
1/32https://jkms.org

ABSTRACT

Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The 
relationship between external risk factors and our genetics have not been well established. 
It is widely acknowledged that environmental influence and individual behaviours play a 
significant role in CVD vulnerability, leading to the development of polygenic risk scores 
(PRS). We employed the PRISMA search method to locate pertinent research and literature 
to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. 
Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We 
summarized the recent advances in our understanding of the use of AI-based PRS for risk 
prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations 
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and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD 
risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS 
calculators by incorporating a larger variety of genetic and non-genetic components, 
allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is 
possible to significantly reduce the dimensionality of huge genomic datasets, resulting in 
more accurate and effective disease risk prediction models. Our study highlighted that the 
AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, 
using AI-based methods to calculate PRS may increase the precision of risk predictions for 
CVD and have significant ramifications for individualized prevention and treatment plans.

Keywords: Cardiovascular Disease; Genomics; Polygenic Risk Score; Artificial Intelligence; 
Precision Medicine

INTRODUCTION

Cardiovascular disease (CVD) is the most prevalent cause of fatalities worldwide and is a 
global medical concern. According to a recent study by Benjamin et al.1, just in the United 
States, in 2017, there were 69,255 more resident deaths (2,813,503) than there were in 
2016. Additionally, 17.8 million deaths worldwide (an increase of 21.1% from 2007) were 
due to CVD in 2017. Moreover, the global burden of CVD is predicted to rise significantly 
over the next few decades, driven by aging populations and unhealthy lifestyle habits.2 
While behavioral and environmental factors are known to contribute to CVD development, 
genetic factors also play a substantial role.3-5 As the science develops in high-throughput 
genotyping technologies,6,7 particularly genome-wide association studies (GWAS),8-10 have 
identified numerous genetic loci that are robustly associated with various CVD subtypes,11,12 
including coronary artery disease (CAD),13-15 coronary heart disease,16-18 heart failure,19 
and atrial fibrillation.20 These discoveries present opportunities for precision medicine and 
personalized interventions, but pose significant computational and analytical challenges. 
This is due to the vast amounts of genomic and clinical data generated by these studies, 
which necessitate the application of advanced machine learning (ML) and artificial 
intelligence (AI) algorithms for accurate and efficient analysis.21-24

AI comprises a group of methods that draw on concepts like ML and deep learning 
(DL)25-36 which can be applied to integrate and decipher complicated and vast amounts of 
genetic and medical data in circumstances where conventional statistical methods may be 
inadequate.37-39 It has revolutionized the healthcare field, including CVD risk prediction, 
especially with the incorporation of polygenic risk scores (PRS) derived from genomics 
data.40,41

In the field of CVD, the adoption of AI-based PRS (aiPRS) models can dramatically improve 
our comprehension of CVD pathophysiology and provide more efficient prevention and 
therapy methods.42 The aiPRS (originally coined by AtheroPoint™, Roseville, CA, USA) 
basically refers to the use of AI in the context of PRS models for CVD risk prediction. 
It combines the complete PRS approach to measuring CVD risk with the power of AI 
technologies, such as ML or DL techniques. It can analyze enormous volumes of data, spot 
trends, and offer more accurate risk evaluations by incorporating AI techniques. As a result, 
“aiPRS” does in this case refer to a classification algorithm based on DL43,44 or ML37,40,45 
techniques that are especially employed in the field of CVD risk prediction. While AI can 
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analyze vast amounts of data and identify patterns that may otherwise go unnoticed, PRS 
provide a more comprehensive and personalized approach to risk assessment by considering 
the complex interplay between various genetic and environmental factors.46 Incorporating 
AI in PRS has improved patient outcomes by enabling more precise and accurate risk 
assessment. AI-based algorithms can also stratify patients based on their risk profiles and 
forecast and uncover novel biomarkers of CVD, enabling the development of customized 
therapy regimes.47,48

The promise of aiPRS for CVD research has recently been shown by studies. Fig. 1 shows 
the CVD PRS system and treatment planning using the aiP3 model. A test patient’s personal 
information, lifestyle biomarkers, omics-based biomarkers, laboratory-based biomarkers, 
and radiomics-based biomarkers are all collected first. The PRS system, an offline model that 
creates risk predictions based on the gathered data, is then trained using this data. Real-
time risk prediction and customized treatment planning are made possible using this offline 
trained system. This is via the integration of the PRS system into an online prediction system. 
The aiP3model is then used to create a precise, individualized, and preventative treatment 
plan that considers the individual’s unique CVD risks. To optimise CVD preventive and 
management techniques, this holistic process integrates data-driven risk assessment, online 
prediction capabilities, and personalised interventions. As an illustration, a study published 
in Circulation demonstrated that a genetic risk score based on 6.6 million variations could 
identify those at higher risk of getting CVD, even without conventional risk indicators like 
high blood pressure and cholesterol levels.49 Another study published in Medical Oncology 
emphasizes the crucial roles that ML algorithms play in precision and genomic medicine, 
highlighting their importance in enhancing individualized healthcare. These algorithms help 
the healthcare professionals to improve patient care, customize medicines to each patient’s 
needs, and use prediction models to promote precision medicine by harnessing the power 
of AI and integrating it with genomics.50 New opportunities for early disease identification, 
individualized treatment, and disease prevention have been made possible by developing 
PRS.51 Additionally, applying AI algorithms to PRS analysis has shown to be a viable method 
for locating previously unknown risk factors and enhancing prediction precision.38 Better 
patient outcomes and more successful interventions may follow as a result.
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Fig. 1. CVD PRS system and treatment planning using aiP3 model. 
OBBM = office-based biomarker, LBBM = laboratory-based biomarker, RBBM = radiomics-based biomarker, GBBM = genomics-based biomarker, PBBM = 
proteomics-based biomarker, PRS = Polygenic Risk Score, aiP3 = AI for preventive, precise, and personalized system, CVD = cardiovascular disease.



Despite these encouraging advantages, implementing aiPRS models in clinical practice 
poses many difficulties. These difficulties include addressing data privacy and ethical 
issues, ensuring the model’s interpretability and transparency, and assessing the model’s 
effectiveness across a range of patient populations and clinical settings.52 However, it is 
impossible to overlook the potential of aiPRS models to revolutionize preventive measures by 
enabling early detection of high-risk individuals and focused interventions to lower the burden 
of CVD globally. Given the rising prevalence of CVD globally, AI offers a potent method to 
meet the urgent demand for appropriate risk assessment and management strategies.

In this comprehensive study, we further discuss the utility of PRS obtained from genetic data 
as an effective tool for predicting CVD.53 We offer a critical evaluation of recent developments 
in aiPRS for CVD, a ground-breaking framework that combines the strengths of genetic 
data and AI to improve the precision and accuracy of CVD risk prediction.54 We dig into the 
severe obstacles and bright prospects that the creation of aiPRS presents for CVD. The most 
promising fields for an upcoming study and clinical application were also determined. We 
hope to encourage new methodologies for CVD risk prediction and allow more efficient 
preventive interventions by illuminating the strength and promise of aiPRS-CVD.

SEARCH STRATEGY AND STATISTICAL DISTRIBUTIONS

The PRISMA model
Fig. 2 shows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) search technique. The keywords used for the search are “Polygenic Risk Score and 
cardiovascular disease,” “Polygenic Risk Score and AI,” “Polygenic Risk Score and genomics,” 
“Cardiovascular diseases and AI,” “CVD, PRS and AI,” “Polygenic Risk Score and Deep 
Learning,” “Genomics and AI,” “Cardiovascular Diseases and PubMed and Google Scholar 
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Fig. 2. PRISMA model for study selection. 
AI = artificial intelligence.



screened pertinent papers.” Among other electronic databases, PubMed, Google Scholar, 
and Science Direct were searched extensively. The following inclusion standards were 
chosen: papers written in English; (a) initial research publications or reviews that examined 
the application of AI in bioinformatics frameworks for forecasting CVD risk. Letters to the 
editor, conference proceedings, and publications irrelevant to the research subject were 
not considered. Out of the total of 740 studies identified, 112 were found to be duplicates. 
After removing the duplicates, the number of unique studies left was 628. Further screening 
was conducted, resulting in the exclusion of 358 studies that were unrelated to the research 
topic. Additionally, 56 studies were deemed irrelevant, and 18 studies lacked sufficient data. 
As a result, a total of 194 studies met the inclusion criteria and were selected for analysis. 
Following this search strategy, we aimed to discover the AI and genomics-based approaches 
to investigate the relationship between PRS and CVD.

Statistical distribution
Fig. 3 represents the statistical distribution of the various studies employed in the present 
article. Fig. 3A shows the comparison of PRS studies versus study type in the four different 
categories: 1) PRS with AI but without CVD: 25 studies involved using AI in conjunction 
with PRS but did not focus on CVD as the outcome. 2) PRS without AI but with CVD: 20 
studies did not involve the use of AI but focused on CVD as the outcome using PRS. 3) PRS 
with both CVD and AI: 13 studies involved both PRS and CVD as the outcome and utilized AI 
techniques. 4) for PRS without CVD and without AI: 12 studies did not involve PRS or AI and 
did not focus on CVD as the outcome. Fig. 3B shows the number of studies that utilized PRS 
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as a variable across five years, from 2018 to 2022. The number of studies increased from 5 in 
2018 to 16 in 2022, with the most significant increase occurring between 2018 and 2019. The 
trend suggests a growing interest in PRS research over time.

Fig. 3C represents the number of RA studies utilizing different AI techniques, including ML, 
DL, and hybrid deep learning (HDL). ML was used in 16 PRS studies, DL was used in 13 PRS 
studies, and HDL was used in 9 PRS studies. In our context, HDL refers to an approach that 
combines two different DL methods. Example of HDL are by combining two DL models.55-63 
This may be serial two DL connections or parallel connection of two DL models. In the 
literature of AI, HDL has also been called as the fusion of ML and DL models.18 These 
results suggest that AI is increasingly utilized in PRS research, with ML being the most used 
technique. Fig. 3D shows the performance metrics used in studies, and the number of studies 
that utilized each metric. The performance metrics listed are Accuracy (ACC), Sensitivity 
(SEN), Specificity (SPE), Area-Under-the-Curve (AUC), Matthews Correlation Coefficient 
(MCC), Negative Predictive Value (NPV), and F1-Score (F1). The number of studies that 
reported these metrics are as follows: ACC (16 studies), SEN (14 studies), SPE (11 studies), 
AUC (8 studies), MCC (6 studies), NPV (4 studies), and F1 (2 studies). This figure provides 
an overview of the usage of different performance metrics in the studies, with ACC being the 
most reported metric and F1 being the least commonly reported metric.

CVD RISK PREDICTION AND MANAGEMENT USING 
GENOMIC APPROACHES
The study of genes and DNA in people and other living organisms, known as genomics, sheds 
light on their genetic make-up and the expression and regulation of features. As genetic 
changes can play a role in the development and risk of CVD, understanding gene activity 
correlations at the molecular level can assist in identifying risk factors and forecasting 
disease outcomes. Genomics in CVD involves identifying genetic variants, such as single 
nucleotide polymorphisms (SNPs), contributing to disease development.64,65 By analyzing 
individual patient genomes, doctors can develop personalized treatment plans based on their 
genetic makeup, improving the chances of successful intervention and prevention.66

Genomic methods and technology have become effective tools in the research of CVD, 
providing fresh perspectives on disease causes and new treatment targets. These include 
next-generation sequencing, which has revolutionized the field of genomics by enabling the 
rapid and affordable sequencing of entire genomes or targeted regions of interest, thereby 
allowing for the identification of rare genetic variants associated with CVD. To find genetic 
variants linked to complicated diseases like CVD, GWAS examines the whole genomes of large 
populations.67 The term “actual values in a large population” refers to the real-world outcomes 
related to the trait or disease being studied. This means gathering data on whether individuals 
in a large population develop the trait or disease over time. It is sometimes also called a 
gold standard or ground truth value.68-71 In particular, GWAS is a tool that evaluates genetic 
information to uncover differences in genes related to traits or disorders in an individual.9,10

Additionally, the study of the whole transcriptome, proteome, and metabolome through 
the disciplines of transcriptomics, proteomics, and metabolomics has shed light on the 
patterns of gene and protein expression and metabolic pathways linked to CVD.72-76 The 
function of epigenetic alterations in the onset and development of CVD has also been 
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clarified by epigenomics.76,77 Finally, the function of genes linked to CVD has been studied 
and new treatments for the condition have been created using CRISPR/Cas9 gene editing 
technology.78 Together, these genomic tools and methods have uncovered previously 
unattainable details about the molecular underpinnings of CVD, paving the way for 
discovering new therapeutic targets for the condition.

CONVENTIONAL PRS USING GWAS

PRS are statistical measures used to identify the likelihood of developing heritable diseases 
or traits, such as CVD. Conventional PRS techniques, like GWAS, assess DNA samples from 
enormous populations to locate specific SNPs linked to the target condition or trait.79,80 In 
particular, GWAS examines the relationships between genetic variations, including SNPs, 
and the traits or diseases of interest.81 Fig. 4 shows elements for calculating PRS for CVD. 
A region in the genome known as an SNP indicates a distinction in an individual's genetic 
makeup by harboring one nucleotide in many forms.82 In GWAS, DNA samples from a large 
population are usually gathered, the genetic variations present in each sample are identified, 
and the data are then analyzed to find SNPs associated with the characteristic or disease of 
interest. While GWAS has been used to examine a variety of traits and diseases, including 
cancer, type 2 diabetes (T2D), and CAD, it is crucial to remember that SNPs are only one 
of many potential risk factors for disease.83-88 Finding a novel SNP does not necessarily 
mean that the disease will be caused by it. Additionally, each gene has two copies, or alleles, 
present in pairs at each chromosomal locus and inherited from each parent. The many gene 
combinations that can produce distinct traits dictate the expressiveness of each trait in the 
body. To identify individuals with SNPs of interest, researchers calculate the frequency of 
alleles by dividing the number of individuals with the disease or trait of interest by the total 
number of individuals in the genotyping experiment. Then weights are assigned to each SNPs 
based on their effect size, determining the strength of the association between the SNPs 
and the trait or disease. A positive effect size denotes that a specific allele is attributed to a 
higher risk of the trait or disease, while a negative effect size denotes that a specific allele is 
attributed to a lower risk.89,90

The statistical analysis calculates the P value, which represents the probability of the 
association between the SNP and the trait or disease occurring by chance. Researchers 
multiply the effect size by the genotype of individual p at SNP i, assigning weights to each 
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Fig. 4. Elements for calculating Polygenic Risk Score for CVD. 
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SNP. These weights are then summed up to obtain the PRS for one participant. The accuracy 
of the PRS is assessed by comparing predicted risk scores with actual values in a large 
population, which can help to improve its predictive ability.

