
Journal of Combinatorial Theory, Series A 204 (2024) 105851
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

journal homepage: www.elsevier.com/locate/jcta

Algebraic approach to the completeness problem for 

(k, n)-arcs in planes over finite fields

Gábor Korchmáros a, Gábor P. Nagy b,c,∗, Tamás Szőnyi d,e

a Dipartimento di Matematica, Informatica ed Economia, Università degli Studi 
della Basilicata, viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
b Bolyai Institute University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, 
Hungary
c Department of Algebra Budapest University of Technology and Economics, 
Műegyetem rkp. 3, H-1111 Budapest, Hungary
d Institute of Mathematics, ELTE Eötvös Loránd University and HUN-REN-ELTE 
Geometric and Algebraic Combinatorics Research Group, Pázmány Péter sétány 
1/C, H-1117 Budapest, Hungary
e FAMNIT, University of Primorska, Glagoljaska 8, 6000 Koper, Slovenia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 February 2023
Received in revised form 29 
November 2023
Accepted 4 December 2023
Available online xxxx

Keywords:
(k, n)-arcs in PG(2, q)
Algebraic curves
Galois theory

In a projective plane over a finite field, complete (k, n)-arcs 
with few characters are rare but interesting objects with 
several applications to finite geometry and coding theory. 
Since almost all known examples are large, the construction of 
small ones, with k close to the order of the plane, is considered 
a hard problem. A natural candidate to be a small (k, n)-arc 
with few characters is the set Ω(C) of the points of a plane 
curve C of degree n (containing no linear components) such 
that some line meets C transversally in the plane, i.e. in n
pairwise distinct points. Let C be either the Hermitian curve 
of degree q + 1 in PG(2, q2r) with r ≥ 1, or the rational 
BKS curve of degree q + 1 in PG(2, qr) with q odd and 
r ≥ 1. Then Ω(C) has four and seven characters, respectively. 
Furthermore, Ω(C) is small as both curves are either maximal 
or minimal. The completeness problem is investigated by an 
algebraic approach based on Galois theory and on the Hasse-
Weil lower bound. Our main result for the Hermitian case is 
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that Ω(C) is complete for r ≥ 4. For the rational BKS curve, 
Ω(C) is complete if and only if r is even. If r is odd then the 
uncovered points by the (q + 1)-secants to Ω(C) are exactly 
the points in PG(2, q) not lying in Ω(C). Adding those points 
to Ω(C) produces a complete (k, q + 1)-arc in PG(2, qr), with 
k = qr + q. The above results do not hold true for r = 2 and 
there remain open the case r = 3 for the Hermitian curve, 
and the cases r = 3, 4 for the rational BKS curve. As a by 
product we also obtain two results of interest in the study of 
the Galois inverse problem for PGL(2, q).
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let k, n with 2 ≤ n < k be two positive integers. In the projective plane PG(2, q) over 
a finite field Fq of order q, a (k, n)-arc is point-set K of size k such that n is the maximum 
number of collinear points in K. The concept of a (k, n)-arc has a useful interpretation in 
coding theory as the matrix whose columns are the projective coordinates of the points 
in the arc in PG(2, q) is the parity check matrix of a [k, 3, k − n]q almost MDS code 
which is non-extendible if and only if the corresponding (k, n)-arc is complete. Here, 
completeness means that the (k, n)-arc is maximal (not contained properly in a larger 
(k′, n)-arc), in other words each point off the (k, n)-arc in PG(2, q) is incident to some 
n-secant i.e. lines meeting the (k, n)-arc in exactly n points. An (incidence) character 
ni of a (k, n)-arc K is any integer 0 ≤ ni ≤ n such that some line meets K in exactly 
ni points. The foundation of the theory of (k, n)-arcs with special attention on their 
characters was laid down in the 1950s by B. Segre and A. Barlotti.

In the smallest case n = 2, plenty of results and constructions are known, especially 
for larger complete (k, 2)-arcs; see [16]. In particular, the maximum size of a (k, 2)-arc is 
q + 1 or q + 2 according as q odd or even. In the odd order case, the (q + 1, 2)-arcs are 
exactly the sets consisting of all points of an irreducible conic, whereas the classification 
of (q + 2, 2)-arcs is still open. The second and third largest (k, 2)-arcs have also been 
studied intensively. On the other end, there is an elementary lower bound for the size of 
a complete arc, due to Lunelli and Sce, see [16, Theorem 9.12], and a slight improvement 
in Theorem 9.13. Probabilistic methods show the existence of complete (k, 2)-arcs for 
k = O(√q logc q) with a positive constant c. Several effective constructions for small 
(k, 2)-arcs are available in the literature (see e.g. [25]), the best explicit example so far 
is for k = O(q3/4).

Our current knowledge of (k, n)-arcs with n ≥ 3 is much less although well known 
combinatorial structures embedded in PG(2, q), such as unitals, nets and other designs, 
provide inspiring examples of (k, n)-arcs with few characters. The upper bound on k for 
(k, n)-arcs is due to Barlotti (see [16], Corollary 12.5), and Ball, Blokhuis and Mazzocca 
[7] showed that it cannot be attained in PG(2, q), q odd. More details can be found 
in Chapter 12 of [16]. There is also a combinatorial lower bound, due to Alabdullah 
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and Hirschfeld [2], analogous to the Lunelli-Sce bound. In this case one can also apply 
probabilistic methods, and as well as effective constructions, in particular when n is 
enough large compared to q. Since (k, n)-arcs are truly combinatorial objects, counting 
arguments and incidence geometry are prevalent in their studies. Algebraic and geo-
metric methods combined with combinatorics have also been successfully developed to 
construct and investigate new and interesting families of (k, n)-arcs, the principal tools 
being polarities, geometric transformations, groups of symmetries, and algebraic curves. 
Nevertheless, the study of (k, n)-arcs is still hard whenever it requires that the (k, n)-arc 
be complete with only few characters and small size k ≈ q.

A natural candidate to be such a complete (k, n)-arc is the set of the points of a plane 
curve C of degree n (containing no linear components over Fq) such that some line of 
PG(2, q) meets C transversally in PG(2, q), i.e. in n pairwise distinct points in PG(2, q). 
The most interesting families of complete (k, n)-arcs with very few characters are of 
this kind including Baer subplanes, ovals, classical unitals and Denniston type maximal 
arcs; see Section 3. In particular, the classical unital in PG(2, q2) consists of all points 
of the Hermitian curve Hq which is also well known in number theory as being the most 
important Fq2-maximal curve. Further examples of (k, n)-arcs consisting of the points 
of (Frobenius non-classical) curves are found in [14] and [8,10,13]. The work by J.W.P. 
Hirschfeld and F.J. Voloch for cubic curves, and by M. Giulietti and F. Torres for n ≥ 4, 
was the first important step towards a kind of sophisticated algebraic theory of (k, n)-
arcs arising from plane algebraic curves. A main result in this theory concerns plane 
curves of degree n defined over a subfield Fq̄ of Fq and viewed as a curve of PG(2, q): 
If q is large enough compared to the parameters of C, namely n and q̄, then the set of 
the points of any absolutely irreducible curve C of degree n in PG(2, q) is a (k, n)-arc of 
small size k ≈ q.

The algebraic theory approach is also adequate to deal with the completeness problem 
for such (k, n)-arcs even if it needs Galois theory in positive characteristic together with 
some Dirichlet or Čebotarev type density theorem; see the Bartoli-Micheli paper [6]
that finds its origin in previous work by Guralnick, Tucker, Zieve [15] and others on 
permutation polynomials. The essential idea is to express the condition that a point 
P ∈ PG(2, q) is incident with a line intersecting transversally C in PG(2, q) in terms of 
the Galois closure of the algebraic extension F |FP where F is the function field of C and 
FP is the rational subfield of F arising from the projection of C from P . The favorable 
situation occurs when the (geometric) Galois group Gal(F |FP ) is the symmetric group 
Symn on the roots of the polynomial associated with F |FP . In fact, for this case, a 
variant of the classical Čebotarev density theorem [21, Theorem 9.13B] works well and 
ensures the existence of a line � through P meeting transversally C in PG(2, q) provided 
that q is large enough compared to the two parameters of C, namely the degree of C and 
the order of the plane PG(2, q̄) where C is defined. For Gal(F |FP ) � Symn, the (k, n)-arc 
may not be complete; nevertheless completeness can still be achieved by adding some 
(at most O(n)) points; see [6]. As a corollary, see [6, Theorem 5.3], for all but finitely 
many n’s, if q is large enough, there are complete (k, n)-arcs of small size k ≈ q.
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The question arises whether complete (k, n)-arcs of small size k ≈ q can be obtained 
in this way for (almost) every q. As it appears plausible, at least intuitively, the choice of 
the curve is critical. We thoroughly work out two cases investigating the Hermitian curve 
Hq defined over Fq2 and the rational BKS curve Γq defined over Fq, respectively. Our 
main result for the Hermitian case is that for every r ≥ 4 the set Ω of points of Hq is a 
complete (k, q+1)-arc with only four characters 0, 1, 2, q+1 where k = q2r+1 ±qr+1(q−1)
according as r is odd or even; see Theorem 7.2. For the rational BKS case, the set Ω of 
the points in PG(2, qr) is a (k, q + 1)-arc with k = qr + 1 − 1

2q(q − 1) and characters 
0, 1, 2, 12 (q + 1), 12 (q + 3), q, q + 1. Furthermore, Ω is complete if and only if r is even. If 
r is odd, then the uncovered points by the (q + 1)-secants to Ω are exactly the points in 
PG(2, q) not lying in Ω. Adding those points to Ω produces a complete (k, q + 1)-arc in 
PG(2, qr), with k = qr + q; see Theorem 7.5.

The above results do not hold true for r = 2 and it remains open the case r = 3 for 
the Hermitian curve, and the cases r = 3, 4 for the rational BKS curve.

As a by product we also have the following two results of interest in the study of the 
Galois inverse problem.

Let K = F̄q2r(m) and L = K(u) where uq+1 + uqmq + um − ((ma − b)q + ma − b)
and aq+1 + bq + b �= 0. Then the geometric monodromy group of L|K is isomorphic to 
PGL(2, q), and the Galois closure M of L|K is M = F̄q2r (m, u, v, w) where

⎧⎪⎪⎨
⎪⎪⎩
uq+1 + uqmq + um− ((ma− b)q + ma− b) = 0;
vq + (u + mq)vq−1 + uq + m = 0;
v + u + mq − (u + mq)wq−1 = 0.

Let K = F̄qr(t) and L = K(u) where uq+1 + umq + um − (b − 2)(t − 1) − 1
2q + 1 and 

bq+1 − (aq + a) + (b2 − 4a)(q+1)/2 �= 0. Then the geometric monodromy group of L|K is 
isomorphic to PGL(2, q), and the Galois closure M of L|K is M = F̄qr(m, u, v, w) where

⎧⎪⎪⎨
⎪⎪⎩
uq+1 + muq + mu− (b− 2)(m− 1) − 1

2a + 1 = 0,
vq + (u + m)vq−1 + uq + m = 0,
v + u + m− (u + m)wq−1 = 0.

2. Outline of the proofs for the Hermitian case

Some more notation is needed: Hq denotes the (absolutely irreducible) Hermitian 
curve of homogeneous equation Y qZ + Y Zq +Xq+1 = 0 defined over Fq2 and viewed as 
an (absolutely) irreducible curve in PG(2, q2r) for r ≥ 3, and Ω stands for the set of all 
points of Hq in PG(2, q2r) where k = |Ω| with k = q2r +1 ± qr+1(q− 1) according as r is 
odd or even; see for instance [17, Chapter 10]. Then Ω is a (k, q + 1)-arc in PG(2, q2r). 
For r = 1, Ω is the classical unital, and hence it is a complete (q3 + 1, q + 1)-arc in 
PG(2, q2). This does not hold true for r = 2, as Ω in PG(2, q4) is contained in PG(2, q2)
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and hence no (q + 1)-secant to Ω covers a point P ∈ PG(2, q4) \PG(2, q2) provided that 
P is chosen on a tangent line to Hq.

