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a b s t r a c t

Techniques of producing new combinatorial structures from old ones are commonly
called trades. The switching principle applies for a broad class of designs: it is a
local transformation that modifies two columns of the incidence matrix. In this paper,
we present a construction, which is a generalization of the switching transform for
the class of Steiner 2-designs. We call this construction paramodification of Steiner
2-designs, since it modifies the parallelism of a subsystem. We study in more detail
the paramodifications of affine planes, Steiner triple systems, and abstract unitals.
Computational results show that paramodification can construct many new unitals.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The triple (P,B, I) is an incidence structure, provided P , B are disjoint sets, and I ⊆ P × B. Using geometric language,
ne calls the elements of P points, the elements of B blocks, and writes P I b instead of (P, b) ∈ I . The incidence structure

is simple, if each block can be identified with the set of points with which it is incident. In this case, one can assume I =∈.
For subsets P ′

⊆ P and B′
⊆ B and I ′ = I ∩ (P ′

× B′), one has the incidence substructure
(
P ′,B′, I ′

)
. By some abuse of

notation, we may denote the latter by
(
P ′,B′, I

)
as well. The substructure induced by P ′

⊆ P is defined with the set B′

of blocks meeting P ′ in at least two points. Notice that for a substructure, a block b ∈ B′ is not necessarily a subset of P ′.
A t-(n, k, λ) design, or equivalently a Steiner system Sλ(t, k, n), is a finite simple incidence structure consisting of n

points and a number of blocks, such that every block is incident with k points and every t-subset of points is incident
with exactly λ blocks. Let D = (P,B, I) be a Steiner system. The subset π of blocks is called a parallel class, or equivalently
a 1-factor of D if it partitions the point set. If B is the union of disjoint 1-factors π1, . . . , πr , then the partition is called a
1-factorization and D is said to be resolvable. A 1-factorization is also called a parallelism or a resolution. A resolvable Steiner
system Sλ(t, k, n) is abbreviated as RSλ(t, k, n). In general, the classification of combinatorial structures with a given set
of parameters is an old and important research topic; for details, we refer the reader to the monographs [1,3,18]. Our
main concern yields to designs with parameters t = 2 and λ = 1, which are called Steiner 2-designs or linear spaces in
he literature, see [1, Definition 2.4.9]. Important classes of Steiner 2-designs are affine and projective planes of order q,
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Steiner triple systems, and abstract unitals of order q; the respective parameters (n, k) are (q2, q), (q2 +q+1, q+1), (n, 3)
nd (q3 + 1, q + 1).
The main result of this paper is a general construction which can produce new Steiner 2-designs from old ones, with the

ame parameters. We call this construction paramodification of 2-designs, since it modifies the parallelism of a subsystem.
ur research has been motivated by a construction of Grundhöfer, Stroppel and Van Maldeghem [12], which produced
ew abstract unitals with many translation centers, see also [23]. As the anonymous reviewer of a previous version of this
aper informed us, our construction is not completely new. In essence, Petrenjuk and Petrenjuk described it in technical
eports of the University of Kirovograd (Ukraine) in the 1980s, see [28] and its references. In particular, A. J. Petrenjuk
sed the method, named cut-transformations, to construct new abstract unitals of order 3.
As shown in Section 3, a paramodification of a 2-(n, k, 1) design affects k columns of the incidence matrix, all belonging

o the k points of a fixed block. We prove that paramodifications affecting exactly two columns are switches. A switch or
witching is a local transformation of a combinatorial structure, which was studied for graphs, partial geometries, Steiner
riples systems, codes, and other objects since the early 1980s. For the presentation of the switching principle, unification
f earlier results and computational applications, see the excellent paper [27] by Östergård. In Proposition 3.3, we give a
ufficient condition for a Steiner 2-design not to allow a switching. This condition implies that Hermitian unitals have no
witchings, but they do have non-trivial paramodifications.
In Section 4, we study in more detail the paramodifications of affine planes, Steiner triple systems, and unitals.

n the last two sections, we give an overview of the algorithmic and complexity aspects of the computation of the
aramodification. We also present computational results which show that paramodification can construct many new
nitals.

