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ABSTRACT

The state-space formulation for time-dependent models has been long used in
various applications in science and engineering. While the classical Kalman filter
(KF) provides optimal posterior estimation under linear Gaussian models, filtering

in nonlinear and non-Gaussian environments remains challenging.
Based on the Monte Carlo approximation, the classical particle filter (PF) can provide

more precise estimation under nonlinear non-Gaussian models. However, it suffers from
particle degeneracy. Drawing from optimal transport theory, the stochastic map filter
(SMF) accommodates a solution to this problem, but its performance is influenced by
the limited flexibility of nonlinear map parameterisation. To account for these issues,
a hybrid particle-stochastic map filter (PSMF) is first proposed in this thesis, where
the two parts of the split likelihood are assimilated by the PF and SMF, respectively.
Systematic resampling and smoothing are employed to alleviate the particle degeneracy
caused by the PF. Furthermore, two PSMF variants based on the linear and nonlinear
maps (PSMF-L and PSMF-NL) are proposed, and their filtering performance is compared
with various benchmark filters under different nonlinear non-Gaussian models.

Although achieving accurate filtering results, the particle-based filters require ex-
pensive computations because of the large number of samples involved. Instead, robust
Kalman filters (RKFs) provide efficient solutions for the linear models with heavy-tailed
noise, by adopting the recursive estimation framework of the KF. To exploit the stochastic
characteristics of the noise, the use of heavy-tailed distributions which can fit various
practical noises constitutes a viable solution. Hence, this thesis also introduces a novel
RKF framework, RKF-SGαS, where the signal noise is assumed to be Gaussian and the
heavy-tailed measurement noise is modelled by the sub-Gaussian α-stable (SGαS) distri-
bution. The corresponding joint posterior distribution of the state vector and auxiliary
random variables is estimated by the variational Bayesian (VB) approach. Four different
minimum mean square error (MMSE) estimators of the scale function are presented.
Besides, the RKF-SGαS is compared with the state-of-the-art RKFs under three kinds of
heavy-tailed measurement noises, and the simulation results demonstrate its estimation
accuracy and efficiency.

One notable limitation of the proposed RKF-SGαS is its reliance on precise model
parameters, and substantial model errors can potentially impede its filtering perfor-
mance. Therefore, this thesis also introduces a data-driven RKF method, referred to as
RKFnet, which combines the conventional RKF framework with a deep learning tech-
nique. An unsupervised scheduled sampling technique (USS) is proposed to improve the
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stability of the training process. Furthermore, the advantages of the proposed RKFnet
are quantified with respect to various traditional RKFs.
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1
INTRODUCTION

This chapter provides an introduction to this thesis. We begin by presenting the

motivation for the work undertaken. Then, the description of the state-space

model is provided in section 1.2, whilst the sequential Bayesian filtering and

its challenges are discussed in section 1.3. The contributions, related publications and

outline of this thesis are detailed in section 1.4.

1.1 Motivation

The state-space formulation for time-dependent models has been long used in various

applications in science and engineering. For instance, in target tracking, the state

vector represents the kinematics of the target [22, 40, 56, 63]; in weather prediction,

it is related to temperature, pressure, humidity, etc [15, 21]; in oceanography, it could

refer to the spatial pattern of surface currents [85, 106]; and in economics, it concerns

interest rates, inflation [1, 66], etc. Sequential Bayesian filtering algorithms are essential

for estimating the state of dynamic systems, incorporating noisy measurements and

probabilistic models. When both the dynamic and observation models of the state-space

model are linear and Gaussian, the minimum mean square error (MMSE) estimate can

optimally be obtained by the Kalman filter (KF) [50]. By contrast, nonlinear and/or non-

Gaussian situations pose challenges to filtering as closed-form solutions for the posterior

distributions are not available, which inspires the development of various filters for

different models in the literature. Specifically, for the linear model with heavy-tailed
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noise, the robust Kalman filters (RKFs) [39, 41, 104] provide efficient solutions. However,

it remains challenging to find proper heavy-tailed distributions, which can both flexibly

fit the practical noise and allow for a hierarchical Gaussian form required by the RKF

framework. By contrast, the particle filter (PF) [6, 13, 17, 23] provides a Monte Carlo

approximation solution for nonlinear non-Gaussian models. Nevertheless, it suffers from

particle degeneracy, where a large proportion of the particles have negligible weights

after a few filtering iterations and the effective sample size (ESS) decreases. Also, it

is computationally expensive due to the use of numerous samples. Motivated by the

limitations of the RKFs and classical PF framework, this research aims to contribute

to the design of more robust and efficient filters. The outcomes of this research have

broad applications, spanning from autonomous navigation to financial forecasting and

environmental monitoring. As the foundation of sequential Bayesian filtering, the next

section will explain the formulation of the state-space model.

1.2 State-Space Model

Figure 1.1: State-Space Model [33]

A state-space model can be described as a probabilistic graphical model, which defines

the relationship between the hidden state variables and the measurements. It includes

two equations, which are for states (signals) and their measurements. The signal model

describes the state changes over time, whilst the measurement model explains the

relationship between the states and measurements. A generic state-space model is

expressed as

(1.1)

xk = fk(xk−1,wk−1)

zk = hk(xk,vk)

where xk ∈Rn and zk ∈Rm denote the hidden state and the measurement vectors at time

k, respectively. Also the process and measurement noises are represented as wk ∈Rn and

vk ∈Rm, respectively. The random model and observation noise errors are independent of

2
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each other and the states. Besides, fk(·) and hk(·) are state transition and measurement

functions. Figure 1.1 depicts the general conditionally independent structure of state-

space models, which shows the independence of observations conditioned on the state. In

this work, we only consider the static model with additive noise, and then the state-space

model can be simplified to:

(1.2)

xk = f (xk−1)+wk−1

zk = h(xk)+vk

where f (·) and h(·) are static state transition and measurement functions. Finally, a

linear discrete-time state-space model can be written as

(1.3)

xk =Fxk−1 +wk−1

zk =Hxk +vk

where F ∈Rn×n and H ∈Rm×n are the state transition and measurement matrices.

1.3 Sequential Bayesian filtering and its challenges

Figure 1.2: The procedure of sequential Bayesian filtering. At any time k, the observation
assimilation includes the prediction and update steps [105].

Following the formulation of the state-space model, the sequential Bayesian filtering

framework [96, 105] and its challenges are provided in this section. Sequential Bayesian

filtering, also known as sequential Bayesian inference or estimation, is a statistical

inference framework used to estimate the state of a stochastic process over time based

on sequential observations. Specifically, at any time k, a sequential Bayesian filtering

procedure contains two steps: prediction and update as shown in Figure 1.2. During

the prediction step, the prior distribution p(xk|z1:k−1) is estimated. Assume the prior

distribution p(x0) is known, at any time k, p(xk|z1:k−1) can be estimated by

(1.4) p(xk|z1:k−1)=
∫

p(xk|xk−1,z1:k−1)p(xk−1|z1:k−1)dxk−1,
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where p(xk−1|z1:k−1) is the posterior distribution of the state at time k−1. According to

the conditionally independent structure of the state-space model, we have

p(xk|xk−1,z1:k−1)= p(xk|xk−1).

Then the prior distribution p(xk|z1:k−1) can be simplified as

(1.5) p(xk|z1:k−1)=
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1.

During the update step, according to the Bayes’ theorem [52], the posterior distribution

p(xk|z1:k) can be calculated by

(1.6) p(xk|z1:k)= p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

,

where the likelihood density p(zk|xk) can be obtained based on the measurement model

in (1.1). Then, the MMSE estimate of xk can be obtained by

(1.7) E(xk|z1:k)=
∫

xk p(xk|z1:k)dxk.

The overall procedure of the sequential Bayesian filtering is shown in Algorithm 1.

Algorithm 1: One Time Step of the Sequential Bayesian filtering
Input: p(xk−1|z1:k−1)
Prediction:

Estimate the prior distribution p(xk|z1:k−1) based on equation (1.4);
Update:

Estimate the posterior distribution p(xk|z1:k) based on equation (1.6);
return p(xk|z1:k)

In the linear Gaussian scenario, the KF provides the optimal solution to p(xk|z1:k).

However, the presence of noise outliers can lead to suboptimal performance or even

failure of the KF. To improve the filtering robustness, the RKF framework has been

proposed, a non-Gaussian variant of the KF, specifically for linear models with heavy-

tailed noise. The RKF combines the advantages of the recursive estimation framework of

the KF with the M-estimators or heavy-tailed distributions. For the M-estimator-based

RKFs, the Huber function [51, 94, 98], correntropy criterion [46, 64, 100] and statisti-

cal similarity measure [44, 45] have been employed. By contrast, an alternative RKF

framework fits the model noise with the heavy-tailed distributions, enabling the subse-

quent approximation of the joint posterior distribution using the standard variational

Bayesian (VB) [25, 95] approach. Due to the exploration of the stochastic properties of
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the model noise, the RKF framework based on heavy-tailed distributions performs better

than based on the M-estimators. However, most heavy-tailed distributions cannot be

applied to the RKF framework as there are two requirements [41]. First, the distribution

should exhibit flexible tail behaviour to properly fit various practical noises. Second, a

hierarchical Gaussian form of the density should be available, so that the VB method

under the RKF framework can be implemented. Due to these two conditions, only several

heavy-tailed probability density functions (PDFs) have been utilised for the RKF frame-

work and cannot fit various practical noises. Hence, investigating suitable heavy-tailed

distributions for the RKF framework remains significant.

Despite their efficient filtering performance, both the KF and RKF frameworks rely

on the linear assumption, limiting their estimation precision in highly nonlinear systems.

By contrast, the PF, also known as the Sequential Monte Carlo (SMC) method, is the

most popular filter for nonlinear non-Gaussian models and approximates the posterior

distribution by a set of weighted particles. During the assimilation process, the samples

are first propagated based on the signal model, and then their weights are updated based

on the measurement model. However, there are two drawbacks of the PF framework.

The first is particle degeneracy, where a small portion of particles have significant

weights. This can hinder the effectiveness of the PF, particularly in scenarios with

high-dimensional state spaces [75, 96] or complex nonlinear dynamics [6, 23]. Various

techniques, such as effective importance proposals [96] and resampling strategies [37, 59],

have been proposed to mitigate this problem. Also, compared with the KF and RKF, the

PF is more computationally expensive due to its reliance on a substantial number of

samples.

1.4 Contributions, publications and outline

1.4.1 Contributions

Building upon a comprehensive understanding of the challenges associated with the

PF and RKF frameworks, three robust filters have been proposed and their filtering

performance is evaluated for various state-space models and noises. The following are

highlights of the novel contributions presented in this thesis:

1. A hybrid particle-stochastic map filter (PSMF) [33] was proposed, which combines

the PF and the stochastic map filter (SMF) [87]. Specifically, the PSMF splits the

likelihood into two parts, which are then updated by PF and SMF, respectively.
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Also, systematic resampling [37, 59] and smoothing strategies are adopted to

break the particle degeneracy caused by the PF. To investigate the influence of the

nonlinearity of transport maps [53, 97], we introduce two variants of the proposed

filter, the PSMF-L and PSMF-NL, which are based on linear and nonlinear maps,

respectively. The filtering performance PSMF is validated under four nonlinear

state-space models.

2. A robust Kalman filter based on the sub-Gaussian α-stable (SGαS) distribu-

tion [34, 55] was proposed in Chapter 4. Four different estimators are proposed

to approximate the MMSE of the scale function. For the first two methods, the

expectation of the scale function is approximated by the importance sampling

(IS) [93] and Gauss-Laguerre quadrature (GLQ) methods [54], respectively. Two

additional hybrid estimators, the gamma series importance sampling (GSIS) and

gamma series Gauss-Laguerre quadrature (GSGL), are proposed for situations

when the proposed GS estimator diverges and is thus replaced with the IS and

GLQ-based methods, respectively. Besides, the RKF-SGαS is compared with the

state-of-the-art RKFs in three types of heavy-tailed measurement noises, and the

simulation results demonstrate its estimation accuracy and efficiency.

3. Chapter 5 presents a new state-space model where the unknown heavy-tailed distri-

bution of the measurement noise is written in a hierarchical Gaussian form. Then,

based on the proposed model, a novel data-model-driven (DD-MB) RKF framework

called RKFnet is introduced, where the value of a mixing-parameter-based function

is estimated by a fully connected neural network (FCN) [57] and the fixed scale

matrix is directly calculated based on a trained neural network parameter. Also,

to improve the convergence stability of the training process and overcome the

difficulties in obtaining ground-truth data, an unsupervised scheduled sampling

technique (USS) [8] is designed based on the filtering results from the traditional

heavy-tailed-distribution-based RKFs. Besides, the influences of the USS parame-

ters and the loss-function selection are evaluated in the experimental analysis.

Finally, the performance of the proposed RKFnet is quantified in comparison with

various traditional RKFs.

1.4.2 Publications

1. Hao, P., Karakuş, O. and Achim, A. (2023) ‘A hybrid particle-stochastic map filter’,

Signal Processing, 207, p. 108969. doi:10.1016/j.sigpro.2023.108969.
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2. Hao, P., Karakuş, O. and Achim, A. (2023) Robust kalman filters based on the sub-

gaussian α-stable distribution, arXiv.org. Available at: https://arxiv.org/abs/2305.07890.

1.4.3 Outline

This manuscript is structured as follows:

Chapter 2: Literature review. This chapter provides a review related to our re-

search work. First, the developments of the traditional filters are presented, including

the KF, the RKF framework and various nonlinear filters. Also, data-driven (DD) fil-

ters [16, 28, 60] relying on the deep-learning technique are introduced.

Chapter 3: A hybrid particle-stochastic map filter. Following the introduction of

the existing filters in Chapter 2, our proposed particle-based nonlinear filter, the PSMF,

is explained in this chapter. We first provide the formulation of the PSMF, and then its

filtering performance is shown under different benchmark models.

Chapter 4: Robust Kalman filters Based on the sub-Gaussian α-stable distri-
bution. Considering the expensive computational cost of the PSMF, this chapter focuses

on a new efficient RKF variant, the RKF-SGαS [34]. We start with the fundamentals of

the SGαS distribution. Also, the theoretical explanation of this new RKF framework is

provided. Besides, its estimation accuracy and efficiency are demonstrated in the target

tracking scenarios with different heavy-tailed measurement noises.

Chapter 5: RKFnet: a novel data-driven robust Kalman filter. To alleviate the

reliance of the traditional heavy-tailed-distribution-based RKFs on precise model para-

meters, Chapter 5 presents the DD-MB RKFnet. We first explain the new hierarchical

Gaussian state-space model, and then the structure of the RKFnet and USS training

method are detailed. Also, the comparison between the RKFnet and traditional RKFs is

shown based on the target-tracking experiments.

Chapter 6: Conclusions. The final chapter gives a conclusion to all the contributions

of this thesis, and then the potential future work is provided.
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2
LITERATURE REVIEW

This chapter provides a review of previous work related to our proposed filters.

We start with the explanation of the classical KF and its nonlinear variants in

Section 2.1, and then the RKF framework is reviewed in Section 2.2. Also, various

advanced nonlinear filters are introduced from Section 2.3 to Section 2.6, including the

PF, the Ensemble Kalman filter (EnKF) [11, 24], optimal-transport-based filters [76, 87]

and particle-based hybrid filters. Besides, filters based on deep learning are described in

Section 2.7.

2.1 Kalman filter and its extensions

In the case of linear Gaussian signal and observation models, the MMSE estimator

underpins the KF [50]. However, despite its optimality in the aforementioned scenario,

the KF is not applicable when either model is nonlinear. Various nonlinear extensions

of the KF have been proposed in the literature, such as the extended Kalman filter

(EKF) [48] and the unscented Kalman filte (UKF) [49, 101]. In this section, we first

introduce the classic KF in Subsection 2.1.1, and then the formulation of the EKF and

UKF is provided.

9
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2.1.1 Kalman filter

A linear state-space model has been provided in equation (1.3). Assume the signal and

observation noises are subject to zero-mean Gaussian distributions, i.e., wk−1 ∼N (0,Q)

and vk ∼ N (0,R), where Q and R are the covariance matrixes. Then, the optimal

posterior estimation about state xk can be obtained by the KF algorithm, which is shown

in Algorithm 2. At any time k, we have the posterior mean and covariance estimates,

x̂k−1|k−1 and Pk−1|k−1, from the last time. During the prediction step, the mean and

covariance of the prior distribution, x̂k|k−1 and Pk|k−1, are calculated. Also, x̂k|k and Pk|k
are obtained based on the Kalman gain Kk during the update step.