Where N is the total number of SNPs in the PRS,[INSERT FIGURE 002] signifies the effect 
size (or beta) of variant i, and [INSERT FIGURE 003]reflects the number of replicas of SNP i 
in the genotype of individual p.53,91 After calculating the PRS we validate it by comparing the 
PRS with the actual value in many populations. It will assess the accuracy of PRS and can help 
to improve its predictive ability. PRS helps take clinical decisions regarding the concerned 
disease, however it should not be the only tool to identify the risk in patients because it 
does not consider the environmental factors, lifestyle, and family history, which could be 
different for every individual. If we combine the PRS with other risk factors, the accuracy and 
predictive capability of the PRS would increase manifolds.92

The flowchart in Fig. 5 illustrates the many procedures needed to compute and decipher a 
weighted PRS using SNPs. In step 1, we select a collection of SNPs that have been previously 
associated with the trait or condition of interest. Consult published studies, databases, 
or consortia studies that have identified genetic variants linked to the specific trait to 
accomplish this. In step 2, one must determine the effect size (beta) of each SNP after 
identifying the pertinent SNPs. This can be done by conducting a GWAS specific to the trait 
or by leveraging the results of a previously published GWAS. The effect size (beta) reveals 
the strength of the association between the SNP and the desired attribute. The risk allele for 
each SNP can be chosen depending on the impact sizes you obtained in step 2. Risk alleles 
are frequently found by examining the direction of the effect magnitude. For instance, if 
the allele associated with that influence exhibited a higher risk for the trait, it would be 
referred to as the risk allele. For each person, the weighted PRS is calculated by multiplying 
the number of risk alleles for each SNP by the effect size (beta) that each of those risk alleles 
has. By summing the total of these products across all the chosen SNPs and dividing each 
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Identify the SNPs
Select a set of SNPs that have been
previously associated with the trait
of interest.

1

Determine the effect sizes
Determine the effect size (beta) for
each SNP by conducting a GWAS or
using summary statistics from a
published GWAS.

2

Determine the risk allele
Risk alleles are determined for each
SNPs based on their effect sizes,
which are usually measured as odds
ratios or beta coefficients in GWAS.

3

Interpret the PRS
In the context of the disease, larger
PRS values indicate increased genetic
risk, while lower levels indicate
reduced genetic risk. However,
environmental and behavioral factors
contribute to hereditary risk beyond
the PRS.

6

Normalize the PRS
Normalize the PRS by dividing it
by the average PRS in the population
and multiplying by the standard
deviation.

5

Calculate the weighted PRS
For each individual, calculate a
weighted PRS by summing the
products of the number of risk
alleles for each SNPs and its
corresponding effect size.

4

Fig. 5. GWAS analysis for calculating and interpreting PRS. A simplified illustration of the related phases involved in GWAS analysis is provided by this flowchart. 
The first step in the procedure is to locate the SNPs associated with the desired phenotype (Box 1) and calculate their effect sizes (Box 2). The weighted PRS 
is then determined by identifying the risk allele (Box 3 and 4). To allow for inter-individual comparisons, the PRS is then normalized (Box 5). The trait under 
investigation is then taken into consideration when interpreting the PRS (Box 6). Please take note that although the steps are listed sequentially for clarity, they 
are actually interrelated and iterative in nature. 
SNP = single nucleotide polymorphism, GWAS = Gene Wide Association Studies, PRS = Polygenic Risk Score.



SNP’s impact size by the number of risk alleles a person carries for each SNP, this may be 
done. A genetic risk score for the desired characteristic or illness should be considered when 
interpreting the PRS. Higher PRS levels imply a greater genetic risk for the trait whereas 
lower readings indicate a reduced genetic risk. It is critical to keep in mind that the PRS 
is only one aspect of genetic risk and that environmental and behavioral factors that can 
increase the chance of getting a disease should be considered in addition to genetic risk.

ROLE OF AI IN PRS

In genomics, PRS is an effective instrument for predicting complex features like CVD.93 
The PRS is constructed by selecting markers from a preliminary training sample and then 
constructing a weighted sum of associated alleles within each participant. This approach 
has been implemented to develop risk prediction models for CVD and to determine a shared 
genetic foundation for associated diseases.94 More complex models for predicting CVD based 
on PRS have been developed as a result of recent breakthroughs in AI.95-97

Determining which genetic variants are most useful for predicting disease risk is a significant 
use of AI in developing PRS.95,98 The polymorphisms most strongly related to disease 
risks can be found using ML algorithms that analyze large-scale genomic data from varied 
populations.99,100 By utilizing the expanding body of big data in medicine, AI may enable 
the best creation of patient-specific models for enhancing CVD diagnosis, intervention, and 
outcome. AI can also be utilized to generate advanced approaches, such as neural networks, 
and DL algorithms, for amalgamating genetic variations into a single PRS.43,101-104

Additionally, it can assist in improving the weighting of specific genetic variations in PRS by 
accounting for their effect magnitude and other variables including gene-gene interactions 
and environmental factors that could affect their influence on disease risk. This may result in 
more accurate and individualized risk evaluations.105-107 AI may also be employed to create 
risk stratification tools that are more sophisticated and account for various risk factors as 
well as their interactions.108 For instance, using AI, risk assessments and preventative plans 
can be tailored to subgroups of people with various risk profiles depending on their genetic 
makeup and environmental exposure.109 AI can speed up the creation of new PRS models 
and increase their ability to generalize to various populations. AI can generate more precise 
and individualized risk models that can be used to guide therapeutic decision-making by 
analyzing massive and diverse datasets to find genetic and environmental factors that may 
be more significant in certain populations or subgroups. Based on a person’s risk profile, 
AI-powered decision support tools can also assist in identifying effective screening and 
preventative initiatives.110,111 For instance, those with a high risk of developing a particular 
type of cancer could be advised to undergo earlier and more frequent screening, whilst 
those with a low risk might be able to skip a few screening procedures. Table 1112-120 lists 
details on various CVD risk assessment programs, including their risk ratings, citations, and 
distinguishing characteristics. Based on several variables like age, gender, blood pressure, 
cholesterol levels, family history, and ethnicity, these programs are intended to assess a 
person's risk of acquiring cardiovascular illnesses.

Additionally, AI-powered decision support solutions can offer patients educational materials 
and resources to aid in their understanding of their PRS and any associated health effects. 
Patients might be advised to make lifestyle changes, such as dietary and activity adjustments, 
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that can lower their risk of contracting specific diseases. In summary, AI has the potential 
to revolutionize the use of PRS information to improve healthcare by delivering more 
individualized risk assessments, better-targeted screening and preventative efforts, and more 
successful patient engagement and education. Fig. 6 shows the various ways AI is used in 
genomic medicine. It displays the various phases of the genomic medicine pipeline, such 
as the gathering and preprocessing genomic data, genomic analysis and interpretation, 
and clinical decision-making. AI approaches including forecasting, amalgamation, and 
genomic inference are applied to increase the precision and dependability of genetic analysis. 
Some of the clinical applications of AI in genomic medicine include routine mode practice, 
pharmacological trials, and system design. AI can also be used to analyze gene variations and 
PRS to forecast a person’s chance of contracting a specific disease. The figure highlights ways 
AI is helping to advance genomic medicine and enhance patient outcomes.
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Table 1. Comparative analysis of patient characteristics and risk scores
No. Citations Year Risk score Disease Age, yr Gender HDL-C SBP SS DS FH Ethnicity BMI, kg/m2

1 Kannel et al. [112] 1967 Framingham CVD 35–64 Both oa o o o o Largely White NR
2 Assmann and Schulte [113] 1988 PROCAM CVD 35–65 Both xb o NR x German NR
3 Woodward et al. [114] 2007 ASSIGN CVD 30–74 Both o o NR o o Scottish NR
4 Lakoski et al. [115] 2007 MESA CVD 30–85 Both x x o NR x African-American, Hispanic, 

Chinese-American, and Caucasian
18.5–40

5 Ridker et al. [116] 2007 Reynolds CVD 45–80 Female o o o o o White 18.5–34.9
6 Hippisley-Cox et al. [117,118] 2008 QRISK2 CVD 25–84 Both o o o o o South Asian, Black African- 

Caribbean, Middle Eastern, or 
Eastern European

15–55

7 Goff et al. [119] 2013 ACC/AHA pooled 
cohort equations

CVD 20–59 Both x o o o o African-American 18.5–40

8 Conroy et al. [120] 2017 SCORE CVD 45–64 Both x o o o o European NR
HDL-C = high density, SBP = systolic blood pressure, SS = smoking status, DS = diabetes status, FH = family history, BMI = body mass index, CVD = cardiovascular 
disease, NR = not reported, PROCAM = Prospective Cardiovascular Münster, ASSIGN = ASsessing cardiovascular risk using SIGN guidelines, MESA = Multi-
Ethnic Study of Atherosclerosis, QRISK = QRESEARCH cardiovascular risk algorithm(www.qresearch.org), SCORE = Systematic COronary Risk Evaluation, ACC = 
American College of Cardiology, AHA = American Heart Association.
ao = included, bx = not included.

Artificial intelligence

Machine learning

Deep
learning

Natural
language

processing

Cognitive
computing

Forecasting

Amalgamation

Genomics inference

Routine mode practice Pharmaceutical trial

System design

Gene variants

Polygenic risk

Fig. 6. AI-powered genomic risk assessment in personalized medicine. 
AI = artificial intelligence.

http://www.qresearch.org


Deep learning model dimensionality reduction for gene analysis
In this section, we discuss the diverse methodologies and strategies researchers have 
employed to mitigate the challenge posed by high-dimensional gene data, which comprises 
many variables or features.121 The intricacies of analyzing and interpreting such data require 
dimensionality reduction, whereby the number of variables is reduced to a more manageable 
level, thereby enhancing the performance of DL models.122

Dimensionality reduction has been well established in the field of medical imaging 
before.123,124 They offer several advantages in our current context. First, by lowering the 
number of features, these strategies boost computational performance, enabling a quicker 
and more effective analysis of high-dimensional gene data. Given the prevalence of large-
scale datasets in gene analysis, such a paradigm is very helpful. Second, dimensionality 
reduction improves DL model performance by reducing the dimensionality curse. These 
methods increase the generalization and prediction accuracy of the models by concentrating 
on the most instructive aspects and removing noise and extraneous data. Additionally, 
dimensionality reduction aids in tackling multicollinearity, which can develop when strongly 
associated predictor variables. Dimensionality reduction assures that the DL models 
are built on independent and uncorrelated variables by finding and removing correlated 
characteristics, producing more consistent and understandable results. Moreover, these 
techniques facilitate visualization and interpretation of high-dimensional gene data. By 
reducing the data to a lower-dimensional space, patterns and relationships within the 
data become easier to comprehend. This helps in gaining insights into the underlying 
structure and mechanisms of gene-related phenomena. In conclusion, dimensionality 
reduction methods in gene analysis include benefits like increased computing effectiveness, 
improved model performance, addressing multicollinearity, facilitating visualization and 
interpretation, and extracting significant features. In our research we explore the details 
on the various dimensionality reduction techniques implemented in DL models for gene 
analysis, like GWAS-based dimensionality reduction, Binary Particle Swarm Optimization 
(BPSO)-based dimensionality reduction, and Random Walk Restart-CNN-based 
dimensionality reduction.125,126 Each of these approaches involves distinctive strategies 
for selecting the most pertinent features, transforming the data into a lower-dimensional 
format, and utilizing DL models to explore the data. Several methods have been applied 
for dimensionality reduction for ML/DL models. Previously principal component analysis 
(PCA)127,128 and PCA-polling128,129 methods have been applied. In genomics-based research, 
statistical test has been for feature dimensionality reduction.130 BPSO and Random Walk 
Research-CNN based approaches are evolutionary methods mainly for compression (or 
dimensionality reduction) objective and iterative in nature,131 unlike PCA and PCA-polling 
methods are less iterative in nature and straight forward to implement. BPSO have shown to 
have different applications in pruning AI systems and yields higher dimensionality reduction 
ratio. Peng et al.132 proposed the deep PRS model which encodes the genotype information 
into feature vectors, which are then sent into a deep neural network with a Bi-LSTM layer to 
capture long-distance interactions between genes. This method reduced the dimensionality 
of genetic data.

According to the deep PRS risk analysis, people with high deep PRS are more likely to 
develop the disease than people with low deep PRSs. Deep PRS can be employed as a disease 
early warning indication for screening and disease prevention in high-risk populations. For 
Alzheimer’s disease (AD), inflammatory bowel disease (IBD), T2D, and breast cancer (BC), 
deep PRS performed better than two other state-of-the-art approaches using the UK Biobank 
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dataset. Also, it assessed deep PRS ability to produce PRSs for these diseases. The findings 
demonstrated that deep PRS performed well in predicting disease risk. The AUC values for 
AD, IBD, T2D, and BC were 0.7245, 0.6517, 0.6508, and 0.6227, respectively. Furthermore, 
when Deep PRS was combined with clinical features, the AUC values improved to 0.8624, 
0.6585, 0.7316, and 0.6660 for AD, IBD, T2D, and BC, respectively. These results demonstrate 
the strong performance of Deep PRS when evaluated in conjunction with clinical 
characteristics. Deep PRS also outperforms methods that use genotype weight estimates 
from GWAS and requires less prior knowledge than conventional methods.

Khalifa et al.125 employed the BPSO algorithm as a feature selection technique to isolate 
the most pertinent genes from high-dimensional gene expression data. These genes were 
then transformed into a low-dimensional image format and fed into a CNN for tumor 
classification. Preprocessing is the initial step, which entails utilizing BPSO-DT to choose 
the best features from the high-dimensional RNA-seq data and transform the selected 
features into 2D pictures. The second stage is augmentation, which multiplies the initial 
dataset of 2,086 samples by five while having the least impact on the image's features. This 
aids in overcoming the issue of overfitting and educates the model to be more accurate. The 
third stage is the deep CNN phase, which has two primary convolutional layers for feature 
extraction and two fully connected layers for classification. The proposed method was 
tested on five different cancer types: uterine corpus endometrial carcinoma, lung squamous 
cell carcinoma, lung adenocarcinoma, and kidney renal clear cell carcinoma. The findings 
demonstrate that the suggested method exceeded comparable works in testing accuracy for 
the five kinds of cancer, achieving an overall testing accuracy of 96.90%. Additionally, the 
suggested method requires less memory and is less complicated.

Peng et al.126 devised a model for predicting gene function that used semi AE, a unique 
version of AE which stands for autoencoders, a class of neural networks frequently employed 
for unsupervised learning. They proposed an innovative approach for predicting gene 
function based on several heterogeneous networks, known as Deep MNE-CNN. The Deep 
MNE-CNN design was primarily composed of two components. The semi AE was employed 
in the first section to combine various networks and produce low-dimensional feature 
representations of the genes. The semi AE was trained in a semi-supervised manner using the 
labelled and unlabeled data. The association between genes was captured using the pairwise 
correlation coefficients, which further increased the precision of the feature learning 
procedure. On yeast and human datasets, the Deep MNE-CNN method's performance 
was assessed and contrasted with that of four cutting-edge techniques. The outcomes 
demonstrated that the Deep MNE-CNN method performed better in prediction accuracy 
than the other methods.

Xu et al.133 used the autoencoder dimensionality is reduced by feeding the autoencoder a low-
dimensional representation of the input gene expression data, which is then used for matrix 
factorization. This method emphasizes the potential of dimensionality reduction methods 
based on autoencoders for handling high-dimensional gene expression data. The autoencoder 
can identify significant patterns and correlations within the data while minimizing noise and 
redundancy by compressing the data into a lower-dimensional representation.