To deal with the completeness problem in the general case, take any point P ∈
PG(2, q2r) not in PG(2, q2). Since PGU(3, q) leaves Ω invariant and preserves no line 
in PG(2, q2r), we may assume that P is not a point at infinity. Therefore we use affine 
coordinates with Z = 0 taken to be the line at infinity. Let P = (a, b). If �m denotes the 
(non-vertical) line through P with slope m, i.e. Y = m(X − a) + b, and

F (X) = Xq+1 + Xq(a + mq) + X(aq + m) + bq + b + aq+1 ∈ Fq2r [X]

then �m is a (q + 1)-secant to Ω if and only if F (X) has q + 1 pairwise distinct roots 
in Fq2r . Now, take an algebraic closure F̄ of Fq2 containing Fq2r , and look at F (X) as a 
polynomial with coefficients in the rational field K = F̄(m). Two cases are distinguished 
according as P lies in Ω or does not.

Assume first P /∈ Ω. Then F (X) is an irreducible separable polynomial over K. Take 
a root u of F (X) in some overfield of K, and define L = K(u) to be the algebraic 
extension of K by adjoining u. The field extension L|K is not Galois. The Galois closure 
M of L|K is the splitting field of F (X) over K, and the associated Galois group G =
Gal(M |K) is the geometric monodromy group of F (X) over K. We prove in our case 
that M = K(u, v, w). Our proof is based on Abhyankar’s work [1], especially on the 
concept of a twisted Abhyankar’s derivative of a polynomial. More precisely, we show in 
Section 5 that if the first Abhyankar derivative f1 of F is irreducible then the second 
Abhyankar derivative f2 of F splits into linear factors. By [1, Section 2], G acts faithfully 
on the roots of F as a sharply 3-transitive permutation group whose 2-point stabilizer is 
cyclic. From Zassenhaus’ classification of finite sharply 3-transitive permutation groups 
[28], G = PGL(2, q) follows. The missing piece in this argument, i.e. the irreducibility of 
f1, is proven in Section 6 where we rely on a classical theorem of van der Waerden [27]. 
The result G = PGL(2, q) is quite a surprising since in most cases 2-transitive geometric 
monodromy groups are either the symmetric group or the alternating group.

The next step is to show that the ramified places in the Galois extension M |K are as 
many as (q + 1)2. From this we deduce that G has q + 1 short orbits on the set of places 
of M and that it acts on each short orbit as PGL(2, q) in its 3-transitive permutation 
representation.

It turns out that the point P is covered by at least one (non-vertical) line �m if and 
only if M has at least one Fq2r -rational place unramified in the Galois extension M |K. 
Using Serre’s ramification theory [23], see also [17, Section 11.9] and [24, Section III.8], 
we are able to compute the genus g(M) of M . Actually, g(M) only depends on q, as 
2g(M) − 2 = q4 − q2 − 2q − 2 when no tangent to Hq at a point in PG(2, q2) passes 
through P . Results and arguments change a bit when P is covered by a tangent to Hq

at a point in PG(2, q2). In this case, 2g(M) − 2 = q4 − 3q2. Now, if

q2r + 1 > 2gqr + (q + 1)2 > qr+4 − qr+2 − 2qr+1 + q2 + 2q + 1,
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then the Hasse-Weil lower bound ensures the existence of m ∈ Fq2r such that the poly-
nomial F (X) has q + 1 pairwise distinct roots over Fq2 . Therefore, P is covered by a 
(q + 1)-secant to Ω. Thus r = 3 remains the only open case. A Magma aided search 
shows that if q = r = 3 then Ω is complete.

The case P ∈ Ω is treated analogously. Let P = P (a, b) with bq + b + aq+1 = 0, and

F (X) = Xq + Xq−1(a + tq) + (aq + t) ∈ Fq2r [X].

Then G acts faithfully on the roots of F (X) as a sharply 2-transitive permutation group, 
and G ∼= AGL(1, q). Furthermore, G fixes a place of M and has a unique non-trivial short 
orbit of size q. From this, g(M) = 1

2q(q − 1)2 follows. If

q2r + 1 > 2gqr + q + 1 > qr+3 − 2qr+2 + qr+1 + q + 1,

then the Hasse-Weil lower bound yields that P lies on a (q + 1)-secant to Ω. This is 
indeed the case since as r ≥ 3 has been assumed.

Polynomials of the form Xq+1 + αXq + βX + γ ∈ F(t) and their Galois closures 
have been the subject of several papers; see [6,11,18–20]. Actually, we were not able 
to apply those results to our work. For instance, [11, Section 4] and [18, Section 5.1]
provide a general sufficient condition in terms of α, β, γ for the existence of t0 ∈ Fqk

such that the polynomial Xq+1 + α(t0)Xq + β(t0)X + γ(t0) splits into pairwise distinct 
linear factors defined over Fqk . Unfortunately, that condition in our particular case, 
α = mq, β = m, γ = −((ma − b)q + (ma − b)), becomes too complicate to be applied to 
our case; see [11, Theorem 4.6], and [18, Theorem 8]. In the last few years, non-existence 
results for APN, PcN, APcN functions were obtained studying other type of polynomials 
and their Galois closures; see [3–5].

3. Preliminaries on absolutely irreducibility of polynomials and plane curves

Let

P (X) = Xq+1 + eXq + aX + b ∈ Fqs [X]. (1)

As Bluher [11] pointed out if ea �= b and a �= eq then the substitution of X by (eq+1 −
b)/(a −eq)X−e brings P (X) to the form Xq+1−BX+B where B = (a −eq)q+1/(b −ea)q ∈
F∗
qs . In particular, it has no multiple roots in F . Also, she proved that if Xq+1−BX +B

has at least three (distinct roots) then all the q + 1 roots are in Fqs ; see [11, Theorem 
4.3].

Result 3.1. Set either

P (X) =
{
Xq+1 + mqXq + mX − ((ma− b)q + ma− b) ∈ Fqs [X],
mq+1 + (ma− b)q + (ma− b) �= 0,
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or

P (X) =
{

2mXq+1 + (2m− 1)Xq + (2m− 1)X + m(2 − a) + b− 2 ∈ Fqs [X],
2am2 − 2mb + 1 �= 0.

Then P (X) has no multiple roots. Furthermore, if P (X) has at least three roots in Fqs

then all its q + 1 roots are in Fqs .

Lemma 3.2. Let a, b ∈ F such that F has no element t for which a = 2(t + 1)q+1 and 
b = 2 + tq + t. Then the plane curve C with affine equation

F (U, V ) = V (2(U + 1)q+1 − a) − Uq − U − 2 + b = 0

is irreducible.

Proof. The point at infinity V∞ is an ordinary singular point of C with multiplicity q+1. 
The tangent lines �i to C at V∞ have equations U − ui = 0 where (ui + 1)q+1 = 1

2a and 
i = 1, 2, . . . , q + 1. None of them is a linear component of C as b �= 2 + uq

i + ui. Moreover 
I(V∞, C∩�i) = q+2. If C is reducible, Segre’s criterium, [22, Lemma 8] applies to each �i. 
Therefore, P (U) =

∏q+1
i=1 (U−ui) divides F (U, V ). Since P (U) =

∏q+1
i=1 (U+1 −(ui+1)) =

(U+1)q+1− 1
2a, this yields F (U, V ) = (2(U+1)q+1−a)F1(U, V ) with deg(F1(U, V )) = 1. 

Thus (2(U +1)q+1−a)(V −F1(U, V )) − (Uq +U +(b −2)) would be the zero polynomial, 
a contradiction. Therefore, C is irreducible. �
Lemma 3.3. Let t ∈ F \ Fq2 . Then the plane curve C with affine equation

F (U, V ) = V (Uq−1 + 1) + Uq + tUq−1 + tq = 0

is irreducible.

Proof. For i = 1, . . . , q−1, let �i denote the line of equation U−ui = 0 with uq−1
i +1 = 0. 

If �i is a component of C then uq
i + tuq−1

i + tq = 0 and hence tq − t = ui. But then 
(tq − t)q−1 = −1 whence (tq − t)q = −(tq − t) from which tq

2 = t, that is, t ∈ Fq2 . 
Therefore, �i is not a component of C. Therefore, the point at infinity V∞ is an ordinary 
singular point of C with multiplicity q − 1, and the tangent lines �i to C at V∞ have 
equations U − ui = 0 where uq−1

i = −1 for i = 1, 2, . . . q − 1. Now, we argue as in the 
proof of Lemma 3.2. From Segre’s criterium, P (U) =

∏q−1
i=1 (U − ui) = Uq−1 + 1 divides 

F (U, V ). Thus F (U, V ) = (Uq−1 + 1)F1(U, V ) with deg(F1(U, V )) = 1 whence the claim 
follows. �
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4. (k, n)-arcs arising from the Hermitian curve and the rational BKS curve

4.1. The Hermitian curve and its geometry

Let Hq denote the Hermitian curve given in its canonical form of affine equation

Xq+1 + Y q + Y = 0. (2)

The properties of Hq pertinent to the present paper are: (i) Hq is non-singular of genus 
g = 1

2q(q−1), (ii) any line � of PG(2, q2) either meets Hq in q+1 pairwise distinct points 
all lying in PG(2, q2), or is a tangent to Hq at a point P ∈ PG(2, q2) and I(P, Hq ∩ �) =
q + 1, in particular, each common point of � with Hq lies in PG(2, q2), (iii) Ω is a 
complete (q3 + 1, q + 1)-arc with two characters namely 1 and q + 1, (iv) the subgroup 
of PGL(3, q2) which leaves Hq invariant is the projective unitary group PGU(3, q), (v) 
Hq is an Fq2-maximal curve and the set of its points lying in PG(2, q2) has size q3 + 1.

From now on, we focus on the case r ≥ 3. The set Ω consisting of all points of Hq lying 
in PG(2, q2r) has size equal to q2r + 1 ± qn+1(q − 1) according as r is odd or even [17, 
Chapter 10]. Fix a point P ∈ PG(2, q2r) not in PG(2, q2). Since PGL(3, q) does not leave 
the infinite line Z = 0 invariant, we may assume P /∈ �∞ and use affine coordinates. Then 
P = P (a, b) with a, b ∈ Fq2r . For any line � through P we determine its common points 
with Hq. If the vertical line coincides with � then Hq ∩ � comprises Y∞ together with the 
points P (a, t) such that t is the root of the polynomial F (Y ) = Y q + Y + aq+1 = 0. If 
one of the roots belongs to Fq2r then all do. Also, F (Y ) is separable and hence � is not a 
tangent to Hq. Now, let � be a line through P of equation Y = m(X − a) + b. Then the 
common points of � and Hq are the points P (ξ, η) such that ξ is a root of the polynomial

F (X) = Xq+1 + mqXq + mX − ((ma− b)q + ma− b) (3)

which can also be written as

F (X) = (Xq + m)(X + mq) − (mq+1 + (ma− b)q + (ma− b)). (4)

Then ξ is a multiple root if and only if ξ is a root of the polynomial dF/dX = Xq +m as 
well, that is, ξq+m = 0. From (4) this occurs if and only if mq+1+(ma −b)q+ma −b = 0. 
The polynomial G(T ) = T q+1 + (Ta − b)q + Ta − b has a multiple root if and only if 
bq + b + aq+1 = 0, that is, P (a, b) ∈ Hq. Therefore two cases arise. If P (a, b) /∈ Hq

then there exist q + 1 lines �m which are tangent to Hq and the tangency point of �m
is Pm = (− q

√
m, m(ξ − a) + b) with ξq = −m. Furthermore, �m also meets Hq in the 

point Rm = (−mq, m(ξ − a) + b) with ξ = −mq. It is possible that Pm = Rm and this 
occurs when ξq

2 − ξ = 0, that is, ξ ∈ Fq2 . In this case I(Pm, Hq ∩ �m) = q+1. Otherwise, 
Pm �= Rm where I(Pm, Hq ∩ �m) = q and I(Rm, Hq ∩ �m) = 1. If P ∈ Hq then Hq

has a unique tangent � at P where � has equation Y = −aq(X − a) + b = −aqX − bq. 
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Furthermore, R = (aq2
, bq

2) is another common point of Hq. Since P �= R by our 
assumption, I(P, Hq ∩ �) = q and I(R, Hq ∩ �)=1. Therefore, any tangent to Hq through 
P meets Ω in either one or two points, and in the former case the tangency point is in 
PG(2, q2). Take a line � be through P other than tangents �i. Then � ∩ Hq consists of 
q+1 pairwise distinct points lying in some extension of PG(2, q2r). Furthermore, if three 
of them are in PG(2, q2r) then each of them is in PG(2, q2r). In fact, if three roots of the 
polynomial F (T ) given in (3) belong to Fq2r then all do; see Result 3.1.