Algorithm 2: Kalman filtering framework
Input: x̂k−1|k−1,Pk−1|k−1,zk
Prediction:

x̂k|k−1 =Fx̂k−1|k−1
Pk|k−1 =FPk−1|k−1FT +Q

Update:
x̂k|k = x̂k|k−1 +Kk

(
zk −Hx̂k|k−1

)
Pk|k = (In −KkH)Pk|k−1

Kalman Gain:
Kk =Pk|k−1HT (

HPk|k−1HT +R
)−1

return x̂k|k,Pk|k

2.1.2 Extended Kalman filter

The KF is renowned for its ability to provide optimal estimation in the case of linear and

Gaussian models. However, its direct applicability is limited when dealing with practical

nonlinear models. To relax the linear assumption, the EKF employs a first-order Taylor

expansion to the nonlinear models, enabling the utilization of the KF framework within

the linearised context. A nonlinear model with additive noise is shown in equation (1.2).

Assume Fk = ∂ f
∂x

∣∣∣
x=x̂k−1|k−1

and Hk = ∂h
∂x

∣∣∣
x=x̂k|k−1

, then we can obtain the EKF filtering

framework as shown in Algorithm 3. According to the Taylor series, the linearisation

approximations are accurate only if the second and higher-order terms are negligible,

and introduce significant biases or errors in many practical complex scenarios.

10
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Algorithm 3: EKF framework
Input: x̂k−1|k−1,Pk−1|k−1,zk
Prediction:
x̂k|k−1 = f

(
x̂k−1|k−1

)
Pk|k−1 =FkPk−1|k−1FT

k +Q
Update:
x̂k|k = x̂k|k−1 +Kk

(
zk −h

(
x̂k|k−1

))
Pk|k = (In −KkHk)Pk|k−1

Kalman Gain:
Kk =Pk|k−1HT

k

(
HkPk|k−1HT

k +Rk
)−1

return x̂k|k,Pk|k

2.1.3 Unscented Kalman filter

To reduce the approximation error in the EKF framework, the UKF replaces the model lin-

earisation with the unscented transform (UT) [47], of which the formulation is explained

in Subsection 2.1.3.1. Then, the UKF framework is presented in Subsection 2.1.3.2.

2.1.3.1 Unscented transform

The UT is a novel method for estimating the statistics of a random variable which

undergoes a nonlinear transformation. It is founded on the intuition that it is easier

to approximate a Gaussian distribution than to approximate an arbitrary nonlinear

function or transformation. Although this method bares a superficial resemblance to

Monte Carlo-type methods, there is a fundamental difference. The samples are not drawn

at random but according to a deterministic algorithm. Compared with the linearisation in

the EKF, the UT can provide more precise mean and covariance estimation considering

higher-order moments [49]. The UT procedure is shown below:

1. Approximate a random vector x ∈Rn, of which mean is x and covariance is Pxx, by

2n+1 weighted points xi, i = 1, . . . ,n given by

x0 = x w0
mean =λUT/(n+λUT) w0

cov = w0
mean +βUT +1−α2

UT

xi = x+
(√

(n+λUT)Pxx
)

i
wi

mean = wi
cov =

1
2(n+λUT)

xi+n = x−
(√

(n+λUT)Pxx
)

i
wi+n

mean = wi+n
cov = 1

2(n+λUT)

λUT =α2
UT(n+κUT)−n

(2.1)

11
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where αUT,βUT,κUT are the sample spread parameter, prior knowledge parameter

and scale parameter, respectively. Also,
(√

(n+λUT)Pxx
)

i
is the i-th row or column

of the matrix square root of (n+λUT)Pxx. Besides, wi
mean and wi

cov are the mean

and covariance weights of the i-th point.

2. Instantiate each point through a nonlinear function f to yield the set of transformed

sigma points,

(2.2) yi = f [xi]

3. The mean of the transformed distribution can be estimated by the weighted average

of the sigma points,

(2.3) y=
2n∑
i=0

wi
meanyi

4. The corresponding covariance can be approximated by the weighted outer product

of the transformed points,

(2.4) Pyy =
2n∑
i=0

wi
cov(yi −y)(yi −y)T

2.1.3.2 UKF framework

The UT provides an efficient way to estimate the mean and covariance in the nonlinear

projection. The UKF framework combines the unscented transform with the KF and

can produce more precise estimates than the EKF. At any time k, the assimilation step

includes the prediction and update steps as shown in Algorithm 4, where the covariance

matrices Pxz
k and Pzz

k are estimated based on the UT algorithm.

2.2 Robust Kalman filters

Both the EKF and UKF constitute improvements on the classical KF under mildly-

nonlinear models. However, in many practical scenarios, their Gaussian assumption

is violated, and then accurate estimation cannot be ensured. Considering the linear

models with heavy-tailed noise, various efficient RKFs have been proposed utilising the

advantages of the recursive estimation framework of the KF. In Subsection 2.2.1, the

M-estimator-based RKFs are introduced. Also, the heavy-tailed-distribution-based RKFs

are explained in Subsection 2.2.2.
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Algorithm 4: UKF framework
Input: x̂k−1|k−1,Pk−1|k−1,zk
Prediction:

x̂k|k−1 =∑2n
i=0 wi

meanxi
k|k−1

Pk|k−1 =∑2n
i=0 wi

cov

(
xi

k|k−1 − x̂k|k−1

)(
xi

k|k−1 − x̂k|k−1

)T +Q
Update:

x̂k|k = x̂k|k−1 +Kk
(
zk − ẑk|k−1

)
Pk|k =Pk|k−1 −Kk

(
Pzz

k +R
)
KT

k
return x̂k|k,Pk|k

Sigma points generation:
x0

k−1 = x̂k−1|k−1

xi
k−1 = x̂k−1|k−1 +

(√
(n+λUT)Pk−1|k−1

)
i

xi+n
k−1 = x̂k−1|k−1 −

(√
(n+λUT)Pk−1|k−1

)
i

Unscented transform:
xi

k|k−1 = fk
(
xi

k−1

)
yi

k|k−1 = hk

(
xi

k|k−1

)
ẑk|k−1 =∑2n

i=0 wi
meanzi

k|k−1

Pxz
k =∑2n

i=0 wi
cov

(
xi

k|k−1 − x̂k|k−1

)(
zi

k|k−1 − ẑk|k−1

)T

Pzz
k =∑2n

i=0 wi
cov

(
zi

k|k−1 − ẑk|k−1

)(
zi

k|k−1 − ẑk|k−1

)T

Kalman gain:
Kk =Pxz

k

(
Pzz

k +R
)−1

2.2.1 M-estimator-based methods

For the classic KF, its posterior estimate can be derived based on the minimisation of a

quadratic objective function [46], which can be expressed as

J = 1
2

(zk −Hxk)T R−1 (zk −Hxk)+ 1
2

(
xk −Fx̂k−1|k−1

)T P−1
k|k−1

(
xk −Fx̂k−1|k−1

)
.

The KF is optimal for Gaussian noise but sub-optimal for other distributed noise, as

only the second-order information is used in the objective function. By contrast, there

are three main types of M-estimator-based RKFs, where different robust functions were

introduced to construct the objective functions.

First, the Huber Kalman filter (HKF) [51, 94, 98] is the most famous extension of

the M-estimator to the Kalman filter setting, where a generalized robust maximum

likelihood estimate is achieved by minimizing the Huber-function-based cost function
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depending on the measurement residual vector. A Huber function can be written as

f (x)=
0.5x2, for x < δHuber

δHuber|x|−0.5δ2
Huber, for x ≤ δHuber

where δHuber is a scale parameter. The Huber function is a mixture of the L1 and L2

norm and assigns a lower weight to outliers, which makes the HKF more robust to

heavy-tailed noise.

The maximum correntropy Kalman filter (MCKF) [46, 64, 100] is an alternative

method to handle state and measurement outliers. The cross-correntropy of two scalar

random variables, x and y, is defined as

Cσ (x, y)=E[κσ(x, y)]=
Ï

κσ(x, y)p(x, y)dx dy

where κσ(x, y) denotes a positive definite kernel function satisfying Mercer’s theory [14]

and p(x, y) is the joint distribution of variables x and y. Under the MCKF framework,

κσ(x, y) is selected as the Gaussian kernel function, which can be written as

κσ(x, y)=Gσ(ε)= exp
(
− ε2

2σ2

)
.

where ε= x− y and σ> 0 is the kernel bandwidth. Then, we have Taylor series expansion

of Cσ

Cσ (x, y)= 1p
2πσ

∞∑
ξ=0

(−1)ξ

2ξσ2ξξ!
E

[
(x− y)2ξ

]
Compared with the quadratic function of the KF, this correntropy criterion uses

higher-order moment information. Following this, we have the loss function of the

MCKF:

J =Gσ

(∥zk −Hxk∥R−1
)+Gσ

(
∥xk −Fx̂k−1|k−1∥P−1

k|k−1

)
where

∥zk −Hxk∥R−1 =
√

(zk −Hxk)T R−1 (zk −Hxk)

∥xk −Fx̂k−1|k−1∥P−1
k|k−1

=
√(

xk −Fx̂k−1|k−1
)T P−1

k|k−1

(
xk −Fx̂k−1|k−1

)
Third, in [44, 45], a statistical similarity measure (SSM) is introduced to quantify the

similarity between two random vectors and then used to develop a novel outlier-robust

Kalman filter. The SSM is defined as follows:

s (x,y)=E
[
f
(∥x−y∥2)]=Ï

f
(∥x−y∥2) p(x,y)dxdy

14



2.2. ROBUST KALMAN FILTERS

Several similarity functions are shown in [44]. Under the new RKF framework, lower

bounds of the SSM between the state vector and the predicted state vector and between

the measurement vector and the predicted measurement vector are maximized, and the

posterior probability density function (PDF) is approximated as Gaussian, i.e.,

J = argmax
{∫

fx

(
∥zk −Hxk∥2

R−1

)
q(xk)dxk +

∫
fz

(
∥xk −Fx̂k−1|k−1∥2

P−1
k|k−1

)
q(xk)dxk

}
where fx and fz denote the similarity functions of state and measurement models,

respectively. Also, q(xk) is the approximated Gaussian posterior distribution of xk.

Owing to the various robust functions, the M-estimator-based RKFs can perform

better than the KF under heavy-tailed noise. However, their filtering performance is

limited as the stochastic properties of the heavy-tailed noise are not exploited.

2.2.2 Heavy-tailed-distribution-based methods

Different from the M-estimator-based RKFs, the heavy-tailed-distribution-based methods

improve the filtering performance by fitting the noise with different probability densities.

The Student’s t (ST) distribution was the first model to be used for this purpose, and there

were two types of approaches involving it. First, the ST-distribution-based RKFs assume

that the measurements are contaminated by heavy-tailed noise. For example, in [4, 107],

the symmetric measurement noise is modelled as an ST distribution. Also, skewed

noise is fitted by the skewed ST distribution in [72]. However, when the signal noise is

heavy-tailed, these filters are not applicable because of the Gaussian assumption which

is violated. In a second group of techniques, RKFs are based on the assumption that

both the one-step prediction and likelihood densities can be captured by ST distributions.

In [38, 81], the ST-distribution-based filter (STF) considers that the heavy-tailed posterior

PDF follows the ST distribution. However, its filtering accuracy is limited due to the

requirement that the prediction and observation PDFs should be characterised by the

same degree of impulsiveness. By contrast, in [39], the robust Student’s t-based Kalman

filter (RSTKF) eliminates this requirement and expresses the prediction and likelihood

PDFs in hierarchical Gaussian forms. Hence, it exhibits higher computation complexity

but produces more precise estimates. Despite all these improvements, two drawbacks

of ST-distribution-based RKFs remain. First, they provide a rough estimation when

the noise is skewed. Also, the degree of freedom (dof) value of the ST distribution is set

manually for each filtering scenario, which degrades its overall performance.

Owing to these disadvantages, other heavy-tailed distributions have also been investi-

gated to design RKFs. In [67, 99], an RKF based on the multivariate Laplace distribution
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was considered. As the Laplace distribution is only determined by its mean and co-

variance, the selection of the dof value is unnecessary. Nevertheless, without a shape

parameter, the filter cannot adapt to varying types of noise. Hence, for heavy-tailed

and/or skewed state and measurement noises, the robust Kalman filter based on the

Gaussian scale mixture distributions (RKF-GSM) was proposed in [41]. However, the

MMSE estimate of the scale function is not available, and the maximum a posterior

probability (MAP) estimate introduces more errors. Also, the dof values are still manually

set, which debases the estimation precision.

2.3 Particle filters

Both the classic KF and the RKFs exhibit efficiency in certain scenarios. However, their

filtering performance tends to degrade significantly when the state-space model becomes

highly nonlinear. By contrast, the PF [6, 17, 23] excels in providing precise estimation un-

der such nonlinear conditions. In Subsection 2.3.1, we introduce the IS technique, which

is the basement of the PF. Also, the formulation of the PF framework is explained in

Subsection 2.3.2. As two significant solutions to alleviate particle degeneracy, the resam-

pling methods and efficient importance proposals [96] are presented in Subsection 2.3.3

and 2.3.4, respectively.

2.3.1 Importance sampling

The IS method is a Monte Carlo simulation technique used to estimate the properties of

a target distribution by drawing samples from a proposal distribution, which is easier to

generate samples from. For instance, for the expectation estimation of a function f (x)

where x∼ p(x), we have

(2.5) E[ f (x)]=
∫

f (x)p(x)dx≈ 1
N

N∑
i=1

f (xi)

where xi is the i-th sample of p(x) and N is the sample size. If p(x) cannot be sampled

directly, an importance proposal density q(x) can be introduced, and E[ f (x)] can be

approximated by

(2.6) E[ f (x)]=
∫

f (x)p(x)dx=
∫

f (x)
p(x)
q(x)

q(x)dx≈ 1
N

N∑
i=1

f (xi)
p(xi)
q(xi)

where xi is the i-th sample of q(x).
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2.3.2 Filtering framework

Based on the IS method in the last section, the filtering framework is detailed in this

section. At any time k, the posterior distribution can be expressed as

p(x0:k|z1:k)= p(zk|xk)p(xk|xk−1)
p(zk|z1:k−1)

p(x0:k−1|z1:k−1)

∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1).
(2.7)

For nonlinear models, p(x0:k|z1:k) has a complex form and cannot be directly sampled.

Instead, the PFs introduce a proper importance proposal, and p(x0:k|z1:k) can be ap-

proximated by the weighted particles based on the IS technique. Specifically, select an

importance proposal q(x0:k|z1:k), and then the posterior distribution can be approximated

as

(2.8) p(x0:k|z1:k)≈
N∑

i=1
wi

kδ(x0:k −xi
0:k).

where xi
0:k is the i-th sample from q(x0:k|z1:k) and its corresponding weight wi

k can be

expressed as

(2.9) wi
k ∝

p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

.

For simplicity, the importance proposal is chosen to be factorable, i.e.,

(2.10) q(x0:k|z1:k)= q(xk|x0:k−1,z1:k)q(x0:k−1|z1:k−1).

Then, according to equations (2.7) and (2.10), the particle weights can be updated

sequentially, i.e.,

wi
k ∝

p(zk|xi
k)p(xi

k|xi
k−1)p(xi

0:k−1|z1:k−1)

q(xi
k|xi

0:k−1,z1:k)q(xi
0:k−1|z1:k−1)

= wi
k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

0:k−1,z1:k)

(2.11)

Further, if q(xk|x0:k−1,z1:k)= q(xk|xk−1,zk), the importance proposal and weight update

equation can be simplified as

q(x0:k|z1:k)= q(xk|xk−1,zk)q(x0:k−1|z1:k−1),(2.12)

wi
k ∝ wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1,zk)
,(2.13)
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respectively. For the standard PF formulation, the importance proposal is chosen as

(2.14) q(xi
k|xi

k−1,zk)= p(xi
k|xi

k−1),

which relies only on the prior information and leads to the weight-updating equation as

(2.15) wi
k ∝ wi

k−1 p(zk|xi
k).

As mentioned in the above sections, a common problem in particle filtering appli-

cations is the degeneracy phenomenon, where a large part of the particles will have

negligible weights after a few iterations. It has been proved that the variance of the

importance weights can only increase over time [9, 23], and thus it is impossible to avoid

the degeneracy phenomenon. As an efficient method of mitigating particle degeneracy,

the resampling techniques are introduced in the next subsection.