. Paramodification of 2-designs

Let D = (P,B, I) be a t-(n, k, λ) design. By [3, Theorem 1.9], the integer

r = λ

(n−1
t−1

)(k−1
t−1

) =
|B|k
n

(2.1)

is the number of blocks through a given point. The map χ : B → X is called a proper block coloring of D, if for different
locks b, b′, b ∩ b′

̸= ∅ implies χ (b) ̸= χ (b′). If |X | = m and D has a proper block coloring χ : B → X then we say that D
s block m-colorable.

emma 2.1. Let D = (P,B, I) be a t-(n, k, λ) design.

(i) Any proper block coloring of D needs at least r colors.
(ii) Any parallelism of D defines a block coloring with r colors when mapping each block to its parallel class.
(iii) The color classes of a block coloring with r colors form a parallelism of D.
(iv) D is block r-colorable if and only if it is resolvable.

roof. Since r = |B|k/n is the number of blocks through a point, and these blocks must have different colors, we have
i). (ii) is trivial by definition. (iii) If we have r colors, then for any point P and color x, there is a unique block on P with
olor x. That is, the color class χ−1(x) is a partition of P . (iv) follows from (ii) and (iii). □

From now on, D = (P,B, I) denotes a Steiner 2-design on n points. The incidence relation I =∈, that is, the blocks of
are subsets of size k of P . Notice that for subsets P ′

⊆ P and B′
⊆ B, we may consider the subsystem D′

=
(
P ′,B′, I

)
,

ven if an element b′
∈ B′ is not a subset of P ′.

Fix a block b ∈ B and consider the subset

C(b) =
{
b′

∈ B: |b′
∩ b| = 1

}
(2.2)

f blocks. We write Db for the subsystem (P \ b, C(b), I). We define the map χb : C(b) → b by

χb : b′
↦→ b′

∩ b; (2.3)

this is clearly a block coloring of Db.

Lemma 2.2. Db is a resolvable 1-(n − k, k − 1, k) design.

Proof. Trivially, each block b′
∈ C(b) is incident with k − 1 point P ∈ P \ b, that is, Db is 1-(n − k, k − 1, k) design. In Db,

(2.1) implies r = k and the map χb : b′
↦→ b′

∩ b is a block coloring with k colors. By Lemma 2.1, Db is resolvable. □

We aim to show that any parallelism of Db leads to a block design D′ such that D and D′ have the same parameters,
and they may or may not be isomorphic. To use consistent notation, we identify the notions of a parallelism and a block
coloring with r colors.
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D
efinition 2.3. Let D = (P,B, I) be a Steiner 2-(n, k, 1) design. Let b ∈ B be a block and χ : C(b) → b a block coloring of
the subsystem Db with k colors. Define the incidence relation I∗ ⊆ P × B by

P I∗ b′
⇔

{
P I b′, if b′

̸∈ C(b) or P ⧸I b
P = χ (b′), if P I b and b′

∈ C(b).
(2.4)

We call the incidence structure

D∗
= D∗

χ,b = (P,B, I∗)

the (χ, b)-paramodification of D.

Theorem 2.4. Let D = (P,B, I) be a Steiner 2-(n, k, 1) design. Let b ∈ B be a block and χ : C(b) → b a block coloring of the
subsystem Db with k colors. Then, D∗

χ,b is a Steiner 2-design with the same parameters.

Proof. We have to show that any two points are incident with a unique block of D∗
= D∗

χ,b. Let P1, P2 ∈ P be distinct
points, and β ∈ B the unique D-block such that P1 I β and P2 I β .

(1) P1, P2 ̸∈ b. Then P1 I∗ β and P2 I∗ β by (2.4). Let γ ∈ B be a block such that P1 I∗ γ and P2 I∗ γ . Then P1 I γ and
P2 I γ also by (2.4), therefore γ = β as D = (P,B, I) is a Steiner 2-(n, k, 1) design.