The above results show that the set Ω of all points of Hq in PG(2, q2r) with r ≥ 2 is 
a (k, q + 1)-arc with characters 0, 1, 2, q+ 1 where k = q2r + 1 ± qr+1(q− 1) according as 
r is odd or even.

4.2. The rational BKS curve and its geometry

For q odd, let C be the curve of affine equation

Y q+1 − (Xq + X) + (Y 2 − 2X)(q+1)/2 = 0. (5)

For the known properties of C; see [9, Proposition 4.24]: C has as many as 1
2q(q − 1)

singular points each of them being a node (ordinary doubly point) lying in PG(2, q) with 
both tangents defined over Fq2 . The singular points of C are exactly the internal points 
to the conic C2 of affine equation Y 2 − 2X = 0. The intersection of C with a tangent line 
� at a singular point P of C collapses into P . More precisely, if γ is a branch of C centered 
in P then the intersection multiplicity I(P, γ ∩ �) = q whereas I(P, δ ∩ �) = 1 for the 
other branch δ of C centered in P . The q + 1 points of C2 in PG(2, q) are also points of 
C. The intersection of C with the tangent line � at a point P ∈ C2 of C also collapses into 
P , that is, I(P, C ∩ �) = q + 1. The singular points of C together with the points of C2

lying in PG(2, q) form the set of size 1
2q(q − 1) + q + 1 consisting of all points of C lying 

in PG(2, q2). The projective closure D of C is invariant under the action of a subgroup 
G ∼= PGL(2, q) of PGL(3, q) which acts on C ∩ C2 as PGL(2, q) in its unique 3-transitive 
permutation representation. Since C has degree q + 1 and possesses 1

2q(q− 1) nodes, the 
genus of C equals zero and hence C is a rational curve. Thus C can be parametrized by 
a variable t over F = F̄q. More precisely, C consists of the points

P (t) = (2(t + 1)q+1, 2 + t + tq), t ∈ F̄∗
q ∪ {∞} (6)

where ∞ stands for the parameter of the point at infinity P∞ = (1 : 0 : 0). In this 
parametrization, P (t) ∈ PG(2, q) if and only if t ∈ Fq2 ∪ {∞} where either t ∈ Fq ∪ {∞}
or t ∈ Fq2 \ Fq holds according as P (t) ∈ C2 ∩ PG(2, q), or P (t) is an internal point to 
C2 in PG(2, q). In the latter case, case P (t) = P (tq). For the other points, P (t) = P (t′)
only occurs for t = t′, and P (t) ∈ PG(2, qr) with r ≥ 3 if and only t ∈ Fqr .

If a line � is defined over Fq then the above properties of C completely determine � ∩C: 
(i) If � is an external line to C2 in PG(2, q) then � ∩ C consists of 1 (q + 1) points each 
2
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being a double points of C; (ii) if � is a chord of C2 in PG(2, q) with � ∩ C2 = {R1, R2}
then � ∩C comprises R1, R2 and 1

2 (q− 1) points each being a double points of C; (iii) if �
is a tangent line to C2 in PG(2, q) with � ∩ C2 = {R} then the intersection collapses into 
the point R. This shows that the set Ω consisting of all points of C lying in PG(2, q) is a 
(k, n)-arc with k = 1

2q(q − 1) + q + 1 = 1
2 (q2 + q + 2), n = 1

2 (q + 3) and three characters 
1, 12 (q + 1), 12 (q + 3). In particular, Ω is not a (k, q + 1)-arc although it arises from a 
curve of degree q + 1. Moreover, since no point of PG(2, q2) \PG(2, q) belongs to C, the 
set consisting of all points of C lying in PG(2, q) will have the same three characters 
1, 12 (q + 1), 12 (q + 3).

In PG(2, qr) with r ≥ 1, fix a point P other than those of C lying in PG(2, q). We are 
going to study the possible intersection of C with a line � through P .

If � has equation X = a then � cuts out on C the points of parameters t that are 
the solutions of the equation (t + 1)q+1 + 1

2a = 0. If � has equation Y = b then the 
parameters of the points cut out by � on C are ∞ together with the solutions of the 
equation tq + t + 2 = b. If � has equation Y = 1

2 (X − a) + b then the points cut out by 
� on C have parameters t satisfying the equation tq+1 = 1 + 1

2a − b. In all three cases, 
the solutions of the equations are pairwise distinct and define distinct points of C unless 
one of the following cases occurs: either each of these points is counted twice and � is a 
line of PG(2, q), or a = 0, or b = 1

2a + 1 and t = 0 is the unique solution. In the latter 
two cases, � is a line of PG(2, q), as well, since � has equation X = 0 and Y = 1

2X + 1, 
respectively.

From now on, the line � through P (a, b) is assumed to be distinct from the lines of 
PG(2, q).

To determine when � is a tangent to C, we assume that � has slop m with m ∈ F , and 
m �= 0, 12 . Then the parameters t of the points of C cut out by �m are the roots of the 
polynomial m(2(T + 1)q+1 − a) − 2 − T q − T + b that is of

F (T ) = 2mT q+1 + (2m− 1)T q + (2m− 1)T + m(2 − a) + b− 2, (7)

Then t is a multiple root of f(T ) if and only if t is also a root of the polynomial 
dF (T )/dT = 2m(T+1)q−1. This together with F (t) = 0 yield (2m −1)tq+m(2 −a) +b −
2 = 0. Eliminating tq from the equations 2m(t +1)q = 1 and (2m −1)tq = −b −2m −ma +2
gives 2am2 − 2mb + 1 = 0. Furthermore, if m satisfies 2am2 − 2mb + 1 = 0 then

F (T ) = 1
2m (2mT + (2m− 1))(2mT q + (2m− 1)),

and the converse also holds. From this, if b2−2a �= 0 then through P = P (a, b) there are 
exactly two tangents to C: For a �= 0, the lines �i of equation Y = mi(X − a) + b with 
mi = (b ±

√
b2 − 2a)/(2a) while for a = 0 the line m1 of equation Y = 1

2b
−1X+b and the 

line r2 of equation X = 0. For b2 − 2a = 0, that is, for P ∈ C2 \ C, we have m1 = m2 and 
there is a unique tangent �1 to C where �1 has equation Y = b/(2a)(X−a) + b and hence 
is the tangent to C2 at P . Also, for i = 1, 2, �i has exactly two common points with C, 
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namely the points Pi, Qi whose parameters are (1 −2mi)/(2mi) and q
√

(1 − 2mi)/(2mi). 
Here, I(Pi, C ∩ �i) = 1 and I(Qi, C ∩ �i) = q unless Pi = Qi and I(Qi, C ∩ �i) = q + 1. 
In the latter exceptional case, mi ∈ Fq. Furthermore, �i is the tangent to C at Qi. This 
result holds true for r2 which is the tangent to C at O = (0, 0) where I(O, C∩r2) = q+1. 
From now on set r2 = m2. With this notation, m1, m2 are the tangents to C through 
P (a, b) where m1 = m2 if and only if P ∈ C2 \ C. In any case, mi ∈ Fq2r where mi ∈ Fqr

occurs whenever b2 − 2a is a square in Fqr . Accordingly, both tangency points Pi, Qi are 
in PG(2, q2r) or in PG(2, qr). Here, Pi = Qi is only possible when mi ∈ Fq. In particular, 
both P1 = Q1 and P2 = Q2 hold if and only if P is an external point to C2 in PG(2, q)
and the tangents through P to C and those to C2 coincide. Both tangents are lines of 
PG(2, q), and this case has already been discussed before.

Finally, let � be a line through P other than the tangents �i and ri. If � passes through 
a (unique) singular point R ∈ PG(2, q) of C then � ∩ C consists of R together with q − 1
pairwise distinct points lying in PG(2, qr) or in some extension of PG(2, qr). Otherwise, 
� ∩ C consists of q + 1 pairwise distinct points lying in PG(2, qr) or in some extension of 
PG(2, qr). As in the Hermitian case, if three of them are in PG(2, qr) then each of them 
is in PG(2, qr); see Result 3.1. Also, since each internal point to C corresponds to two 
parameters, Ω has size qr + 1 − 1

2q(q − 1)
From the above results, the set Ω of all points of C in PG(2, qr) with r ≥ 2 is a 

(qr + 1 − 1
2q(q − 1), q + 1)-arc of characters 0, 1, 2, 12(q + 1), 12 (q + 3), q, q + 1.

5. Abhyankar’s work

An important tool for the study of the action of the Galois group on the roots of its 
defining polynomial, whenever given by explicit equation, is Abhyankar’s skew derivative 
introduced in [1]. Let

f = f(T ) = Tm + a1T
m−1 + . . . + am (8)

be a separable, monic polynomial in the indeterminate T with coefficients ai in a field K. 
The splitting field M of f(T ) is generated by K together with the roots α1, α2, . . . , αm of 
f(T ), and the Galois group Gal(M |K) consists of all K-automorphisms of M . Further-
more, Gal(M |K) acts faithfully on the set Δ = {α1, α2, . . . , αm}, and it can be viewed 
as a permutation group on Δ named the Galois group Gal(f, K) of f (over K). The 
group Gal(f, K) is transitive on Δ if and only if f(T ) is irreducible (over K).

From now on assume that F (T ) is irreducible. Following [1, Section 4], we “throw 
away” a root of f(T ), say α1, and get

f1 = f1(T ) = f(T )
T − α1

= Tm−1 + b1T
m−1 + . . . + bm ∈ K(α1)[T ]. (9)

Then f1(T ) is irreducible over K(α1) if and only if Gal(f, K) is 2-transitive on Δ. As 
Abhyankar stressed in [1, Section 4], it does not matter which root of f(T ) we throw 
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away; for instance, the irreducibility of f1(T ) over K(α1) and, up to isomorphism, the 
Galois group Gal(f1, K(α1)) are independent of which root we call α1. Likewise, by 
throwing away s roots of f we get

fs = fs(T ) = f(T )
(T − α1) · · · (T − αs)

= Tm−s+d1T
m−s−1+. . .+dm−s ∈ K(α1, . . . , αs)[T ],

(10)
and fs is irreducible over K(α1, . . . , αs) for 1 ≤ s ≤ m if and only if Gal(f, K) is 
(s + 1)-transitive on Δ.

For any polynomial Θ = Θ(T ) in an indeterminate T with coefficients in a field L and 
for any element β ∈ L,

Θ(T + β) − Θ(β)
T

is the first Abhyankar’s twisted T -derivative of T at β; see [1, Art.33]. With this defi-
nition, the following result is stated in [1, pg. 93]: If f = f(T ) is a nonconstant monic 
irreducible polynomial in an indeterminate T with coefficients in a field K such that f
has no multiple root in any overfield of K, and if α is a root of f in some overfield of K, 
then by letting f ′ = f ′(T ) to be the twisted derivative of f at α we have that the Galois 
group Gal(f ′, K(α)) is the one-point stabilizer of the Galois group Gal(f, K).

5.1. The Hermitian case

Let K = F(m) be the rational field over an algebraically closed field F of positive 
characteristic p. Fix a power q of p. Consider the polynomial

f = f(T ) = T q+1 + mqT q + mT − ((ma− b)q + ma− b) ∈ F(m)[T ]. (11)

5.1.1. Case a, b ∈ F with aq+1 + bq + b �= 0

Lemma 5.1. f(T ) is irreducible over K.