2.3.3 Resampling techniques

Figure 2.1: Resampling methods [37]

The resampling methods [37, 59] are used to statistically replicate high-weight

particles and eliminate low-weight particles. In this section, we focus on four popu-

lar resampling methods: multinomial resampling, stratified Resampling, systematic
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resampling and Residual resampling, as shown in Figure 2.1. Given samples xi, i = 1 : N
and their corresponding weights wi, the cumulative probability distribution F of the

normalised particle weights can be represented by

F(i)=
i−1∑
s=1

ws

For the multinomial resampling, N ordered random numbers ui, i = 1 : N are produced

by

(2.16) ui = ũi, ũi ∼U[0,1)

where U represents the uniform distribution. Then the resampling particles can be

obtained by

xi =x(F−1(ui)), s.t.ui ∈
[

i−1∑
s=1

ws,
i∑

s=1
ws

]
(2.17)

where function x(i) = xi and F−1 denotes the inverse of F. By contrast, the stratified

resampling calculates ui based on

(2.18) ui = (i−1)+ ũi

N
, ũi ∼U[0,1).

Also, the systematic resampling generates ui by

(2.19) ui = (i−1)+ ũ
N

, ũ ∼U[0,1).

Besides, the Residual resampling first produces ⌊Nwi⌋ copies of xi and then employs one

of the first three resampling algorithms to produce N −∑⌊Nwi⌋ particles based on the

residual particle weights, w′
i ∝ Nwi −⌊Nwi⌋.

2.3.4 Importance proposal

This section focus on an alternative method for the alleviation of particle degeneracy,

importance proposals. For the standard PF, the importance proposal is only based on

the prior information. In highly-nonlinear scenarios, the difference between the prior

and posterior distributions causes serious particle degeneracy. To alleviate this problem,

various advanced importance proposals have been explored by incorporating both the

prior and observation information. For example, the extended particle filter (EPF) [5]

and the unscented particle filter (UPF) [32] employ the importance proposals based on
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the EKF and UKF, respectively. Also, the weighted ensemble Kalman filter [73] designs

the importance proposal based on the EnKF detailed in Section 2.4. More importance

proposals of the PFs can be found in the review paper [96]. In this section, we provide

the assimilation procedure of the EPF in Algorithm 5 as an example.

Algorithm 5: EPF framework
Input: xi

k−1,Pi
k−1|k−1,zk

Design importance proposal by EKF:(
x̂i

k|k,Pi
k|k

)
=EKF

(
xi

k−1,Pi
k−1|k−1,zk

)
q

(
xi

k|xi
k−1,zk

)=N
(
x̂i

k|k,Pi
k|k

)
Sampling from the importance proposal:

xi
k ∼N

(
x̂i

k|k,Pi
k|k

)
;

Update particle weights based on (2.11);
Normalize sample weights and resampling;
Estimate:x̂k = 1

N
∑N

i=1 xi
k

return x̂k,xi
k,Pi

k|k

2.4 Ensemble-based Kalman filters

Both the resampling methods and importance proposals can alleviate the particle de-

generacy, but this problem is still serious under high-dimensional and/or highly non-

linear models. To overcome this problem radically, the Ensemble-based Kalman fil-

ters [11, 24, 73] have been proposed as another solution to filtering under nonlinear

models. There are two kinds of ensemble-based Kalman filters: the EnKF and the Ensem-

ble Square Root filters (ESRFs) [92]. In particular, for EnKF, the linear transformation is

performed statistically by treating the observations as random variables. By contrast, in

ESRF, analysis perturbations follow the KF analysis error covariance equation. Different

from the PF, both EnKF and ESRF just require a small number of particles as they

perform posterior estimation through linear particle movements and then the particle

weights are always equal.

2.4.1 Ensemble Kalman filter

In this section, we detail the EnKF framework, where the forecast step and analysis step

are required at any time k. In the forecast step, each ensemble member is propagated
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forward using the state-space model, and the forecast samples xi
k|k−1 and zi

k|k−1, i =
1, . . . , N are produced by

xi
k|k−1 = f (xi

k−1|k−1)+wi
k−1

zi
k|k−1 = h

(
xi

k|k−1

)
where xi

k−1|k−1 is the i-th posterior sample at time k−1 and wi
k−1 ∼N (0,Q). By contrast,

the analysis update aims to improve the ensemble’s representation of the true state by

combining the model predictions with the observational information, which is achieved

by

xi
k|k = xi

k|k−1 +Kk

(
zk +vi

k −zi
k|k−1

)
where xi

k|k is the i-th posterior sample at time k, Kk is the approximated Kalman gain

and vi
k ∼N (0,R). The formulation of the EnKF framework is summarized in Algorithm 6.

Algorithm 6: EnKF framework
Input: xi

k−1|k−1
Prediction:

xi
k|k−1 = f (xi

k−1|k−1)+wi
k−1

zi
k|k−1 = h

(
xi

k|k−1

)
Update:

xi
k|k = xi

k|k−1 +Kk

(
zk +vi

k −zi
k|k−1

)
Kalman Gain:

Kk =Pxz
k

(
Pzz

k +R
)−1

Pxz
k = 1

N−1
∑N

i=1

(
xi

k|k−1 −xk|k−1

)(
zi

k|k−1 −zk|k−1

)T

Pzz
k = 1

N−1
∑N

i=1

(
zi

k|k−1 −zk|k−1

)(
zi

k|k−1 −zk|k−1

)T

xk|k−1 = 1
N

∑N
i=1 xi

k|k−1
zk|k−1 = 1

N
∑N

i=1 zi
k|k−1

return xi
k|k

2.4.2 ESRF

Compared with the KF, the EnKF provides a more precise posterior estimation under

nonlinear non-Gaussian models. However, the perturbed observations introduce extra

errors, especially when the ensemble size is small. To overcome this drawback, the ESRF
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assimilates the observations based on the square root of the analysis error covariance

matrix. As there are different square root solutions, various ESRF variants have been

presented and were reviewed in [92]. In this section, we detail the version in [31], which

is compared with our proposed filter in Chapter 3. First, the scaled ensemble perturbation

matrix is calculated by

(2.20) A= 1p
N −1

[
x1

k|k−1 −xk|k−1, . . . ,xN
k|k−1 −xk|k−1

]
Assume observations are linear, and a single scalar observation z takes the form

(2.21) z = hTxk +v

where hT extracts the observation z for the state vector xk and v ∼N
(
0, r2). When the

length of the observation vector is larger than one, the measurements can be assimi-

lated sequentially. Following equations 2.20 and 2.21, the updated ensemble mean and

perturbation matrix can be expressed as

xk|k = xk|k−1 +
z−hTxk|k−1

σ2 + r2 Av

Aa =A−bAvvT

where vT = hTA, σ2 = vTv and b = 1
σ2+r2+r

p
σ2+r2 . The updated ensemble can be calcu-

lated by

xi
k|k = xk|k +

p
N −1Aa

i

where Aa
i is the i-th column of Aa. The procedure of the ESRF is shown in Algorithm 7.

Algorithm 7: ESRF framework
Input: xi

k−1|k−1
Prediction:

xi
k|k−1 = f (xi

k−1|k−1)+wi
k−1

Update:
xi

k|k = xk|k +
p

N −1Aa
i

return xi
k|k

2.5 Optimal-transport-based filters

Despite the advantages of the EnKF/ESRF, their performance in highly nonlinear envi-

ronments is limited due to the intrinsic bias resulting from the low flexibility of their
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linear updates. To improve the estimation precision, the filters based on optimal trans-

port (OT) [53, 97] were proposed, achieving nonlinear transport between the prior and

posterior ensembles. In this section, we first introduce the OT theory in Subsection 2.5.1,

and then a review of the OT-based filters is provided in Subsection 2.5.2. Also, as a

significant filter related to our proposed filter, the formulation of the SMF is explained in

Subsection 2.5.3.

2.5.1 Optimal transport fundamentals

Figure 2.2: (a) Monge transport map (b) Kantorovich’s transport plan [53].

The OT is a historical mathematical theory, which exploits the most efficient way

to move one distribution to another. It was first presented by French mathematician
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Gaspard Monge in 1781. Specifically, Monge’s optimal transportation problem, as shown

in Figure 2.2-(a), pursues a function g which pushes one probability distribution p(x),x ∈
Ω0 to another q(y),y ∈Ω1 [53]. Also, an objective function needs to be optimised, i.e.,

(2.22) J (p, q)= inf
g∈MP

∫
Ω0

cost (x, g(x)) p(x)dx,

where the cost function cost (x, g(x)) denotes the transport cost from x to g(x) and

cost (x, g(x)) = |x− g(x)| at the original version. Besides, MP represents a measure

preserving map meeting the condition

(2.23)
∫

x:g(x)∈B
p(x)dx=

∫
B

q(y)dy

where B ∈Ω1. If g is an injective function, we have

(2.24)
∫

A
p(x)dx=

∫
g(A)

q(y)dy

where A ∈Ω0 and g is called a transport map in this case. Further, if g is a smooth and

one-to-one function, the differential form of (2.23) can be written as

(2.25) det(Dg(x)) q(g(x))= p(x)

where Dg is the Jacobian of g. In general, there exists an infinite number of maps that

solve equation (2.22). One way to select a map is to define a particular cost function and

solve the OT problem. For example, g can be restricted by minimising the p-Wasserstein

metric below

(2.26) J(p, q)= min
g∈MP

(∫
Ω0

cost (x, g(x)) p(x)dx
) 1

p
,

where cost (x, g(x))= |x− g(x)|p, p ≥ 1.

In 1942, Monge’s transport problem was generalised by Leonid V. Kantorovich, whose

formulation pursues a transportation plan g̃ and can be written as

(2.27) J(p, q)= min
g̃∈MP

∫
Ω0×Ω1

cost (x,y)dg̃(x,y),

where MP requires g̃ to be a joint distribution of marginals p(x) and q(y), i.e.

g̃(Ω0 ×y)= q(y)

g̃(x×Ω1)= p(x).
(2.28)

Also, under the Wasserstein metric, the Kantorovich’s formulation can be rewritten as

J(p, q)= min
g̃∈MP

(∫
Ω0×Ω1

|x−y|pdg̃(x,y)
) 1

p
.
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Besides, we can represent the p(x) and q(y) as discrete distributions with M and N
possible values, respectively, i.e.,

p(x)=
M∑

i=1
piδ(x−xi)

q(y)=
N∑

j=1
q jδ(y−y j)

,

where pi and q j represent the probabilities of xi and y j, respectively. Then the corre-

sponding Kantorovich’s problem can be written as

J(p, q)=min
g̃

∑
i

∑
j

cost
(
xi,y j

)
g̃ i j

s.t.
∑

j
g̃ i j = pi,

∑
i

g̃ i j = q j, g̃ i j ≥ 0
(2.29)

where g̃ i j represents the probability of [xT
i ,yT

j ]T . In Figure 2.2-(b), an example of Kan-

torovich’s transport plan based on the discrete distributions are presented.

We should note that the optimization problem over the joint distribution is over a

different space than the MP used in equation (2.22). Specifically, for Monge’s problem, a

transport map assigns one element of x to exactly one of y. By contrast, Kantorovich’s

problem is more general and supports one-to-many movements.

2.5.2 OT-based filters

In recent years, the regularisation of many OT maps/plans has been presented and

applied to filtering problems. [77] proposed the ensemble transform particle filter (ETPF),

where the OT plan is designed based on linear programming. Although obtaining better

filtering performance than the PF and EnKF, its computational load is O(N3logN). By

contrast, [2] presented a differentiable particle filtering via Entropy-Regularized OT,

of which the computational load is reduced to O(N2) owing to the efficient Sinkhorn

Algorithm. Also, in [76], the mapping particle filter is introduced, where particles are

transported from the prior to the posterior domain using a sequence of mappings which

minimise the Kullback-Leibler (KL) divergence between the posterior and intermediate

distributions. Nevertheless, its filtering efficiency is influenced by the slow convergence

process. Besides, the stochastic and deterministic map filters are provided using the

Knothe-Rosenblatt (KR) rearrangement in [87], and its computational load is O(N).

25



CHAPTER 2. LITERATURE REVIEW

2.5.3 Stochastic Map Filtering

In this section, the SMF framework is detailed. We first explain the KR rearrange-

ment [97], which is a kind of OT map constituting the basis of the SMF approach. The

cost function for the parameter optimisation of the KR rearrangement is introduced

subsequently, and the data assimilation procedure of the SMF concludes this subsection.

2.5.3.1 Knothe-Rosenblatt rearrangement

Given any pair of positive densities, there exists a unique monotone triangular transport

map, which defines a deterministic coupling between two distributions and is called the

KR rearrangement. This strategy belongs to Monge’s problem, i.e. a one-to-one transport

map. Due to its ability to create connections between two probability densities, it has

been widely used in Bayesian inference, importance sampling, SMC, etc [20, 65, 74].

A parametric strategy for the KR rearrangement is presented in [65]. Assume x=
[x1, x2, . . . , xn]T and y = [y1, y2, . . . , yn]T are n-dimensional variables with distributions

p(x) and q(y), respectively. Then, a standard triangular transport map can be expressed

as

(2.30) y= S(x)=


S1(x1)

S2(x1, x2)

. . .

Sn(x1, x2, . . . , xn)


where the map S transports the distribution p(x) to q(y) and each component of S is

monotone with respect to its last input. The crucial property of the KR rearrangement for

its application to the SMC algorithm is that it provides an implicit characterization of the

marginal conditional distributions. In the example above, S1 transports p(x1) to q(y1),

S2 transports p(x2|x1) to q(y2|y1) and so on. This conditional distribution transformation

property is used in the design of the SMF algorithm.

The parameterisation of KR rearrangement is an important part of the design of

transport maps. One way to parameterise each component of the map S is via multivari-

ate polynomials which could either involve Hermite or Legendre polynomials [61]. [87]

also provides a specific computational parameterisation of triangular maps, which is

based on radial basis functions (RBFs).
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2.5.3.2 Constructing KR rearrangement from samples

Following the definition of the triangular transport maps above, we now explain the cost

function definition based on the KL divergence. We aim to optimise the parameters of the

transport map polynomials which connect an arbitrary distribution p(x) to a reference

distribution q(y). Following equation (2.22), since S is a monotone and differentiable

transformation, we have

(2.31) p̂(x)= q(S(x))|det (DxS)|,

where p̂(x) is an approximation of p(x). The map S can be obtained by minimizing the

difference between p̂(x) and p(x), and the KL divergence can be used to measure this. It

can be expressed as

DKL(p| p̂)=E
[
log

(
p(x)
p̂(x)

)]
=E[log(p(x))− log(q(S(x)))− log |det (DxS)|].

(2.32)

Then, the transport map can be expressed in terms of the KL divergence as

(2.33) Ŝ = arg min
S∈H

E[− log(q(S(x)))− log |det (DxS)|] ,

where H is a function space for map S. The unknown term E[log(p(x))] is neglected

in the objective function above because it is not related to S. We should note that in

the above cost function, there is no term related to transport cost like equation (2.26)

because the uniqueness of the transport map is guaranteed by the triangular structure

and monotonicity of the KR rearrangement [65]. Assume that we have N samples

xi, i = 1 . . . N, from p(x), then the cost function based on the discrete samples is expressed

as

(2.34) Ŝ = arg min
S∈H

1
N

N∑
i=1

[
− log q(S(xi))− log |det (DxS(xi))|

]
.

Newton’s method provides an efficient solution to the minimisation of the cost function

in (2.34) and has been widely used in the literature [87].