Zeng et al.134 proposed a DL framework, the deep matrix factorization model DMFLDA, to 
forecast lncRNA-disease relationships. Deep autoencoders, feature learning, and disease 
semantic similarity are all used in the framework to effectively learn the low-dimensional 
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representations of lncRNA and disease features. The learned representations predict the 
associations between lncRNAs and disease and then fed into a classification model. The 
research illustrates the promise of DL-based techniques for analyzing high-dimensional 
genomic data and demonstrates the efficacy of DMFLDA in identifying lncRNA-disease 
connections. The authors used AUC to assess the model’s performance. The DMFLDA model 
had strong predictive performance, evidenced by its AUC score of 0.8393. In addition, the 
DMFLDA model beat numerous cutting-edge approaches, including RWRMDA, SimNMF, and 
LRLSLDA, to predict lncRNA-disease relationships. According to the comparative analysis, 
DMFLDA has much higher prediction accuracy, sensitivity, specificity, and precision.

Zhao et al.135 proposed an ML method utilizing k-means dimensional reduction for 
predicting survival outcomes in BC patients. The recommended method reduces the 
high-dimensional gene expression data to a lower-dimensional framework using k-means 
clustering. The support vector machine (SVM) classifier is trained on the reduced data to 
forecast patient survival outcomes.

Furey et al.136 used PCA and linear discriminant analysis for dimensionality reduction. The 
authors train an SVM classifier for cancer classification using the reduced-dimensional data as 
input. The suggested strategy is assessed and contrasted with other cutting-edge approaches 
on several benchmark datasets. The outcomes demonstrate that the suggested strategy 
performs well in accuracy and, in some circumstances, outperforms alternative approaches.

Gu et al.137 used heterogeneous graph neural networks (HGNN), a technique for integrating 
various forms of genomic data, such as protein-protein interaction networks and gene 
expression networks, using an HGNN. By mixing information from several modalities and 
using the connections between various forms of data, the HGNN develops a low-dimensional 
representation of the genomic data.

CRITICAL DISCUSSION

First, by combining various genetic variations and other risk factors, using aiPRS for CVD risk 
prediction can improve the accuracy of predicting a person's likelihood of developing CVD. 
Second, aiPRS models can get beyond the limits of conventional PRS calculators by using 
a more extensive range of genetic and non-genetic factors in the risk assessment process, 
leading to more accurate and unique risk estimates. Third, by employing AI approaches to 
reduce the dimensionality of massive genomic datasets, disease risk prediction models can 
be improved and made more effective.

Benchmarking analysis
Table 2 provides an overview of studies conducted on different statistical/AI/ML algorithms 
used for the construction of PRS for different diseases.84,132,138-143

Vilhjálmsson et al.138 proposed a novel statistical method called LD pred-funct. The purpose 
of their study was to improve the accuracy of PRS by incorporating linkage disequilibrium 
(LD) information. They used LDpred to analyse several sizable datasets and evaluated 
their effectiveness in comparison to other approaches. They concentrated on phenotypic 
prediction for conditions such as type 1 diabetes, type 2 diabetes, rheumatoid arthritis, CAD, 
Crohn’s disease, hypertension, and bipolar disorder. When predicting these traits, LDpred 
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outperformed other approaches due to the inclusion of LD information. They used both 
European and African populations to predict height, body mass index, and BC risk. Modelling 
LD patterns—the non-random connection of alleles at various loci—allows LDpred to act on 
the genome. The goal of LDpred is to enhance the predictive accuracy of PRS by capturing 
the associated effects of genetic variations. However, the study highlighted some LDpred 
flaws. First, LDpred might overfit the training data, which would mean that it might perform 
incredibly well there but struggle to generalise to new data. Correct LD calculations are 
necessary for the strategy to function. Additionally, LDpred could not perform well with small 
sample sizes since the little data might make it impossible to faithfully replicate LD patterns. 
Finally, LDpred might not be the ideal technique for predicting uncommon variations because 
they might have different LD patterns than common ones.

Privé et al.139 calculated PRS on UK Biobank dataset using the Penalized Logistic Regression. 
The goal of the study was to manage a high number of genetic variants while increasing the 
computing efficiency of PRS computations. They were able to lessen the processing strain 
and speed up the computation process by adopting penalized regression. Their strategy’s 
user-friendliness was a major plus. The technique was created to be simple to apply, allowing 
researchers to calculate PRS rather quickly. Additionally, their method permitted the 
insertion of outside data as priors, which might improve the precision of PRS predictions. 
Compared to other approaches, their method performed better, which suggested that it 
accurately identified the genetic contributions to BC risk. However, the study highlighted 
some flaws. Their strategy was not very adaptable for simulating intricate genetic processes. 
Although it handled a lot of genetic variants well, it might not have captured more complex 
linkages or interactions between genetic factors. Additionally, it is challenging to choose 
the best tuning settings for the penalised regression model. The level of penalization and 
regularisation used throughout the model fitting phase is controlled by tuning parameters. 
To get the optimum performance, choosing the proper parameters can be difficult and 
requires significant thought.

Leonenko et al.140 evaluated the age-specific genetic risk for AD using the PRS and compare 
the findings with the Polygenic Hazard Score (PHS). They used the data from IGAP (IGAP: 
International Genomics of Alzheimer’s Project) and GERAD (Genetic and Environmental 
Risk in Alzheimer’s Disease Consortium). Their goal was to measure individual variations 
in age-specific genetic risk for AD and to assess how well PRS and PHS can predict the 
development of the disease. Based on SNPs found in GWAS that were related with AD, PRS 
and PHS were determined for each participant. The age-specific genetic risk for AD with PRS 
was quantified using Cox Regression analysis, and PHS scores were calculated for the same 
individuals. The usefulness of PRS and PHS in determining the genetic risk for AD that is 
age-specific was established in this study. Even though the results showed that PRS based on 
genome-wide significant SNPs showed the strongest association, more research is required 
to examine the specific benefits and restrictions of PHS compared to PRS in the prediction of 
AD risk, especially when considering various SNP selection criteria and the Cox Proportional 
Hazard Regression model.

Mavaddat et al.84 used the Lasso Penalized Regression (LPR) technique to choose pertinent 
factors and account for overfitting when constructing the PRS. LPR finds the most useful 
SNPs related to BC. While minimising the impact of noise or irrelevant genetic variants, 
the PRS-LPR approach’s usage of LPR enabled for the identification of a subset of SNPs that 
contribute the most to the prediction of BC risk. They built PRS models using extensive 
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GWAS data and assessed how well they performed at predicting the risk of BC. The study 
showed PRS increased risk prediction beyond only clinical risk variables. However, there 
were drawbacks, such as the need for more thorough environmental data and the inadequate 
representation of non-European groups.

Choi and O’Reilly141 made a software PRSice-2 similar to PRSice to calculate the PRS by using 
the “C+T” approach, which clumps single-nucleotide polymorphisms (SNPs) based on LD 
and P value thresholding. The key characteristics of PRSice-2 are its capacity to conduct large-
scale PRS analyses on genotyped and imputed data, compute empirical association P values 
to address overfitting, analyse numerous target phenotypes concurrently, and provide options 
for imputing missing genotypes. It supports various inheritance models (additive, dominant, 
recessive, and heterozygous) and automatically creates dummy variables for categorical 
covariates. The complexity of PRSice-2, which offers a variety of features and options for PRS 
analysis, is one possible drawback. Because of this intricacy, users may need to have a certain 
level of experience in genomics and statistical analysis in order to completely understand 
and use the application. Additionally, because PRSice-2 uses several different parameters 
and calculations, including clumping and P value thresholding, comprehending the findings 
it produces can be difficult. To achieve proper interpretation and valuable insights from the 
analysis, adequate knowledge of these factors is required.

Ge et al.142 used the Bayesian Regression framework and GWAS summary statistics to 
develop PRS-CS. The inclusion of a continuous shrinkage (CS) prior on SNP effect sizes is 
a crucial component of PRS-CS. The heterogeneity in genomic layouts across many traits 
and disorders is addressed by this prior. The PRS-CS method improves resilience in its 
predictions and offers computational advantages over other approaches by utilising the CS 
prior. The Partners HealthCare Biobank was used to use PRS-CS to estimate the probability 
of six prevalent complicated diseases and six quantitative features. In comparison to other 
approaches, the results demonstrated PRS-CS’s superiority in terms of prediction accuracy. 
By adding a CS prior and a Bayesian regression framework, PRS-CS represents a development 
in the field of polygenic prediction. The accuracy of risk prediction is improved by its capacity 
to capture local patterns of LD and adapt to various genomic architectures.

Huang et al.143 designed a DL neural network strategy for GWAS and PRS. The condition 
known as chronic obstructive pulmonary disease (COPD) is complicated and varied, 
impacted by both genetic and environmental factors. Traditional techniques, such as 
GWAS and PRS, have proved effective in locating risk variations, but they operate under the 
supposition that each allele’s effects are independent and unaffected by other variables. 
To get over these constraints DL-PRS was made. It makes less assumptions regarding the 
genetic effects that are being modelled since DL models can capture gene-gene interactions 
and non-additive effects. Several populations based GWAS studies of COPD were used by the 
researchers to apply the DL technique to genetic association data. Comparing the DL-PRS 
method to other PRS methods, it showed superior predictive ability, expanding the ranges 
of risk prediction and establishing a stronger connection with lung function measurements. 
However, DL-PRS implementation requires a significant investment in processing power 
and DL technique knowledge. This study emphasizes how ML methods could improve risk 
prediction models for difficult-to-diagnose conditions like COPD.

Peng et al.132 developed a DL model called DeepPRS using the GWAS data obtained from 
UK Biobank to identify people at risk of four different diseases such as IBD, BRCA, T2D, AD 
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using the Bi-LSTM. It was trained to discover the intricate patterns and relationships between 
genetic variations and disease risk using the GWAS data as its input. The process included 
several crucial components. The GWAS data first underwent pre-processing, which included 
quality control steps to guarantee data dependability and integrity. To model the links 
between genetic variations and disease outcomes, the Bi-LSTM architecture was then used. 
A vast amount of labelled data was used to train the model where everyone’s genetic makeup 
and disease state were known. They evaluated DeepPRS effectiveness by contrasting its 
prognostic capabilities with those of conventional PRS techniques. They assessed DeepPRS’s 
precision, sensitivity, and specificity in predicting the risk of developing IBD, T2D, AD, and 
BRCA diseases. To learn more about the genetic factors impacting disease susceptibility, they 
also looked at the model's interpretability. However, there are some challenges associated 
with it. The lack of large-scale, diverse datasets was one of the primary drawbacks, which 
could have affected the model’s resilience and generalizability. The DL model’s interpretability 
presented another difficulty because of its complicated design, which may make it challenging 
to comprehend the precise genetic elements influencing illness risk estimates.

A short note on AI for PRS
The PRS is a technique for estimating a person’s genetic risk for contracting a complex 
disease. PRS creates a composite score that can be used to calculate an individual's total 
genetic susceptibility to the disease by combining data from numerous genetic variants, 
each of which has a negligible impact on disease risk. Due to improvements in genotyping 
technology and the accessibility of extensive genetic data from GWAS, PRS has grown in 
popularity in recent years.9 However, determining PRS precisely can be difficult, especially 
when working with big datasets including millions of genetic variants. AI is useful in this 
situation. The use of AI techniques has improved the precision and effectiveness of PRS 
estimates, especially ML models.144 The creation of more precise PRS models is made 
possible by the ability of these models to analyze massive amounts of genetic data and 
pinpoint the key genetic variants for determining disease risk.

The gradient boosting machine (GBM) is one ML method applied to PRS computation.145 
Even in noisy or correlated data, the potent ML algorithm GBM can precisely identify the 
most pertinent genetic variations for predicting disease risk. For a variety of complicated 
diseases, including T2D,146,147 BC,84 and AD,148 GBM has been utilized to create PRS 
models. The neural network is another ML method that has demonstrated potential in PRS 
computation.149 A DL algorithm known as a neural network can recognize intricate patterns 
in genetic data and produce precise forecasts of disease risk. A PRS model for colorectal 
cancer was created in one study using a neural network, and it performed more accurately 
than conventional PRS models.150 AI has been used to find new genetic variations linked 
to illness risk and increase PRS accuracy. For instance, a recent study that examined GWAS 
data for schizophrenia using a deep neural network discovered numerous unique genetic 
variations linked to the condition.151

The role of bias and variance in AI
The assessment of bias and variance in AI models has gained significant importance in recent 
years.152,153 Previous computer-aided diagnosis techniques have revealed shortcomings 
not only in evaluating bias but also in managing variance effectively.154 To address these 
challenges comprehensively, a multifaceted approach is essential. To mitigate both bias and 
variance, a range of strategies can be employed.70,155 Utilizing large sample sizes can help 
in reducing bias by ensuring a more representative dataset, while also aiding in mitigating 
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variance by providing a broader data spectrum. Conducting appropriate clinical testing is 
crucial for evaluating model performance under different conditions, thereby tackling both 
bias and variance issues.

Additionally, utilizing big data configurations can assist in minimizing bias by capturing 
a more comprehensive view of the data distribution, while it also has implications for 
managing variance by introducing higher dimensionality and variability. Analyzing unseen 
data is vital to uncover both bias and variance, as it helps identify how well the model 
generalizes to new, unobserved cases. Finally, scientifically validating the training model 
design plays a crucial role in reducing both bias and variance, as a well-designed model is less 
prone to systematic errors and overfitting. Key steps in patient risk stratification encompass 
assessing not only the AI risk of bias155-157 but also considering the AI risk of variance 
(RoV). It is essential to appropriately modify diagnostics and treatment plans to account for 
both bias and variance in AI models. This holistic approach ensures that AI-based medical 
decisions are not only fair but also consistently reliable across different patient populations 
and scenarios. In summary, addressing bias and variance in AI models is essential for 
achieving both fairness and reliability in healthcare applications. By implementing a 
combination of strategies and considering both aspects, we can enhance the quality of AI-
driven diagnostics and patient risk stratification.