Proof. In the Hermitian function field Hq = F(x, y) with yq + y − xq+1 = 0, let ϕ be 
rational map defined by ϕ(x) = x, ϕ(y) = (y− b)/(x − a). Clearly, ϕ is birational as y =
ϕ(y)(x −a) +b. Set m = ϕ(y). Let g = g(X, Y ) be a minimal polynomial of x and m. Then 
Hq coincides with the function field U = U(x, m) where g(x, m) = 0. Now, regard (11) as 
a polynomial f(X, Y ) over K with f(X, Y ) = Xq+1+Y qXq +XY −((Y a −b)q +Y a −b). 
Choose an irreducible non-constant factor h(X, Y ) ∈ F [X, Y ] of f(X, Y ). Take ξ, μ ∈ F

such that h(ξ, μ) = 0. Then f(ξ, μ) = 0 whence ηq + η − ξq+1 = 0 for η = μ(ξ − a) + b. 
This yields g(ξ, μ) = 0. From Study’s theorem [17, Theorem 2.10], h divides g. Since 
g is irreducible, this yields h = g. Assume on the contrary that (11) reducible. Then 
f(X, Y ) = cg(X, Y )i for i ≥ 2 and a non-zero constant c. Since deg(f(X, Y )) = 2q this 
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yields deg(g(X, Y )) ≤ q. On the other hand, Hq = U implies that these function fields 
have the same genus 1

2q(q − 1). But then deg(g(X, Y )) ≥ q + 1, a contradiction. �
We point out that the curve C of affine equation f(X, Y ) = 0 introduced in the proof 

has two singular points, namely the points at infinity of the X and Y axes. Actually, each 
other point of C is non-singular. In fact, fX(ξ, η) = 0 and fY (ξ, η) = 0 yield η = −ξq

and ξ = a, but f(ξ, η) = U(a, −aq) = −(aq+1 + bq + b) �= 0.
Let u be a root of f(T ) in some extension of K and put L = K(u). A straightforward 

computation shows that the first Abhyankar’s skew derivative of f at u is

f1 = f1(T ) = f(T + u) − f(u)
T

= T q + (u + mq)T q−1 + (m + uq) ∈ L[X]. (12)

Now we compute the second Abhyankar’s twisted derivative of f(T ), i.e. the Ab-
hyankar’s twisted derivative of f1(T ) at any v which is a root of f(T ) different from 
u.

f1(T ) − f1(v)
T

= T q−1 + (u + mq)vq−1 (T/v + 1)q−1 − 1
T

. (13)

Let Ψ(U) be the polynomial whose roots are those of f(T ) different from u and divided 
by v. This means replacing T with vU but preserving the splitting field M . Therefore,

Ψ(U) = vq−1Uq−1 + (u + mq)vq−2 (U + 1)q−1 − 1
U

=

whence Ψ(U) = vq−2(vUq−1 + (u +mq)((U + 1)q−2 + (U + 1)q−3 + . . .+ 1). We omit the 
factor vq−2. Then

Ψ(U) = vUq−1 + (u + mq)((U + 1)q−2 + (U + 1)q−3 + . . . + 1) =
vUq−1 − (u + mq)(U + 1)q−1 + (u + mq)((U + 1)q−1 + (U + 1)q−2 + . . . + 1) =
vUq−1 − (u + mq)(U + 1)q−1 + (u + mq)((U + 1)q − 1)/U) =
vUq−1 − (u + mq)(U + 1)q−1 + (u + mq)Uq−1 =
(v + u + mq)Uq−1 − (u + mq)(U + 1)q−1.

Let Γ(V ) = (v+u +mq) −(u +mq)(V +1)q−1 be the polynomial obtained by reciprocating 
the roots of Δ(U), i.e. replacing U with V = U−1. This does not alter the splitting field 
M . Finally, let Φ(W ) be the polynomial obtained by adding 1 to the roots of Γ(V ), i.e. 
replacing V by W = V + 1. Again, M is left invariant. Then

Φ(W ) = (v + u + mq) − (u + mq)W q−1. (14)

Therefore the second Abhyankar’s skew derivative of f(T ) at v is

f2(T ) = vq−2((v + u + mq)T q−1 − (u + mq)(T + v)q−1).
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We show that if f1(T ) is irreducible over K(u) then f2(T ) is irreducible over K(u, v). 
Assume on the contrary that Φ(W ) is reducible. Then there exist ρ ∈ K(u, v) together 
with a divisor d of (q− 1) such that ρd(u +mq) = v + u +mq, otherwise Φ(W ) defines a 
cyclic Kummer extension of K(u, v) of degree q−1; see for instance [24, Appendix A.13]. 
Let w = v(q−1)/d. Then vq + (u + mq)vq−1 + m + uq = (wρ)d(u + mq) + m + uq = 0, 
where (u + mq)(m + uq) �= 0. Since wρ ∈ K(u, v), and [K(u, v) : K(u)] = q this yields 
that wρ ∈ K(u). From Kummer’s theory, there exist τ ∈ K(u) together with a divisor 
r of d such that −(m + uq)/(mq + u) = τ r. Choose a root m0 ∈ F of the polynomial 
Y q+1 + (Y a − b)q + Y a − b and then u0 ∈ F such that uq

0 = −m0. Then P (m0, u0) is 
a point of the curve U with function field is F(m, u) where U is the curve C introduced 
in the proof of Lemma 5.1. As we have already shown after Lemma 5.1, U is non-
singular, as an affine curve. Therefore, P (m0, u0) is a non singular point and the tangent 
to U at P (m0, u0) is the line of equation U = m0. In particular, m − m0 is a local 
parameter at P (m0, u0). Therefore the valuation at P (m0, u0) gives vP (m0,u0)(uq +m) =
1. Furthermore, u0 +mq

0 �= 0 otherwise m ∈ Fq2 . Thus vP (m0,u0)(u +mq) = 0. Therefore

vP (m0,u0)

(uq + m

u + mq

)
= 1

which contradicts −(m + uq)/(mq + u) = τ q−1 with τ ∈ K(u) = F(m, u).
Let w be a root of F (t) other than u and v. The third Abhyankar’s skew derivative 

F3(T ) of f(T ) at w is obtained by means of the first Abhyankar’s skew derivative Φ1 =
Φ1(W ) of Φ(W ) at w. From (14),

Φ1(W ) = Φ(W + w) − Φ(w)
W

= −(u + mq)wq−2 (W/w + 1)q−1 − 1
W/w

whence

Φ1(W ) = −u + mq

w

q−1∏
i=1

(W + (1 − θi)w)

for a primitive (q−1)-root θ of unity in F . This shows that Φ1(W ) and hence f2(T )) is a 
completely reducible polynomial over K(u, v, w) = F(m, u, v, w). Moreover, Gal(M |K) is 
a sharply 3-transitive group on Δ such that the 2-point stabilizer is cyclic. From Zassen-
haus’ theorem [28], Gal(M/K) ∼= PGL(2, q), and Gal(M/K) acts on Δ as PGL(2, q) on 
the projective line over Fq.

Theorem 5.2. Suppose that f1(T ) is irreducible over K = F(m). Then f2(T ) is irre-
ducible over K(u), and M coincides with K(u, v, w) = F(m, u, v, w) where the extension 
K(u, v, w)|K(u, v) is cyclic of degree q − 1, and M = F(m, u, v, w) with



G. Korchmáros et al. / Journal of Combinatorial Theory, Series A 204 (2024) 105851 15
⎧⎪⎪⎨
⎪⎪⎩
uq+1 + mquq + mu− ((ma− b)q + (ma− b)) = 0,
vq + (u + mq)vq−1 + uq + m = 0,
v + u + mq − (u + mq)wq−1 = 0.

(15)

Gal(M |K) ∼= PGL(2, q) is generated by the following three automorphisms defined over 
Fq of order 2, p and q − 1 respectively.

ϕ(m) = m, ϕ(u) = v + u, ϕ(v) = −v, ϕ(w) = w−1,

ϕ(m) = m, ϕ(u) = u, ϕ(v) = vw(w + 1)−1, ϕ(w) = w + 1,
ϕ(m) = m, ϕ(u) = u, ϕ(v) = v, ϕ(w) = λw, λ ∈ F∗

q .

In particular, Gal(M |K) is defined over Fq2 .

Proof. We make some computation to show that the above maps are automorphisms of 
M . We begin with the first one.

(v + u)q+1 + mq(v + u)q + m(v + u) − ((ma− b)q + (ma− b)) − (uq+1+
mquq + mu− ((ma− b)q + (ma− b)) = vq+1 + vq(u + mq) + (u + mq)v = 0.
(−v)q + (u + v + mq)(−v)q−1 + (v + u)q + m =
−(vq − (u + v + mq)vq−1 − (vq + uq + m)) = 0.
−v + (v + u) + mq − (v + u + mq)w−(q+1) =
(u + mq) − (v + u + mq)w−(q+1) = 0

Now, the computation for the second map.

(vw)q(w + 1)−q + (u + mq)(vw)(q−1)(w + 1)−(q−1) + uq + m =
(w + 1)−q((vw)q + (u + mq)(vw)q−1(w + 1) + (uq + m)(wq + 1)) =
(w + 1)−q(vq−1wq(v + u + mq) + (u + mq)vq−1wq−1 + (uq + m)wq + uq + m) =
(w + 1)−q)((wq(vq + (u + mq)vq−1 + uq + m) + (u + mq)vq−1wq−1 + uq + m) =
(w + 1)−q(wq(vq + (u + mq)vq−1 + uq + m) + (u + mq) + vq−1wq−1 + uq + m) =
(w + 1)−q((u + mq)vq−1wq−1 + uq + m) =
(w + 1)−q(vq−1(v + u + mq) + uq + m) = 0.
(vw)(w + 1)−1 + u + mq − (u + mq)(1 + w)q−1 =
(w + 1)−1(vw + (u + mq)(w + 1) − (u + mq)(1 + w)q) =
(w + 1)−1(vw + (u + mq)w − (u + mq)wq + u + mq − (u + mq) =
(w + 1)−1(w(v + u + mq − (u + mq)wq−1) = 0.

Finally, for the third map.

v + u + mq − (u + mq)(λw)q−1 = v + u + mq − (u + mq)wq−1 = 0.

The group generated by the first and the third automorphisms is a dihedral group of 
order 2(q− 1) which is a maximal subgroup of PGL(2, q). Thus, these together with the 
second automorphism generate the whole Gal(M |K) = PGL(2, q). �
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Lemma 5.3. Let F be the affine algebraic curve in AG(3, F) with coordinates (X, Y, Z)
defined by

{
F1 = Xq+1 + Y qXq + Y X − ((Y a− b)q + (Y a− b)) = 0,
F2 = Zq + (X + Y q)Zq−1 + Xq + Y = 0,

(16)

where aq+1 + bq + b �= 0. Let S = (ξ, η, ζ) be a point of F such that ξ /∈ Fq2 and ζ �= 0. 
If either ξq + η = 0 or ξ + ηq = 0 then S is a non-singular point of F .

Proof. The Jacobian matrix of F is(
∂F1/∂X ∂F1/∂Y ∂F1/∂Z

∂F2/∂X ∂F2/∂Y ∂F2/∂Z

)
=

(
Xq + Y X − a 0
Zq−1 1 −Zq−2(X + Y q)

)

Therefore, if S is singular then J has rank 1, that is,⎧⎪⎪⎨
⎪⎪⎩
ξq + η − (ξ − a)ζq−1 = 0
(ξq + η)(ξ + ηq)ζq−2 = 0
(ξ − a)(ξ + ηq)ζq−2 = 0.

(17)

We begin with the case ξq+η = 0. By ζ �= 0 the first equation in (17) yields ξ = a whence 
η = −aq follows. Therefore, from the first equation in (16), we get aq+1 + bq + b = 0, a 
contradiction. Now, ξ+ ηq = 0 is assumed. From the first equation in (16), ζq + ξq + η =
0. Since ζ �= 0, this together with the second equation in (17) yield ζ + ξ − a = 0
whence ζq + ξq − aq = 0 follows. Thus, η = −aq. Now, the first equation in (16) yields 
aq+1 + bq + b = 0, a contradiction. �
5.1.2. Case a, b ∈ F with aq+1 + bq + b = 0

For this choice of a, b, the polynomial F (T ) defined in (11) is reducible as aq+1+bq+b =
0 yields F (a) = 0. Replacing T by T +a, F (T ) becomes T (T q+(a +mq)T q−1+(m +aq)). 
Then dividing it by T ,

g(T ) = T q + (a + mq)T q−1 + (m + aq) ∈ K[T ].

Lemma 5.4. g(T ) is irreducible over K.