2.5.3.3 Data Assimilation

In this section, we introduce the structure of the SMF. For a filtering problem, at any

time k, we initially have samples xi
k−1|k−1, i = 1, ..., N, from p(xk−1|z1:k−1). By sampling

p(xk|xi
k−1|k−1), we have xi

k|k−1, i = 1, ..., N. Then by sampling p(zk|xi
k|k−1), zi

k|k−1, i =
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1, ..., N are obtained. Then we have
[
xi

k|k−1
T ,zi

k|k−1
T
]T

, i = 1, ..., N which are samples

from the joint density p(xk,zk|z1:k−1). Following [87], we define the function SX : Rn ×
Rm →Rn, which is a part of the KR rearrangement S : Rn ×Rm →Rn ×Rm, which trans-

ports the distribution p(xk,zk|z1:k−1) to a normal distribution. The resulting map is

continuous and can be defined as

(2.35) SX (zk,xk)∼N (0,In)

From [87], we have that the analysis map T which transports the joint distribution to

the posterior can be expressed as

(2.36) T := SX (z∗
k,∼)−1 ◦SX (zk,xk)

where z∗k is a fixed observation at time k, SX (z∗k,∼)−1 denotes the inverse function of the

map SX (z∗
k,∼), and ◦ denotes the composition of the two maps. In the above structure,

SX transforms the samples from the joint distribution to the standard normal which

is then pushed by SX (z∗
k,∼)−1 to the posterior. In principle, we can directly employ

SX (z∗
k,∼)−1 to produce posterior approximations by pushing forward samples from the

standard normal density. However, from [87], transporting samples from p(xk,zk|z1:k−1)

through T yields more accurate results which is attributed to the cancellation of errors

in the composition of ˆSX and its inverse.

In practice, we can obtain the estimator of T using the samples, and it can be

expressed as

(2.37) T̂ := ˆSX (z∗
k,∼)−1 ◦ ˆSX (zk,xk)

where ˆSX denotes the estimated map of SX .

In general, the process of stochastic map filtering can be divided into two steps,

i.e. the forecast step and the analysis step. First, we get samples of p(xk,zk|z1:k−1)

(forecasting). Second, the samples of the estimated posterior distribution can be obtained

by transforming the joint prior samples through the map T̂ (analysis).

2.6 Hybrid filters

Except for the OT-based filters, an alternative strategy to improve the filter performance

of the PF and the EnKF/ESRF is to build a hybrid filtering framework. Specifically,

the likelihood function is first separated into two parts, and then the EnKF/ESRF and
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PF-based filters are applied sequentially to assimilate each likelihood part, i.e.,

(2.38) p(zk|xk)= p(zk|xk)ϱp(zk|xk)1−ϱ

where 0 < ϱ < 1 is the splitting factor, p(zk|xk)ϱ and p(zk|xk)1−ϱ are assimilated by

different filters. As a result, the hybrid filters can yield more precise non-Gaussian ap-

proximations than PF since they alleviate the particle degeneracy issue through the use

of EnKF/ESRF. Currently, three hybrid filters have been proposed and explored, namely

the Gaussian mixture model-EnKF hybrid filter (GMM-EnKF) [26, 89]; the hybrid of

ETPF and ESRF (ETPF-ESRF) [18, 77]; and the SIR-ESRFs [31] via combining the

standard PF and ESRFs with a mean-preserving random orthogonal resampling [82].

Despite the improvement in the estimation precision, these filters also have some draw-

backs. In GMM-EnKF, since the EnKF is implemented in the first stage, it is not suitable

for moderately non-Gaussian models where prior distributions are non-Gaussian and

posterior distributions are close to Gaussian. ETPF-ESRFs suffers from a large com-

putational load due to the ETPF component. SIR-ESRFs provides an efficient solution

to the moderately non-Gaussian models and the mean-preserving random orthogonal

transformation in the ESRFs update stage produces the Gaussian approximation for

the posterior distribution. However, when the posterior distribution is not close to a

Gaussian form, this resampling technique causes large sampling errors. The details of

GMM-EnKF and SIR-ESRFs are provided in Subsection 2.6.1 and 2.6.2, respectively,

and their filtering performance is compared with our proposed PSMF in Chapter 3.

2.6.1 GMM-EnKF

For the GMM-EnKF, the p(zk|xk)ϱ and p(zk|xk)1−ϱ are assimilated by the stochastic

EnKF and the PF, respectively. Assuming a Gaussian likelihood, according to the EnKF

framework, the assimilation results of p(zk|xk)ϱ can be expressed as

xm
k,i = xi

k|k−1 +Km
k

(
zk +vi

k −Hxi
k|k−1

)
where xm

k,i is the i-th assimilated sample by p(zk|xk)ϱ at time k, vi
k ∼N (0, R

ϱ
) and Km

k is

the approximated Kalman gain calculated by

Km
k =Pxx

k HT
(
HPxx

k HT +Rϱ

)−1

Pxx
k = 1

N −1

N∑
i=1

(
xi

k|k−1 −xk|k−1

)(
xi

k|k−1 −xk|k−1

)T

Rϱ = R
ϱ
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Then the assimilation posterior can be written as a Gaussian Mixture distribution, i.e.,

1
N

N∑
i=1

N
(
xm

k,i,P
m
k

)
,

where

xm
k,i = xi

k|k−1 +Km
k

(
zk −Hxi

k|k−1

)
Pm

k = 1
ϱ

Km
k RKm

k
T

Instead of performing the standard EnKF sampling from this density, we delay that sam-

pling and perform the multiplication with the second likelihood p(zk|xk)1−ϱ analytically.

The full posterior can be represented as a Gaussian mixture density, i.e.,

N∑
i=1

wiN
(
xi

k|k,Pk|k
)
,

where

xi
k|k = xm

k,i +Kk|k
(
zk −Hxm

k,i

)
Pk|k =

(
I−Kk|kH

)
Pm

k

wi ∝N

(
zk −Hxm

k,i,HPm
k HT + R

(1−ϱ)

)
Kk|k =Pm

k HT
(
HPm

k HT + R
(1−ϱ)

)−1

Then the posterior samples xi
k|k can be obtained by sampling from the Gaussian mixture

distribution. The procedure of the GMM-EnKF is detailed in Algorithm 8.

Algorithm 8: GMM-EnKF framework
Input: xi

k−1|k−1
Prediction:

xi
k|k−1 = f (xi

k−1|k−1)+wi
k−1

Assimilate p(zk|xk)ϱ and obtain:
1
N

∑N
i=1 N

(
xm

k,i,P
m
k

)
Assimilate p(zk|xk)1−ϱ and obtain:∑N

i=1 wiN
(
xi

k|k,Pk|k
)
;

Obtain xi
k|k by sampling from the posterior Gaussian mixture distribution;

return xi
k|k
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2.6.2 SIR-ESRF

For the SIR-ESRFs, the p(zk|xk)ϱ is assimilated by the PF in the first step. Sampling

the prior particles xi
k|k−1, the corresponding sample weights can be calculated by

(2.39) wi
k ∝ p(zk|xi

k|k−1)ϱ.

Then obtain xm
k,i by resampling the discrete distribution. In the second step, a mean-

preserving random orthogonal transformation [82] is adopted to increase the diversity

of the particles. Hence, compared with the ESRFs in Subsection 2.4.2, the analysis

ensemble perturbation matrix Aa is replaced with

−→
Aa =AaU

[
1 0
0 P

]
UT

The matrix U is an orthogonal matrix whose first column is proportional to 1, while

the matrix P is a random orthogonal matrix of size N −1×N −1. Then the posterior

ensemble can be constituted by

xi
k|k = xk|k +

p
N −1

−→
Aa

i

where
−→
Aa

i is i-th column of
−→
Aa.

Algorithm 9: SIR-ESRF framework
Input: xi

k−1|k−1
Prediction:

xi
k|k−1 = f (xi

k−1|k−1)+wi
k−1

Assimilate p(zk|xk)ϱ based on PF, and then obtain xm
k,i;

Assimilate p(zk|xk)1−ϱ based on ESRFs, and then obtain xi
k|k;

return xi
k|k

2.7 Data-driven filters

In the previous sections, we introduced various traditional model-based (MB) filters,

which rely on specific assumptions about the system dynamics and measurement models.

If these assumptions are violated or inaccurate, the filtering performance may degrade

significantly. With the development of deep neural networks (DNNs), DD filters [28]

were proposed, where accurate knowledge of the state-space model is not required.
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Nonetheless, these DD approaches lack interpretability and require many large data sets

even for simple sequences. Following this, a hybrid filter, KalmanNet [79], combining DD

with MB filters was presented. The hybrid framework is more interpretable due to its

structure based on MB filters and can produce precise estimates owing to the trainable

neural network. In Subsection 2.7.1, we first introduce the deep neural network. Then,

as a significant structure for the DD filter, the recurrent neural network (RNN) [83]

is explained in Subsection 2.7.2. Further, the DD and DD-MB filters are explained in

Subsection 2.7.3 and Subsection 2.7.4, respectively.

2.7.1 DNN fundamentals

Figure 2.3: Deep neural network structure. (a) and (b) plot the forward pass and back-
propagation steps, respectively.

Neural networks [103] are a class of machine learning models inspired by the struc-

ture of the human brain. They consist of interconnected nodes, called neurons, organized

into layers. Each neuron takes inputs, performs computation and produces an output.
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DNNs [57] are neural networks with multiple hidden layers between the input and

output layers. These hidden layers enable the network to learn hierarchical represen-

tations of the input data, capturing complex patterns and relationships. To illustrate

the structure, an exemplary multilayer neural network is shown in Figure 2.3, which

follows a feedforward architecture. The information flows from the input layer through

the hidden layers to the output layer. Each layer contains multiple neurons that apply a

nonlinear activation function to the weighted sum of their inputs.

In the training process, there are two steps: forward pass and backpropagation.

During the forward pass, the input data is fed into the network, and the outputs of each

layer are computed sequentially as shown in Figure 2.3-(a). By contrast, Figure 2.3-(b)

shows the backpropagation step, where the gradients of the model parameters with

respect to the loss function are calculated by chain rule and gradient-based optimization

algorithms are employed to update the parameters.

2.7.2 RNN

Figure 2.4: RNN

Following the introduction of the DNN in the last section, this section focuses on the

RNN, which is a type of artificial neural network dealing with sequential data or time

series data. As shown in Figure 2.4, at any time k, the RNN processes the input zk and

maintains the hidden states hk−1, containing past information. Hence, the recurrent

nature allows the network to capture temporal dependencies in the sequential data. In

this subsection, three typical RNN structures are explained, including vanilla RNN [16],

long short-term memory (LSTM) network [28] and gated recurrent unit (GRU) [16].
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Figure 2.5: vanilla RNN

Vanilla RNN is the most simple form of RNN and maintains only one hidden state as

shown in Figure 2.5. The computation in a vanilla RNN can be described by the following

equations:

hk = tanh(Whhhk−1 +Wzhzk−1)

The prediction of xk can be obtained by a matrix projection on top of the hidden state,

i.e.,

xk =Wxhhk

The parameters (weights) in a vanilla RNN are shared across all time steps, allowing

the network to capture the temporal patterns in the sequential data. However, its

performance is limited in learning long-term dependencies due to the vanishing gradient

problem. Specifically, the network is trained using backpropagation through time, and

then the gradients can diminish or explode exponentially when they propagate through

multiple time steps.

To alleviate the vanishing gradient problem, the LSTM structure introduces a mem-

ory cell and three gating mechanisms: input gate, forget gate, and output gate as shown

in Figure 2.6. These gates regulate the information flow within the LSTM cell, allowing

it to retain important information over long sequences and forget irrelevant information.
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Figure 2.6: LSTM

The formulation of the LSTM can be written as

fk =σ
(
Whf hk−1 +Wz f zk

)
ik =σ (Whihk−1 +Wzizk)

ok =σ (Whohk−1 +Wzozk)

c̃k = tanh
(
Whghk−1 +Wzgzk

)
ck = fk ◦ck−1 + ik ◦ c̃k

hk = ok ◦ tanh(ck)

where the cell state ck is the main component, which carries information over time and

is updated by combining the previous cell state ck−1 with the new candidate cell state c̃k.

Also, the forget gate vector fk takes the previous hidden state hk−1 and the current input

zk as inputs, and determines how much of the previous cell state ck−1 to retain or forget.

Further, the input gate vector ik determines how much new information should be added

to the cell state, and the output gate vector ok determines the amount of information to

pass to the next hidden state hk.

To simplify the LSTM structure, the GRU structure was proposed, combining the for-

get and input gates into a single update gate and merging the cell state and hidden state.

The GRU has fewer parameters than LSTM and hence is more computationally efficient.

The GRU structure is illuminated in Figure 2.7, and the corresponding formulation can

be written as

yk =σ
(
Whzhk−1 +Wyzzk

)
rk =σ (Whrhk−1 +Wzrzk)

h̃k = tanh(Whn (rk ◦hk−1)+Wznzk)

hk = (1−yk)◦hk−1 +yk ◦ h̃k
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Figure 2.7: GRU

where the candidate hidden state h̃k is a temporary memory that holds the information

to be considered for the current hidden state. Also, the update gate vector yk determines

how much of the previous hidden state hk−1 should be passed to the current time step.

Further, the reset gate vector rk controls the degree to which hk−1 is taken into account

when computing the current hidden state hk.

2.7.3 DD filters

Based on the introduced RNN structures, there are three ways to achieve DD filters.

First, the recurrent neural networks take in the observations and sequentially output

the true states [28] as shown in Figure 2.8-(a). However, to cope with the complexity of

uncertain real-world data and achieve better belief approximation, a long latent vector

hk is needed, which thus increases the number of network parameters and the amount

of data required for training. The second approach, PF-RNN, combines the strengths of

RNNs and particle filtering by learning latent particles hi
k, i = 1 . . . N and updating the

belief with a particle filter [60]. Without lengthening the latent vector hk, the required

data amount is reduced. By contrast, the third method, LSTM-KF [19], proposes to learn

the parameters of the KF by LSTM as shown in Figure 2.9.

2.7.4 DD-MB filtering methods

To reduce the required data amount, [79] proposed a hybrid DD-MB filter, call Kalman-

Net, combining the MB and DD methods as shown in Figure 2.10. Specifically, at any
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Figure 2.8: (a) and (b) show the original RNN-based filter and the PF-RNN-based filter,
respectively.

Figure 2.9: The LSTM-KF-based filter.

time k, the posterior estimation requires two steps: prediction and update. During the

prediction step, the prior estimates for the current state x̂t|t−1 and observation ŷt|t−1

are computed based on the known transition function f () and measurement function

h(). Then, the update step assimilates the new observation yt based on the outputed

Kalman gain of a dedicated RNN structure. Also, the input features of the RNN are

selected as the innovation difference △yt = yt − ŷt|t−1 and forward update difference

△x̂t−1 = x̂t−1|t−1 − x̂t−1|t−2. Additionally, [79] presents an efficient supervised training

scheme, of which the corresponding Loss function is based on the estimation error xt−x̂t|t.
Although the KalmanNet performs better than the traditional filters, it requires the

ground-truth hidden state sequences, which may be costly to obtain. Then, an unsuper-

vised KalmanNet [78] was proposed, and its Loss function is based on the observation

prediction error yt − ŷt|t−1.
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Figure 2.10: KalmanNet

Compared with traditional DD methods, the KalmanNet methods are based on the

EKF framework. Hence, it is more interpretable, infers a reduced complexity and can be

trained with a relatively small data set. Also, due to the introduction of the dedicated

RNN, the KalmanNet can accurately characterize the state dynamics and obtain more

precise estimates than the MB filters, where the estimation precision is influenced by

the model error.

2.8 Conclusion

This chapter provides a comprehensive review of the previous work related to our

proposed filters. We start from the classic KF and its nonlinear extensions, namely the

EKF and UKF. Also, Section 2.2 explains the RKF framework for the linear models with

heavy-tailed noise. Although both the KFs and RKFs are efficient, their performance

is limited under highly-nonlinear models. As the most important filter for the high-

nonlinear dynamics, the PFs are detailed in Section 2.3, and then the resampling

techniques and various importance proposals for the alleviation of the particle degeneracy

are also provided. By contrast, Section 2.4 introduces the EnKF/ESRFs framework, where

the sample weights are always equal. However, its filtering performance is limited due
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to the intrinsic bias resulting from the linear transformation. By contrast, the OT-

based filters explained in Section 2.5 achieve nonlinear transport between the prior and

posterior domains. To utilise the advantages of the PF and the transport-based filters,

including EnKF/ESRFs and OT-based methods, several hybrid filters were proposed,

where the likelihood function is separated by a splitting factor as explained in Section 2.6.