The role of explainability in AI
Understanding how AI’s “black box” functions are critical for effective AI design. The 
role of AI Explainability practitioners is more likely to comprehend this “black box” if the 
results it produces can be interpreted and questioned.158 By employing tools such as Local 
Interpretable Model-Agnostic Explanations and Shapley Additive Explanations, AI models 
can provide insights into complex disorders, which has garnered trust among medical 
professionals.159,160 Additionally, techniques like GradCAM, GradCAM+, or GradCAM++ 
can be utilized to visualize carotid lesions and facilitate wider acceptance of AI models in the 
medical domain.161 This emphasis on interpretability enables the improvement and cost-
effectiveness of AI devices.162

The role of cloud-based paradigms
Cloud-based XAI, can be used for calculating the PRS.163 The PRS is a score calculated based 
on an individual’s genetic information to estimate their risk of developing certain diseases 
or conditions.164 Cloud-based XAI refers to a system where ML algorithms are hosted on 
cloud servers and can be accessed remotely through the internet.165,166 Consequently, 
processing massive amounts of data—like genetic data from a vast population—can be done 
more effectively and flexibly. In order to calculate PRS using cloud-based XAI, the algorithm 
would examine a sizable dataset of genetic data to pinpoint the precise genetic markers 
linked to a higher risk for a specific disease or condition.167 Based on each person’s unique 
genetic profile, the algorithm would utilise this data to determine a PRS for each person in 
the dataset. Using cloud based XAI for PRS computation is advantageous since it makes the 
findings more transparent and understandable. By using explainable AI, the algorithm can 
provide a detailed explanation of how it arrived at a particular PRS for an individual, making 
it easier for healthcare providers and patients to understand and make informed decisions 
about their health. Overall, cloud based XAI for PRS calculation can help to improve 
personalized medicine by providing more accurate and transparent risk assessments based 
on an individual's genetic information.
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The role of pruning in AI systems
With the development of the internet and cloud-based systems, edge devices are becoming 
increasingly important.168 In mobile frameworks, these devices are crucial for utilising 
trained AI models for future predictions or illness risk stratifications.169 Compressed models 
must be used because it may not be possible to install huge data models on edge devices.131 
Image-based DL models such as Fully Convolutional Networks or Segmentation Networks 
can be pruned using evolutionary algorithms like particle swarm optimization, genetic 
algorithms, wolf optimization, and differential evolution.170 The future of genetically-based 
paradigms and radiomics-based CVD risk stratification can be compacted and implemented 
on edge devices to serve rural areas, especially in developing countries.171

The role of big data
The focus of study has shifted from radiography and pathology to genetics as a result of the 
development of radiogenomics.172 Through the fusion of radiomics, genetic information, 
and clinical records, this change has led to the expansion of the radiogenomics field over the 
past ten years.173 By developing novel algorithms, procedures, and techniques, DL and big 
data programming have considerably advanced radiogenomics research.174 The creation of a 
completely automated system that interfaces with a radiological process in the big data realm is 
a significant advancement in the area.175 By decreasing the amount of time spent on tedious and 
repetitive tasks, this approach has increased productivity.176,177 The ability to compare numerous 
images from the database concurrently allows for real-time therapy monitoring.175,177

Special note on generalization of aiPRS
The use of AI in medical diagnosis, such as the detection and prediction of CVD, is one 
example of how generalisation in AI models can go beyond specialized domains and include 
a wide range of topics. The objective of generalization in this context is to create models 
capable of efficiently learning from a wide range of patient data, such as symptoms, medical 
history, and diagnostic tests, and producing precise predictions about unrecognized 
CVD cases. These AI models could help medical professionals by assisting in the early 
diagnosis, risk assessment, and personalized treatment recommendations for individuals 
with CVD. Generalization is vital in other AI disciplines in addition to medical applications. 
For instance, in natural language processing, even if a generalized language model has 
never encountered a particular sentence before, it may comprehend and produce coherent 
statements across a variety of themes.178 The same is true in computer vision, where a 
well-generalized model can identify items or patterns in photos, such as skin tones, objects 
in various surroundings, and more.124,179-181 Effective generalization enables AI models to 
behave consistently in real-world circumstances outside the bounds of their training data. It 
is important to note that finding the ideal balance between memorization and generalization 
is essential in the development of AI.182 A model’s ability to perform well on fresh, untested 
data might be hampered by an excessive reliance on memorization without generalization. 
While some memorizing may be useful in capturing details or personalized preferences. 
AI systems can adapt and make precise predictions in a variety of changing situations by 
aiming for generalization.183,184 To promote generalization and reduce overfitting, which is 
a type of memorizing, researchers and practitioners use strategies including regularization, 
cross-validation, and early stopping. AI solutions have a stronger and better ability to 
generalize compared to conventional-based methods, making them suitable for composite 
data analysis in CVD risk assessment. aiPRS leverage the power of AI on composite data for 
CVD risk assessment.37,40,185 This composite risk combines the PRS values derived from 
gene data and a combination of other biomarkers such as office-based, laboratory-based, 
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radiomics-based, and genomics-based.186 Office-based biomarkers are the conventional 
risk biomarkers that constitute basic biomarkers namely height, weight, body mass index, 
hypertension values (systolic and diastolic blood pressure), smoking conditions, and family 
conditions. Laboratory-based biomarkers are blood-based conventional biomarkers namely 
cholesterol levels such as LDL, HDL, Total Cholesterol, triglycerides, fasting glucose, renal 
biomarkers like eGFR, arthritis biomarkers namely ESR, and homocysteine. Radiomics-
based biomarkers, it includes the actual image-based biomarkers namely direct or surrogate 
biomarkers namely carotid plaque burden, carotid-intima thickness (maximum, minimum, 
and average), maximum carotid plaque height, and intima-media thickness variability. 
Genomics is the other risky genetic atherosclerotic biomarker.

When all such data are composited, the system becomes nonlinear and that is when the 
supervised DL systems are well fit for CVD risk prediction. Thus, it does not matter if the AI 
system is fed by the UK bio-bank data sets or ERIC database, or NIH-based data sets. It is 
worth noting that the DL layers allow to extract the powerful features from the composite 
data which can then be used for precise CVD risk prediction. It is the forward and backward 
propagation of the neural networks which allows to reduce the error between the weight 
propagation values and the gold standard. The number of iterations during the propagation 
(so-called epochs), besides the batch size in the DL system are supportive ingredients for a 
preventive, precise, and personalized (aiP3) approach for CVD risk estimation.41,45,187,188

Strengths, weaknesses, and extensions
Conventional PRS is a straightforward and economical method that uses genetic data 
already available, but it is limited in its capacity to predict complex features since it cannot 
take complicated data interactions into account. Contrarily, aiPRS can effectively analyze 
multidimensional data, consider complicated data interactions, and include genetic, clinical, 
and imaging data. But it necessitates specialized knowledge and depends on reliable and 
readily available data. The usage of aiPRS may also raise privacy and ethical concerns. The use 
of AI in PRS computing and analysis offers enormous potential to improve our understanding 
of complex diseases and identify novel genetic targets for disease prevention and treatment. 
Despite the benefits of AI-based risk stratification, it is necessary to note its significant flaws 
and problems. The potential lack of generalizability of AI models is a serious flaw. AI models 
may not perform as well when applied to diverse populations or various circumstances if they 
were designed using certain datasets or populations.55,178

To evaluate the generalizability and dependability of AI models in practical settings, 
comprehensive validation experiments involving a variety of populations must be conducted. 
The scant scientific evidence that supports the efficacy of AI-based risk prediction models 
is another area of weakness. While AI has potential, a thorough scientific examination 
is required to determine its therapeutic utility and dependability. It is crucial to conduct 
prospective validation studies comparing AI models to current risk prediction techniques and 
evaluating how well they function in actual clinical situations. These research projects will 
offer the required scientific proof to back up the adoption and application of AI-based risk 
prediction models. To enable the ethical incorporation of AI in risk classification, these flaws 
must be addressed. The limits of AI-based risk prediction models can be better recognized 
and reduced by undertaking validation studies across varied populations and producing 
empirical evidence of their efficacy. As a result, AI models will become more applicable 
and trustworthy, which will increase their ability to help with illness management and 
preventative plans.
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More research is necessary, however, to accurately evaluate the dependability and accuracy of 
aiPRS models and ensure that these models are developed and applied ethically and openly. 
Lastly, we do need to understand the changes in aiPRS for CVD risk when comorbidities are 
involved such as viruses.189 Even though aiPRS technology is point data, but as things evolve, 
we will see gene data to get converted to images and screening tools can be applied,190,191 
such as usage of the classification tools.192 Further, correlations need to be developed 
between the aiPRS and cardiovascular outcomes.124,193

CONCLUSIONS

aiPRS modeling approaches offer enormous potential to enhance CVD personalized 
treatment approaches. Integrating multi-omics data, including genomes, transcriptomics, 
proteomics, and metabolomics, can offer a more thorough understanding of the molecular 
pathways driving CVD and increase the precision of PRS models.194 These AI-based 
techniques are especially beneficial for drawing out intricate patterns and connections from 
highly dimensional data genetic data. This makes it easier and more precise for scientists and 
doctors to find real connections between genetic variations and the likelihood of developing 
diseases. Additionally, AI algorithms may continuously learn from fresh data and enhance 
their performance, producing more accurate and unique risk evaluations over time.

The need for more representative and diverse data, new data analysis techniques, and ethical 
considerations remain major obstacles. More funding must be put into CVD genomics 
research and personalized medicine techniques to overcome these obstacles and improve 
patient outcomes. We can enhance our understanding of the intricate disease mechanisms 
underlying CVD and create more efficient methods for prevention, diagnosis, and therapy by 
fostering large-scale genomic data resources that are openly accessible and available.

ACKNOWLEDGMENTS

Dr. Suri and Dr. Maindarkar is with AtheroPoint™ LLC, Roseville, CA, USA, which does 
cardiovascular and stroke imaging.

REFERENCES

 1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke 
statistics—2020 update: a report from the American Heart Association. Circulation 2020;141(9):e139-596. 
PUBMED | CROSSREF

 2. Roth GA, Johnson CO, Abate KH, Abd-Allah F, Ahmed M, Alam K, et al. The burden of cardiovascular 
diseases among US states, 1990–2016. JAMA Cardiol 2018;3(5):375-89. 
PUBMED | CROSSREF

 3. O’Donnell CJ, Nabel EG. Genomics of cardiovascular disease. N Engl J Med 2011;365(22):2098-109. 
PUBMED | CROSSREF

 4. Gluba A, Banach M, Mikhailidis DP, Rysz J. Genetic determinants of cardiovascular disease: the renin-
angiotensin-aldosterone system, paraoxonases, endothelin-1, nitric oxide synthase and adrenergic 
receptors. In Vivo 2009;23(5):797-812.
PUBMED

21/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/31992061
https://doi.org/10.1161/CIR.0000000000000757
http://www.ncbi.nlm.nih.gov/pubmed/29641820
https://doi.org/10.1001/jamacardio.2018.0385
http://www.ncbi.nlm.nih.gov/pubmed/22129254
https://doi.org/10.1056/NEJMra1105239
http://www.ncbi.nlm.nih.gov/pubmed/19779116


 5. Barua JD, Omit SB, Rana HK, Podder NK, Chowdhury UN, Rahman MH. Bioinformatics and system 
biological approaches for the identification of genetic risk factors in the progression of cardiovascular 
disease. Cardiovasc Ther 2022;2022:9034996. 
PUBMED | CROSSREF

 6. Phan JH, Quo CF, Wang MD. Cardiovascular genomics: a biomarker identification pipeline. IEEE Trans Inf 
Technol Biomed 2012;16(5):809-22. 
PUBMED | CROSSREF

 7. Maniruzzaman M, Jahanur Rahman M, Ahammed B, Abedin MM, Suri HS, Biswas M, et al. Statistical 
characterization and classification of colon microarray gene expression data using multiple machine 
learning paradigms. Comput Methods Programs Biomed 2019;176:173-93. 
PUBMED | CROSSREF

 8. Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, et al. Genome-wide association and 
Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun 
2020;11(1):163. 
PUBMED | CROSSREF

 9. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012;90(1):7-24. 
PUBMED | CROSSREF

 10. Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. Am J Hum Genet 
2018;102(5):717-30. 
PUBMED | CROSSREF

 11. Nolte IM, Munoz ML, Tragante V, Amare AT, Jansen R, Vaez A, et al. Genetic loci associated with heart 
rate variability and their effects on cardiac disease risk. Nat Commun 2017;8(1):15805. 
PUBMED | CROSSREF

 12. Wu JH, Lemaitre RN, Manichaikul A, Guan W, Tanaka T, Foy M, et al. Genome-wide association study 
identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo 
lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) consortium. Circ Cardiovasc Genet 2013;6(2):171-83. 
PUBMED | CROSSREF

 13. Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A, et al. A multilocus 
genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 
2010;376(9750):1393-400. 
PUBMED | CROSSREF

 14. El-Baz AS, Suri JS. Cardiovascular and Coronary Artery Imaging: Volume 1. Cambridge, MA, USA: Academic 
Press; 2021.

 15. Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, et al. Vascular implications 
of COVID-19: role of radiological imaging, artificial intelligence, and tissue characterization: a special 
report. J Cardiovasc Dev Dis 2022;9(8):268. 
PUBMED | CROSSREF

 16. Elliott P, Chambers JC, Zhang W, Clarke R, Hopewell JC, Peden JF, et al. Genetic Loci associated with 
C-reactive protein levels and risk of coronary heart disease. JAMA 2009;302(1):37-48. 
PUBMED | CROSSREF

 17. Khanna NN, Maindarkar M, Saxena A, Ahluwalia P, Paul S, Srivastava SK, et al. Cardiovascular/stroke 
risk assessment in patients with erectile dysfunction-a role of carotid wall arterial imaging and plaque 
tissue characterization using artificial intelligence paradigm: a narrative review. Diagnostics (Basel) 
2022;12(5):1249. 
PUBMED | CROSSREF

 18. Suri JS, Paul S, Maindarkar MA, Puvvula A, Saxena S, Saba L, et al. Cardiovascular/stroke risk stratification 
in Parkinson’s disease patients using atherosclerosis pathway and artificial intelligence paradigm: a 
systematic review. Metabolites 2022;12(4):312. 
PUBMED | CROSSREF

 19. Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res 
2013;113(6):660-75. 
PUBMED | CROSSREF

 20. Hucker WJ, Saini H, Lubitz SA, Ellinor PT. Atrial fibrillation genetics: is there a practical clinical value 
now or in the future? Can J Cardiol 2016;32(11):1300-5. 
PUBMED | CROSSREF

 21. Weiss JC, Natarajan S, Peissig PL, McCarty CA, Page D. Machine learning for personalized medicine: 
predicting primary myocardial infarction from electronic health records. AI Mag 2012;33(4):33-33. 
CROSSREF

22/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/36035865
https://doi.org/10.1155/2022/9034996
http://www.ncbi.nlm.nih.gov/pubmed/22614726
https://doi.org/10.1109/TITB.2012.2199570
http://www.ncbi.nlm.nih.gov/pubmed/31200905
https://doi.org/10.1016/j.cmpb.2019.04.008
http://www.ncbi.nlm.nih.gov/pubmed/31919418
https://doi.org/10.1038/s41467-019-13690-5
http://www.ncbi.nlm.nih.gov/pubmed/22243964
https://doi.org/10.1016/j.ajhg.2011.11.029
http://www.ncbi.nlm.nih.gov/pubmed/29727686
https://doi.org/10.1016/j.ajhg.2018.04.002
http://www.ncbi.nlm.nih.gov/pubmed/28613276
https://doi.org/10.1038/ncomms15805
http://www.ncbi.nlm.nih.gov/pubmed/23362303
https://doi.org/10.1161/CIRCGENETICS.112.964619
http://www.ncbi.nlm.nih.gov/pubmed/20971364
https://doi.org/10.1016/S0140-6736(10)61267-6
http://www.ncbi.nlm.nih.gov/pubmed/36005433
https://doi.org/10.3390/jcdd9080268
http://www.ncbi.nlm.nih.gov/pubmed/19567438
https://doi.org/10.1001/jama.2009.954
http://www.ncbi.nlm.nih.gov/pubmed/35626404
https://doi.org/10.3390/diagnostics12051249
http://www.ncbi.nlm.nih.gov/pubmed/35448500
https://doi.org/10.3390/metabo12040312
http://www.ncbi.nlm.nih.gov/pubmed/23989711
https://doi.org/10.1161/CIRCRESAHA.113.300282
http://www.ncbi.nlm.nih.gov/pubmed/27094126
https://doi.org/10.1016/j.cjca.2016.02.032
https://doi.org/10.1609/aimag.v33i4.2438


 22. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular 
medicine: are we there yet? Heart 2018;104(14):1156-64. 
PUBMED | CROSSREF

 23. Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial intelligence: practical primer for clinical 
research in cardiovascular disease. J Am Heart Assoc 2019;8(17):e012788. 
PUBMED | CROSSREF

 24. Alimadadi A, Manandhar I, Aryal S, Munroe PB, Joe B, Cheng X. Machine learning-based classification 
and diagnosis of clinical cardiomyopathies. Physiol Genomics 2020;52(9):391-400. 
PUBMED | CROSSREF

 25. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. 
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, 18th International 
Conference; October 5-9, 2015; Munich, Germany. Berlin, Germany: Springer; 2015, 234-41.