(2) P1, P2 ∈ b. Then β = b as D is a Steiner 2-(n, k, 1) design. Note that b ̸∈ C(b) by the definition of C(b) in (2.2),
hence P1 I∗ b and P2 I∗ b. Let γ ∈ B be a block such that P1 I∗ γ and P2 I∗ γ . If γ ̸∈ C(b), then P1 I γ and P2 I γ by
(2.4), therefore γ = b = β . If γ ∈ C(b), then by (2.4)

χ(γ ) = P1 ̸= P2 = χ(γ ),

a contradiction.
(3) P1 ̸∈ b and P2 ∈ b. In this case, β ∈ C(b) and P2 I∗ β if and only if χ (β) = P2. By Lemma 2.1, χ defines a parallelism,

and the color class χ−1(P2) is a parallel class in Db. Hence, there is a unique block γ ∈ C(b) such that P1 I γ and
χ (γ ) = P2. Eq. (2.4) implies P1, P2 I∗ γ . □

In general, it is not easy to determine if two paramodifications of D are isomorphic. We introduce the following
terminology.

Definition 2.5. The block coloring χb : C(b) → b, b′
↦→ b ∩ b′ is the trivial block coloring of the Steiner 2-design D. Two

block colorings χ and ψ of C(b) are said to be equivalent if they have the same color classes. The Steiner system D is said
to be para-rigid if, for any block b, all block colorings of Db are equivalent to the trivial one.

Remark 2.6.

(i) One has D = D∗

χb,b
.

(ii) The block colorings χ and ψ are equivalent if there is a permutation π of the points on b such that ψ(b′) = π (χ (b′))
holds for all b′

∈ C(b).
(iii) We claim that equivalent block colorings result isomorphic paramodifications. Indeed, we can extend π to P such

that π (P) = P when P ̸∈ b. Then, π determines an isomorphism between D∗

ψ,b and D∗

χ,b.
(iv) If all paramodifications of the Steiner 2-design D are isomorphic to D, then we say that the paramodifications of

D do not yield new Steiner 2-designs. Paramodifications of a para-rigid Steiner 2-design do not yield new Steiner
2-designs. The converse is not valid; see Remark 4.2.

3. Paramodification and the incidence matrix

In this section, we describe the effect of paramodifications to the incidence matrix.

Proposition 3.1. Let D be a Steiner 2-(n, k, 1) design and D∗
= D∗

χ,b be a (χ, b)-paramodification of D. Let r = (n−1)/(k−1).
Then, the respective incidence matrices M and M∗ differ at most in a k × k(r − 1) submatrix.

Proof. Eq. (2.4) implies that the incidence matrices differ in the rows corresponding to the points of b, and in the columns
corresponding to blocks in C(b). Clearly, |b| = k and |C(b)| = k(r − 1). □

To have a more detailed description of the structure of the incidence matrices, consider the n × b incidence matrix M
of the system D in the following way:

(1) Let the first k rows of M correspond to the points P1, P2, . . . , Pk ∈ b.
(2) Let the first r−1 columns of M correspond to the blocks in C(b) incident with P1, then let the second r−1 columns

correspond to the blocks in C b incident with P , and so on until P .
( ) 2 k
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(3) Right behind the columns corresponding to C(b), put the column corresponding to b.
(4) Then comes the rest of the blocks B \ (C(b) ∪ b) in any order.

The incidence matrix has the form

M =

(
Cb jk 0
M1 0n−k M2

)
, (3.1)

where

Cb =

⎛⎜⎜⎝
j⊤ 0⊤

· · · 0⊤

0⊤ j⊤ · · · 0⊤

...
...

. . .
...

0⊤ 0⊤
· · · j⊤

⎞⎟⎟⎠
is a k × k (r − 1) matrix, and j, 0 are all-one and all-zero column vectors of dimension r − 1.

It is easy to see by the definition of I∗ in (2.4), that the incidence matrix M∗ of the new system D∗ has the form

M∗
=

(
C∗

b jk 0
M1 0n−k M2

)
,

here except C∗

b all the other submatrices are the same as in (3.1). Hence M and M∗ differ at most in a k × k (r − 1)
submatrix. Finally, we notice that equivalent block colorings correspond to the permutations of the first k rows of M.