For all these particle-based filters, the computational load is expensive due to their

reliance on numerous samples. Except for these MB filters, Section 2.7 introduces several

DD filters, which provide novel solutions for the filtering tasks based on the deep-learning

technique.
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A HYBRID PARTICLE-STOCHASTIC MAP FILTER

F iltering in nonlinear non-Gaussian state-space models is known to be a challeng-

ing task due to the posterior distribution being either intractable or expressed

in a complex form. Following the review of various existing filters provided in

the last chapter, this chapter proposes a novel nonlinear filter, PSMF, which combines

the PF and SMF. As explained, although generally outperforming the traditional filters,

the PF suffers from sample degeneracy. By contrast, drawing from optimal transport

theory, the SMF [87] accommodates a solution to this problem. However, its performance

is influenced by the limited flexibility of nonlinear map parameterisation. To alleviate

the drawbacks of the PF and SMF, the PSMF incorporates these two filters into one

filtering framework.

The rest of this chapter is organised as follows: In Section 3.1, we present the details

of the proposed PSMF algorithm. The experimental analysis is performed in Section 3.2,

whilst Section 3.3 summarises the chapter.

3.1 Stochastic Map-Augmented Particle Filtering

In this section, we present the proposed hybrid filter that combines PF with the SMF

based on the nonlinear state space model in equation (1.2). At any time k, we have

samples xi
k−1 ∼ p(xk−1|z∗

1:k−1), i = 1, ..., N. Then, forecast samples (xi
k, i = 1, ..., N) from

p(xk|z∗
1:k−1) can be obtained by sampling from p(xk|xi

k−1). After the prior samples are
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obtained, the likelihood function is separated as

(3.1) p(z∗
k|xk)= p(z∗

k|xk)ϱp(z∗
k|xk)1−ϱ

where 0< ϱ< 1 is the splitting factor, p(z∗
k|xk)ϱ is assimilated by PF and p(z∗

k|xk)1−ϱ is

assimilated by SMF. For ϱ values of 0 and 1, the hybrid filter boils down to the SMF and

the PF, respectively.

When ϱ is small, PSMF is close to the SMF. In this case, the sample degeneracy can

be alleviated effectively, but the estimation error increases due to the limited flexibility

of the maps. We should note that theoretically, the degree of non-linearity of a map can

be arbitrarily high and there is no limit to its flexibility. However, highly non-linear maps

suffer from larger map variances and may produce worse estimations than linear maps.

So, the non-linearity of maps should be controlled according to ensemble sizes. Specially,

with a few samples, linear or low-order non-linear maps should be used. By contrast, a

larger number of particles can restrict the variance of a highly non-linear map [87].

For large ϱ, PSMF approaches closely the PF. Then, the error from sample degeneracy

increases. In this case, as 1−ϱ tends to zero, p(z∗
k|xk)1−ϱ just reshapes the distribution

slightly. So, there is no need for a highly flexible transport map to complete the second

assimilation step, and variances of low-order maps are small. With the adaptability

mentioned above, the proposed hybrid filter achieves a trade-off between the PF and the

SMF.

Before we implement the assimilation step, ϱ needs to be chosen. For a given 0≤ θ ≤ 1,

we choose ϱ as the largest value which satisfies the condition

(3.2) ESS ≧ θN

where ESS is the effective sample size [26] and can be approximated by the sample

weights. For a given ϱ, based on (2.15), we have the weight update equation which can

be expressed as

(3.3) wi
k ∝ wi

k−1 p(z∗
k|xi

k)ϱ.

Since a resampling step is taken at every iteration, we have wi
k−1 = 1

N and the normalized

particle weights can be written as

(3.4) wi
k =

p(z∗
k|xi

k)ϱ∑N
j=1 p(z∗

k|x
j
k)ϱ

.

Then, the ESS can be approximated by

(3.5) ESS = 1∑
i(wi

k)2
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From [26], searching the value of 0 ⩽ ϱ ⩽ 1 satisfying the condition in (3.2) can be

achieved by a root finding method. For large θ, the searched ϱ is small, and then the

hybrid filter is closer to SMF. For a smaller θ, the hybrid filter moves towards the PF.

The optimal values of θ depend on the nonlinear models. Currently, there is no automatic

way to select parameter θ, and it needs to be selected manually based on the models.

After θ is selected and ϱ is calculated, the PF is implemented to update p(z∗k|xk)ϱ. Based

on (3.4), we obtain the normalized particle weights corresponding to the selected ϱ.

To alleviate the particle degeneracy problem, we utilise a systematic resampling,

followed by a smoothing step. The details of the resampling method are explained in

section 2.3.3. Different strategies for the alleviation of particle degeneracy[18, 26, 31]

have been proposed in the literature. For example, GMM-EnKF avoids the degeneracy

by sampling from the posterior density approximated by a Gaussian Mixture (GM); the

ETPF-ESRF filter employs the optimal transport strategy to implement the resampling;

a mean-preserving random orthogonal transformation is used in SIR-ESRF to break the

degeneracy. Although the performance of systematic resampling is proved in previous

work, this method has not been embedded in hybrid filters, because the discontinuity

update influences its application in the high-dimensional scenario. In this work, we only

consider low-dimension cases, but with the developments of the local PF [75, 96] and its

combination with the EnKF [80], we can reasonably consider applying our hybrid filter

to high-dimension models. This however is out of the scope of this chapter.

After resampling, all the particle weights become equal, wi
k = 1/N. To increase the

diversity of particles, we add a small Gaussian noise to smooth the samples, which is

helpful to decrease the variance of transport maps in the SMF assimilation stage.

(3.6) xi
k = xk +ζ(xi

k −xk)+βinf ∗ ṽi
k, ṽi

k ∼ N(0,var(xk))

where 0<βinf < 1 is the smoothing factor and var(xk) is the variance of the resampled

samples. ζ=
√

1−β2
inf is the shrinking factor, which is employed to remove the excess

variance caused by the added noise [89].

Next, p(z∗
k|xk)1−ϱ is assimilated by the SMF. First, to obtain the samples [zi

k,xi
k]

from the joint distribution, we sample the likelihood p(zk|xi
k)1−ϱ, i = 1, ..., N. In this work,

we only consider Gaussian and GM likelihood. For Gaussian cases, assume p(zk|xi
k)=

N ( f (xi
k),Σ), i.e.

p(zk|xi
k)= 1

(2π)
m
2 |Σ| 1

2
exp

[
−1

2

(
zk − f (xi

k)
)T
Σ−1

(
zk − f (xi

k)
)]
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where Σ is the covariance matrix. Then

p(zk|xi
k)1−ϱ =

[
1

(2π)
m
2 |Σ| 1

2

]1−ϱ
exp

[
−1

2

(
zk − f (xi

k)
)T

(
Σ

1−ϱ
)−1 (

zk − f (xi
k)

)]
∝ 1

(2π)
m
2

∣∣∣ Σ
1−ϱ

∣∣∣ 1
2

exp
[
−1

2

(
zk − f (xi

k)
)T

(
Σ

1−ϱ
)−1 (

zk − f (xi
k)

)]

=N ( f (xi
k),

Σ

1−ϱ ).

Hence, we can sample N ( f (xi
k), Σ

1−ϱ ) to obtain zi
k. For GM cases, the likelihood can be

expressed as p(zk|xi
k)=∑M

j=1 p jN ( f (xi
k),Σ j) where M is the number of mixtures. p j and

Σ j are the mixing factor and the covariance matrix of the i-th Gaussian component,

respectively. Similarly, we can sample
∑M

j=1 p jN
(
f (xi

k), Σ j
1−ϱ

)
to obtain zi

k.

Then, the map ˆSX can be designed from the samples [zi
k,xi

k] according to (2.35) and

the transport map T̂ can be designed by (2.37).

In the last step, the samples [zi
k,xi

k] are transported with the transport map T̂ as

(3.7) xi
k = T̂(zi

k,xi
k)

In our work, thanks to the generalisation of the EnKF, the transport map T̂ can be

designed to be both linear and nonlinear which can then respectively be called PSMF-L

and PSMF-NL. As also noted in [87], the nonlinear map achieves better performance

compared to the linear map but suffers from larger map variances. The overall procedure

of the proposed PSMF algorithm is summarised in Algorithm 10.

3.2 Simulation Results

3.2.1 State-Space Models

In this section, we introduce the low-dimensional nonlinear state-space models used

in the experimental analysis. There are four benchmark models considered, i.e. (1)

the univariate non-stationary growth model [62], (2) Henon map [31], (3) Lorenz-63

model [87], and (4) a target tracking model also used in [35, 36]. The first model is

one-dimensional, the Henon map is a two-dimensional model, whilst Lorenz-63 and

the target tracking models are of dimensions 3 and 4, respectively. The details of these

state-space models are presented in the sequel.
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Algorithm 10: The PSMF Algorithm
procedure PSMF (z∗

k, p(xk|xk−1), p(zk|xk),θ,xi
k−1);

for i ← 1 to N do
xi

k ← sample from p(xk|xi
k−1);

ϱ← root-finding method;
if ϱ> 0 then

for i ← 1 to N do
wi

k ← particle weights by (3.4);

for i ← 1 to N do
xi

k ← systematic resampling

for i ← 1 to N do
xi

k ← smoothing by (3.6);

if ϱ< 1 then
for i ← 1 to N do

[zi
k,xi

k]← sample from p(zk|xk)1−ϱ;
ˆSX ← estimator of SX from [zi

k,xi
k] by (2.34). SX is defined by (2.35);

for i ← 1 to N do
xi

k ← ˆSX (zi
k,xi

k);
xi

k ← ˆSX (z∗
k,xi

k)−1;

return xi
k

3.2.1.1 Univariate Non-Stationary Growth (UNGM) Model

The UNGM model can be expressed as

xk = 0.5xk−1 +25
xk−1

1+ x2
k−1

+8cos(1.2(k−1))+vk−1

zk = xk +wk

(3.8)

where vk ∼N (0,1),wk ∼N (0,2.5) are zero-mean Gaussian noise. In our experiments,

we set the total number of steps to 100 and repeat the simulations 100 times. The initial

state follows N(20,12).

3.2.1.2 Henon Map

Different from the other models, for the Henon map, the number of steps is set to 1. This

helps to focus on a single Bayesian assimilation update. Hence, the complication related

to varying non-Gaussianity along cycled steps can be eliminated.
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From [31], the prior is the density two-dimensional vector x1 whose samples are

obtained by pushing samples of normal two-dimensional vector x0 forward through the

Henon map, i.e.

x1(1)= 1−1.4x0(1)2 +x0(2),

x1(2)= 0.3x0(1)
(3.9)

where x0(1)∼N (0,12),x0(2)∼N (0,0.12). The true values of x1(1) and x1(2) are set to -4

and 0.6. 1000 Monte Carlo runs were simulated in the experiments.

3.2.1.3 Lorenz-63

The Lorenz-63 Model is a 3-dimensional nonlinear state-space model, and its state vector

is represented by xt = (xt(1),xt(2),xt(3)). The dynamics of the model can be described by

dxt(1)
dt

=−10xt(1)+10xt(2)

dxt(2)
dt

=−xt(1)xt(3)+28xt(1)−xt(2)

dxt(3)
dt

= xt(1)xt(2)+ 8
3

xt(3)

.(3.10)

The ODE system above is integrated by a fourth-order explicit Runge-Kutta method

and a constant stepsize of △t = 0.05. Then at each integration step, we add a Gaussian

process noise, N (0,10−4I3), to the state.

For the observation model, we assume the states are measured every △tobs = 0.5

time units, then the measurement model can be represented as

(3.11) zk = xk +vk

where xk = xt|t=k△tobs and vk ∼N (0,4I3) is zero-mean white Gaussian observation noise.

For the initialisation, the true state is set by sampling from x0 ∼N (0,I3). The true

model runs 6000-time steps to generate the states, and the observations are produced

by the measurement models. The initial ensemble is produced by a spin-up stage. N
samples are obtained from the initial condition N (0,I3), and the stochastic EnKF is

run for the first 2000 steps. Then the Lorenz-63 system reaches a stable stage, and the

produced particles are used as initial samples. In the last 4000 steps, several filters are

run. Only the filter results for the last 2000 steps are used for the analysis of the filter

quality, and the middle 2000 steps are used for eliminating the influence of switching

between EnKF and other filters at the end of the 2000th iteration.
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3.2.1.4 Target Tracking With Heavy-Tailed Measurement Noise

In this subsection, we describe a nonlinear target tracking model [35, 36]. As it is shown

below, the state of the target xk is a four-dimensional vector, where peast
k and pnorth

k are

the map coordinates of the object, vabs
k is the value of velocity, and ϕk is the direction of

movement.

(3.12) xk =


peast

k
pnorth

k
vabs

k
ϕk


The dynamics of the target tracking model can be described by

(3.13) xk =


peast

k−1 +△tobs ∗ cos(ϕk−1)∗vabs
k−1

pnorth
k−1 +△tobs ∗ sin(ϕk−1)∗vabs

k−1

vabs
k−1

ϕk−1

+wk−1

where △tobs is the time interval from the current state to the next state, and wk−1 is the

heavy-tailed process noise. Different from [35, 36], in our experiment, the heavy-tailed

noise is approximated by a GM as is used in various other target tracking models [22, 40],

and can be expressed as

(3.14) wk ∼
N(0,Q) with probability 0.85

N(0,ρQ) with probability 0.15

where Q is the covariance matrix, and ρ is a diagonal matrix used to enlarge Q. Then,

the measurement equation is given by

(3.15) zk =Hxk +vk

where vk ∼N (0,R) is the measurement noise with covariance R and

(3.16) H=
[

1 0 0 0

0 1 0 0

]

is the transformation matrix. Following the measurement model, at every time instant,

the position coordinates of the target, peast
k and pnorth

k , are observed. For the complete

definition, we also need to specify the observation interval △tobs, the values for the

initial state x0 with the covariance matrix C0, the processing noise covariance Q, and
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the measurement noise covariance R. In the experiment, without loss of generality,

the target starts to move from the initial point and the real initial state x0 is set to[
0m 0m 30m/s 0rad

]
, where the initial speed of 30m/s is a reasonable value for a

vehicle. For simplicity, we assume the initial state subject to a Gaussian distribution

with the covariance C0 where the deviation about the position, velocity, and direction is

set to
[
10m 10m 3m/s π/10rad

]
, so we have

C0 = diag
[
100m2 100m2 9(m/s)2 π2/100rad2

]
.

In our experiments, we set

△tobs = 1,

Q= diag
[
0.01m2 0.01m2 0.01(m/s)2 (π/90)2rad2

]
,

ρ = diag
[
100 100 100 900

]
,

R= diag
[
9m2 9m2

]
.

The whole tracking process lasts for 120 seconds and 50 Monte Carlo runs were simu-

lated.

3.2.2 Benchmark Filters

In our experiments, the proposed hybrid PSMF filter is compared to 6 state-of-the-art

filters, including the classic PF, EnKF, ESRF, SMF and two-hybrid filters of SIR-ESRF

and GMM-EnKF. In this section, we introduce the configuration of these filters.

For PSMF-L and PSMF-NL, we set both the smoothing parameter βinf to 0.2. Follow-

ing [87], linear and nonlinear transport maps take the "linear" and "linear+2 RBFs" forms,

respectively. The Matlab codes for the transport map are available at: https://github.com/map-

filters/stochasticMaps. Also, the SMF part in the proposed hybrid filter processes the

observations at a given time sequentially.

For a fair comparison, other filters’ configurations follow that of PSMF according

to their structures. First, systematic resampling is performed in PF, SIR-ESRF and

GMM-EnKF. Second, the same smoothing step is adopted in PF. Third, the map de-

sign configurations are the same as in SMF. Finally, the observations are sequentially

processed in EnKF, ESRF, SMF, and the ESRF/EnKF parts in hybrid filters.
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3.2.3 Performance Evaluation in Relation to Ensemble Size

In the first set of experiments, we numerically investigated the performance of filters

under different ensemble sizes over a range of state-space models. The number of

particles used was successively N = [20,40,60,100,200,400,600]. For the hybrid filters,

the parameter θ has influences on their filtering performance. In this experiment, the

value of θ was taken from a vector [0.001,0.002,0.004,0.006,0.008, 0.01, 0.02, 0.04, 0.06,

0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 0.992, 0.994, 0.996,

0.998, 0.999], and we selected the best performing θ and its corresponding results as the

final results. The coordinates in the vector range from 0.001 to 0.999. In the scales near 0

and near 1, a smaller sampling interval is chosen. The reason behind this is that for some

of the state-space models, the performance of the hybrid filters is more sensitive to the

change of θ within those two scales. The minimum θ in the vector can ensure the effective

numbers are less than 1, and the maximum larger than N −1, which can ensure the

best parameter values are in the tested range. Alternatively, we can use a root-finding

method to search the best performing hybrid filters and their corresponding values of

θ [31]. The root-mean-square error (RMSE) was used to analyse the performance of each

filter. For the UNGM and Lorenz-63, estimations on all variables were used to calculate

RMSE values. For the Henon map model, following [31], the variable x1(1) and x1(2)

were analysed separately whilst the location estimation precision was considered for

the target tracking model. In addition, the average continuous ranked probability score

(CRPS) is also computed. Different from RMSE, it quantifies the spread of the ensemble.