 26. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition; June 7-12, 2015; Boston, MA, USA. 
Washington, D.C., USA: IEEE Computer Society; 2015, 3431-40.

 27. Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for 
image segmentation. IEEE Trans Pattern Anal Mach Intell 2017;39(12):2481-95. 
PUBMED | CROSSREF

 28. Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. Proceedings of the 
IEEE International Conference on Computer Vision; December 7-13, 2015; Santiago, Chile. Piscataway, NJ, 
USA: Institute of Electrical and Electronics Engineers; 2015, 1520-8.

 29. Karim F, Majumdar S, Darabi H, Harford S. Multivariate LSTM-FCNs for time series classification. Neural 
Netw 2019;116:237-45. 
PUBMED | CROSSREF

 30. Xia M, Yan W, Huang Y, Guo Y, Zhou G, Wang Y. Extracting membrane borders in IVUS images using 
a multi-scale feature aggregated u-net. 2020. 42nd Annual International Conference of the IEEE 
Engineering in Medicine & Biology Society (EMBC); July 20-24, 2020; Montreal, Canada. Piscataway, NJ, 
USA: Institute of Electrical and Electronics Engineers; 2020, 1650-3.

 31. Azad R, Asadi-Aghbolaghi M, Fathy M, Escalera S. Bi-directional ConvLSTM U-Net with densley connected 
convolutions. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops; October 
27-28, 2019; Seoul, Korea. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2019, 406-15.

 32. Wollmann T, Gunkel M, Chung I, Erfle H, Rippe K, Rohr K. GRUU-Net: Integrated convolutional and 
gated recurrent neural network for cell segmentation. Med Image Anal 2019;56:68-79. 
PUBMED | CROSSREF

 33. Adak A, Pradhan B, Shukla N, Alamri A. Unboxing deep learning model of food delivery service reviews 
using explainable artificial intelligence (XAI) technique. Foods 2022;11(14):2019. 
PUBMED | CROSSREF

 34. Deif MA, Solyman AA, Kamarposhti MA, Band SS, Hammam RE. A deep bidirectional recurrent neural 
network for identification of SARS-CoV-2 from viral genome sequences. Math Biosci Eng 2021;18(6):8933-50. 
PUBMED | CROSSREF

 35. Suri JS, Bhagawati M, Agarwal S, Paul S, Pandey A, Gupta SK, et al. UNet deep learning architecture for 
segmentation of vascular and non-vascular images: a microscopic look at UNet components buffered with 
pruning, explainable artificial intelligence, and bias. IEEE Access 2022;11:595-645. 
CROSSREF

 36. Libiseller-Egger J, Phelan JE, Attia ZI, Benavente ED, Campino S, Friedman PA, et al. Deep learning-
derived cardiovascular age shares a genetic basis with other cardiac phenotypes. Sci Rep 2022;12(1):22625. 
PUBMED | CROSSREF

 37. Johri AM, Mantella LE, Jamthikar AD, Saba L, Laird JR, Suri JS. Role of artificial intelligence in 
cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional 
statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization. 
Int J Cardiovasc Imaging 2021;37(11):3145-56. 
PUBMED | CROSSREF

 38. Krittanawong C, Johnson KW, Choi E, Kaplin S, Venner E, Murugan M, et al. Artificial intelligence and 
cardiovascular genetics. Life (Basel) 2022;12(2):279. 
PUBMED | CROSSREF

 39. El-Baz A, Suri JS. Big Data in Multimodal Medical Imaging. Boca Raton, FL, USA: CRC Press; 2019.

 40. Jamthikar AD, Gupta D, Mantella LE, Saba L, Laird JR, Johri AM, et al. Multiclass machine learning vs. 
conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary 
angiography scores as gold standard: a 500 participants study. Int J Cardiovasc Imaging 2021;37(4):1171-87. 
PUBMED | CROSSREF

23/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/29352006
https://doi.org/10.1136/heartjnl-2017-311198
http://www.ncbi.nlm.nih.gov/pubmed/31450991
https://doi.org/10.1161/JAHA.119.012788
http://www.ncbi.nlm.nih.gov/pubmed/32744882
https://doi.org/10.1152/physiolgenomics.00063.2020
http://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/31121421
https://doi.org/10.1016/j.neunet.2019.04.014
http://www.ncbi.nlm.nih.gov/pubmed/31200289
https://doi.org/10.1016/j.media.2019.04.011
http://www.ncbi.nlm.nih.gov/pubmed/35885262
https://doi.org/10.3390/foods11142019
http://www.ncbi.nlm.nih.gov/pubmed/34814329
https://doi.org/10.3934/mbe.2021440
https://doi.org/10.1109/ACCESS.2022.3232561
http://www.ncbi.nlm.nih.gov/pubmed/36587059
https://doi.org/10.1038/s41598-022-27254-z
http://www.ncbi.nlm.nih.gov/pubmed/34050838
https://doi.org/10.1007/s10554-021-02294-0
http://www.ncbi.nlm.nih.gov/pubmed/35207566
https://doi.org/10.3390/life12020279
http://www.ncbi.nlm.nih.gov/pubmed/33184741
https://doi.org/10.1007/s10554-020-02099-7


 41. Jamthikar A, Gupta D, Khanna NN, Saba L, Laird JR, Suri JS. Cardiovascular/stroke risk prevention: a new 
machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics 
with conventional risk factors. Indian Heart J 2020;72(4):258-64. 
PUBMED | CROSSREF

 42. Steinfeldt J, Buergel T, Loock L, Kittner P, Ruyoga G, Zu Belzen JU, et al. Neural network-based integration 
of polygenic and clinical information: development and validation of a prediction model for 10-year risk of 
major adverse cardiac events in the UK Biobank cohort. Lancet Digit Health 2022;4(2):e84-94. 
PUBMED | CROSSREF

 43. Johri AM, Singh KV, Mantella LE, Saba L, Sharma A, Laird JR, et al. Deep learning artificial intelligence 
framework for multiclass coronary artery disease prediction using combination of conventional risk 
factors, carotid ultrasound, and intraplaque neovascularization. Comput Biol Med 2022;150:106018. 
PUBMED | CROSSREF

 44. Konstantonis G, Singh KV, Sfikakis PP, Jamthikar AD, Kitas GD, Gupta SK, et al. Cardiovascular disease 
detection using machine learning and carotid/femoral arterial imaging frameworks in rheumatoid 
arthritis patients. Rheumatol Int 2022;42(2):215-39. 
PUBMED | CROSSREF

 45. Jamthikar A, Gupta D, Johri AM, Mantella LE, Saba L, Suri JS. A machine learning framework for risk 
prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: a 
Canadian study. Comput Biol Med 2022;140:105102. 
PUBMED | CROSSREF

 46. Ho DS, Schierding W, Wake M, Saffery R, O’Sullivan J. Machine learning SNP based prediction for 
precision medicine. Front Genet 2019;10:267. 
PUBMED | CROSSREF

 47. O’Sullivan JW, Raghavan S, Marquez-Luna C, Luzum JA, Damrauer SM, Ashley EA, et al. Polygenic risk 
scores for cardiovascular disease: a scientific statement from the American Heart Association. Circulation 
2022;146(8):e93-118. 
PUBMED | CROSSREF

 48. Kuanr M, Mohapatra P, Mittal S, Maindarkar M, Fauda MM, Saba L, et al. Recommender system for 
the efficient treatment of COVID-19 using a convolutional neural network model and image similarity. 
Diagnostics (Basel) 2022;12(11):2700. 
PUBMED | CROSSREF

 49. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, et al. Polygenic risk score 
identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy 
in the primary prevention setting. Circulation 2017;135(22):2091-101. 
PUBMED | CROSSREF

 50. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol 
2022;39(8):120. 
PUBMED | CROSSREF

 51. Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, et al. Genomic risk prediction 
of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol 
2018;72(16):1883-93. 
PUBMED | CROSSREF

 52. Fritzsche MC, Akyüz K, Cano Abadía M, McLennan S, Marttinen P, Mayrhofer MT, et al. Ethical layering 
in AI-driven polygenic risk scores: new complexities, new challenges. Front Genet 2023;14:1098439. 
PUBMED | CROSSREF

 53. Aragam KG, Natarajan P. Polygenic scores to assess atherosclerotic cardiovascular disease risk: clinical 
perspectives and basic implications. Circ Res 2020;126(9):1159-77. 
PUBMED | CROSSREF

 54. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet 2013;9(3):e1003348. 
PUBMED | CROSSREF

 55. Dubey AK, Chabert GL, Carriero A, Pasche A, Danna PS, Agarwal S, et al. Ensemble deep learning 
derived from transfer learning for classification of COVID-19 patients on hybrid deep-learning-based lung 
segmentation: a data augmentation and balancing framework. Diagnostics (Basel) 2023;13(11):1954. 
PUBMED | CROSSREF

 56. Suri JS, Agarwal S, Saba L, Chabert GL, Carriero A, Paschè A, et al. Multicenter study on COVID-19 lung 
computed tomography segmentation with varying glass ground opacities using unseen deep learning 
artificial intelligence paradigms: COVLIAS 1.0 validation. J Med Syst 2022;46(10):62. 
PUBMED | CROSSREF

24/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/32861380
https://doi.org/10.1016/j.ihj.2020.06.004
http://www.ncbi.nlm.nih.gov/pubmed/35090679
https://doi.org/10.1016/S2589-7500(21)00249-1
http://www.ncbi.nlm.nih.gov/pubmed/36174330
https://doi.org/10.1016/j.compbiomed.2022.106018
http://www.ncbi.nlm.nih.gov/pubmed/35013839
https://doi.org/10.1007/s00296-021-05062-4
http://www.ncbi.nlm.nih.gov/pubmed/34973521
https://doi.org/10.1016/j.compbiomed.2021.105102
http://www.ncbi.nlm.nih.gov/pubmed/30972108
https://doi.org/10.3389/fgene.2019.00267
http://www.ncbi.nlm.nih.gov/pubmed/35862132
https://doi.org/10.1161/CIR.0000000000001077
http://www.ncbi.nlm.nih.gov/pubmed/36359545
https://doi.org/10.3390/diagnostics12112700
http://www.ncbi.nlm.nih.gov/pubmed/28223407
https://doi.org/10.1161/CIRCULATIONAHA.116.024436
http://www.ncbi.nlm.nih.gov/pubmed/35704152
https://doi.org/10.1007/s12032-022-01711-1
http://www.ncbi.nlm.nih.gov/pubmed/30309464
https://doi.org/10.1016/j.jacc.2018.07.079
http://www.ncbi.nlm.nih.gov/pubmed/36816027
https://doi.org/10.3389/fgene.2023.1098439
http://www.ncbi.nlm.nih.gov/pubmed/32324503
https://doi.org/10.1161/CIRCRESAHA.120.315928
http://www.ncbi.nlm.nih.gov/pubmed/23555274
https://doi.org/10.1371/journal.pgen.1003348
http://www.ncbi.nlm.nih.gov/pubmed/37296806
https://doi.org/10.3390/diagnostics13111954
http://www.ncbi.nlm.nih.gov/pubmed/35988110
https://doi.org/10.1007/s10916-022-01850-y


 57. Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PS, et al. COVLIAS 2.0-cXAI: cloud-based 
explainable deep learning system for COVID-19 lesion localization in computed tomography scans. 
Diagnostics (Basel) 2022;12(6):1482. 
PUBMED | CROSSREF

 58. Das S, Nayak GK, Saba L, Kalra M, Suri JS, Saxena S. An artificial intelligence framework and its bias for 
brain tumor segmentation: a narrative review. Comput Biol Med 2022;143:105273. 
PUBMED | CROSSREF

 59. Suri JS, Agarwal S, Carriero A, Paschè A, Danna PS, Columbu M, et al. COVLIAS 1.0 vs. MedSeg: artificial 
intelligence-based comparative study for automated COVID-19 computed tomography lung segmentation 
in Italian and Croatian cohorts. Diagnostics (Basel) 2021;11(12):2367. 
PUBMED | CROSSREF

 60. Suri JS, Agarwal S, Elavarthi P, Pathak R, Ketireddy V, Columbu M, et al. Inter-variability study of 
COVLIAS 1.0: hybrid deep learning models for COVID-19 lung segmentation in computed tomography. 
Diagnostics (Basel) 2021;11(11):2025. 
PUBMED | CROSSREF

 61. Jena B, Saxena S, Nayak GK, Saba L, Sharma N, Suri JS. Artificial intelligence-based hybrid deep learning 
models for image classification: the first narrative review. Comput Biol Med 2021;137:104803. 
PUBMED | CROSSREF

 62. Jain PK, Sharma N, Giannopoulos AA, Saba L, Nicolaides A, Suri JS. Hybrid deep learning segmentation 
models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput Biol Med 
2021;136:104721. 
PUBMED | CROSSREF

 63. Skandha SS, Nicolaides A, Gupta SK, et al. A hybrid deep learning paradigm for carotid plaque tissue 
characterization and its validation in multicenter cohorts using a supercomputer framework. Comput Biol 
Med 2022;141:105131. 
PUBMED | CROSSREF

 64. Zheng H, Wang H, Azuaje F. Incorporation of ontology-driven biological knowledge into cardiovascular 
genomics. 2011 Computing in Cardiology; September 18-21, 2011; Hangzhou, China. Piscataway, NJ, USA: 
Institute of Electrical and Electronics Engineers; 2011, 565-8.

 65. Wung SF, Hickey KT, Taylor JY, Gallek MJ. Cardiovascular genomics. J Nurs Scholarsh 2013;45(1):60-8. 
PUBMED | CROSSREF

 66. Young WJ, Ramírez J, van Duijvenboden S, et al. Will genetic data significantly change cardiovascular 
risk prediction in daily practice? 2020 Computing in Cardiology; September 13-16, 2020; Rimini, Italy. 
Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2020, 1-4.

 67. Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, et al. Genetics and genomics 
for the prevention and treatment of cardiovascular disease: update: a scientific statement from the 
American Heart Association. Circulation 2013;128(25):2813-51. 
PUBMED | CROSSREF

 68. Tandel GS, Tiwari A, Kakde OG, Gupta N, Saba L, Suri JS. Role of ensemble deep learning for brain tumor 
classification in multiple magnetic resonance imaging sequence Data. Diagnostics (Basel) 2023;13(3):481. 
PUBMED | CROSSREF

 69. Terrada O, Cherradi B, Raihani A, Bouattane O. Classification and prediction of atherosclerosis diseases 
using machine learning algorithms. In: 2019 5th International Conference on Optimization and Applications 
(ICOA). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers; 2019, 10056.