Proof. Since g(T ) and h(T ) = (m + aq)T q + (a + mq)T + 1 ∈ K[T ] are simultaneously 
irreducible, it is enough to show that the plane curve U of affine equation U(X, Y ) =
(Y + aq)Xq + (a + Y q)X + 1 = 0 is non-singular. Since deg(U) = q + 1 and the line �∞
meets U in q + 1 pairwise distinct points, these points are non-singular. Furthermore, 
UX = Y q + a and UY = Xq. Since the system consisting of the equations U(X, Y ) =
0, Y q + a = 0, Xq = 0 has no solution, the claim follows. �
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Let u be a root of g(T ) in some overfield of K. Comparison of g(T ) with (12) shows 
that the computation in Section 5.1.1 carried out to obtain f2(T ) from f1(T ) can also 
be used to find the Abhyankar’s derivatives g1(T ) and g2(T ) of g(T ). From (14),

Φ(W ) = (u + a + mq) − (a + mq)W q−1.

Therefore, the first Abhyankar’s derivative g1(T ) of g(T ) is

g1(T ) = vq−2((u + a + mq)T q−1 − (a + mq)(T + u)q−1).

Moreover, the first Abhyankar’s derivative Φ1(T ) of Φ(T ) at v is,

Φ1(W ) = −a + mq

v

q−1∏
i=1

(W + (1 − θi)v).

From this, Φ1(W ) (and hence g2(T )) is a completely reducible polynomial over K(u, v) =
F(m, u, v).

Theorem 5.5. Let a ∈ F . Suppose that g1(T ) is irreducible over K(u). Then M coincides 
with K(u, v) = F(m, u, v), and the extension K(u, v)|K(u) is cyclic of degree (q − 1). 
Therefore M = F(m, u, v) with

{
uq + (a + mq)uq−1 + aq + m = 0,
u + a + mq − (a + mq)vq−1 = 0.

(18)

Moreover, Gal(M |K) is a sharply 2-transitive group on Δ such that the 1-point stabi-
lizer is cyclic. From Zassenhaus’ theorem [28], Gal(M/K) ∼= AGL(1, q), and Gal(M/K)
acts on Δ as AGL(1, q) on the affine line over Fq.

5.2. The rational BKS case

We use the same method as for the Hermitian case. For this purpose, it is useful to 
replace (2m − 1)/2m by m. Then (7) becomes the monic polynomial

f = f(T ) = T q+1 + mT q + mT − (b− 2)(m− 1) − 1
2a + 1 ∈ F [T ]. (19)

5.2.1. Case a, b ∈ F with bq+1 − (aq + a) + (b2 − 4a)(q+1)/2 �= 0
In this case P (a, b) /∈ C and hence there exists no t ∈ F such that a = 2(t + 1)q+1 and 

b = tq + t + 2. Therefore, Lemma 3.2 applies, and gives the following result.

Lemma 5.6. f(T ) is irreducible over K.
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Let u be a root of f(T ) in some extension of K and put L = K(u). A straightforward 
computation shows that the first Abhyankar’s skew derivative of f at u is

f1 = f1(T ) = f(T + u) − f(u)
T

= T q + (u + m)T q−1 + uq + m ∈ L[X]. (20)

Computation to obtain the second Abhyankar’s skew derivative of f(T ) can be carried 
out as in Section 5.1.1 determining first Φ(W ).

Φ(W ) = (v + u + m) − (u + m)W q−1. (21)

Therefore the second Abhyankar’s skew derivative of f(T ) at v

f2(T ) = vq−2((v + u + m)T q−1 − (u + m)(T + v)q−1).

Furthermore, if f1(T ) is irreducible then the arguments on the third Abhyankar’s skew 
derivative used in Section 5.1.1 remain valid in the present case whenever mq is replaced 
by m. In particular, f3(T ) is completely reducible over K(u, v) = F(m, u, v). Therefore, 
the following result holds.

Theorem 5.7. Suppose that f1(T ) is irreducible over K = F(m). Then f2(T ) is irre-
ducible over K(u), M coincides with K(u, v, w) = F(m, u, v, w) where the extension 
K(u, v, w)|K(u, v) is cyclic of degree q − 1, and M = F(m, u, v, w) with

⎧⎪⎪⎨
⎪⎪⎩
uq+1 + muq + mu− (b− 2)(m− 1) − 1

2a + 1 = 0,
vq + (u + m)vq−1 + uq + m = 0,
v + u + m− (u + m)wq−1 = 0.

(22)

As in the hermitian case, Gal(M |K) is a sharply 3-transitive group on Δ such that 
the 2-point stabilizer is cyclic. Gal(M/K) ∼= PGL(2, q) and Gal(M/K) acts on Δ as 
PGL(2, q) on the projective line over Fq.

5.2.2. Case a, b ∈ F with bq+1 − (aq + a) + (b2 − 4a)(q+1)/2 = 0
In this case, P (a, b) ∈ C and hence there exists t ∈ F such that a = 2(t + 1)q+1 and 

b = tq + t + 2. Replace T by T + t in (19). Then f(T ) = Tg(T ) where

g(T ) = T q + (m + t)T q−1 + m + tq. (23)

From now on we assume P (a, b) /∈ PG(2, q), i.e. t /∈ Fq2 . From Lemma 3.3 the following 
claim follows.

Lemma 5.8. g(T ) is irreducible over K.
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Now, the arguments in Section 5.1.2 remain valid if a is replaced by t. Therefore, the 
following result is obtained.

Theorem 5.9. Let t ∈ F \ Fq2 . Suppose that g1(T ) is irreducible over K(u). Then M
coincides with K(u, v) = F(m, u, v), and the extension K(u, v)|K(u) is cyclic of degree 
(q − 1). Therefore M = F(m, u, v) with

{
uq + (t + m)uq−1 + tq + m = 0,
u + t + m− (t + m)vq−1 = 0.

(24)

As in the hermitian case, Gal(M |K) is a sharply 2-transitive group on Δ such that 
the 1-point stabilizer is cyclic. Gal(M/K) ∼= AGL(1, q), and Gal(M/K) acts on Δ as 
AGL(1, q) on the affine line over Fq.

In the theorems of this section, Theorems 5.2, 5.5, 5.7 and 5.9, it is assumed that the 
first Abhyankar’s derivative is irreducible. Actually, this hypothesis can be dropped. Our 
proof requires a further tool, namely a classical theorem due to van der Waerden, and 
it is detailed in the following section.

6. van der Waerden’s theorem

In this section, L|K stands for a finite separable extension of function fields, M for 
its splitting field (equivalently, for its Galois closure), and G = Gal(M |K) for the Galois 
group. Also, A = Gal(M |L) denotes the Galois group of the Galois extension M |L. 
Furthermore, if P is a place of K and S is a set of all places of L over P , then e(S|P )
and f(S|P ) denote the ramification index and the relative degree for S ∈ S, and W is a 
place of M lying above P . Moreover, D(W |P ) is the decomposition group and I(W |P )
is the inertia group. Finally, f(x) denotes an irreducible polynomial over K such that 
L = K(α1) for f(α1) = 0.

Artin and later on van der Waerden investigated the action of D(W |P ) and I(W |P )
on the set of all roots of f(x) and, in particular, how their orbits are linked to the 
ramification picture of S. The following result is due to van der Waerden.

Result 6.1. ([27, Satz I]) Under the action of D(W |P ), the set of all roots of f(x) splits 
into as many as |S| orbits. Each D(W |P )-orbit consists of e(S|P )f(S|P ) roots of f(x)
while each I(W |P )-orbit does of e(S|P ).

In particular, if L|K is ramified at W then D(W |P ) is non-trivial.
We reproduce the proof of Result 6.1 using notation and terminology from [17,24].
Let S ∈ S, and take a place U of M lying over S, Since S lies over P , we have that U

is in the G-orbit of W . Therefore, there exists a gS ∈ G (not uniquely determined) such 
that gS(P ) = U . Clearly, the cosets AgS with S running over S give a partition of the 
G-orbit of W . Now, consider the sets AgSD(W |P ) with S ranging over S.
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 =
We show that if g ∈ AgSD(W |P ) for some S ∈ S then g−1(α1) and g−1
S (α1) fall in the 

same D(W |P )-orbit on {α1, . . . , αn}. Write g = agSd with a ∈ A and d ∈ D(W |P ). Then 
g−1 = d−1g−1

S a−1, and hence g−1(α1) = d−1(g−1
S (a−1(α1))) = d−1(g−1

S (α1)). Therefore, 
g−1(α1) can be viewed as the image of g−1

S (α1) by d−1. The converse also holds. In 
fact, let g−1(α1) = d−1(g−1

S (α1)). Then (gd−1g−1
S )(α1) = α1. Therefore, gd−1g−1

S fixes 
L element-wise as L = K(α1). Thus gd−1g−1

S ∈ A whence g = agSd ∈ AgSD(W |P ).
Since G is transitive on {α1, . . . , αn}, each αi = g(α1) for some g ∈ G. Therefore there 

exists a bijective correspondence between the places S ∈ Q and the D(W |P )-orbits on 
{α1, . . . , αn}. Since D(W |P ) is not transitive in general on {α1, . . . , αn} one can ask to 
compute the size of such a D(W |P )-orbit on {α1, . . . , αn}.

We show that e(S|P )f(S|P ) is the size of the corresponding D(W |P )-orbit on 
{α1, . . . , αn}. Take α ∈ {α1, . . . , αn}. Let D(W |P )α be the stabilizer of α in D(W |P ). 
Then the size of the D(W |P )-orbit of α is given by |D(W |P )|/|D(W |P )α|. We may 
think about D(W |P )α as the intersection of D(W |P ) with Gα. Take g ∈ G such that 
g−1(α1) = α. Then g−1Ag(α) = α and hence g−1Ag fixes K(α) element-wise. Therefore, 
Gα = g−1Ag. This yields

|D(W |P )|
|D(W |P )α|

= |D(W |P )|
|D(W |P ) ∩ g−1Ag|

Let g(W ) = U . When D(W |P ) = g−1D(U |P )g, and hence D(W |P ) ∩ g−1Ag =
g−1(D(U |P ) ∩A)g. Since |D(W |P |) = D(U |P ), we have

|D(W |P )|
|D(W |P )α|

= |D(U |P )|
|D(U |P ) ∩A| .

Since M |K is a Galois extension, |D(U |P )| = e(U |P )f(U |P ). Moreover, D(U |P ) ∩ A is 
the stabilizer of A at U . Since M |L is a Galois extension, we also have D(U |P ) ∩ A =
e(U |S)f(U |S). Therefore, the D(W |P ) orbit of α has size e(W |P )f(W |P )/e(W |Q)f(W |Q)
e(S|P )f(S|P ) whence the first claim follows.

Each D(S|P )-orbits on {α1, . . . , αn} splits further into I(S|P )-orbits. The above ar-
gument applied to I(W |P ) gives that the size of α under the action of I(D|P )-orbit 
is

|I(W |P )|
|I(W |P )α|

= |I(U |P )|
|I(U |P ) ∩A| = e(U |P )

e(U |Q) = e(Q|P ).

This ends the proof of Result 6.1.
Now we look inside the case where K = F̄q(t). Then the decomposition and inertia 

groups coincide. Let f(x) = xn+. . .+an−1(t)x +an(t) with ai(t) ∈ Fq[t] and deg ai(t) ≤ i. 
Let C be the irreducible (possible singular) plane curve of equation f(X, T ) = Xn+ . . .+
an−1(T )X + an(T ) = 0. Observe that X∞ /∈ C.

The places of K are the points of the projective line PG(1, F̄q). Let x1, . . . , xu(τ) be 
the roots of the polynomial f(X, τ) in the indeterminate X. Geometrically speaking, let 
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Q(τ, x1), . . . Q(τ, xv(τ)) be the centers of the branches γ1, . . . , γu(τ) of C whose centers 
lie over τ . Note that v(τ) ≥ u(τ). Let �τ be the vertical line through τ . From Bézout’s 
theorem,

v(τ)∑
i=1

I(γi ∩ �τ , Qi(τ)) = deg(C).