Lower CRPS indicates that the ensemble concentrates around the true values, and is

more precise for state estimation.

3.2.3.1 Evaluating PSMF vs. Traditional Filters

RMSE comparisons between the PSMF and the traditional filters are plotted in Fig-

ure 3.1. When compared to the PF for a small number of particles (N < 100), the proposed

approach provides improved results in all cases. For large ensemble sizes, although PSMF

still yields better tracking performance under higher dimensional models, similar esti-

mations are obtained under the one-dimension model. These comparisons indicate that

different from the classic PF, the proposed hybrid filter can effectively alleviate particle

degeneracy due to employing the parameter θ. Note however that in one-dimensional

cases, because of the narrow sampling space, for medium and large numbers of particles,

the classic PF does not suffer from particle degeneracy seriously, and PSMF does not
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Figure 3.1: The comparison of the proposed PSMF to the traditional filters under different
particle numbers. The horizontal axis represents the number of particles, and the vertical
axis represents the log(RMSE).

make a significant difference in these cases.

For small N, the PSMF has similar results with the EnKF/ESRF, whereas when

increasing the number of particles, the PSMF starts to show a considerable gain for

models. This shows that with few number of samples, the PSMF utilises a larger θ value

to maintain the effective number of particles, so that ϱ tends to be smaller leading to

the PSMF performing closely to the SMF. By contrast, with large N, the PSMF adopts a

smaller θ, and ϱ increases. Then, the PF part occupies a larger assimilation proportion,

and more nonlinear information can be extracted. On the other hand, due to their limited

flexibility, the EnKF/ESRF does not yield better results with an increased number of

particles.

Specifically speaking for the linear and nonlinear versions of the proposed approach,

for small N, the PSMF-L yields better performance compared to the PSMF-NL. In

most cases, with an increase in the number of particles, the advantages of the PSMF-L
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Figure 3.2: The comparison of the proposed PSMF to the traditional filters under the
different number of particles. The horizontal axis represents the number of particles,
and the vertical axis represents the log(CRPS).

gradually reduce. The reasons behind this are related to the quality of transport maps.

From [87], we can recall that a linear map has a more robust performance with small N
but can have limited flexibility. By contrast, a nonlinear map holds higher non-linearity

but might yield unacceptable variances without a sufficient number of particles. As a

result, for small N, nonlinear maps cause a large variance, and the PSMF-NL performs

worse than its linear counterpart, the PSMF-L. For large N, the variance produced by the

nonlinear maps can be suppressed and the difference between PSMF-L and PSMF-NL

becomes smaller.

The results above do not imply that the PSMF-L can always achieve better results

than PSMF-NL. From the results under the variable x1(2) of the Henon map, PSMF-NL

provides better results. As mentioned before, compared with the nonlinear maps, linear

maps have very limited flexibility, which causes poor estimation results. In some cases,

a large θ is needed to maintain the effective number of particles, and then the value
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of ϱ decreases. Consequently, the SMF occupies a larger assimilation part and needs

to perform more complex transportations. If the bias caused by the linear transport

approximation is larger than that of nonlinear-map variance, the PSMF-NL can perform

better than the PSMF-L.

To complete this section, CRPS comparisons between the PSMF and the traditional

filters are also plotted in Figure 3.2 and they follow the same characteristics similar to the

RMSE results in Figure 3.1. This suggests that our new hybrid filter shows advantages

over the traditional filters in both mean estimations and ensemble concentration.

Figure 3.3: The comparison of the PSMF to the other hybrid filters under the different
number of particles. The horizontal axis represents the number of particles, and the
vertical axis represents log(RMSE).

3.2.3.2 PSMF vs. Hybrid Filters

RMSE comparisons between the PSMF and other hybrid filters are plotted in Figure 3.3.

When compared to the SIR-ESRF, the proposed PSMF performs worse when the

particle number is small. In most cases, for an increasing number of particles, the
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Figure 3.4: The comparison of the proposed PSMF to the traditional filters under the
different number of particles. The horizontal axis represents the number of particles,
and the vertical axis represents log(CRPS).

proposed PSMF’s performance achieved is closer to or better than that of SIR-ESRF.

The difference between the performance of the SIR-ESRF and that of PSMF is pri-

marily due to their distinct strategies for alleviating particle degeneracy. In the PSMF,

systematic resampling with a smoothing step is adopted. By contrast, SIR-ESRF re-

lies on the mean-preserving random orthogonal transformation which resamples the

ensemble during the ESRF assimilation stage. This resampling technique performs

well under medium-level nonlinear models. However, since it is based on the Gaussian

approximation, when the posterior distribution gets further from Gaussian, more errors

will be introduced. In all the experiments, for small N, the bias caused by the systematic

resampling and transport map variances is larger than that of the Gaussian approxima-

tion in SIR-ESRF, which thus determines the proposed PSMF to achieve closer or worse

results. However, for medium and large N, the bias from the systematic resampling and

transport map variance is less significant. As a result, it becomes smaller than the error
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from the resampling in the SIR-ESRF.

For small N, the PSMF and GMM-EnKF achieve considerably lower performance

compared to the SIR-ESRF. However, the GMM-EnKF achieves worse results than

the proposed PSMF for a medium number of particles. When increasing the number

of particles, its performance gradually approaches that of PSMF, although under the

nonlinear non-Gaussian target tracking model, for N = 600, the PSMF still offers obvious

advantages. These results are caused by the structure of the GMM-EnKF. Different

from the other hybrid filters, the GMM-EnKF implements the EnKF assimilation first,

which is based on the Gaussian assumption for the prior distributions. In all the state-

space models in this chapter, all the measurement models are linear and Gaussian,

which means that the posterior has a closer form to a Gaussian than the prior. Thus,

implementing ensemble-based filters first introduces more errors. For small N, the EnKF

update occupies a large part to keep the ESS. As a result, the Gaussian approximation

introduces more errors. For large N, the GMM-EnKF just needs a small θ value to

ensure the ESS is large enough. Consequently, a smaller ϱ will be selected and the GMM

occupies a large proportion. Hence, more nonlinear transform information between the

prior and posterior can be obtained. However, the 4-dimensional target tracking model

has a larger sampling space and needs more effective particles. So, even for N = 600, the

EnKF occupies a larger assimilation proportion than the other cases. As a result, the

GMM-EnKF is significantly outperformed by the proposed PSMF.

As in the previous section, we also provide comparisons between the PSMF and the

other hybrid filters in terms of CRPS and these are plotted in Figure 3.4. The results are

consistent with the RMSE results in Figure 3.3. This means that the differences among

the hybrid filters in the mean estimation can be extended to the ensemble concentration.

Finally, for further objective evaluation, numerical results obtained for both RMSE

and CRPS are also shown in Table 3.1 and Table 3.2, respectively. Due to the limited

space, a sparse selection of ensemble sizes, [20,60,200,600], is provided. Results indicate

that in most cases, hybrid filters work better than traditional filters. Also, SIR-ESRF

tends to perform better than the others with few particles, while PSMF obtains robust

performance with large ensemble sizes.

3.2.4 The effect of θ on filter performance

In the second set of experiments, we investigated the influence of θ on the hybrid filters.

We used the same values of θ as in subsection 3.2.3, i.e. between 0.001 and 0.999. The

numbers of particles used were 20, 200, and 600.
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R N F1 F2 F3 F4 F5 F6 F7 F8 F9

M1

20 2.375 1.81 1.681 1.733 1.876 1.576 1.647 1.651 1.778
60 1.536 1.598 1.641 1.59 1.529 1.398 1.422 1.424 1.403

200 1.351 1.572 1.628 1.574 1.366 1.338 1.346 1.341 1.338
600 1.335 1.562 1.624 1.564 1.346 1.331 1.334 1.333 1.332

M2

20 1.821 1.446 1.331 1.38 2.008 1.227 1.323 1.239 1.662
60 1.103 1.14 1.127 1.135 1.239 0.888 0.991 0.901 0.956

200 0.915 1.057 1.055 1.063 1.094 0.852 0.89 0.86 0.887
600 0.891 1.043 1.038 1.042 1.121 0.85 0.862 0.851 0.879

M3

20 0.155 0.128 0.119 0.129 0.25 0.102 0.114 0.103 0.155
60 0.097 0.113 0.112 0.113 0.132 0.086 0.091 0.085 0.086

200 0.08 0.108 0.109 0.11 0.11 0.079 0.079 0.078 0.076
600 0.077 0.108 0.108 0.108 0.108 0.076 0.076 0.076 0.074

M4

20 20.361 3.323 4.451 3.667 NaN 2.681 2.977 3.361 9.33
60 20.229 2.815 4.214 2.872 3.198 2.228 2.46 2.35 2.346

200 17.282 2.506 4.383 2.673 2.11 1.782 1.997 1.639 1.66
600 13.533 2.511 3.671 2.477 1.88 1.348 1.409 1.33 1.33

M5

20 996.963 7.788 6.745 8.551 59.663 8.549 8.136 9.214 912.3
60 690.83 4.856 4.413 4.979 7.857 5.14 4.853 4.723 6.756

200 458.637 4.207 4.127 4.196 3.821 4.519 4.024 3.652 3.719
600 262.829 4.116 4.096 4.122 3.655 4.153 3.726 3.445 3.465

Table 3.1: RMSE results of the filters under different models. R and N represent RMSE
and the ensemble size, respectively. M1:M5 represent UNGM, Henon-u, Henon-v, Lorenz-
63, and Target tracking, respectively. F1:F9 represent PF, EnKF, ESRF, SMF-L, SMF-NL,
SIR-ESRF, GMM-EnKF, PSMF-L, PSMF-NL. The first and second minimal RMSEs
under different particle numbers and models are highlighted in red and blue bold fonts,
respectively.

In Figure 3.5, the influence of parameter θ is evaluated, for an ensemble size of N = 20.

It can be observed that, in general, the best results are achieved by the SIR-ESRF. As

was mentioned in the previous sections, the reason behind this is that the resampling

technique of the SIR-ESRF, i.e. the mean-preserving random orthogonal transformation,

has a more robust performance for small N. In addition, the large variance of nonlinear

maps for a small number of particles makes the proposed nonlinear approach inefficient

in this case.

The PSMF-L and GMM-EnKF achieve inconsistent results and lower performance

than the SIR-ESRF in most cases. This is due to the known drawbacks of these two

filters: when using few particles, the systematic resampling technique in PSMF-L is not

as robust as that in SIR-ESRF. By contrast, the GMM-EnKF runs by first performing
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C N F1 F2 F3 F4 F5 F6 F7 F8 F9

M1

20 1.031 0.913 0.892 0.898 0.908 0.82 0.843 0.826 0.855
60 0.767 0.837 0.876 0.834 0.774 0.734 0.747 0.745 0.739

200 0.714 0.823 0.87 0.822 0.727 0.713 0.716 0.714 0.713
600 0.709 0.816 0.868 0.816 0.716 0.707 0.708 0.708 0.708

M2

20 1.427 0.878 0.847 0.847 1.129 0.736 0.812 0.743 1.002
60 0.743 0.669 0.708 0.663 0.717 0.505 0.594 0.513 0.554

200 0.544 0.609 0.66 0.61 0.629 0.481 0.516 0.486 0.503
600 0.509 0.597 0.647 0.596 0.647 0.479 0.491 0.478 0.496

M3

20 0.118 0.075 0.07 0.076 0.136 0.059 0.066 0.06 0.087
60 0.065 0.065 0.065 0.066 0.076 0.049 0.054 0.048 0.048

200 0.046 0.062 0.062 0.063 0.063 0.045 0.045 0.045 0.042
600 0.043 0.062 0.062 0.061 0.061 0.042 0.042 0.042 0.041

M4

20 9.28 0.954 1.235 0.987 NaN 0.781 0.871 0.939 2.102
60 9.355 0.82 1.198 0.834 0.794 0.603 0.688 0.644 0.654

200 6.99 0.766 1.242 0.787 0.582 0.442 0.484 0.423 0.447
600 4.466 0.762 1.116 0.757 0.542 0.37 0.36 0.357 0.358

M5

20 378.726 2.738 2.474 2.773 14.909 2.83 2.73 3.043 338.948
60 224.118 1.844 1.871 1.857 2.429 1.895 1.843 1.8 2.315

200 97.731 1.673 1.808 1.668 1.518 1.686 1.564 1.438 1.472
600 36.274 1.64 1.799 1.643 1.449 1.589 1.459 1.362 1.374

Table 3.2: CRPS results of the filters under different models. C and N represent CRPS
and the ensemble size, respectively. M1:M5 represent UNGM, Henon-u, Henon-v, Lorenz-
63, and Target tracking, respectively. F1:F9 represent PF, EnKF, ESRF, SMF-L, SMF-NL,
SIR-ESRF, GMM-EnKF, PSMF-L, PSMF-NL. The first and second minimal RMSEs
under different particle numbers and models are highlighted in red and blue bold fonts,
respectively.

the EnKF component, which leads to large errors.

In Figure 3.6, the influence of the parameter θ is evaluated for N = 200. It can be

seen that for the first 3 models, for the same reason as above, the GMM-EnKF yields

the worst results. It is clear that the proposed PSMF-NL achieves the best performance

for large θ values (close to 1). The improved results benefit from the larger flexibility

of the nonlinear maps and reduced map variances in the case of a medium number of

particles. However, when θ is small, the advantage of PSMF-NL is not obvious anymore,

the reason being that in such case, the values of ϱ tend to be large, and the SMF part

occupies a small proportion of the assimilation process. Consequently, there is no need

for a flexible nonlinear map to complete the assimilation. Also, we should notice that the

performance of the PSMF-NL is just slightly worse than that of PSMF-L in this case. The
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Figure 3.5: The comparison among hybrid filters with different values of parameter θ
under different models. The ensemble size N is set to 20. Horizontal axis represents the
value of θ, and vertical axis represents the estimation log(RMSE).

small effective number of particles caused by small θ do not cause large nonlinear map

variances. Because of our smoothing strategy, the diversity of particles can be ensured

and the variance can be suppressed.

For the first 3 models, the PSMF-L and SIR-ESRF achieve comparable results with

lower performance compared to the proposed PSMF-NL. The disadvantages of the SIR-

ESRF stem from the Gaussian assumption of the resampling techniques, whilst the

disadvantages of the PSMF-L are due to the lower flexibility of linear maps.

For the last model (4D tracking), the results are slightly different. First, the SIR-ESRF

performs relatively worse than the proposed PSMF-L since the posterior distributions

under this model are far from the standard Gaussian assumption. Second, when θ is

close to 1, the advantage of the proposed PSMF-NL can still be seen. Nevertheless, on

a large scale, the PSMF-NL performs worse than its linear counterpart. This is due to

the increased variance of the nonlinear map in this case. According to the structure of
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Figure 3.6: The comparison among hybrid filters with different values of parameter θ
under different models. The ensemble size N is set to 200. Horizontal axis represents
the value of θ, and vertical axis represents the estimation log(RMSE).

the triangular maps, it is known that the number of map parameters increases with

the dimension of models. As a result, a medium number of particles cannot effectively

suppress the variance of nonlinear maps that causes PSMF-NL to perform worse than

the linear PSMF-L.

Finally, in Figure 3.7, the influence of parameter θ is evaluated, for N = 600. The

results are similar to those obtained for N = 200, with some slight differences. It can be

seen that For large N, the proposed PSMF-NL benefits more from the increase in the

number of particles. For a larger scale of values of θ, it outperforms the others for the

first three models. Even under the 4D target tracking model, the variance of nonlinear

maps can be suppressed more efficiently, and its performance becomes closer to that of

the PSMF-L.