 70. Suri JS, Bhagawati M, Paul S, Protogeron A, Sfikakis PP, Kitas GD, et al. Understanding the bias in 
machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Comput 
Biol Med 2022;142:105204. 
PUBMED | CROSSREF

 71. Jamthikar AD, Gupta D, Mantella LE, et al. Multiclass machine learning vs. conventional calculators for 
stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold 
standard: a 500 participants study. Int J Cardiovasc Imaging 2021;37(4):1171-87. 
PUBMED | CROSSREF

 72. Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multi-omics 
data analysis: a review. Biotechnol Adv 2021;49:107739. 
PUBMED | CROSSREF

 73. Vakili D, Radenkovic D, Chawla S, Bhatt DL. Panomics: new databases for advancing cardiology. Front 
Cardiovasc Med 2021;8:587768. 
PUBMED | CROSSREF

25/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/35741292
https://doi.org/10.3390/diagnostics12061482
http://www.ncbi.nlm.nih.gov/pubmed/35228172
https://doi.org/10.1016/j.compbiomed.2022.105273
http://www.ncbi.nlm.nih.gov/pubmed/34943603
https://doi.org/10.3390/diagnostics11122367
http://www.ncbi.nlm.nih.gov/pubmed/34829372
https://doi.org/10.3390/diagnostics11112025
http://www.ncbi.nlm.nih.gov/pubmed/34536856
https://doi.org/10.1016/j.compbiomed.2021.104803
http://www.ncbi.nlm.nih.gov/pubmed/34371320
https://doi.org/10.1016/j.compbiomed.2021.104721
http://www.ncbi.nlm.nih.gov/pubmed/34922173
https://doi.org/10.1016/j.compbiomed.2021.105131
http://www.ncbi.nlm.nih.gov/pubmed/23368089
https://doi.org/10.1111/jnu.12002
http://www.ncbi.nlm.nih.gov/pubmed/24297835
https://doi.org/10.1161/01.cir.0000437913.98912.1d
http://www.ncbi.nlm.nih.gov/pubmed/36766587
https://doi.org/10.3390/diagnostics13030481
http://www.ncbi.nlm.nih.gov/pubmed/35033879
https://doi.org/10.1016/j.compbiomed.2021.105204
http://www.ncbi.nlm.nih.gov/pubmed/33184741
https://doi.org/10.1007/s10554-020-02099-7
http://www.ncbi.nlm.nih.gov/pubmed/33794304
https://doi.org/10.1016/j.biotechadv.2021.107739
http://www.ncbi.nlm.nih.gov/pubmed/34041278
https://doi.org/10.3389/fcvm.2021.587768


 74. Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for 
machine learning analysis. Comput Struct Biotechnol J 2021;19:3735-46. 
PUBMED | CROSSREF

 75. Pan Y, Lei X, Zhang Y. Association predictions of genomics, proteinomics, transcriptomics, microbiome, 
metabolomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: a 
comprehensive approach. Med Res Rev 2022;42(1):441-61. 
PUBMED | CROSSREF

 76. Hamamoto R, Komatsu M, Takasawa K, Asada K, Kaneko S. Epigenetics analysis and integrated 
analysis of multiomics data, including epigenetic data, using artificial intelligence in the era of precision 
medicine. Biomolecules 2019;10(1):62. 
PUBMED | CROSSREF

 77. Schnabel RB, Baccarelli A, Lin H, Ellinor PT, Benjamin EJ. Next steps in cardiovascular disease genomic 
research--sequencing, epigenetics, and transcriptomics. Clin Chem 2012;58(1):113-26. 
PUBMED | CROSSREF

 78. Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9-mediated genome editing: From basic research to 
translational medicine. J Cell Mol Med 2020;24(7):3766-78. 
PUBMED | CROSSREF

 79. Wang Z, Emmerich A, Pillon NJ, Moore T, Hemerich D, Cornelis MC, et al. Genome-wide association 
analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and 
roles in disease prevention. Nat Genet 2022;54(9):1332-44. 
PUBMED | CROSSREF

 80. Tahir UA, Katz DH, Avila-Pachecho J, Bick AG, Pampana A, Robbins JM, et al. Whole genome association 
study of the plasma metabolome identifies metabolites linked to cardiometabolic disease in black 
individuals. Nat Commun 2022;13(1):4923. 
PUBMED | CROSSREF

 81. Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C, et al. A tutorial on conducting 
genome-wide association studies: quality control and statistical analysis. Int J Methods Psychiatr Res 
2018;27(2):e1608. 
PUBMED | CROSSREF

 82. Katz DH, Tahir UA, Bick AG, Pampana A, Ngo D, Benson MD, et al. Whole genome sequence analysis 
of the plasma proteome in black adults provides novel insights into cardiovascular disease. Circulation 
2022;145(5):357-70. 
PUBMED | CROSSREF

 83. Rahman MH, Peng S, Hu X, Chen C, Rahman MR, Uddin S, et al. A network-based bioinformatics 
approach to identify molecular biomarkers for type 2 diabetes that are linked to the progression of 
neurological diseases. Int J Environ Res Public Health 2020;17(3):1035. 
PUBMED | CROSSREF

 84. Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al. Polygenic risk scores for prediction 
of breast cancer and breast cancer subtypes. Am J Hum Genet 2019;104(1):21-34. 
PUBMED | CROSSREF

 85. Pjanic M, Miller CL, Wirka R, Kim JB, DiRenzo DM, Quertermous T. Genetics and genomics of coronary 
artery disease. Curr Cardiol Rep 2016;18(10):102. 
PUBMED | CROSSREF

 86. Musunuru K, Hershberger RE, Day SM, Klinedinst NJ, Landstrom AP, Parikh VN, et al. Genetic testing for 
inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genom 
Precis Med 2020;13(4):e000067. 
PUBMED | CROSSREF

 87. Miyazawa K, Ito K. Genetic analysis for coronary artery disease toward diverse populations. Front Genet 
2021;12:766485. 
PUBMED | CROSSREF

 88. Kwon OS, Hong M, Kim TH, Hwang I, Shim J, Choi EK, et al. Genome-wide association study-based 
prediction of atrial fibrillation using artificial intelligence. Open Heart 2022;9(1):e001898. 
PUBMED | CROSSREF

 89. Choi SW, Mak TS, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc 
2020;15(9):2759-72. 
PUBMED | CROSSREF

 90. Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic risk prediction models for 
stratified disease prevention. Nat Rev Genet 2016;17(7):392-406. 
PUBMED | CROSSREF

26/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/34285775
https://doi.org/10.1016/j.csbj.2021.06.030
http://www.ncbi.nlm.nih.gov/pubmed/34346083
https://doi.org/10.1002/med.21847
http://www.ncbi.nlm.nih.gov/pubmed/31905969
https://doi.org/10.3390/biom10010062
http://www.ncbi.nlm.nih.gov/pubmed/22100807
https://doi.org/10.1373/clinchem.2011.170423
http://www.ncbi.nlm.nih.gov/pubmed/32096600
https://doi.org/10.1111/jcmm.14916
http://www.ncbi.nlm.nih.gov/pubmed/36071172
https://doi.org/10.1038/s41588-022-01165-1
http://www.ncbi.nlm.nih.gov/pubmed/35995766
https://doi.org/10.1038/s41467-022-32275-3
http://www.ncbi.nlm.nih.gov/pubmed/29484742
https://doi.org/10.1002/mpr.1608
http://www.ncbi.nlm.nih.gov/pubmed/34814699
https://doi.org/10.1161/CIRCULATIONAHA.121.055117
http://www.ncbi.nlm.nih.gov/pubmed/32041280
https://doi.org/10.3390/ijerph17031035
http://www.ncbi.nlm.nih.gov/pubmed/30554720
https://doi.org/10.1016/j.ajhg.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/27586139
https://doi.org/10.1007/s11886-016-0777-y
http://www.ncbi.nlm.nih.gov/pubmed/32698598
https://doi.org/10.1161/HCG.0000000000000067
http://www.ncbi.nlm.nih.gov/pubmed/34880905
https://doi.org/10.3389/fgene.2021.766485
http://www.ncbi.nlm.nih.gov/pubmed/35086918
https://doi.org/10.1136/openhrt-2021-001898
http://www.ncbi.nlm.nih.gov/pubmed/32709988
https://doi.org/10.1038/s41596-020-0353-1
http://www.ncbi.nlm.nih.gov/pubmed/27140283
https://doi.org/10.1038/nrg.2016.27


 91. Collister JA, Liu X, Clifton L. Calculating polygenic risk scores (PRS) in UK Biobank: a practical guide for 
epidemiologists. Front Genet 2022;13:818574. 
PUBMED | CROSSREF

 92. Wand H, Lambert SA, Tamburro C, Iacocca MA, O’Sullivan JW, Sillari C, et al. Improving reporting 
standards for polygenic scores in risk prediction studies. Nature 2021;591(7849):211-9. 
PUBMED | CROSSREF

 93. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk 
scores may exacerbate health disparities. Nat Genet 2019;51(4):584-91. 
PUBMED | CROSSREF

 94. Hindy G, Aragam KG, Ng K, Chaffin M, Lotta LA, Baras A, et al. Genome-wide polygenic score, clinical risk 
factors, and long-term trajectories of coronary artery disease. Arterioscler Thromb Vasc Biol 2020;40(11):2738-46. 
PUBMED | CROSSREF

 95. de Marvao A, Dawes TJ, O’Regan DP. Artificial intelligence for cardiac imaging-genetics research. Front 
Cardiovasc Med 2020;6:195. 
PUBMED | CROSSREF

 96. Öztornaci RO, Coşgun E, Çolak C, Taşdelen B. Prediction of Polygenic Risk Score by machine learning 
and deep learning methods in genome-wide association studies. bioRxiv. January 3, 2023. https://doi.
org/10.1101/2022.12.30.522280. 
CROSSREF

 97. Li L, Huang Y, Han Y, Jiang J. Use of deep learning genomics to discriminate Alzheimer’s disease and 
healthy controls. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & 
Biology Society (EMBC); November 1-5, 2021. Piscataway, NJ, USA: Institute of Electrical and Electronics 
Engineers; 2021, 5788-91.

 98. Bhadri K, Karnik N, Dhatrak P. Current advancements in cardiovascular disease management using 
artificial intelligence and machine learning models: current scenario and challenges. 2022 10th 
International Conference on Emerging Trends in Engineering and Technology-Signal and Information 
Processing (ICETET-SIP-22); April 29-30, 2022; Nagpur, India. Piscataway, NJ, USA: Institute of Electrical 
and Electronics Engineers; 2022, 1-6.

 99. Dai H, Younis A, Kong JD, Puce L, Jabbour G, Yuan H, et al. Big data in cardiology: State-of-art and future 
prospects. Front Cardiovasc Med 2022;9:844296. 
PUBMED | CROSSREF

 100. Dai J, Lv J, Zhu M, Wang Y, Qin N, Ma H, et al. Identification of risk loci and a polygenic risk score for lung 
cancer: a large-scale prospective cohort study in Chinese populations. Lancet Respir Med 2019;7(10):881-91. 
PUBMED | CROSSREF

 101. Zekavat SM, Raghu VK, Trinder M, Ye Y, Koyama S, Honigberg MC, et al. Deep learning of the retina 
enables phenome-and genome-wide analyses of the microvasculature. Circulation 2022;145(2):134-50. 
PUBMED | CROSSREF

 102. Westerlund AM, Hawe JS, Heinig M, Schunkert H. Risk prediction of cardiovascular events by exploration 
of molecular data with explainable artificial intelligence. Int J Mol Sci 2021;22(19):10291. 
PUBMED | CROSSREF

 103. Rukhsar L, Bangyal WH, Ali Khan MS, Ag Ibrahim AA, Nisar K, Rawat DB. Analyzing RNA-seq gene 
expression data using deep learning approaches for cancer classification. Applied Sciences 2022;12(4):1850. 
CROSSREF

 104. Mathur P, Srivastava S, Xu X, Mehta JL. Artificial intelligence, machine learning, and cardiovascular 
disease. Clin Med Insights Cardiol 2020;14:1179546820927404. 
PUBMED | CROSSREF

 105. Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, et al. Deep learning paradigm for 
cardiovascular disease/stroke risk stratification in Parkinson’s disease affected by COVID-19: a narrative 
review. Diagnostics (Basel) 2022;12(7):1543. 
PUBMED | CROSSREF

 106. Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, et al. A powerful paradigm for 
cardiovascular risk stratification using multiclass, multi-label, and ensemble-based machine learning 
paradigms: a narrative review. Diagnostics (Basel) 2022;12(3):722. 
PUBMED | CROSSREF

 107. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk 
prediction using routine clinical data? PLoS One 2017;12(4):e0174944. 
PUBMED | CROSSREF

27/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/35251129
https://doi.org/10.3389/fgene.2022.818574
http://www.ncbi.nlm.nih.gov/pubmed/33692554
https://doi.org/10.1038/s41586-021-03243-6
http://www.ncbi.nlm.nih.gov/pubmed/30926966
https://doi.org/10.1038/s41588-019-0379-x
http://www.ncbi.nlm.nih.gov/pubmed/32957805
https://doi.org/10.1161/ATVBAHA.120.314856
http://www.ncbi.nlm.nih.gov/pubmed/32039240
https://doi.org/10.3389/fcvm.2019.00195
https://doi.org/10.1101/2022.12.30.522280
https://doi.org/10.1101/2022.12.30.522280
https://doi.org/10.1101/2022.12.30.522280
http://www.ncbi.nlm.nih.gov/pubmed/35433868
https://doi.org/10.3389/fcvm.2022.844296
http://www.ncbi.nlm.nih.gov/pubmed/31326317
https://doi.org/10.1016/S2213-2600(19)30144-4
http://www.ncbi.nlm.nih.gov/pubmed/34743558
https://doi.org/10.1161/CIRCULATIONAHA.121.057709
http://www.ncbi.nlm.nih.gov/pubmed/34638627
https://doi.org/10.3390/ijms221910291
https://doi.org/10.3390/app12041850
http://www.ncbi.nlm.nih.gov/pubmed/32952403
https://doi.org/10.1177/1179546820927404
http://www.ncbi.nlm.nih.gov/pubmed/35885449
https://doi.org/10.3390/diagnostics12071543
http://www.ncbi.nlm.nih.gov/pubmed/35328275
https://doi.org/10.3390/diagnostics12030722
http://www.ncbi.nlm.nih.gov/pubmed/28376093
https://doi.org/10.1371/journal.pone.0174944


 108. Schiano C, Franzese M, Geraci F, Zanfardino M, Maiello C, Palmieri V, et al. Machine learning and 
bioinformatics framework integration to potential familial DCM-related markers discovery. Genes (Basel) 
2021;12(12):1946. 
PUBMED | CROSSREF