In [27], the author defines the switching operation for constant weight codes as a transformation that concerns exactly
two coordinates and keeps the studied parameter of the code unchanged. For a design D, this means that the incidence
matrix is modified in exactly two rows. As the number of 1s is constant in each column, one can interchange the 01 and
10 combinations of the two rows only. This implies the following proposition:

Proposition 3.2. Let P,Q be two points of the Steiner 2-design D. Let b be the unique block on P and Q . A switching with
respect to P and Q is a (χ, b)-paramodification. Moreover, if the block b′

∈ C(b) is not incident with P or Q , then it has trivial
color: χ (b′) = b ∩ b′. Conversely, a (χ, b)-paramodification is a switching if and only if precisely two color classes of χ are
non-trivial. □

Proof. Fix a switching σ with respect to P and Q . Let S be the set of columns of the incidence matrix M, that are affected
by σ . These columns determine a set S ′ of blocks that intersect b in P or Q . Define the map χσ : C(b) → b by

b′
↦→

⎧⎨⎩
b′

∩ b if b′
̸∈ S ′,

Q if b′
∈ S ′ and b′

∩ b = P ,
P if b′

∈ S ′ and b′
∩ b = Q .

(3.2)

After applying σ to M, the resulting matrix M′ is the incidence matrix of a 2-design D′. This implies that χσ is a block
coloring of D. Conversely, let χ be a block coloring of C(b) such that all but two color classes of χ consist of blocks through
a given point R ∈ b. Let P and Q be the two exceptional points of b. The incidence matrix M∗ of the (χ, b)-paramodification
D∗ differs from M in the rows that correspond to P and Q . □

In a Steiner 2-design, a set of points is called collinear, if all elements are incident with some block b. A Pasch
configuration consists of six points P1, . . . , P6 such that the triples {P1, P3, P4}, {P1, P5, P6}, {P2, P3, P5}, {P2, P4, P6} are
collinear. The design is anti-Pasch if it does not contain any Pasch configuration. Pasch configurations are known to play
an important role in switches of Steiner 2-designs.

Proposition 3.3. Let D be an anti-Pasch 2-(n, k, 1) design. If

n < 2k3 − 8k2 + 13k − 6,

then no switching can be carried out for D.

Proof. Each point is incident with r = (n − 1)/(k − 1) blocks, and the condition is

(k − 1)(k − 2) + 1 >
1
2
(r − 1).

ssume that a switching can be carried out with respect to the points R,Q . Let C(Q , R) be the set of blocks containing
precisely one of Q and R. The 2(r − 1) blocks are colored with two colors, say red and blue such that blocks with the
ame color intersect in Q or R. As the switching is non-trivial, there are both red and blue blocks on Q . We can assume
hat at least half of the blocks on Q are red. Let a be a blue block on Q , incident with the points Q , A1, . . . , Ak−1. For
each i ∈ {1, . . . , k − 1}, the block RAi is all red; let R, Ai, Pi1, . . . , Pi,k−2 be its points. If the points Q , Pis, Pjt are collinear
with i ̸= j, then the six points Q , R, Ai, Aj, Pis, Pjt form a Pasch configuration. Hence, the blocks QPis are different for all
i ∈ {1, . . . , k − 1} and s ∈ {1, . . . , k − 2}. Moreover, QPis is blue since it meets the red RAi. This shows that there are at
least (k − 1)(k − 2) + 1 blue blocks on Q , a contradiction. □
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. Paramodification for classes of 2-designs

In this section, we discuss the paramodification of certain well-known classes of Steiner 2-designs.

.1. Projective and affine planes

The case of a finite projective plane is trivial. While the case of a finite affine plane is easy, we are not aware of any
ccurrence of this construction in the literature, and we give a detailed proof.

roposition 4.1.

(i) Paramodifications of a finite projective plane are isomorphic. In other words, finite projective planes are para-rigid.
(ii) Paramodifications of a finite affine plane are associated with the same projective plane.

Proof. (i) Let D be a projective plane of order q. For any line b, Db is an affine plane of order q with a unique parallelism.
Hence, the proper block colorings of C(b) are equivalent, and the corresponding paramodifications are isomorphic.