We can also notice that under the target tracking model, when 0.2 < θ < 0.8, the

location estimation log(RMSE) of the proposed PSMF varies very little. We attribute
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Figure 3.7: The comparison among hybrid filters with different values of parameter θ
under different models. The ensemble size N is set to 600. Horizontal axis represents
the value of θ, and vertical axis represents the estimation log(RMSE).

this to the fact that the transformation between a prior distribution and corresponding

posterior distribution is not particularly complex under this model. When θ changes

between 0.2 and 0.8, the assimilation proportion of PF changes as well. However, the

SMF can always complete the remaining assimilation update and the final estimation

results remain stable. When θ is very close to 1, transport maps cannot extract all the

remaining nonlinear information and the performance is reduced. By contrast, when θ is

very close to zero, the PSMF becomes closer to the classical PF and hence suffers from

particle degeneracy.

3.2.5 The effect of the smoothing step on filter performance

In this section, the influence of the smoothing step on the filtering performance of

PSMFs is investigated. The parameter set is the same as in the first experiment, and

the experiment results are shown in Figure 3.8. Under most models, the smoothing step
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does not influence the filtering performance. However, under Lorenz-63, with a large

number of particles, PSMF performs better than PSMF-nsm. The reason is that with

large ensemble sizes, the optimal value of θ is relatively small under Lorenz-63 as shown

in Figure 3.7. Thus, ESS is small, which causes large map variances. A smoothing step

can increase the diversity of samples, and then the map variance is decreased. Hence, in

this case, PSMF works better than PSMF-nsm.

Figure 3.8: The comparison of the proposed PSMFs between with and without the
smoothing step under the different number of particles. PSMF-nsm-L and PSMF-nsm-
NL represent linear and nonlinear PSMFs without the smoothing step, respectively.
The horizontal axis represents the number of particles, and the vertical axis represents
log(RMSE).

3.2.6 Computational Complexity Analysis

For an exhaustive evaluation of our proposed PSMF method, the filter efficiency with

the change of particle numbers is also evaluated. To this end, we fix the parameter θ

to 0.5, and employ ensemble sizes of [100,200,400,600,1000]. Small particle numbers
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are not considered because some filters diverge with few samples and then the precise

computational cannot be obtained. The rest of the parameters are the same as in the

first set of experiments presented above. The computational time is shown in Figure 3.9.

Compared with traditional methods, PSMF is less efficient than PF, EnKF and

ESRF. However, the comparison between PSMF and SMF does not lead to consistent

conclusions, being dependent on the state-space models investigated. Specifically, under

the one-dimensional UNGM model, the PF part of PSMF can keep the ESS high, and

the SMF part is omitted in many iterations. Consequently, PSMF is more efficient than

SMF. By contrast, under higher-dimensional models, the SMF part of PSMF can be

omitted in fewer iterations. Thus, the inclusion of both PF and SMF steps in PSMF slows

the filtering process.

Also, GMM-EnKF is more time-consuming than PSMF for all the models. This is due

to its ESS calculation for searching ϱ. Specifically, because GMM-EnKF implements

EnKF first, the whole hybrid filter should be implemented to calculate ESS. However, for

PSMF, only the PF part is implemented to obtain ESS, as the SMF step does not change

ESS. Therefore, GMM-EnKF spends more time on the search of ϱ by the root-finding

method.

Finally, PSMF has a similar computational load to SIR-ESRF when the ensemble

size is small. However, the computational time of SIR-ESRF increases faster than PSMF

along the x-axis and becomes larger than that of PSMF when particle numbers are large.

This is caused by the mean-preserving random orthogonal transformation in SIR-ESRF,

which has nonlinear computational complexity with respect to the particle number as

explained in [31]. By contrast, PSMF has linear computational complexity.

3.3 Conclusion

In this chapter, we proposed a novel hybrid filtering approach, the PSMF, which enhances

the standard particle filter by using ideas from stochastic map filters. To break the

particle degeneracy issue, which is peculiar to PF, systematic resampling followed by

a smoothing step was adopted. To analyse the impact of the nonlinearity of transport

maps, we presented PSMF-L and PSMF-NL by adopting linear and nonlinear transport

maps, respectively.

Two sets of experiments involving four widely employed state-space models were

implemented to validate the proposed hybrid filters. In the first experimental setup, we

investigated the performance of the PSMF with optimal parameters of θ for different

61



CHAPTER 3. A HYBRID PARTICLE-STOCHASTIC MAP FILTER

Figure 3.9: The comparison of the proposed PSMF to the other filters under the different
number of particles. The horizontal axis represents the number of particles, and the
vertical axis represents log(time).

ensemble sizes. Experiment results showed that for medium and large numbers of

particles the linear version of the proposed hybrid filter, PSMF-L, yields better results

than the benchmark approaches. Nevertheless, in some cases, the error inherently

introduced by the nonlinear map variance was smaller than that due to the linear

approximation of the linear map. Consequently, the nonlinear hybrid filter provided

better results than the PSMF-L. We should also note that, with a small number of

particles, the advantages that the PSMF offers were not obvious when compared to the

other filters, since the PSMF suffers errors caused by the systematic resampling and

transport map variance.

For the second series of simulations, the relationship between the performance of the

PSMF and the parameter θ was investigated. It was demonstrated that in most cases the
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PSMF-NL is more tolerant to changes of the parameter θ for medium and large numbers

of particles. This owes to the higher flexibility of nonlinear maps. In addition, for small

numbers of particles, due to the large nonlinear map variance, the PSMF-NL achieves

lower performance with respect to benchmark approaches.

In this work, the PSMF is only tested under low-dimensional model. In contrast,

our future work will consider extending the proposed approaches to higher-dimensional

problems. Moreover, we will also investigate the deterministic transport map filter

(DMF) [87] within the context of the proposed hybrid filters.
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4
ROBUST KALMAN FILTERS BASED ON THE

SUB-GAUSSIAN α-STABLE DISTRIBUTION

A lthough showing robust filtering performance under various nonlinear non-

Gaussian models in Chapter 3, the proposed PSMF is computationally expensive

due to its reliance on numerous samples. In contrast, this chapter focuses on

a new efficient RKF framework under the linear system with heavy-tailed noise. As

explained in the chapter 1, due to the requirements for the density, only several heavy-

tailed distributions were applied to the RKF framework, and employing more heavy-

tailed PDFs to improve the RKFs remains significant. In this chapter, a new robust

Kalman filter based on the SGαS distribution [70, 84] is proposed. Also, for the RKF

based on the slash distribution (RKF-SL) [41], we present a novel MMSE estimate of

the scale function. The rest of the chapter is organised as follows: We begin with the

details of the α-stable distribution and its sub-Gaussian case. Also, Section 4.2 provides

the formulation of the proposed RKF-SGαS, and the improved RKF based on the slash

distribution (RKF-SL) is explained in Section 4.3. Further, the proposed framework is

tested in target tracking scenarios in Section 4.4, whilst Section 4.5 concludes this work

with a summary.

65



CHAPTER 4. ROBUST KALMAN FILTERS BASED ON THE SUB-GAUSSIAN
α-STABLE DISTRIBUTION

4.1 α-stable Distributions and the Sub-Gaussian Case

In this section, we first introduce the α-stable family of distributions whereby its sub-

Gaussian subclass, the SGαS distribution, is also illustrated. Furthermore, the tail

behaviour of this subclass is analysed.

In probability theory, the α-stable distribution is a family of probability distributions,

which is generally used to model heavy-tailed behaviour and has been employed in

various filtering tasks [27, 71, 90]. Particularly, a univariate stable random variable can

be defined based on the following stability property [55]:

Definition 4.1. A random variable x, has an α-stable distribution if for any positive

numbers A and B, there is a positive number C and a real number D such that

Ax1 +Bx2
d= Cx+D

where x1 and x2 are independent copies of x and d= represents equality in distribution.

Also, a stable random variable can be defined based on the generalized Central Limit

Theorem (GCLT) [55]:

Definition 4.2. A random variable x has a stable distribution if it has a domain of

attraction, i.e., if there is a sequence of i.i.d. random variables y1, y2, . . . and sequence of

positive numbers (dn′)(n′∈N) and real numbers (Dn′)(n′∈N), such that
y1 + y2 +·· ·+ yn′

dn′
+Dn′

d→ x,

where d→ represents convergence in distribution. The next definition represents a

stable variable in terms of its characteristic function [84].

Definition 4.3. A random variable is stable if its characteristic function can be written

as

E(exp(iθx))=
exp

(−γα|θ|α [
1−iβ

(
tanπα

2

)
(signθ)

]+ iδθ
)
,α ̸= 1

exp
(−γ|θ|[1+iβ 2

π (signθ) ln|θ|]+ iδθ
)

,α= 1

where the stability parameter α ∈ (0,2], skewness parameter β ∈ [−1,1], scale parameter

γ ∈ (0,∞) and location parameter δ ∈R.

Furthermore, the multivariate α-stable distribution extends the concept of the uni-

variate stable distribution to high-dimensional cases. Thus, stable random vectors also

exhibit the stability property and allow for the GCLT. To define stable random vector, we

can simply extend Definitions 4.1 and 4.2, i.e.,
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Definition 4.4. A random vector x ∈Rd is subject to a multivariate stable distribution if

and only if there exists a unique finite measure Γ on the unit sphere S d, the so-called

spectral measure, and a unique vector δ ∈Rd such that:

1. If α ̸= 1,

E
(
exp(iΘ̃Tx)

)
= exp{−

∫
S d

|Θ̃Ts|α
(
1− i sign(Θ̃Ts)tan

πα

2

)
Γ(ds)+ iΘ̃T

δ}

2. If α= 1,

E
(
exp(iΘ̃Tx)

)
= exp{−

∫
S d

|Θ̃Ts|
(
1+ i

2
π

sign(Θ̃Ts)ln|Θ̃Ts|
)
Γ(ds)+ iΘ̃T

δ}

However, we cannot directly apply the multivariate stable distribution to RKF frame-

works due to the challenge of estimating the spectral measure of its characteristic

function [55]. Instead, we focus on a more suitable subclass of the multivariate stable

distribution, known as the SGαS distribution. It has a simpler spectral measure, and its

characteristic function can be expressed as [91]

E
[
exp(iΘ̃Tx)

]
= exp

[
iΘ̃T

µ−
(
Θ̃

T
ΣΘ̃

)α
2
]

.

As previously noted, the SGαS distribution is also a special case of the Gaussian scale

mixture (GSM) distribution which can be written as

(4.1) p(x)=
∫ +∞

0
N (x;µ+ yβ,Σ/κ(y))π(y)d y,

where µ is the mean vector and β is the skewness vector. Also, Σ is the scale matrix, y> 0

is the mixing parameter, and κ(y) and π(y) are the scale function and mixing density,

respectively. For the SGαS distribution [55], β= 0, κ(y)= 1/y and π(y) can be represented

as a totally skewed univariate stable distribution, i.e.,

(4.2) p(x)=
∫ +∞

0
N (x;µ, yΣ)S(y;α/2,1,cos(πα/2)2/α,0)d y.

Table 4.1 details the parameters of SGαS along with several GSM distributions investi-

gated in this work, where v refers to the dof parameter. Also, a parameter description

of the mixing densities is provided in Table 4.2. For simplicity, we only consider the

zero-mean symmetric heavy-tailed noise as in previous works [4, 104] where the mean

and skewness vectors are zero for both the SGαS and the GSM distributions.

Subsequent to the succinct introduction of the SGαS distribution, we explain its tails

behaviour, which is determined by its mixing density. Figure 4.1-(a,b) shows for α= 2, the
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Table 4.1: Exemplary GSM distributions and their parameters

GSM dis-
tribution

Scale
function

Mixing density Constraints

SGαS κ(y)= y−1 π(y)= S(y;α/2,1,cos(πα/2)2/α,0) y> 0,0<α≤ 2
Student’s t κ(y)= y π(y)=G(y; v

2 , v
2 ) y> 0,v > 0

Slash κ(y)= y π(y)=Be(y; v
2 ,1) 0< y< 1,v > 0

Variance
Gamma

κ(y)= y π(y)= IG(y; v
2 , v

2 ) y> 0,v > 0

Table 4.2: Parameter description of the mixing densities

Mixing
desity

Definitions

S(.;α,β,γ,δ) Univariate stable distribution PDF with the shape parameter α,
the skewness parameter β, the scale parameter γ and the location
parameter δ.

G(.;a,b) Gamma PDF with the shape parameter a and rate parameter b.
Be(.;a,b) Beta PDF with the shape parameter a and scale parameter b.
IG(.;a,b) Inverse-Gamma PDF with the shape parameter a and b.

SGαS distribution follows the Gaussian distribution and its corresponding mixing density

is a Dirac delta distribution at 1. Also, for α< 2, the SGαS distribution becomes more

heavy-tailed and the mixing density is a totally skewed heavy-tailed stable distribution.

Besides, smaller α values result in heavier tails as in Figure 4.1-(c,d). Besides, the tail

behavior of the stable distribution with α< 2 is characterized by a power-law decay rate

c|x|−1−α, where c is a constant factor, and hence its variances diverge [12]. By comparison,

the Gaussian distribution with exponential decay rate cexp(−0.5x2) features light tails

and finite variances [12]. While the heavy-tailed student’s t distribution exhibits a power-

law slowly decaying behaviour, its lack of the stability property hinders the theoretical

justification for its practical applicability [43].

4.2 RKF-SGαS

Based on the stable distribution explained in the last section, many time-series inference

tasks have been explored. For example, based on expectation–maximization (EM) and

Markov chain Monte Carlo (MCMC) methods, Bayesian inference methods for random

processes with stable noise are presented in [29]. Also, [30] discusses filtering tasks

under time-varying autoregressive (TVAR) signal models with α-stable noise, and the
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Figure 4.1: Mixing density and tail behaviour analysis. (a) and (b) plot the PDFs of
the SGαS distribution and its mixing density, respectively. Also, the corresponding tail
behaviour is shown in (c) and (d).

Rao–Blackwellized particle filter is employed. However, these time-series inference meth-

ods rely on computationally expensive sampling methods, such as the IS technique. This

section proposes a more efficient robust Kalman filter based on the SGαS distribution.

Section 4.2.1 introduces the proposed framework, and Section 4.2.2 details the four

MMSE estimators used to estimate the scale function. Moreover, Section 4.2.3 describes

the convergence test strategy employed for the RKF-SGαS.

4.2.1 Proposed Robust Kalman Filtering Framework

A linear state-space model is introduced in Section 1.3. Assume the zero-mean signal

and measurement noises are subject to Gaussian and SGαS distributions, respectively.
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Then, both are modelled as

p(wk−1)=N (0,Qk−1)(4.3)

p(vk)=
∫ +∞

0
N (vk;0,λkRk)S(λk)dλk(4.4)

where Qk−1 is the covariance matrix of the state noise at time k−1 whilst Rk and λk

refer to the scale matrix and mixing parameter of the measurement noise at time k,

respectively. Also, the mixing density S(λk;α/2,1,cos(πα/2)2/α,0) is simplified as S(λk).

Hence, the forecast PDF p(xk|z1:k−1) and likelihood PDF p(zk|xk) can be expressed as

p(xk|z1:k−1)=N (xk;Fkx̂k−1|k−1,Pk|k−1)(4.5)

p(zk|xk)=
∫ +∞

0
N (zk;Hkxk,λkRk)S(λk)dλk(4.6)

where x̂k−1|k−1 is the posterior mean vector at time k−1 and

(4.7) Pk|k−1 =FkPk−1|k−1FT
k +Qk−1

denotes the error covariance matrix at time k−1. According to (4.6), p(zk|xk) follows a

hierarchical Gaussian form of

(4.8) p(zk|xk,λk,Rk)=N (zk;Hkxk,λkRk)

where λk ∼ S(λk). Assume the true value of Rk is unknown, and we model its uncertainty

using the inverse-Wishart (IW) distribution, i.e. p(Rk)= IW(Rk;uk,Uk), where uk and Uk

are the dof parameter and scale matrix, respectively. According to equations (4.3)-(4.8),

the joint posterior distribution p(Θ̃|z1:k) can be expressed as

p(Θ̃|z1:k)∝ p(zk|Θ̃)p(Θ̃|z1:k−1)p(z1:k−1)

=N (zk;Hkxk,λkRk)

×N (xk;Fkx̂k−1|k−1,Pk|k−1)×S(λk)

× IW(Rk;uk,Uk)× p(z1:k−1)

(4.9)

where Θ̃k = {xk,λk,Rk}. As there is no analytic expression for p(Θ̃k|z1:k), the VB ap-

proach [95] based on the EM algorithm is employed to approximate the posterior density

from

(4.10) p(Θ̃k|z1:k)≈ q(xk)q(λk)q(Rk).