 109. Saba L, Tiwari A, Biswas M, Gupta SK, Godia-Cuadrado E, Chaturvedi A, et al. Wilson’s disease: a new 
perspective review on its genetics, diagnosis and treatment. Front Biosci (Elite Ed) 2019;11(1):166-85. 
PUBMED | CROSSREF

 110. Liu B, Fang L, Xiong Y, Du Q, Xiang Y, Chen X, et al. A machine learning model based on genetic and 
traditional cardiovascular risk factors to predict premature coronary artery disease. Front Biosci (Landmark 
Ed) 2022;27(7):211. 
PUBMED | CROSSREF

 111. Ordikhani M, Saniee Abadeh M, Prugger C, Hassannejad R, Mohammadifard N, Sarrafzadegan N. 
An evolutionary machine learning algorithm for cardiovascular disease risk prediction. PLoS One 
2022;17(7):e0271723. 
PUBMED | CROSSREF

 112. Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study. Am J Cardiol 
1976;38(1):46-51. 
PUBMED | CROSSREF

 113. Assmann G, Schulte H. The Prospective Cardiovascular Münster (PROCAM) study: prevalence of 
hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary 
heart disease. Am Heart J 1988;116(6 Pt 2):1713-24. 
PUBMED | CROSSREF

 114. Woodward M, Brindle P, Tunstall-Pedoe H; SIGN Group on Risk Estimation. Adding social deprivation 
and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health 
Extended Cohort (SHHEC). Heart 2007;93(2):172-6. 
PUBMED | CROSSREF

 115. Lakoski SG, Greenland P, Wong ND, Schreiner PJ, Herrington DM, Kronmal RA, et al. Coronary artery 
calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham 
risk score: the multi-ethnic study of atherosclerosis (MESA). Arch Intern Med 2007;167(22):2437-42. 
PUBMED | CROSSREF

 116. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the 
assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 2007;297(6):611-9. 
PUBMED | CROSSREF

 117. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, et al. Predicting cardiovascular 
risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008;336(7659):1475-82. 
PUBMED | CROSSREF

 118. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of 
QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. 
BMJ 2007;335(7611):136. 
PUBMED | CROSSREF

 119. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA 
guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/
American Heart Association Task Force on Practice Guidelines. Circulation 2014;129(25 Suppl 2):S49-73. 
PUBMED | CROSSREF

 120. Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of 
fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24(11):987-1003. 
PUBMED | CROSSREF

 121. Khandelwal M, Kumar Rout R, Umer S, Mallik S, Li A. Multifactorial feature extraction and site prognosis 
model for protein methylation data. Brief Funct Genomics 2023;22(1):20-30. 
PUBMED | CROSSREF

 122. Pasha SN, Ramesh D, Mohmmad S, Harshavardhan A. Cardiovascular disease prediction using deep 
learning techniques. IOP Conf Ser Mater Sci Eng 2020;981(2):022006. 
CROSSREF

 123. Banchhor SK, Londhe ND, Araki T, Saba L, Radeva P, Laird JR, et al. Wall-based measurement features 
provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based 
features during machine learning paradigm. Comput Biol Med 2017;91:198-212. 
PUBMED | CROSSREF

 124. Araki T, Ikeda N, Shukla D, Jain PK, Londhe ND, Shrivastava VK, et al. PCA-based polling strategy in 
machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: a link 
between carotid and coronary grayscale plaque morphology. Comput Methods Programs Biomed 2016;128:137-58. 
PUBMED | CROSSREF

28/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/34946895
https://doi.org/10.3390/genes12121946
http://www.ncbi.nlm.nih.gov/pubmed/31136971
https://doi.org/10.2741/e854
http://www.ncbi.nlm.nih.gov/pubmed/35866398
https://doi.org/10.31083/j.fbl2707211
http://www.ncbi.nlm.nih.gov/pubmed/35901181
https://doi.org/10.1371/journal.pone.0271723
http://www.ncbi.nlm.nih.gov/pubmed/132862
https://doi.org/10.1016/0002-9149(76)90061-8
http://www.ncbi.nlm.nih.gov/pubmed/3202078
https://doi.org/10.1016/0002-8703(88)90220-7
http://www.ncbi.nlm.nih.gov/pubmed/17090561
https://doi.org/10.1136/hrt.2006.108167
http://www.ncbi.nlm.nih.gov/pubmed/18071165
https://doi.org/10.1001/archinte.167.22.2437
http://www.ncbi.nlm.nih.gov/pubmed/17299196
https://doi.org/10.1001/jama.297.6.611
http://www.ncbi.nlm.nih.gov/pubmed/18573856
https://doi.org/10.1136/bmj.39609.449676.25
http://www.ncbi.nlm.nih.gov/pubmed/17615182
https://doi.org/10.1136/bmj.39261.471806.55
http://www.ncbi.nlm.nih.gov/pubmed/24222018
https://doi.org/10.1161/01.cir.0000437741.48606.98
http://www.ncbi.nlm.nih.gov/pubmed/12788299
https://doi.org/10.1016/S0195-668X(03)00114-3
http://www.ncbi.nlm.nih.gov/pubmed/36310537
https://doi.org/10.1093/bfgp/elac034
https://doi.org/10.1088/1757-899X/981/2/022006
http://www.ncbi.nlm.nih.gov/pubmed/29100114
https://doi.org/10.1016/j.compbiomed.2017.10.019
http://www.ncbi.nlm.nih.gov/pubmed/27040838
https://doi.org/10.1016/j.cmpb.2016.02.004


 125. Khalifa NE, Taha MH, Ali DE, Slowik A, Hassanien AE. Artificial intelligence technique for gene expression 
by tumor RNA-Seq data: a novel optimized deep learning approach. IEEE Access 2020;8:22874-83. 
CROSSREF

 126. Peng J, Xue H, Wei Z, Tuncali I, Hao J, Shang X. Integrating multi-network topology for gene function 
prediction using deep neural networks. Brief Bioinform 2021;22(2):2096-105. 
PUBMED | CROSSREF

 127. Jamthikar A, Gupta D, Khanna NN, Saba L, Araki T, Viskovic K, et al. A low-cost machine learning-based 
cardiovascular/stroke risk assessment system: integration of conventional factors with image phenotypes. 
Cardiovasc Diagn Ther 2019;9(5):420-30. 
PUBMED | CROSSREF

 128. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. A novel and robust Bayesian approach for 
segmentation of psoriasis lesions and its risk stratification. Comput Methods Programs Biomed 2017;150:9-22. 
PUBMED | CROSSREF

 129. Araki T, Ikeda N, Dey N, Chakraborty S, Saba L, Kumar D, et al. A comparative approach of four different 
image registration techniques for quantitative assessment of coronary artery calcium lesions using 
intravascular ultrasound. Comput Methods Programs Biomed 2015;118(2):158-72. 
PUBMED | CROSSREF

 130. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. Reliable and accurate psoriasis disease classification 
in dermatology images using comprehensive feature space in machine learning paradigm. Expert Syst Appl 
2015;42(15-16):6184-95. 
CROSSREF

 131. Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A, et al. Eight pruning deep learning 
models for low storage and high-speed COVID-19 computed tomography lung segmentation 
and heatmap-based lesion localization: a multicenter study using COVLIAS 2.0. Comput Biol Med 
2022;146:105571. 
PUBMED | CROSSREF

 132. Song S, Jiang W, Hou L, Zhao H. Leveraging effect size distributions to improve polygenic risk 
scores derived from summary statistics of genome-wide association studies. PLOS Comput Biol 
2020;16(2):e1007565. 
PUBMED | CROSSREF

 133. Xu Y, Wang Y, Xie X, Wang F, Chen Q, Sun H. An autoencoder-based matrix factorization approach 
to estimating cell proportion from bulk tumor RNA-seq data. 2021 IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM); December 9-12, 2021. Piscataway, NJ, USA: Institute of Electrical 
and Electronics Engineers; 2021, 562-7.

 134. Zeng M, Lu C, Fei Z, Wu FX, Li Y, Wang J, et al. DMFLDA: a deep learning framework for predicting 
lncRNA–disease associations. IEEE/ACM Trans Comput Biol Bioinformatics 2021;18(6):2353-63. 
PUBMED | CROSSREF

 135. Zhao M, Tang Y, Kim H, Hasegawa K. Machine learning with k-means dimensional reduction for 
predicting survival outcomes in patients with breast cancer. Cancer Inform 2018;17:1176935118810215. 
PUBMED | CROSSREF

 136. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine 
classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 
2000;16(10):906-14. 
PUBMED | CROSSREF

 137. Gu Y, Zheng S, Yin Q, Jiang R, Li J. REDDA: Integrating multiple biological relations to heterogeneous 
graph neural network for drug-disease association prediction. Comput Biol Med 2022;150:106127. 
PUBMED | CROSSREF

 138. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling linkage 
disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet 2015;97(4):576-92. 
PUBMED | CROSSREF

 139. Privé F, Aschard H, Blum MG. Efficient implementation of penalized regression for genetic risk 
prediction. Genetics 2019;212(1):65-74. 
PUBMED | CROSSREF

 140. Leonenko G, Sims R, Shoai M, Frizzati A, Bossù P, Spalletta G, et al. Polygenic risk and hazard scores for 
Alzheimer’s disease prediction. Ann Clin Transl Neurol 2019;6(3):456-65. 
PUBMED | CROSSREF

 141. Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 
2019;8(7):giz082. 
PUBMED | CROSSREF

29/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

https://doi.org/10.1109/ACCESS.2020.2970210
http://www.ncbi.nlm.nih.gov/pubmed/32249297
https://doi.org/10.1093/bib/bbaa036
http://www.ncbi.nlm.nih.gov/pubmed/31737514
https://doi.org/10.21037/cdt.2019.09.03
http://www.ncbi.nlm.nih.gov/pubmed/28859832
https://doi.org/10.1016/j.cmpb.2017.07.011
http://www.ncbi.nlm.nih.gov/pubmed/25523233
https://doi.org/10.1016/j.cmpb.2014.11.006
https://doi.org/10.1016/j.eswa.2015.03.014
http://www.ncbi.nlm.nih.gov/pubmed/35751196
https://doi.org/10.1016/j.compbiomed.2022.105571
http://www.ncbi.nlm.nih.gov/pubmed/32045423
https://doi.org/10.1371/journal.pcbi.1007565
http://www.ncbi.nlm.nih.gov/pubmed/32248123
https://doi.org/10.1109/TCBB.2020.2983958
http://www.ncbi.nlm.nih.gov/pubmed/30455569
https://doi.org/10.1177/1176935118810215
http://www.ncbi.nlm.nih.gov/pubmed/11120680
https://doi.org/10.1093/bioinformatics/16.10.906
http://www.ncbi.nlm.nih.gov/pubmed/36182762
https://doi.org/10.1016/j.compbiomed.2022.106127
http://www.ncbi.nlm.nih.gov/pubmed/26430803
https://doi.org/10.1016/j.ajhg.2015.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30808621
https://doi.org/10.1534/genetics.119.302019
http://www.ncbi.nlm.nih.gov/pubmed/30911569
https://doi.org/10.1002/acn3.716
http://www.ncbi.nlm.nih.gov/pubmed/31307061
https://doi.org/10.1093/gigascience/giz082


 142. Ge T, Chen CY, Ni Y, Feng YA, Smoller JW. Polygenic prediction via Bayesian regression and continuous 
shrinkage priors. Nat Commun 2019;10(1):1776. 
PUBMED | CROSSREF

 143. Song L, Horvath S. Predicting COPD status with a random generalized linear model. Syst Biomed (Austin) 
2013;1(4):261-7. 
CROSSREF

 144. Khera AV, Chaffin M, Zekavat SM, Collins RL, Roselli C, Natarajan P, et al. Whole-genome sequencing to 
characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial 
infarction. Circulation 2019;139(13):1593-602. 
PUBMED | CROSSREF

 145. Lloyd-Jones LR, Zeng J, Sidorenko J, Yengo L, Moser G, Kemper KE, et al. Improved polygenic prediction 
by Bayesian multiple regression on summary statistics. Nat Commun 2019;10(1):5086. 
PUBMED | CROSSREF

 146. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 
diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome 
maps. Nat Genet 2018;50(11):1505-13. 
PUBMED | CROSSREF

 147. Munjral S, Maindarkar M, Ahluwalia P, Puvvula A, Jamthikar A, Jujaray T, et al. Cardiovascular risk 
stratification in diabetic retinopathy via atherosclerotic pathway in COVID-19/non-COVID-19 frameworks 
using artificial intelligence paradigm: a narrative review. Diagnostics (Basel) 2022;12(5):1234. 
PUBMED | CROSSREF

 148. Tan CH, Bonham LW, Fan CC, Mormino EC, Sugrue LP, Broce IJ, et al. Polygenic hazard score, amyloid 
deposition and Alzheimer’s neurodegeneration. Brain 2019;142(2):460-70. 
PUBMED | CROSSREF

 149. Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm 
2016;13(5):1445-54. 
PUBMED | CROSSREF

 150. Kavitha MS, Gangadaran P, Jackson A, Venmathi Maran BA, Kurita T, Ahn BC. Deep neural network 
models for colon cancer screening. Cancers (Basel) 2022;14(15):3707. 
PUBMED | CROSSREF

 151. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FC, et al. Comprehensive functional genomic resource 
and integrative model for the human brain. Science 2018;362(6420):eaat8464. 
PUBMED | CROSSREF

 152. Vlachopoulos C, Aznaouridis K, Ioakeimidis N, Rokkas K, Vasiliadou C, Alexopoulos N, et al. 
Unfavourable endothelial and inflammatory state in erectile dysfunction patients with or without 
coronary artery disease. Eur Heart J 2006;27(22):2640-8. 
PUBMED | CROSSREF

 153. Gandaglia G, Briganti A, Jackson G, Kloner RA, Montorsi F, Montorsi P, et al. A systematic review of the 
association between erectile dysfunction and cardiovascular disease. Eur Urol 2014;65(5):968-78. 
PUBMED | CROSSREF

 154. Suri JS, Agarwal S, Gupta S, Puvvula A, Viskovic K, Suri N, et al. Systematic review of artificial intelligence 
in acute respiratory distress syndrome for COVID-19 lung patients: a biomedical imaging perspective. 
IEEE J Biomed Health Inform 2021;25(11):4128-39. 
PUBMED | CROSSREF

 155. Paul S, Maindarkar M, Saxena S, Saba L, Turk M, Kalra M, et al. Bias investigation in artificial intelligence 
systems for early detection of Parkinson’s disease: a narrative review. Diagnostics (Basel) 2022;12(1):166. 
PUBMED | CROSSREF

 156. Suri JS, Agarwal S, Jena B, Saxena S, El-Baz A, Agarwal V, et al. Five strategies for bias estimation in 
artificial intelligence-based hybrid deep learning for acute respiratory distress syndrome COVID-19 lung 
infected patients using AP(ai)Bias 2.0: a systematic review. IEEE Trans Instrum Meas. Forthcoming 2022.

 157. Kariuki JK, Stuart-Shor EM, Leveille SG, Hayman LL. Evaluation of the performance of existing non-
laboratory based cardiovascular risk assessment algorithms. BMC Cardiovasc Disord 2013;13:123. 
PUBMED | CROSSREF

 158. Slack D, Hilgard S, Jia E, Singh S, Lakkaraju H. Fooling LIME and SHAP: adversarial attacks on post hoc 
explanation methods. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA: 
Association for Computing Machinery; 2020, 180-6.

