplicity we write D(β, t) = D(r(β), t),
etc. accordingly. Put

N1 = ∪k−1i=0N (vi) ⊂ S1, N2 = S1\N1,

and

B1 = {(x1, x2) ∈ P 2 : u ∈ N1, where D(u, t) = D−(x1, x2)}, B2 = P 2\B1.

The same calculation as in the Appendix of [5] yields that the Jacobian |JΦ| of Φ satisfies

|JΦ(u, t, u1, u2)| =

{
(1 + t)|u1 × u2|, if u ∈ N1,

t|u1 × u2|, if u ∈ N2.
(3.4)

We note that |u1 × u2| equals the sine of the length of the unit circular arc between x1
and x2 on the boundary of D(u, t).

First, we show that the part of the integral in (3.2) on B2 is negligible. Notice that
if u ∈ N2, then for any t > 0 the length `(u, t) is large, say `(u, t) > 1

2 min{emin,
π
2 } = c,

with emin being the length of the shortest edge of P . Here and later on, c, C are strictly
positive generic constant, whose exact value is not important and can be different at
each appearance. Therefore,

A(u, t) > tc, u ∈ N2, t > 0. (3.5)

Note that the height t0(u), defined after (3.3), is uniformly bounded: 0 < t1 ≤ t0(u) ≤ t2.
Using (3.4) and (3.5) we have∫ ∫

B2

Å
1− A−(x1, x2)

A

ãn−2
1(A−(x1, x2) < δ)dx1dx2

=

∫
N2

∫ t0(u)

0

∫
L(u,t)

∫
L(u,t)

Å
1− A(u, t)

A

ãn−2
t|u1 × u2|du1du2 dtdu

=

∫
N2

du

∫ t0(u)

0

Å
1− A(u, t)

A

ãn−2
t(`(u, t)− sin `(u, t))dt

≤ C
∫ t2

0

(1− ct)n−2tdt = O(n−2).

We also used that t2 can be chosen sufficiently small to guarantee that ct2 < 1. Further-
more, the variables u1 and u2 appear only in the |u1 × u2| term, thus the inner double
integral can be evaluated explicitly. In summary, the integral on B2 is negligible.

Next we deal with the part of the integral in (3.2) on B1. We have that∫ ∫
B1

Å
1− A−(x1, x2)

A

ãn−2
1(A−(x1, x2) < δ)dx1dx2

=

∫
N1

du

∫ t0(u)

0

Å
1− A(u, t)

A

ãn−2
(1 + t)(`(u, t)− sin `(u, t))dt.

Replacing t0(u) with t1 we lose a negligible part of the integral, as before.
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On random disc-polygons in a disc-polygon

We split the integral further according to the vertices. Fix ε > 0 small enough. If
β ∈ [αi + ε, βi − ε], i = 0, 1 . . . , k − 1, then by (2.3) it follows that

`(β, t) ∼ t(cot(β − αi) + cot(βi − β)).

Since β ∈ [αi + ε, βi − ε], thus A(β, t) ∼ t`(β, t)/2 ≥ ct2 as t → 0+, uniformly in β.
Therefore, for a fixed ε > 0, for each i = 0, 1, . . . , k − 1, it holds that∫ βi−ε

αi+ε

dβ

∫ t1

0

Å
1− A(β, t)

A

ãn−2
(1 + t)(`(β, t)− sin `(β, t))dt

≤ C
∫ t1

0

(1− ct2)nt3dt = O(n−2).

Therefore, the main contribution of the integral (3.2) comes from the corners.
For simplicity, choose the vertex v0 and assume that α0 = 0. We determine the

contribution of the integral on β ∈ (0, ε). Introduce the notation

I =

∫ ε

0

dβ

∫ t1

0

Å
1− A(β, t)

A

ãn−2
(1 + t)(`(β, t)− sin `(β, t))dt.

Let δ > 0 be a fixed small number, to be determined later. We split I as follows

I1 =

∫ ε

0

dβ

∫ t1

δβ

Å
1− A(β, t)

A

ãn−2
(1 + t)(`− sin `) dt, (3.6)

I2 =

∫ ε

0

dβ

∫ δβ

0

Å
1− A(β, t)

A

ãn−2
(1 + t)(`− sin `) dt. (3.7)

First we show that I1 is negligible for any δ > 0 and ε > 0.
To simplify notation, put `1 = `1(β, t) and `2 = `− `1 (as in Lemma 2.4), and let Ai be

the area corresponding to `i, i = 1, 2 (see Figure 2).
We note that `2 is small, since it follows from (2.3) that

`2(β, t) ∼ t cot(β0 − β) as t→ 0+, (3.8)

uniformly in β ≤ ε.
Now assume that t > δβ and `1 < δ/2. Then

sin `1 sinβ

t
<

δ
2β

δβ
=

1

2
,

which contradicts Lemma 2.4 if δ is sufficiently small. Therefore

`1(β, t) ≥ δ/2, if t ≥ δβ. (3.9)

ThusD(β, t) contains a triangle with base of length t and height at least δ/4 (see Figure 2),
implying

A(β, t) ≥ A1(β, t) > ct. (3.10)

We obtain that

I1 ≤ 2

∫ ε

0

dβ

∫ t1

δβ

Å
1− A(β, t)

A

ãn−2
dt

≤ 2

∫ t1

0

t

δ
(1− ct)n−2 dt = O(n−2),

which proves that I1 is negligible.
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On random disc-polygons in a disc-polygon

Figure 2: Disc-cap D(β, t)

Finally, we estimate I2, which carries the weight of the integral in (3.1). Let ε1 > 0

be fixed. We apply (3.8) and Lemmas 2.4 and 2.5, and we choose δ > 0 and ε > 0 small
enough such that

(1− ε1)
t3

6
≤ t− sin t ≤ (1 + ε1)

t3

6
, t ∈ [0, δ],

(1− ε1)
t

β
≤ `(β, t) ≤ (1 + ε1)

t

β
, t/δ ≤ β ≤ ε,

(1− ε1)
t2

2β
≤ A(β, t) ≤ (1 + ε1)

t2

2β
, t/δ ≤ β ≤ ε.

Substituting y = t2(1− ε1)/(2Aβ) =: d1t
2/β and changing the order of integration yield

I2 ≤
∫ ε

0

dβ

∫ δβ

0

Å
1− (1− ε1)t2

2βA

ãn−2
t3(1 + ε1)3

6β3
(1 + δε)dt

=
(1 + δε)(1 + ε1)3

12 d21

∫ ε

0

dβ

∫ δ2d1β

0

(1− y)n−2
y

β
dy

=
(1 + δε)(1 + ε1)3

12 d21 n
2

∫ nδ2εd1

0

(
1− x

n

)n−2
x
(
ln(εδ2d1n)− lnx

)
dx

∼ lnn (1 + δε)(1 + ε1)3

12 d21 n
2

as n→∞.

Since ε1 > 0 is arbitrary, and the lower bound can be obtained by an analogous argument,
we have obtained that

I2 ∼
A2 lnn

3n2
as n→∞. (3.11)

Since at each vertex we have twice the contribution of I2, the statement follows when
f0(P ) ≥ 3.
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On random disc-polygons in a disc-polygon

To finish the proof we need to deal with the case in which f0(P ) = 2. By Lemma 2.3,
if both A−(x1, x2) and A+(x1, x2) are small, then ` is larger than an absolute constant,
and this part of the integral can be estimated similarly to I1. The rest of the argument
remains valid in this case as well.
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