Therefore, 
∑v(τ)

i=1 e(γi|τ) = deg(f(X, T )) since I(γi ∩ �τ , Qi(τ)) is the ramification index 
of e(γi|τ). Result 6.1 shows that the D(R|τ) orbits on the set {α1, . . . , αn} are as many 
as the v(τ) orbits and that their sizes are ord(γ1), . . . , ord(γv(τ)). In particular, if γi
is linear then D(P |τ) has a fixed point. This occurs in particular when Qi(τ, αi) is a 
non-singular point and the tangent to C at that point is not the vertical line. It turns 
out that if each of the common points of C and � is non-singular and � is tangent to C
at exactly one point then D(R|P ) is a transposition on {α1, . . . , αn}.

If we drop the hypothesis deg ai(t) ≤ i, some changes are needed. Assume that X∞
is a point of C. Let γ be a branch of C centered at Y∞ with a primitive representation 
(x = x(t), y = y(t)), Two cases arise according as γ is a pole or not of x. In the latter 
case x(t) = cit

i + cjt
j + . . . with i ≥ 0 (and ord(y(t)) < 0). If i = 0 then x = c0 is the 

tangent of γ, and γ lies over the place c0 of K, and we have e(γ|c0) = j. If i ≥ 1 then 
x = 0 is the tangent of γ, and γ lies over the place 0 of K and e(γ|0) = i. Otherwise, 
i < 0 and the tangent line of γ is the line at infinity and γ lies over the place ∞ of K, 
and we have e(γ|∞) = −i.

We illustrate van der Waerden’s theorem on three polynomials related to the Her-
mitian curve and hence to the present work, namely f1(x) = xq+1 + tq+1 + 1, f2(x) =
xq − x − ωtq+1 = 0 with ωq−1 = −1, and f3(x) = xq + tqX + t = 0 defined over F̄q(t). 
It is worth mentioning that the splitting field of f3(x) gives rise a function field F̄q(x, t)
with xq + tqx + t = 0 which is maximal over Fq6 .

6.1. Example, Hermitian curve I

Let C be the Hermitian curve with affine equation Xq+1+T q+1+1 = 0. Let K = F̄q(t)
and L = K(x) with xq+1 + tq+1 + 1 = 0. Then L is a Galois extension of K (i.e. 
M = L) as Gal(L|K) consists of all automorphisms α of C with α(t) = t, α(x) = λx and 
λq+1 = 1. In particular, Gal(L|K) acts on the set of all roots of the polynomial f(X) =
Xq+1 + tq+1 +1 ∈ K[X] as a sharply transitive permutation group. Let t0 ∈ F̄q(t) ∪{∞}. 
Then vertical line � through the point U = (1 : 0 : 0) meets C in pairwise distinct points 
except for tq+1

0 = 0 in which case � is the tangent to C and I(C ∩ �, U) = q + 1 so that 
C ∩ � = {U}. From this van der Waerden’s theorem follows, since the stabilizer of any 
place of M in Gal(L|K) is trivial.
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6.2. Example, Hermitian curve II

Let C be the Hermitian curve with affine equation Xq −X −ωT q+1 = 0 with ωq−1 =
−1. Let K = F̄q(t) and L = K(x) with xq − x − ωtq+1 = 0. Then L is a Galois 
extension of K (i.e. M = L) as Gal(L|K) consists of all automorphisms α of C with 
α(t) = t, α(x) = x + a and a ∈ Fq. In particular, Gal(L|K) acts on the set of all roots 
of the polynomial f(X) = Xq − X − tq+1 ∈ K[X] as a sharply transitive permutation 
group. Let t0 ∈ F̄q(t). Then vertical line � through the point U = (t0, 0) meets C in 
q pairwise distinct points. C has a just one point at infinity, namely X∞. The unique 
branch γ∞ of C centered at X∞ has a primitive representation (t = s−q, s−1 + . . .) and 
hence e(γ∞|∞) = q. This yields van der Waerden’s theorem, as the stabilizer of any 
place of M in Gal(L|K) is trivial.

6.3. Example, Hermitian curve III

Let C be the curve with affine equation Xq + T qX + T = 0. It is known that C is 
(linearly) isomorphic to the Hermitian curve over Fq6 . Let K = F̄q(t) and L = K(x)
with xq + tqx + t = 0. Then the automorphism group of C fixing the points (t0, 0) of C is 
trivial. Therefore, L|K is not a Galois extension. Moreover, C has exactly two points at 
infinity, namely X∞ and T∞. The unique branch γ∞ of C centered at T∞ has a primitive 
representation (t = s−1, x = −s(q−1)(1 + . . .)) while the unique branch δ∞ of C centered 
at X∞ has a primitive representation (t = s−(q−1)(1 + . . .), x = s−q(1 + . . .)). Therefore, 
L has exactly two places (branches) lying over ∞ and e(γ∞|∞) = 1, e(δ∞|∞) = q − 1. 
Van der Waerden’s theorem shows that Gal(M |K) has a subgroup that has two orbits 
on the set {α1, . . . , αq} of all roots of f(X) = Xq+tqX+t = 0 ∈ K[x, ] of size 1 and q−1
respectively. Since Gal(M |K) is transitive on {α1, . . . , αq} this yields that Gal(M |K) is 
doubly transitive on {α1, . . . , αq}. We show that Gal(M |K) is sharply 2-transitive on 
{α1, . . . , αq}, and hence Gal(M |K) is the semidirect product of an elementary abelian 
group of order q by a cyclic complement of order q − 1 i.e. Gal(M/K) ∼= AGL(1, q). 
First we give an explicit equation for M . Let N be an extension of L of degree q − 1
defined by K(N) = K(x, t, y) with xq + xtq + t = 0, and yq−1 = tq. Clearly, the map 
ϕλ : (x, t, y) �→ (x, t, λy) with λ ∈ Fq

∗ is an automorphism of N which fixes L element-
wise, and Λ = {ϕλ|λ ∈ Fq

∗} is (cyclic) group of order q − 1. Since [N : L] = q − 1, 
this shows that N |L is a Galois extension with Gal(M |L) = Λ. Furthermore, for a fixed 
α ∈ Fq2 with αq−1 = −1, the map σα : (x, t, y) �→ (x + αy, t, y) is an automorphism 
of N which fixes t, and hence K element-wise. In fact, (x + αy)q + (x + αy)tq + t =
xq + xtq + t + αy(αq−1yq−1 + tq) = 0. Therefore, Σ = {σα|αq−1 = −1} ∪ {id} is an 
elementary abelian group of order q. Moreover, Σ together with Λ generate a group H of 
order q(q−1) which is the semidirect product of Σ with complement Λ. Clearly, H fixes t, 
and hence K element-wise. Let R be the fixed field of H, Then q(q−1) = |H| = [N : R]. 
Since [N : K] = q(q − 1), this yields K = R, that is, K is the fixed field of H. As 
K ≤ L ≤ N , this shows that M ≤ N up to a birational isomorphism. On the other 
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hand, |Gal(M |K)| ≥ q(q−1), as Gal(M |K) is a 2-transitive permutation group of degree 
q, Therefore N = M , up to a birational isomorphism. Eliminating t from the equations 
defining N shows that N = K(x, y) with yq−1 +xq2 +xqyq(q−1) = 0. Replacing xy−1 by ξ
and y−1 by η shows that M is birationally isomorphic to K(ξ, η) with ηq

2−q+1 +ξq
2 +ξq, 

and hence M ∼= K(ξ, η); ηq2−q+1 + ξq + ξ = 0. By a result of Tafazolian and Torres 
[26], M is Fq6 -covered by the Hermitian function field Fq6(Hq3). In particular, M is Fq6

maximal of genus g = 1
2q(q − 1)2 and is Galois subcover of Fq6(Hq3).

7. Case P /∈ Ω

We keep up our notation from Sections 5 and 6.

7.1. Hermitian case

We show that the irreducibility condition in Theorem 5.2 is fulfilled. We first prove that 
Gal(f, K) is 2-transitive on Δ. From Lemma 5.1, Gal(f, K) is transitive on Δ. Therefore, 
it is sufficient to prove that the 1-point stabilizer of Gal(f, K) on Δ is transitive on the 
remaining q points.

Consider the function field L = F(m, u) with uq+1+mquq+mu −(ma −b)q+(ma −b)) =
(uq + m)(u + mq) − (mq+1 + (ma − b)q + ma − b) = 0, as the algebraic extension L|K
of degree q + 1. Let mi ∈ F with i = 1, 2, . . . , q + 1 be the roots of the polynomial 
Y q+1 + (Y a − b)q + Y a − b ∈ F [Y ]. The results stated in Section 4.1 show that the 
tangents to Hq passing through the point P (a, b) are exactly the lines �i of equation 
Y = mi(x −a) +b. Furthermore, the tangency point on �i is Pi = Pi(− q

√
mi, mi(ξ−a) +b)

with I(Pi, Hq ∩ �i) = q, and the remaining intersection of �i with Hq is the point Ri =
(−mq

i , mi(−mq
i −a) +b) with I(Ri, Hq∩�i) = 1. Let Si be the set of places of K(u) lying 

over mi in the covering K(u)|K. Then Si = {Pi, Ri} and e(Pi|mi) = q and e(Ri|mi) = 1. 
Let Wi be a place of M lying over mi in the covering M |K. From Result 6.1, the inertia 
group I(Wi|mi) has two orbits on the set Δ of the roots of the polynomial (11), one of 
size q and another of size 1. Therefore, I(Wi|mi) as a subgroup of Gal(f, K) acting on 
Δ fixes a point and transitive on the remaining points.

By the results recalled in Section 5.1.1, the 2-transitivity of Gal(f, K) has the following 
implication.

Proposition 7.1. The first Abhyankar’s skew derivative f1(T ) of f(T ) given in (11) is an 
irreducible polynomial over K(u), and the irreducibility condition in Theorem 5.2 can be 
dropped.

Therefore, Theorem 5.2 applies and it determines the structure of Gal(M |K). In fact, 
Gal(M |K) turns out be a sharply 3-transitive group on Δ such that the 2-point stabilizer 
is cyclic. From Zassenhaus’ theorem [28], Gal(M/K) ∼= PGL(2, q), and Gal(M/K) acts 
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on Δ as PGL(2, q) on the projective line over Fq, in its unique 3-transitive permutation 
representation.

We go on by describing the set Wi of places of M lying over the place mi of K = F(m). 
As we have observed, the set Si of the places of K(u) lying over (mi) consists of two 
points Pi and Ri unless mi ∈ Fq2 in which case Pi = Ri and hence Si is reduced in a 
unique place. We treat these two cases separately using the equations in (15).

7.1.1. Case mi /∈ Fq2

We begin with Pi. The second equation in (15) together with Lemma 5.3 shows that
there exist exactly two places in K(u, v) lying over Pi, namely those with center at 
Pi,1 = (mi, ui, 0) and Pi,2 by (mi, ui, −ui−mq) respectively. Here e(Pi,1|Pi) = q− 1 and 
e(Pi,2|Pi) = 1. From the third equation in (15), there exist exactly q−1 pairwise distinct 
places of M lying over Pi,1, they are centered at P1,i,j = (mi, ui, 0, wj

i ) where wi ∈ Fq

is a fixed primitive (q − 1)-st root of unity. Here e(Pi,1,j|Pi,1) = 1. Let κ be the number 
of places of M lying over Pi,2. Then 1 ≤ κ ≤ q − 1, and all these places are centered at 
(mi, ui, −ui − mq

i , 0). We repeat the same argument for Ri which is the place of K(u)
centered at (mi, ui) with ui + mq

i = 0. From the second equation in (15), there exists a 
unique place of K(u, v) lying over Ri, identified by Ri,1 = (mi, ui, − q

√
uq
i + mi) where 

e(Ri,1|Ri) = q. Let ρ be the number of places of M lying over Ri,1. Then 1 ≤ ρ ≤ q− 1, 
and all these places are centered at the same point. Therefore, there are as many as 
q−1 +κ +ρ places of M lying over (mi). They form Wi which is an orbit under the action 
of Gal(M |K). Since Gal(M |K) ∼= PGL(2, q) and the 1-point stabilizer of Gal(M |K)
contains a subgroup of order q, the Dickson classification of subgroups [17, Theorem 
A.8] of PGL(2, q) yields that 1-point stabilizer has order q(q − 1)/r with r | (q − 1). 
Therefore |Wi| = (q + 1)r whence (q + 1)r = q − 1 + κ + ρ follows. From this r ≤ 2. For 
r = 2, the 1-point stabilizer of any subgroup of order q − 1 has order 1

2 (q − 1). On the 
other hand, case r = 2 may only occur when κ + ρ = q + 3 and hence one of κ and ρ is 
equal to q − 1 and the other is 4. Therefore, if r = 2 then the subgroup of Gal(M |K)
of order q − 1, namely Gal(M |K(u, v)), has an orbit of size 4 and hence its subgroup 
of order 1

2(q − 1) cannot fix a place in Wi. Thus r = 1 and |Wi| = q + 1. In particular, 
κ = ρ = 1.