(ii) Let D = (P,B, I) be an affine plane of order q. D can be embedded in a projective plane Π =
(
P̄, B̄, Ī

)
of order q,

and Π is unique up to isomorphism. We show that any paramodification D∗

χ,b of D can be embedded in Π . This is obvious
if χ and χb are equivalent. From now on, we assume that this is not the case, that is, there are distinct lines ℓ1, ℓ2 ∈ C(b)
such that χ (ℓ1) = χ (ℓ2) and ℓ1 ∩ ℓ2 ̸∈ b. Not meeting on b and being disjoint off b, the lines ℓ1, ℓ2 must be parallel in D.
Take a third line ℓ3 ∈ C(b) in the same color class, ℓ3 ̸= ℓ1, ℓ2. At least one of ℓ1 ∩ ℓ3, ℓ2 ∩ ℓ3 does not lie on b, we must
have ℓ1∥ℓ2∥ℓ3. Being of the same size q, the color class of ℓ1 coincides with its parallel class.

We claim that any color class κ of χ is a parallel class of D. To show this, it suffices to find two lines m1,m2 ∈ κ such
that m1 ∩ m2 ̸∈ b. Then, the argument above proves that κ is indeed a parallel class. Fix m1 ∈ κ and define Q = m1 ∩ b.
Let ℓ be the unique line which is parallel to ℓ1 and incident with Q . Then ℓ ̸∈ κ , and therefore κ has a line m2 which is
ot incident with Q . Hence, m1 ∩ m2 ̸∈ b, and the claim follows.
Let ℓ∞ be the line at infinity with respect to D in Π . For the (affine) point P ∈ b, let ε(P) be the infinite point of the

arallel class χ−1(P). For P ∈ P \ b, we put ε(P) = P . It is straightforward to show that ε is an embedding of D∗

χ,b in Π ,
hich finishes the proof. □

emark 4.2. Let D be a finite Desarguesian affine plane. While D is not para-rigid, it is isomorphic to any of its
aramodifications.

.2. Steiner triple systems

A Steiner triple system STS(n) is a 2-(n, 3, 1) design; an STS(n) exists if and only if n ≡ 1, 3 (mod 6). Steiner triples
ystems, cubic graphs (regular graphs of degree 3), and edge colorings are much connected from different points of view.
or example, many recent papers deal with edge colorings of cubic graphs by Steiner triples systems, see [11] and the
eferences therein. Our approach seems to have in common with the study of cubic trades in Steiner triples systems [6].

Let T = (P,B, I) be an STS(n) and fix a triple b = {x, y, z} ∈ B. Then, the meaning of Lemma 2.2 is that Tb is a simple
ubic graph whose edges can be colored by three colors. Vizing’s celebrated edge-coloring theorem asserts that any cubic
raph can be edge-colored by three or four colors in such a way that adjacent edges receive distinct colors. While three
olors are not enough to color all cubic graphs, and the corresponding decision problem is difficult [14]. Paramodifications
f T correspond to edge 3-colorings of Tb. Let Γ be an edge 3-colored cubic graph. The union of two color classes is a
egular subgraph of degree 2; hence it is the disjoint union of cycles of even length. Let γ = {v1, . . . , v2m} be such a
ycle. By switching the two colors in γ we obtain a new edge 3-coloring of Γ which is equivalent to the original one if
nd only if n = 2m + 1. Recently, cycles in cubic graphs, their length and especially Hamiltonian cycles are a central and
ell-studied topic in graph theory, see [5,8,10,24]. The authors of this paper are not aware of any results which could
elp to describe the structure of edge 3-colored cubic graphs, which occur as Tb for a Steiner triples system T.
We close this subsection by formulating an open problem on para-rigid Steiner triples systems. Notice that the Steiner

riple system T is para-rigid, if the cubic graph Tb has a unique edge 3-coloring for each block b.

roblem 4.3. Are there para-rigid Steiner triple systems?

This problem could be tested on anti-Pasch (quadrilateral-free) Steiner triple systems, for which switching gives
othing. Anti-Pasch Steiner triple systems are very scarce, see [22] and the references therein.