 159. Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Cuadrado-Godia E, et al. State-of-the-art review on deep 
learning in medical imaging. Front Biosci (Landmark Ed) 2019;24(3):392-426. 
PUBMED | CROSSREF

30/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/30992449
https://doi.org/10.1038/s41467-019-09718-5
https://doi.org/10.4161/sysb.25981
http://www.ncbi.nlm.nih.gov/pubmed/30586733
https://doi.org/10.1161/CIRCULATIONAHA.118.035658
http://www.ncbi.nlm.nih.gov/pubmed/31704910
https://doi.org/10.1038/s41467-019-12653-0
http://www.ncbi.nlm.nih.gov/pubmed/30297969
https://doi.org/10.1038/s41588-018-0241-6
http://www.ncbi.nlm.nih.gov/pubmed/35626389
https://doi.org/10.3390/diagnostics12051234
http://www.ncbi.nlm.nih.gov/pubmed/30689776
https://doi.org/10.1093/brain/awy327
http://www.ncbi.nlm.nih.gov/pubmed/27007977
https://doi.org/10.1021/acs.molpharmaceut.5b00982
http://www.ncbi.nlm.nih.gov/pubmed/35954370
https://doi.org/10.3390/cancers14153707
http://www.ncbi.nlm.nih.gov/pubmed/30545857
https://doi.org/10.1126/science.aat8464
http://www.ncbi.nlm.nih.gov/pubmed/17056702
https://doi.org/10.1093/eurheartj/ehl341
http://www.ncbi.nlm.nih.gov/pubmed/24011423
https://doi.org/10.1016/j.eururo.2013.08.023
http://www.ncbi.nlm.nih.gov/pubmed/34379599
https://doi.org/10.1109/JBHI.2021.3103839
http://www.ncbi.nlm.nih.gov/pubmed/35054333
https://doi.org/10.3390/diagnostics12010166
http://www.ncbi.nlm.nih.gov/pubmed/24373202
https://doi.org/10.1186/1471-2261-13-123
http://www.ncbi.nlm.nih.gov/pubmed/30468663
https://doi.org/10.2741/4725


 160. Jena B, Saxena S, Nayak GK, Balestrieri A, Gupta N, Khanna NN, et al. Brain tumor characterization using 
radiogenomics in artificial intelligence framework. Cancers (Basel) 2022;14(16):4052. 
PUBMED | CROSSREF

 161. Sanagala SS, Nicolaides A, Gupta SK, Koppula VK, Saba L, Agarwal S, et al. Ten fast transfer learning 
models for carotid ultrasound plaque tissue characterization in augmentation framework embedded with 
heatmaps for stroke risk stratification. Diagnostics (Basel) 2021;11(11):2109. 
PUBMED | CROSSREF

 162. Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JF, Paul S, Bhagawati M, et al. Economics of 
artificial intelligence in healthcare: diagnosis vs. treatment. Healthcare (Basel) 2022;10(12):2493. 
PUBMED | CROSSREF

 163. Pennisi M, Kavasidis I, Spampinato C, Schinina V, Palazzo S, Salanitri FP, et al. An explainable AI 
system for automated COVID-19 assessment and lesion categorization from CT-scans. Artif Intell Med 
2021;118:102114. 
PUBMED | CROSSREF

 164. Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for 
foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The 
Academy Workshop. Radiology 2019;291(3):781-91. 
PUBMED | CROSSREF

 165. Collin CB, Gebhardt T, Golebiewski M, Karaderi T, Hillemanns M, Khan FM, et al. Computational models 
for clinical applications in personalized medicine-guidelines and recommendations for data integration 
and model validation. J Pers Med 2022;12(2):166. 
PUBMED | CROSSREF

 166. Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, et al. Cardiovascular/stroke 
risk stratification in diabetic foot infection patients using deep learning-based artificial intelligence: an 
investigative study. J Clin Med 2022;11(22):6844. 
PUBMED | CROSSREF

 167. Haque AK, Arifuzzaman BM, Siddik SA, Kalam A, Shahjahan TS, Saleena TS, et al. Semantic web in 
healthcare: a systematic literature review of application, research gap, and future research avenues. Int J 
Clin Pract 2022;2022:6807484. 
PUBMED | CROSSREF

 168. Panwar A, Semwal G, Goel S, Gupta S. Stratification of the lesions in color fundus images of diabetic 
retinopathy patients using deep learning models and machine learning classifiers. In: Patgiri R, 
Bandyopadhyay S, Borah MD, Emilia Balas V, editors. Edge Analytics. Lecture Notes in Electrical Engineering. 
Singapore: Springer; 2022, 653-66.

 169. Garg I, Panda P, Roy K. A low effort approach to structured CNN design using PCA. IEEE Access 
2019;8:1347-60. 
CROSSREF

 170. Acharya UR, Mookiah MR, Vinitha Sree S, Yanti R, Martis RJ, Saba L, et al. Evolutionary algorithm-
based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification. 
Ultraschall Med 2014;35(3):237-45.
PUBMED

 171. Xuan J, Jiang H, Hu Y, Ren Z, Zou W, Luo Z, et al. Towards effective bug triage with software data 
reduction techniques. IEEE Trans Knowl Data Eng 2014;27(1):264-80. 
CROSSREF

 172. Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, et al. The era of radiogenomics in precision medicine: an 
emerging approach to support diagnosis, treatment decisions, and prognostication in oncology. Front 
Oncol 2021;10:570465. 
PUBMED | CROSSREF

 173. Panayides AS, Pattichis MS, Leandrou S, Pitris C, Constantinidou A, Pattichis CS. Radiogenomics for 
precision medicine with a big data analytics perspective. IEEE J Biomed Health Inform 2019;23(5):2063-79. 
PUBMED | CROSSREF

 174. Liu Z, Keller PJ. Emerging imaging and genomic tools for developmental systems biology. Dev Cell 
2016;36(6):597-610. 
PUBMED | CROSSREF

 175. Abdel Razek AA, Alksas A, Shehata M, AbdelKhalek A, Abdel Baky K, El-Baz A, et al. Clinical applications 
of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 2021;12(1):152. 
PUBMED | CROSSREF

 176. Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S. Emerging applications of artificial 
intelligence in neuro-oncology. Radiology 2019;290(3):607-18. 
PUBMED | CROSSREF

31/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/36011048
https://doi.org/10.3390/cancers14164052
http://www.ncbi.nlm.nih.gov/pubmed/34829456
https://doi.org/10.3390/diagnostics11112109
http://www.ncbi.nlm.nih.gov/pubmed/36554017
https://doi.org/10.3390/healthcare10122493
http://www.ncbi.nlm.nih.gov/pubmed/34412837
https://doi.org/10.1016/j.artmed.2021.102114
http://www.ncbi.nlm.nih.gov/pubmed/30990384
https://doi.org/10.1148/radiol.2019190613
http://www.ncbi.nlm.nih.gov/pubmed/35207655
https://doi.org/10.3390/jpm12020166
http://www.ncbi.nlm.nih.gov/pubmed/36431321
https://doi.org/10.3390/jcm11226844
http://www.ncbi.nlm.nih.gov/pubmed/36320897
https://doi.org/10.1155/2022/6807484
https://doi.org/10.1109/ACCESS.2019.2961960
http://www.ncbi.nlm.nih.gov/pubmed/23258769
https://doi.org/10.1109/TKDE.2014.2324590
http://www.ncbi.nlm.nih.gov/pubmed/33575207
https://doi.org/10.3389/fonc.2020.570465
http://www.ncbi.nlm.nih.gov/pubmed/30596591
https://doi.org/10.1109/JBHI.2018.2879381
http://www.ncbi.nlm.nih.gov/pubmed/27003934
https://doi.org/10.1016/j.devcel.2016.02.016
http://www.ncbi.nlm.nih.gov/pubmed/34676470
https://doi.org/10.1186/s13244-021-01102-6
http://www.ncbi.nlm.nih.gov/pubmed/30667332
https://doi.org/10.1148/radiol.2018181928


 177. Gu X, Yu X, Shi G, Li Y, Yang L. Can PD-L1 expression be predicted by contrast-enhanced CT in patients 
with gastric adenocarcinoma? A preliminary retrospective study. Abdom Radiol (NY) 2023;48(1):220-8. 
PUBMED | CROSSREF

 178. Srivastava SK, Singh SK, Suri JS. Effect of incremental feature enrichment on healthcare text classification 
system: a machine learning paradigm. Comput Methods Programs Biomed 2019;172:35-51. 
PUBMED | CROSSREF

 179. Banchhor SK, Londhe ND, Araki T, Saba L, Radeva P, Laird JR, et al. Well-balanced system for coronary 
calcium detection and volume measurement in a low resolution intravascular ultrasound videos. Comput 
Biol Med 2017;84:168-81. 
PUBMED | CROSSREF

 180. Khalil RA, Saeed N, Masood M, Fard YM, Alouini MS, Al-Naffouri TY. 2 Deep learning in the 
industrial internet of things: Potentials, challenges, and emerging applications. IEEE Internet Things J 
2021;8(14):11016-40. 
CROSSREF

 181. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. Computer-aided diagnosis of psoriasis skin images 
with HOS, texture and color features: a first comparative study of its kind. Comput Methods Programs Biomed 
2016;126:98-109. 
PUBMED | CROSSREF

 182. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed machine learning. 
Nat Rev Phys 2021;3(6):422-40. 
CROSSREF

 183. Biswas M, Kuppili V, Edla DR, Suri HS, Saba L, Marinhoe RT, et al. Symtosis: a liver ultrasound tissue 
characterization and risk stratification in optimized deep learning paradigm. Comput Methods Programs 
Biomed 2018;155:165-77. 
PUBMED | CROSSREF

 184. Roslan RB, Razly IN, Sabri N, Ibrahim Z. Evaluation of psoriasis skin disease classification using 
convolutional neural network. IAES Int J Artif Intell 2020;9(2):349.

 185. Jamthikar AD, Gupta D, Saba L, Khanna NN, Viskovic K, Mavrogeni S, et al. Artificial intelligence 
framework for predictive cardiovascular and stroke risk assessment models: a narrative review of 
integrated approaches using carotid ultrasound. Comput Biol Med 2020;126:104043. 
PUBMED | CROSSREF

 186. Jamthikar AD, Gupta D, Johri AM, Mantella LE, Saba L, Kolluri R, et al. Low-cost office-based 
cardiovascular risk stratification using machine learning and focused carotid ultrasound in an Asian-
Indian cohort. J Med Syst 2020;44(12):208. 
PUBMED | CROSSREF

 187. Jamthikar A, Gupta D, Saba L, Khanna NN, Araki T, Viskovic K, et al. Cardiovascular/stroke risk predictive 
calculators: a comparison between statistical and machine learning models. Cardiovasc Diagn Ther 
2020;10(4):919-38. 
PUBMED | CROSSREF

 188. Bartels S, Franco AR, Rundek T. Carotid intima-media thickness (cIMT) and plaque from risk assessment 
and clinical use to genetic discoveries. Perspect Med 2012;1(1-12):139-45. 
CROSSREF

 189. Suri JS, Puvvula A, Biswas M, Majhail M, Saba L, Faa G, et al. COVID-19 pathways for brain and heart 
injury in comorbidity patients: a role of medical imaging and artificial intelligence-based COVID severity 
classification: a review. Comput Biol Med 2020;124:103960. 
PUBMED | CROSSREF

 190. Liu K, Suri JS. Automatic Vessel Indentification for Angiographic Screening. Patent No.: US6845260B2. Alexandria, 
VA, USA: U.S. Patent and Trademark Office; 2005.

 191. El-Baz A, Gimel’farb G, Suri JS. Stochastic Modeling for Medical Image Analysis. Boca Raton, FL, USA: CRC 
Press; 2015.

 192. Gupta N, Gupta SK, Pathak RK, Jain V, Rashidi P, Suri JS. Human activity recognition in artificial 
intelligence framework: a narrative review. Artif Intell Rev 2022;55(6):4755-808. 
PUBMED | CROSSREF

 193. Upton R, Mumith A, Beqiri A, Parker A, Hawkes W, Gao S, et al. Automated echocardiographic detection 
of severe coronary artery disease using artificial intelligence. JACC Cardiovasc Imaging 2022;15(5):715-27. 
PUBMED | CROSSREF

 194. Fu Y, Xu J, Tang Z, Wang L, Yin D, Fan Y, et al. A gene prioritization method based on a swine multi-omics 
knowledgebase and a deep learning model. Commun Biol 2020;3(1):502. 
PUBMED | CROSSREF

32/32

AI Paradigm for Cardiovascular Disease Polygenic Risk Score

https://doi.org/10.3346/jkms.2023.38.e395https://jkms.org

http://www.ncbi.nlm.nih.gov/pubmed/36271155
https://doi.org/10.1007/s00261-022-03709-9
http://www.ncbi.nlm.nih.gov/pubmed/30902126
https://doi.org/10.1016/j.cmpb.2019.01.011
http://www.ncbi.nlm.nih.gov/pubmed/28390284
https://doi.org/10.1016/j.compbiomed.2017.03.026
https://doi.org/10.1109/JIOT.2021.3051414
http://www.ncbi.nlm.nih.gov/pubmed/26830378
https://doi.org/10.1016/j.cmpb.2015.11.013
https://doi.org/10.1038/s42254-021-00314-5
http://www.ncbi.nlm.nih.gov/pubmed/29512496
https://doi.org/10.1016/j.cmpb.2017.12.016
http://www.ncbi.nlm.nih.gov/pubmed/33065389
https://doi.org/10.1016/j.compbiomed.2020.104043
http://www.ncbi.nlm.nih.gov/pubmed/33175247
https://doi.org/10.1007/s10916-020-01675-7
http://www.ncbi.nlm.nih.gov/pubmed/32968651
https://doi.org/10.21037/cdt.2020.01.07
https://doi.org/10.1016/j.permed.2012.01.006
http://www.ncbi.nlm.nih.gov/pubmed/32919186
https://doi.org/10.1016/j.compbiomed.2020.103960
http://www.ncbi.nlm.nih.gov/pubmed/35068651
https://doi.org/10.1007/s10462-021-10116-x
http://www.ncbi.nlm.nih.gov/pubmed/34922865
https://doi.org/10.1016/j.jcmg.2021.10.013
http://www.ncbi.nlm.nih.gov/pubmed/32913254
https://doi.org/10.1038/s42003-020-01233-4

	Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review
	INTRODUCTION
	SEARCH STRATEGY AND STATISTICAL DISTRIBUTIONS
	Statistical distribution

	CVD RISK PREDICTION AND MANAGEMENT USING GENOMIC APPROACHES
	CONVENTIONAL PRS USING GWAS
	ROLE OF AI IN PRS
	Deep learning model dimensionality reduction for gene analysis

	CRITICAL DISCUSSION
	Benchmarking analysis
	A short note on AI for PRS
	The role of bias and variance in AI
	The role of explainability in AI
	The role of cloud-based paradigms
	The role of pruning in AI systems
	The role of big data
	Special note on generalization of aiPRS
	Strengths, weaknesses, and extensions

	CONCLUSIONS
	REFERENCES