7.1.2. Case mi ∈ Fq2

This time, there exists just one place in K(u, v) lying over Pi = Ri. Let T be a 
place of M lying over Pi in the covering M |K. From Result 6.1, the stabilizer of T in 
Gal(M |K) ∼= PGL(2, q) is transitive on the set Δ of the q + 1 roots of the polynomial 
(4), and hence its order is a multiple r(q + 1) of q + 1. From the Dickson classification 
of subgroups of PGL(2, q), either r = 1, or the stabilizer of T contains PSL(2, q). The 
latter case cannot actually occur, since the p-subgroup of an automorphism group of any 
function field fixing a place is a normal subgroup. Thus the stabilizer of T in Gal(M |K)
is a cyclic group of order q + 1, and hence |Wi| = q(q − 1).
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We are in a position to compute the genus g(M). For T ∈ W = ∪q+1
i=1Wi, let G(k)

T be 
the k-th ramification group of G at T ; see [17, Section 11.9] and [24, Section III.8]. Since 
GT is isomorphic to the 1-point stabilizer of PGL(2, q) in its action on the projective 
line, we have that GT is a semidirect product of an elementary abelian normal subgroup 
Sq of order q by a cyclic complement of order q − 1. Since the non-trivial elements in 
Sq form a unique conjugacy class in GT , the non-trivial ramification groups with k ≥ 1
coincide with Sq. Thus, for some positive integer s = si, i = 1, 2, . . . q + 1 depending 
only on Wi, Sq = G

(1)
T = · · · = G

(si)
T and G(k)

T = {1} with k > si. Two cases are treated 
separately according as there is a tangent to Hq at a point in PG(2, q2) which passes 
through P (a, b), or is not.

7.1.3. mi ∈ F \ Fq2 for i = 1, 2, . . . , q + 1
From the Hurwitz genus formula [17, Theorem 11.72] applied to the Galois covering 

M |K,

2g(M) − 2 = −2|PGL(2, q)| +
∑
T∈W

∑
k≥0

(|G(k)
T | − 1) (25a)

= −2(q3 − q) + (q + 1)2(q(q − 1) − 1)︸ ︷︷ ︸
summation for k = 0

+ (q + 1)
q+1∑
i=1

si(q − 1)
︸ ︷︷ ︸

summation for k ≥ 1

(25b)

= q4 − q3 − 2q2 − q − 1 + (q + 1)(q − 1)
q+1∑
i=1

si. (25c)

Notice that if m0 ∈ F is not a root of Y q+1 + (Y a − b)q + (Y a − b), and T is a place of 
M over (m0), then the stabilizer GT is trivial.

The subfield K(u) is isomorphic to the hermitian function field Hq, and the exten-
sion M |K(u) is Galois with Galois group Gal(M |K(u)) isomorphic to AGL(1, q). Since 
g(Hq) = 1

2q(q− 1), the Hurwitz genus formula [17, Theorem 11.72] applied to the Galois 
cover M |K(u) gives

2g(M) − 2 = |AGL(1, q)|(q(q − 1) − 2) +
∑
T∈W

∑
k≥0

(|G(k)
T | − 1) (26a)

= q(q − 1)(q(q − 1) − 2) + (q + 1)(q(q − 1) − 1) (26b)

+
q+1∑
i=1

si(q − 1) (26c)

+ (q + 1)q(q − 2). (26d)

= q4 − 2q2 − 2q − 1 + (q − 1)
q+1∑
i=1

si (26e)
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In the second term of (26b), we sum for the (unique) place T over Ri with k = 0, 
i = 1, . . . , q + 1. In (26c), for the same place T with k ≥ 1. In (26d), the summation is 
for the places T over Pi. There are q choices for T , GT has order q−1, and G(k)

T is trivial 
for k ≥ 1. If Q is a place of K(u) different from Pi, Ri, and T is a place of M over Q, 
then GT is trivial. This proves that the formula (26e) is correct.

Comparison of (25c) with (26e) yields 
∑q+1

i=1 si = q + 1. Since si ≥ 1, this yields 
s1 = . . . = sq+1 = 1. Therefore,

2g(M) − 2 = (q + 1)(q3 − q − 2) = q4 − q2 − 2q − 2. (27)

7.1.4. mi ∈ F \ Fq2 for i = 1, 2, . . . , q and mq+1 ∈ Fq2

The contribution of Wq+1 in the Hurwitz genus formula equals q2(q − 1). The above 
computation gives 

∑q
i=1 si = q and hence si = 1 for i = 1, . . . q. Therefore,

⎧⎪⎪⎨
⎪⎪⎩

2g(M) − 2 = −2|PGL(2, q)| +
∑

T∈W
∑

k≥0(|G
(k)
T | − 1)

= −2(q3 − q) + (q + 1)q(q(q − 1) − 1) +
∑q+1

i=1 si(q − 1)) + q2(q − 1)
= q4 − 3q2.

(28)

Theorem 7.2. Let k = q2r + 1 ± qr+1(q − 1) where ± is taken according as r is even or 
odd. In PG(2, q2r) with r ≥ 3, let Ω be the (k, q + 1)-arc consisting of all points of the 
Hermitian curve. If r > 3 then Ω is complete.

Proof. We show that some long orbit of Gal(M |K) consists of places defined over Fq2r . 
Since Gal(M |K) has exactly (q + 1) short orbits, each of size q + 1, M has as many as 
(q + 1)2 ramified places. By (27) and (28), the Hasse-Weil lower bound ensures at least 
q2r+1 −qr(q4−q2−2q) = q2r−qr+4+qr+2+2qr+1 places of M defined over Fq2r . For r > 3, 
this number is larger than (q+1)2. Therefore, as long as r > 3, M has a unramified place 
P0 over F2r. Since Gal(M |K) is defined over Fq2r (Theorem 5.2 and Proposition 7.1), 
the long orbit of P0 under the action of Gal(M |K) is entirely consists of places defined 
over Fq2r . Therefore, the place m0 of K lying under P0 has the required property, that 
is, the roots of the polynomial F (T ) = T q+1 + mq

0T
q + m0T − ((m0a − b)q + m0a − b)

are pairwise distinct and belong to Fq2r . �
7.2. The rational BKS case

Our goal is to show that Proposition 7.1 holds true for the rational BKS curve un-
less P ∈ PG(2, q). For this purpose, we proceed as in Section 7.1. First we prove the 
transitivity of the 1-point stabilizer of Gal(f, K) on the remaining q points of Δ.

This time, the function field L to be investigated is

L = F(m,u); 2muq+1 + (2m− 1)uq + (2m− 1)u + m(2 − a) + b− 2.
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The algebraic extension L|K of degree q + 1. For a �= 0, let mi ∈ F with i = 1, 2 be 
the roots of the polynomial 2aY 2 − 2bY + 1 ∈ F [Y ], i.e. mi = (b ±

√
b2 − 2a)/(2a), 

and let �i be the line of equation Y = mi(X − a) + b. For a = 0, let �1 be the line of 
equation Y = 1

2b
−1X + b and �2 be the line of equation X = 0. The results stated in 

Section 4.1 show that the tangents to C passing through the point P (a, b) are exactly 
the lines �i. Furthermore, �i has exactly two common points with C, namely the points 
Pi, Qi where I(Pi, C ∩ �i) = 1 and I(Qi, C ∩ �i) = q, unless Pi = Qi and I(Qi, C ∩
�i) = q + 1. In the latter exceptional case, mi ∈ Fq. If this occurs for i = 1, 2 then 
P (a, b) ∈ PG(2, q) \ C, i.e. P (a, b) is an external point to C2 in PG(2, q). Dismissing this 
case allows us to assume that I(P1, C ∩ �1) = 1 and I(Q1, C ∩ �1) = q. Therefore we may 
argue as in Section 7.1 and prove that the 1-point stabilizer of Gal(f, K) is transitive on 
the remaining q points of Δ. From this, Gal(f, K) is a 2-transitive permutation group 
on Δ. More precisely, Gal(f, K) ∼= PGL(2, q) and it acts on Δ as PGL(2, q) in its unique 
3-transitive permutation representation on the projective line over Fq.

Therefore, the following result is obtained.

Proposition 7.3. Assume that P (a, b) /∈ PG(2, q). Then the first Abhyankar’s skew deriva-
tive f1(T ) of f(T ) given in (20) is an irreducible polynomial over K(u), and the irre-
ducibility condition in Theorem 5.2 can be dropped.

For q = 11, r = 3, Magma computation shows that the dismissed case, P (a, b) ∈
PGL(2, q) is a real exception for Proposition 7.3, as Gal(f, K) has order 2(q+1) in that 
case.

From now on we assume P (a, b) /∈ PG(2, q). For i = 1, 2, let Wi be the set of places of 
M lying over the place mi of K = F(m) ∪{∞}. We distinguish two cases, called general 
and special, according as Pi and Qi are distinct or coinciding.

For the general case, we may proceed as in Section 7.1.
Assume first that m1 �= m2. In this case, Gal(M |K) has exactly two short orbits on 

M , namely W1 and W2, both of size q + 1, and the action of Gal(M |K) ∼= PGL(2, q) on 
Wi is the same as on Δ. From the Hurwitz genus formula [17, Theorem 11.72] applied 
to the Galois covering M |K,

{
2g(M) − 2 = −2|PGL(2, q)| +

∑
T∈W

∑
i≥0(|G

(i)
T | − 1)

= −2(q3 − q) + 2(q + 1)(q(q − 1) − 1 + s(q − 1)).
(29)

The subfield K(u) of M is a Galois cover of M with Galois group Gal(M |K(u) isomorphic 
to AGL(1, q). Since K(u) is the function field of C which is a rational curve, we have 
g(K(u)) = 0, the Hurwitz genus formula [17, Theorem 11.72] applied to the Galois 
covering M |K(u) gives

{
2g(M) − 2 = −2|AGL(1, q)| +

∑
T∈W

∑
i≥0(|G

(i)
T | − 1)

= −2q(q − 1) + 2[(q(q − 1) − 1 + s(q − 1) + q(q − 2)].
(30)
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Comparison of (29) with (30) yields s = 1 whence 2g(M) − 2 = 2q2 − 2q − 4 follows.
Assume now that m1 = m2. Then W1 = W2, and W1 is the only short orbit of 

Gal(M |K) on M . The above computation gives

{
2g(M) − 2 = −2|PGL(2, q)| +

∑
T∈W

∑
i≥0(|G

(i)
T | − 1)

= −2(q3 − q) + (q + 1)(q(q − 1) − 1 + s(q − 1)).
(31)

and {
2g(M) − 2 = −2|AGL(1, q)| +

∑
T∈W

∑
i≥0(|G

(i)
T | − 1)

= −2q(q − 1) + (q(q − 1) − 1 + s(q − 1) + q(q − 2).
(32)

From this, s = q + 1 follows. Therefore 2g(M) − 2 = q2 − q − 2.
In the special case, m1 �= m2 with m1 /∈ Fq, m2 ∈ Fq and P1 �= Q1, P2 = Q2. Let W2

be the set of the places of M lying over P2. Since there exists a unique place of K(u, v)
lying over P2, [M : K] = |PGL(2, q)| = q(q+1)(q−1) together with K(u, v) : K] = q+1
yield |W2| ≤ q(q − 1). Therefore 1-point stabilizer G1 of Gal(M : K) ∼= PGL(2, q) in 
W2 has order at least q + 1, say λ(q + 1) with a divisor λ of q(q − 1). Actually, λ = 1. 
In fact, G1 is always solvable and its subgroups of order prime to p are cyclic, see [17, 
Lemma 11.44], hence the claim follows from [17, Theorem A.8] which is a corollary to 
the Dickson’s classification of subgroups of PSL(2, q). Therefore G1 is a cyclic group 
of order q + 1, and |W2| = q(q − 1). Thus Gal(M |K) has two short orbits, namely W1
and W2 where |W1| = q + 1 and Gal(M |K) acts on W1 as its 3-transitive permutation 
representation on PG(1, q) whereas W2| = q(q − 1) and Gal(M |K) acts on W2 as on 
the sets consisting of its cyclic subgroups of order q + 1, and the action is by conjugacy. 
From the Hurwitz genus formula [17, Theorem 11.72] applied to the Galois cover M |K,

{
2g(M) − 2 = −2|PGL(2, q)| +

∑
T∈W

∑
i≥0(|G

(i)
T | − 1)

= −2(q3 − q) + (q + 1)(q(q − 1) − 1 + s(q − 1)) + q2(q − 1).
(33)

and {
2g(M) − 2 = −2|AGL(1, q)| +

∑
T∈W

∑
i≥0(|G

(i)
T | − 1)

= −2q(q − 1) + (q(q − 1) − 1 + s(q − 1) + q(q − 2).
(34)

This is only possible for s = 1. Therefore 2g(M) − 2 = 0, and hence g(M) = 0.
Thus the following claim is proven.