.3. Unitals with many translation centers

The idea of the paramodification of Steiner 2-designs has been motivated by the following construction of Grundhöfer,
troppel and Van Maldeghem [12]. Our presentation restricts to the finite case.
Let q be an integer, G a group of order q3 − q. Let T be a subgroup of order q such that conjugates T g and T h have

rivial intersection unless they coincide (i.e., the conjugacy class TG forms a T.I. set). Assume that there is a subgroup S of
rder q + 1 and a collection D of subsets of G such that
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(D1) each set D ∈ D contains 1,
(D2) any D ∈ D has size q + 1,
(D3) |D| = q − 2.
(D4) For each D ∈ D, the map (D × D) \ {(x, x) | x ∈ D} → G : (x, y) → xy−1 is injective.

Furthermore, we assume that the following property holds:

(P) The system consisting of S \ {1}, all conjugates of T \ {1} and all sets

D∗
:= {xy−1

| x, y ∈ D, x ̸= y}

with D ∈ D forms a partition of G \ {1}.

We define an incidence structure with point set P = G ∪ [∞] and block set B = B∞
∪ {[∞]}, where

B∞
:= {Sg | g ∈ G} ∪ {T hg | h, g ∈ G} ∪ {Dg | D ∈ D, g ∈ G}

and the block at infinity

[∞] = {T h
| h ∈ G}

consists of the conjugates of T in G. We define two incidence relations I and I♭. For both, g ∈ G and b ∈ B∞ are incident
if and only if g ∈ b. Moreover, the points on the block at infinity [∞] are precisely the conjugates of T . One defines the
incidence between an affine block and a point at infinity in two different ways.

(a) Make each T h incident with each coset T hg−1
g = gT h (and no other block in B∞). This gives an incidence structure

UD = (P,B, I).
(b) Make each conjugate T h incident with each coset T hg (and no other block in B∞). This gives an incidence structure

U♭D = (P,B, I♭).

Then both UD and U♭D are linear spaces and the following hold.

(i) UD and U♭D are 2-(q3 + 1, q + 1, 1) designs; i.e., unitals of order q.
(ii) Via multiplication from the right on G and conjugation on the point row of [∞], the group G acts as a group of

automorphisms on UD .
(iii) On UD the group G also acts by automorphisms via multiplication from the right on G but trivially on the point

row of [∞].
(iv) On the unital UD each conjugate of T acts as a group of translations. Thus each point on the block [∞] is a translation

center, and G is two-transitive on [∞].
(v) On the unital U♭D the group G contains no translation except the trivial one.

It is immediate that UD and U♭D are paramodifications. Indeed, the set

C([∞]) = {T hg | h, g ∈ G}

f blocks consists of right cosets of a conjugate of T , which are at the same time left cosets of another conjugate of T .
ith b′

= T hg = gT hg
∈ C([∞]), the two block colorings are

χ (b′) = T h, χ ♭(b′) = T hg .

Starting with G = SU(2, q), the subgroups T , S and the system D can be chosen such that UD is isomorphic to the
classical Hermitian unital of order q, and U♭D is isomorphic to Grüning’s unital [13], embedded in Hall planes and their
duals, see [12, Section 3.1]. In particular, Grüning’s unitals are paramodifications of the classical Hermitian unitals.

In [12], the authors construct two more non-classical unitals UE , U
♭
E of order 4. In this case, G = SU(2, 4) ∼= SL(2, 4) ∼=

A5. Using a computer, Verena Möhler (Karlsruhe) [23] found further non-classical unitals of the form UD and U♭D for
G = SL(2, 8).

We finish this section with an observation on finite Hermitian unitals.

Proposition 4.4. Finite Hermitian unitals have no switchings, but they do have non-trivial paramodifications.

Proof. By O’Nan’s result [26, Section 3, Proposition], there are no Pasch configurations in a Hermitian unital H(q) of finite
order q. The parameters n = q3 + 1 and k = q + 1 satisfy n < 2k3 − 8k2 + 13k − 6. Hence, Proposition 3.3 implies that
H(q) has no switchings. However, as mentioned above, Grüning’s unitals are non-isomorphic paramodifications of finite
Hermitian unitals. □
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. Effective computation of block colorings

Let D = (P,B, I) be a Steiner 2-(n, k, 1) design. Let b ∈ B be a block and consider the subsystem Db = (P \ b, C(b), I).
We are interested in the effective computation of all block colorings of Db to construct new Steiner 2-designs of given
parameters by paramodification. We formulate the problem in the language of vertex colorings of simple graphs, which
is known to be NP-complete in general. However, there are methods to deal with it for certain ranges of parameters. We
compare two methods, the first one is based on clique partitions, and the other is based on integer linear programming.

The line graph Γ = (V , E) of Db is defined by V = C(b), and (b1, b2) ∈ E if and only if b1 and b2 have a unique point
P ̸∈ b in common. A straightforward consequence of Lemma 2.2 is that Γ is a (k − 1)2-regular simple graph. A proper
block coloring χ : C(b) → b of the subsystem Db is equivalent with a proper vertex coloring of the graph Γ using k colors.
We can make this equivalence more precise by using the notion of vertex b-colorings. The latter has been introduced by
Irving and Manlove [15], see also the recent survey paper [17] with special emphasis on the complexity and algorithmic
aspects of computing the b-chromatic number of a simple graph.

Definition 5.1. Let G = (V , E) be a simple graph and χ : V → C a proper vertex coloring. The vertex v ∈ V is called
dominant, if for any color c ′

∈ C \ {χ (v)} there is a neighbor v′ of v such that χ (v′) = c ′. The coloring χ is said to be a
b-coloring if there is at least one dominant vertex in each color class.

Lemma 5.2. The map χ : C(b) → b is a proper block coloring of Db if and only if it is a b-coloring of the line graph Γ of Db.

Proof. If χ is a b-coloring of Γ , then it is also a proper block coloring of Db trivially. Let χ : C(b) → b be a proper block
oloring of Db using k colors. We show that each block β is a dominant vertex of Γ . Fix a point P ∈ β \ b. By Lemma 2.2,
here are precisely k blocks in C(b) incident with P; hence these k blocks (including the block β) form a k-clique in Γ .
herefore the block coloring χ must assign different colors to these k blocks, which means that every block in the clique
s dominant, and the blocks are colored with k different colors. □

.1. Colorings by the set cover method

One way to compute all b-colorings of the graph Γ is to find all solutions of a set cover problem of independent
ets. In fact, a color class is an independent set of size K = (n − k) /(k − 1) and the k color classes of a coloring χ are
airwise disjoint. The first step is to compute the set Y of independent K -sets of Γ . In the second step, one constructs
he graph Γ ∗ with vertex set Y and edges (S1, S2) with disjoint S1, S2. In the last step, we determine all cliques of size k
f Γ ∗. Using the GRAPE package [29] of GAP [7], this approach is easy to implement. Moreover, GRAPE allows the user
o exploit the automorphism group of the Steiner 2-design D and the automorphism group of the graph Γ , which makes
he computation quite efficient.

.2. Colorings by integer linear programming

The b-coloring problem can be formulated as an integer linear programming (ILP) problem [17, Section 8.4], for an exact
ormulation see [19, Section 2]. Most of the ILP solvers are optimized to find one solution to each problem. However, for
ur block coloring problem, we are interested in finding all solutions. Up to our knowledge, this is only possible with the
ILP solver SCIP [9].
As mentioned above, there are many ways to give the ILP formulation of a graph coloring problem. The assignment-

ased model [16, Subsection 2.2] is the standard formulation of the vertex coloring problem. This formulation uses only
inary variables, one for each color and one for each vertex-color pair, and the objective is to minimize the number of
sed colors. Since we are only interested in k-colorings, this allows us to simplify the model slightly.
There are other approaches as well, based on partial ordering, like POP and POP2 [16, Section 3]. The idea is to

ntroduce a partial ordering on the union of the vertices and the color set, and encode these relations with binary
ariables. The authors also provide the relation between these new variables and the variables occurring in the standard
ssignment-based model.
A drawback of the ILP formulations is that, in contrast to the set cover method, it is hard to make use of the symmetry

f the underlying graph. We conclude that since GRAPE is very efficient in coping with symmetries of a line graph, it is
etter suited to compute all paramodifications of a given Steiner 2-design.