Lemma 7.4. In the general case, either g(M) = q2−q−1, or g(M) = 1
2 (q2−q) according 

as m1 �= m2, or m1 = m2. In the special case, M is a rational function field.

We are in a position to prove the following theorem.
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Theorem 7.5. Let k = q3+1 − 1
2q(q−1). In PG(2, qr) with r ≥ 5, let Ω be the (k, q+1)-arc 

consisting of all points of the rational BKS curve. For even r, Ω is complete. If r is odd 
then the points which are uncovered by the (q + 1)-secants to Ω are exactly the points in 
PG(2, q) not lying in Ω. Adding those points to Ω produces a complete (k, q + 1)-arc in 
PG(2, qr), r odd, with k = q3 + q + 1.

Proof. The Čebotarev type argument in the proof of Theorem 7.2 in Section 7.1 can be 
used to deal with both the general and special cases.

In the general case, if m1 �= m2, the Hasse-Weil lower bound [17, Theorem 9.18]
ensures at least qr + 1 − 2qr/2(q2 − q − 1) = qr − 2qr/2+2 + 2qr/2+1 + 2qr/2 places of 
M defined over Fqr . For r > 3, this number is larger than (q + 1) + q(q − 1) = q2 + 1
which is the number of ramified places of M under the action of Gal(M |K). Therefore, 
as long as r ≥ 5, M has a unramified place P0 over F2r. From this, as in the proof of 
Theorem 7.2, the claim follows. If m1 = m2, the same computation with the Hasse-Weil 
lower bound proves the existence of a unramified place of M defined over Fqr as far as 
qr + 1 − qr/2+2 − qr/2+1 − (q + 1) > 0, i.e. q ≥ 5.

In the special case, M is rational and hence it has exactly qr +1 places. Furthermore, 
(q + 1) + q2 − q = q2 + 1 is the number of the places of M which are ramified under 
the action of Gal(G|K). Therefore, for r ≥ 3, M has a unramified place over Fr and the 
claim can be proven as in the general cases.

We are left with the case where m1, m2 ∈ Fq and P (a, b) ∈ PG(2, q) \Ω. As mentioned 
in Section 4.2, a linear automorphism group G ∼= PGL(2, q) of PG(2, q) leaves C invariant 
and acts transitively on the external points to C in PG(2, q). Moreover, the line at infinity 
meets C only in X∞ = (1 : 0 : 0). Therefore, we may assume that P is the point at infinity 
Y∞ = (0 : 1 : 0) so that the line at infinity is not a (q+1)-secant to Ω. We show that Y∞
is covered by a (q+1)-secant to Ω in PG(2, qr) if and only if r is even. Let P ∈ PG(2, qr)
be a point of C with parameter t1 ∈ Fqr . Then the vertical line through P meets C in the 
points Pi with parameters ti such that (ti + 1)q+1 = (τ + 1)q+1. Then t + 1 = λ(τ + 1)
with λq+1 = 1. Therefore, Pi ∈ PG(2, qr) for i = 1, 2, . . . , q+1 if and only if q+1 divides 
qr − 1 whence the claim follows. �

8. Case P ∈ Ω

We keep our notation from Sections 5.2 and 5.2.2. As in Section 7, our first step is to 
show if the irreducibility condition in Theorems 5.5 and 5.9 is fulfilled. For this purpose, 
it is sufficient the 2-transitivity of Gal(g, K) one the set Δ = {α1, . . . , αq} of the roots 
of the polynomial g(T ). Since Gal(g, K) is transitive by Lemmas 5.4 and 5.8, we may 
limit ourselves to investigate whether the 1-point stabilizer of Gal(g, K) is transitive.
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8.1. Hermitian case

We may assume that P /∈ PG(2, q2). From Section 4.1, P is incident with two tangent 
lines to Hq, say �m1 and �m2 where P is the tangency point of �m1 while �m2 is tangent 
to Hq at the point R whose Frobenius image is P , i.e. R = R(α, β) with αq2 = a, βq2 = b. 
Moreover, �1 meets Hq in another point P ′ which is the Frobenius image of P . Since 
P = P (a, b), we have aq + m1 = 0 and a + mq

2 = 0.
Therefore, exactly two places of K(u) lie over m1. They are identified by P1 = (m1, 0)

and P2 = (m1, −(a + mq
1)) where e(P1|m1) = q − 1 and e(P2|m1) = 1. Instead, there 

exists just one place of K(u) lying over m2 identified by R1 = (m2, − q
√
aq + m2) where 

e(R1|m2) = q. Furthermore, there are (q − 1) places of M over P1 identified by T1,i =
(m1, 0, vi1) where v1 is a primitive (q − 1)-st root of unity. Also, there exists a unique 
place of M lying over P2 identified by T2 = (m1, −(a +mq

1), 0), and unique place over R
identified by T3 = (m2, − q

√
aq + m2, ∞).

From Result 6.1, the inertia group I(T2|m1) has two orbits on the set Δ of the roots 
of g(T ), one of size q − 1 and another of size 1. Therefore, I(T1|m1) as a subgroup 
of Gal(g, K) acting on Δ fixes a point and transitive on the remaining points. Thus 
Gal(g, K) is 2-transitive on Δ. Therefore g1(T ) is irreducible over K and Gal(M |K)
acts on Δ as a sharply 2-transitive permutation group (of order q(q − 1)).

Let W1 = {T1,i, T2|i = 0, 1 . . . , q − 2} and W2 = {T3}. Then W1 and W2 are the 
only short orbits of Gal(M |K). Since Gal(M |K) ∼= AGL(1, q), Gal(M |K) has a cyclic 
subgroup Λ of order q − 1 that fixes a root of g(T ). We may assume that u is that 
root. Then the fixed field of Λ is K(u) = F(m, u). As we have shown, F(m, u) has a 
non-singular plane model of degree q, and hence g(K(u)) = 1

2q(q − 1). Furthermore, Λ
has exactly two fixed places, namely T2 and T3. From the Hurwitz genus formula [17, 
Theorem 11.72] applied to the Galois covering M |K(u),

2g(M) − 2 = (q − 1)(q(q − 1 − 2) + 2(q − 2) = q(q − 1)2 − 2. (35)

Now, if

q2r + 1 > 2gqr + q + 1 > qr+3 − 2qr+2 + qr+1 + q + 1,

then the Hasse-Weil lower bound yields that P lies on a (q + 1)-secant to Ω. In fact, the 
arguments in the proof of Theorem 7.2 also work for this case and provide a proof for 
the following result.

Theorem 8.1. Let k = q2r + 1 ± qr+1(q − 1) where ± is taken according as r is even or 
odd. In PG(2, q2r) with r ≥ 3, let Ω be the (k, q + 1)-arc consisting of all points of the 
Hermitian curve. If r > 3 then each point of Ω is covered by some (q + 1)-secant to Ω.

For r = 3, the results stated in Section 6.3 are sufficient to determine the number nP

of (q+1)-secants to Hq through any point P ∈ PG(2, q6) \PG(2, q2) lying in Hq. We may 
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assume Hq in its canonical form Xq + T qX + T = 0 over Fq6 . Since the automorphism 
group of Hq has two orbits in PG(2, q6), one consisting of its points in PG(2, q2), we may 
also assume P = X∞. As the Galois closure M is a maximal curve of genus 12q(q−1)2, it 
has as many as q6 + 1 + q(q− 1)2q3 points in PG(2, q6). Moreover, the Galois extension 
M |L(u) has degree q(q−1) where L(u) is the function field of Hq. Therefore, nP q(q−1) =
q6 +1 + q(q−1)2q3 − (q+1)2 whence nP = 2q4 + q2 + q+1 follows. A direct proof based 
on norms and traces in finite fields is also possible. This was pointed out by B. Csajbók 
[12].

8.2. The rational BKS case

We begin with case P /∈ PG(2, q). From Section 4.2, P is incident with two tangent 
lines to C, say �m1 and �m2 where P is the tangency point of �m1 while �m2 is tangent to 
C at the point R whose Frobenius image is P . As in Section 5.2, we replace 2m/(1 −2m)
by m so that we may use equation (19). Then, if P has parameter t ∈ F , then the tangent 
line �1 at P has slope −tq and meets C in another point, namely that with parameter tq.

Thus, exactly two places of K(u) lie over t. They are identified by P1 = (−tq, 0) and 
P2 = (−tq, tq − t). Moreover, there exists just one place over −t identified by R1 =
(−t, q

√
t− tq). Furthermore, there are (q − 1) places of M over P1 identified by T1,i =

(−tq, 0, −vi1) where v1 is a primitive (q − 1)-st root of unity. Also, there exists a unique 
place of M lying over P2 identified by T2 = (−tq, tq − t, 0), and unique place over R
identified by T3 = (−t, − q

√
t− tq, ∞). This ramification picture is analog of that in 

Section 8. In particular, Result 6.1 yields that the inertia group I(T2| − t) has two orbits 
on the set Δ of the roots of g(T ), one of size q − 1 and another of size 1. Therefore, 
I(T1| − t) as a subgroup of Gal(g, K) acting on Δ fixes a point and transitive on the 
remaining points. Thus Gal(M |K) is 2-transitive and g1(T ) is irreducible over K. More 
precisely, Gal(g, K) acts on Δ as a sharply 2-transitive permutation group (of order 
q(q− 1)). As in Section 8, we introduce W1, W2, Λ and u. This time the fixed field of Λ, 
that is, F(m, u) given in (23) which a rational curve. From the Hurwitz genus formula 
[17, Theorem 11.72] applied to the Galois covering M |K(u),

2g(M) − 2 = −2(q + 1) + 2(q − 2) = −2. (36)

Thus M is a rational function field, and hence it has exactly qr + 1 places over Fq. 
Therefore, the number of long orbits of Gal(M |K) defined over Fqr is equal to (qr + 1 −
(q + 1))/(q(q − 1)) = 1 + q + . . . + qr−2.

Now, suppose that P ∈ PG(2, q). If P is an internal point to C2 then P is a singular 
point. Clearly, no singular point of C is covered by a (q+1)-secant to C as deg(C) = q+1. 
Therefore, we are left with the case where P ∈ C2. As mentioned in Section 4.2, a linear 
automorphism group G ∼= PGL(2, q) of PG(2, q) leaves C invariant and acts transitively 
on the points of C2 in PG(2, q) Therefore, we may assume P = X∞(1 : 0 : 0). Take point 
R ∈ C with parameter t0 ∈ Fqr \ Fq2 . The horizontal line � through R meets C in the 
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points with parameters t such that tq + t +2 = tq0 + t0 = 2, that is, (t − t0)q +(t − t0) = 0. 
Then t = t0 + τ with τ ∈ Fq. Hence t ∈ Fqr \ Fq2 . Thus the common points of � and C
are pairwise distinct and each lies in PG(2, qr).

Therefore the following result is obtained.

Theorem 8.2. Let k = q3+1 − 1
2q(q−1). In PG(2, qr) with r ≥ 3, let Ω be the (k, q+1)-arc 

consisting of all points of the rational BKS curve. Then the points of Ω uncovered by the 
(q + 1)-secants to Ω are exactly the points of PG(2, q) lying in Ω.
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