. Paramodification of unitals of orders 3 and 4

In this section we present computational results on paramodifications of known small unitals. In this way we construct
73 new unitals of order 3, and 25 641 new unitals of order 4. We study the following classes of abstract unitals of order
t most 6:

Class BBT: 909 unitals of order 3 by Betten, Betten and Tonchev [4].
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Table 1
Distribution of the sizes of the paramodification classes.
Size of class Nr of classes in Ψ3 Nr of classes in Ψ4

Isolated vertex 3182 1458
2–5 466 99
6–10 35 13
11–100 13 16
101–1000 14
1342 1∗

1478 1∗

2557 1∗

3487 1∗

4035 1∗

7596 1∗

Table 2
Mean and maximal run-times of different methods in milliseconds of 30 random KNP
unitals and a random block.
Method Mean Maximum

Set cover (GAP) 142 316
Assignment (SCIP) 3369 9 804
POP (SCIP) 4082 12 266
POP2 (SCIP) 4444 14 707

Class KRC: 4 466 unitals of order 3 by Krčadinac [20]. This class contains all abstract unitals of order 3 with a
non-trivial automorphism group. 722 of the BBT unitals appear in KRC.

Class KNP: 1777 unitals of order 4 by Krčadinac, Nakić and Pavčević [21],

Class BB: two cyclic unitals of orders 4 and 6 by Bagchi and Bagchi [2]. The cyclic BB unital of order 4 is contained
in KNP, as well.

We access the libraries of small unitals and carry out the computations using the GAP package UnitalSZ [25]. If D is
a BB unital of order 6, then Db has a unique block coloring for each block b; that is, paramodification gives no new unitals
of order 6.

The paramodification graph Ψq for a given order q consists of one vertex for each equivalence class of unitals of
order q and with edges between two vertices whenever one can get from one equivalence class to the other via a
paramodification. As paramodifications are reversible, we may consider undirected graphs. The connected components
of the paramodification graph are called paramodification classes. Paramodification graphs are defined analogously to
switching graphs in [27].

We carried out computations to determine the paramodification classes of Ψ3 and Ψ4, containing at least one unital
from the classes BBT, KRC or KNP. For the case of order 3, we found all such classes, resulting 173 new unitals of order
3. This subgraph of Ψ3 is complete in the sense that all paramodifications of all vertices are known, see Table 1.

Consider the switching graph on the unitals from the classes BBT, KRC, and the newly found 173 paramodifications of
them. As switches are special cases of paramodifications, this switching graph is a subgraph of the graph mentioned
above. By restricting the type of transformations to switches, we lose 623 edges between the unitals in contrast to
paramodifications, and only 131 of the new 173 unitals are reachable via switching. In the paramodification subgraph,
there are 3182 isolated vertices according to Table 1; in the switching graph, this number is 3525.

In the case of order 4, out of the 1 777 unitals of KNP, 1 458 turn out to be isolated vertices of Ψ4. By repeating
the paramodification step, we produced 25 641 new unitals of order 4. However, the graph is incomplete as it has
unfinished vertices; these are unitals whose paramodifications have not been computed yet. Not counting the isolated
vertices, the number of complete paramodification classes is 142. The remaining 6 classes are all incomplete, with
12 610 unfinished vertices in total. Concerning the growth of the connected components, it is hard to say anything
mathematically reasonable. The largest component with 7 596 known vertices has 8 vertices of KNP type, and its growth
in the breadth-first search is

8, 45, 425, 7118, ? ? ?

In Table 2, we present the comparison of run-times of different algorithms for the computation of (χ, b)-para-
modifications. The reader can find further scientific data on the paramodification of unitals on the web page https:
//davidmezofi.github.io/unitals/.

https://davidmezofi.github.io/unitals/
https://davidmezofi.github.io/unitals/
https://davidmezofi.github.io/unitals/
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