Then, the density q(·) can be calculated by

(4.11) log q(φ)=E
Θ̃

(−φ)
k

[
log p(Θ̃k,z1:k)

]+ cφ
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where φ⊂ Θ̃k, φ∪ Θ̃(−φ)
k = Θ̃k and cφ is a constant number related to φ.

Next, the fixed-point iteration is employed to solve equation (4.11). At the t+1-th

iteration, q(t+1)(φ) is approximated by employing q(t)(φ) to calculate the expectation

in (4.11). Proposition 4.1-4.3 present the updated formulation, but their proofs are not

provided in this work as similar proofs have been made in previous work [41, 104, 108].

Proposition 4.1 ([104] Proposition 2). Let φ= xk, then q(t)(xk) can be updated as the
Gaussian distribution, i.e.,

q(t+1)(xk)=N
(
xk; x̂(t+1)

k|k ,P(t+1)
k|k

)
,

where

x̂k|k−1 =Fkx̂k−1|k−1

K(t+1)
k =Pk|k−1HT

k

(
HkPT

k|k−1HT
k + R̃(t)

k

)−1

x̂(t+1)
k|k = x̂k|k−1 +K(t+1)

k

(
zk −Hkx̂k|k−1

)
P(t+1)

k|k =
(
In −K(t+1)

k Hk

)
Pk|k−1.

(4.12)

where R̃(t)
k is the modified measurement noise covariance matrix and can be written as

(4.13) R̃(t)
k =

[
E(t) (R−1

k

)]−1

E(t) (κ(λk))
=

[
E(t) (R−1

k

)]−1

E(t)
(
λ−1

k

) .

Proposition 4.2 ([104] Proposition 4). Let φ=λk, logq(t+1)(λk) can be expressed as,

(4.14) logq(t+1)(λk)=−η
2
λ−1

k − m
2

logλk + logS(λk)+C′,

where C′ is a constant number and

η= tr
{
B(t+1)

k E(t) (R−1
k

)}
B(t+1)

k =
(
zk −Hkx̂(t+1)

k|k
)(

zk −Hkx̂(t+1)
k|k

)T +HkP(t+1)
k|k HT

k

(4.15)

where tr() denotes trace operation.

Proposition 4.3 ([108] Proposition 4). Let φ=Rk, q(t+1)(Rk) is written as the IW distri-
bution, i.e.,

q(t+1)(Rk)= IW
(
Rk;u(t+1)

k ,U(t+1)
k

)
,
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where

u(t+1)
k = uk +1,U(t+1)

k =Uk +D(t+1)
k

D(t+1)
k =E(t+1) (λ−1

k
)×[

b(t+1)
k

(
b(t+1)

k

)T +HkP̂(t+1)
k|k HT

k

]
b(t+1)

k = zk −Hkx̂(t+1)
k|k

(4.16)

Thence, we have

(4.17) E(t+1) (R−1
k

)= (
u(t+1)

k −m−1
)(

U(t+1)
k

)−1

Remark 1. In equations (4.13) and (4.16), the expectation of the scale function E(κ(λk))=
E

(
λ−1

k

)
is required. While Proposition 4.2 provides the PDF of λk, the calculation of the

expectation is not straightforward due to the lack of a closed-form expression of S(λk) in
equation (4.14).

4.2.2 MMSE Estimators of the Scale Function

To estimate the expectation of the scale function, this section introduces four estimators

of E(t+1) (λ−1
k

)
, including IS and GLQ-based estimators, along with their corresponding

hybrid estimators with the incorporation of the GS based estimator. For simplicity, we

replace λk with y and omit the iteration number t+1 in (4.14), and then we have

E(t+1) (λ−1
k

)=E
(
y−1)(4.18)

logq(y)=−η
2

y−1 − m
2

logy+ logS(y)+C′(4.19)

q(y)∝ q′(y)= y−
m
2 exp

(
− η

2y

)
S(y),(4.20)

where q′(y) is a function proportional to the density q(y). Then,

(4.21) E
(
y−1)= ∫ +∞

0 y−1q′(y)d y∫ +∞
0 q′(y)d y

.

4.2.2.1 Importance Sampling Based Estimator

Here we introduce the estimation method of E
(
y−1) based on the IS technique. The

IS-based estimator is elaborated in Theorem 4.1.

Theorem 4.1. Let yi (i = 1, . . . , N) be samples from the target distribution S(y). Then
E

(
y−1) can be estimated by

(4.22) E
(
y−1)= N∑

i=1
wi y−1

i
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where

(4.23) wi =
y
−m

2
i exp

(
− η

2yi

)
∑N

i′=1 y
−m

2
i′ exp

(
− η

2yi′

) .

Proof 1. According to (4.21), to calculate E
(
y−1), two integrals,

∫ +∞
0 y−1q′(y)d y and∫ +∞

0 q′(y)d y, need to be approximated.

Based on the IS method and (4.20), these two integrals can be approximated based on
the samples yi from S(y). We rewrite

∫ +∞

0
y−1q′(y)d y≈ 1

N

N∑
i=1

y
−m

2 −1
i exp

(
− η

2yi

)
∫ +∞

0
q′(y)d y≈ 1

N

N∑
i=1

y
−m

2
i exp

(
− η

2yi

)
.

Then E
(
y−1) in (4.21) can be obtained by using the expressions above and Theorem 4.1

holds .

Remark 2. Although the approximation of the S(y) value in (4.20) is computationally
expensive [68], it can be efficiently sampled [102]. Hence, based on the IS algorithm,
we first obtain the samples of S(y), and then the numerator and denominator integrals
in (4.21) can be approximated.

4.2.2.2 Gauss–Laguerre Quadrature Based Estimator

An alternative estimator of E
(
y−1), this time based on the GLQ, is discussed in this

section. The details of this estimator are provided in Theorem 4.2.

Theorem 4.2. Based on the GLQ method, E
(
y−1) can be approximated by

(4.24) E
(
y−1)= ∑L

l=1 wl xl f (xl)
η

2
∑L

l=1 wl f (xl)
.

where xl , l = 1, . . . ,L, is the l-th root of Laguerre polynomial LL(x) and f (xl)= x
m
2 −2
l S( η

2xl
).

Also, the weight wl can be written as

(4.25) wl =
xl

(L+1)2 [LL+1(xl)]2 .
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Proof 2. In order to approximate the integrals in (4.21), first let y= η

2x , then∫ +∞

0
q′(y)d y=

(η
2

)−m
2 +1 ×

∫ +∞

0
exp(−x)x

m
2 −2S

( η
2x

)
dx∫ +∞

0
y−1q′(y)d y=

(η
2

)−m
2 ×

∫ +∞

0
exp(−x)x

m
2 −1S

( η
2x

)
dx

Recalling (4.21) and replacing the expressions above in (4.21), we get

E
(
y−1)= ∫ +∞

0 xexp(−x) f (x)dx
η

2
∫ +∞

0 exp(−x) f (x)dx

where f (x)= x
m
2 −2S( η2x ). Then the GLQ method in Theorem 4.2 holds .

Remark 3. The GLQ-based estimator in Theorem 4.2 requires calculating f (xl) in which
the approximation of S( η

2xl
) cannot be avoided. However, compared to the IS method,

the GLQ requires fewer samples [54]. Thus, despite the large computational load of
approximating S(y) values [68], the GLQ is still applicable to the estimation of E

(
y−1).

4.2.2.3 Gamma Series Based Estimator

Both the IS and GLQ-based estimators suffer from low efficiency due to their require-

ments of numerous particles and the approximation of S(y), respectively. In contrast, a

more efficient estimator based on the GS is explained in detail in this section. We first

show how the density q′(y) can be represented by a series based on the inverse Gamma

density (cf. Lemma 4.1). Subsequently, a corresponding estimator of E
(
y−1) is introduced

as a result of Theorem 4.3.

Lemma 4.1. For the SGαS distribution with shape parameter α, let α1 = α
2 , then q′(y)

can be represented as an Inverse-Gamma-PDF-based series, i.e.,

(4.26) q′(y)=
+∞∑
ξ=1

cξ
Γ(aξ)
baξ

IG(y;aξ,b)

where Γ(·) is gamma function and

aξ = ξα1 + m
2

, b = η

2
(4.27)

cξ = (−1)ξ+1Γ(ξα1 +1)
πξ!

sin(ξα1π).(4.28)

Proof 3. For the SGαS with shape parameter α, let α1 = α
2 , then S(y) can be represented

as a series [10]

S(y)=− 1
πy

+∞∑
ξ=1

Γ(ξα1 +1)
ξ!

(−y−α1
)ξ sin(ξα1π)
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Then, replacing S(y) with the expression above in (4.20),

(4.29) q′(y)=
+∞∑
ξ=1

cξy−aξ−1exp
(
−b

y

)

where aξ, b and cξ are defined in (4.27) and (4.28). As y−aξ−1exp
(
− b

y

)
is proportional to

an IG distribution, equation (4.29) can be reformulated as in (4.26) which finalises the
proof of Lemma 4.1 .

Theorem 4.3. For the SGαS distribution with shape parameter α, E
(
y−1) can be repre-

sented as the ratio of two Gamma function-based series sums as

(4.30) E
(
y−1)= ∑+∞

ξ=1 cξ
Γ(aξ+1)

b(aξ+1)∑+∞
ξ=1 cξ

Γ(aξ)
baξ

iff both the series sums are convergent.

Proof 4. Based on equation (4.26), we can represent the two integrals in (4.21) with two
series respectively as

(4.31)
∫ +∞

0
q′(y)d y=

+∞∑
ξ=1

cξ
Γ(aξ)
baξ

∫ +∞

0
IG(y;aξ,b)d y

(4.32)
∫ +∞

0
y−1q′(y)d y=

+∞∑
ξ=1

cξ
Γ(aξ)
baξ

∫ +∞

0

IG(y;aξ,b)
y

d y

assuming the above series are convergent. As
∫ +∞

0 IG(y;aξ,b)d y= 1, from (4.31), we have

(4.33)
∫ +∞

0
q′(y)d y=

+∞∑
ξ=1

cξ
Γ(aξ)
baξ

.

Following this, since y∼ IG(y;aξ,b), y−1 ∼G(y;aξ,b), then

(4.34)
∫ +∞

0

IG(y;aξ,b)
y

d y=
∫ +∞

0
yG(y;aξ,b)d y= aξ

b
.

According to (4.32) and (4.34), we write

(4.35)
∫ +∞

0
y−1q′(y)d y=

+∞∑
ξ=1

cξ
Γ(aξ+1)

baξ+1

Using the expressions in (4.33) and (4.35), we obtain the equation (4.30) .
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Convergence analysis: According to the ratio test of an infinite series [88], the absolute

convergence conditions of the numerator and denominator in (4.30) can be written as

(4.36) lim
ξ→∞

∣∣∣∣∣∣
cξ+1

Γ(aξ+1+1)

b(aξ+1+1)

cξ
Γ(aξ+1)

b(aξ+1)

∣∣∣∣∣∣< 1 and lim
ξ→∞

∣∣∣∣∣∣ cξ+1
Γ(aξ+1)
baξ+1

cξ
Γ(aξ)
baξ

∣∣∣∣∣∣< 1,

respectively. Then the absolute convergence condition can be simplified as

(4.37) lim
ξ→∞

2
∣∣∣∣ Γ(1−ξα1)Γ(aξ+α1 +1)
ξΓ(1−ξα1 −α1)Γ(aξ+1)

∣∣∣∣ 1
α1 < η.

While a closed-form expression for the limit in (4.37) remains elusive, the behaviour of

the series in (4.30) becomes apparent, indicating divergence as η approaches zero.

Remark 4. The numerator and denominator series in equation (4.30) may not always
converge. Hence, the estimator cannot be directly applied to the RKF-SGαS, as it fails in
cases when the estimator diverges.

4.2.2.4 Hybrid Estimators

Owing to the divergence of the GS-based estimator, two hybrid estimators, GSIS and

SGαS, are further developed. When either/both the numerator or/and denominator series

in (4.30) diverges, the GS estimator is replaced with the IS or GLQ-based methods.

Considering the convergence ranges of the above-mentioned series are not available,

convergence analysis requires testing. For this purpose, let

(4.38) r(1)
ξ

= cξ
Γ(aξ+1)
b(aξ+1) , r(2)

ξ
= cξ

Γ(aξ)
baξ

where r(1)
ξ

and r(2)
ξ

are the ξ-th elements of the numerator and denominator series,

respectively. Then, the convergence conditions of these two series can be written as [86]

(4.39)
ξ∑

ξ=ξ−τ1

∣∣∣∣∣∣
r( j)
ξ∑ξ

ξ′=1 r( j)
ξ′

∣∣∣∣∣∣< ε1, j = 1,2

where the threshold ε1 is a small positive number. τ1 ≥ 1 is a small positive integer used

to ensure the series sums are stable when ξ−τ1 ≤ ξ≤ ξ. Also, we set the largest value

of ξ as Ξ. Following this, we can judge the convergence with the increase of ξ. If ξ<Ξ
and the condition in (4.39) are satisfied, the estimation results are reliable. By contrast,

we consider the estimator to diverge when ξ=Ξ and the convergence inequalities are

violated. Then, either the IS or GLQ estimator is employed instead. The whole estimation

method is shown in Algorithm 11.
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Algorithm 11: GSIS and GSGL estimation
Input: η,m,α
b ← η

2 ;
for ξ← 1 to Ξ do

Calculate a
ξ

by (4.27);
Calculate c

ξ
by (4.28);

Calculate r(1)
ξ

, r(2)
ξ

by (4.38);

if ξ<Ξ and inequalities in (4.39) are satisfied then
Estimate E(y−1) by (4.30); Break;

if ξ=Ξ then
Estimate E(y−1) by (4.22) or (4.24);

return E(y−1)

4.2.3 Convergence Test for Fixed-point Iteration Method

Under the RKF-SGαS framework, the convergence of the fixed-point iteration to solve

equation (4.11) needs to be investigated. In previous work [42], x(t)
k|k was solely tested.

However, in this chapter, we extend this approach by additionally detecting the conver-

gence of the posterior covariance matrix P(t)
k|k and the expectation of the scale function

E(t) (κ(λk)) to improve the detection reliability. Furthermore, we test the convergence of

the latest τ2 > 1 items, as opposed to only the t-th item tested in [42]. The convergence

conditions are expressed as

(4.40)
t∑

t=t−τ2

sum
(
abs

(
Φ(t) −Φ(t−1)))

sum
(
abs

(
Φ(t))) < ε2

where abs(X) is element-wise absolute value operation and sum(X) denotes summation

for all the elements. Also, Φ ∈ {xk|k,Pk|k,E(κ(λk))} and ε2 is a small positive number. In

addition, the fixed-point iteration has a maximum number of iterations, denoted by M,

after which the algorithm will terminate and output the current estimation results. The

implementation pseudo-code for the proposed RKF-SGαS is given in Algorithm 12.

4.3 Improved RKF-SL

In this section, we give the MMSE estimator of the scale function under the RKF-SL

framework. As a special case of the GSM distribution, it has been applied to the RKF

in the previous work [7, 41], whilst only the MAP estimate of the scale function was
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Algorithm 12: One Time Step of the Proposed RKF-SGαS
Input: zk, x̂k−1|k−1, Pk−1|k−1, Fk, Hk, Qk, uk, Uk, α, m, Ξ, ε1, ε2, τ1, τ2, M, N, L
Calculate Pk|k−1 using (4.7);
Initialisation: E(0) (R−1

k

)= (uk −m−1)(Uk)−1, E(0) (λ−1
k

)= 1;
for t ← 0 to M−1 do

Calculate R̃(t)
k using (4.13);

Calculate x̂(t+1)
k|k and P(t+1)

k|k using (4.12);

Calculate B(t+1)
k and η using (4.15);

Calculate E(t+1) (λ−1
k

)
using one of the scale function estimators in

Section 4.2.2;
Calculate b(t+1)

k , D(t+1)
k , u(t+1)

k and U(t+1)
k using (4.16);

Calculate E(t+1) (R−1
k

)
using (4.17);

if The convergence condition in (4.40) is satisfied then
Terminate the iteration;

return x̂k|k = x̂(M)
k|k , Pk|k =P(M)

k|k

employed. To enhance the precision, we derived the MMSE estimate and Proposition 4.4

is presented with details.

Proposition 4.4. For a slash distribution with dof parameter v, E(κ(y)) can be estimated
by,

(4.41) E(κ(y))=E(y)= γ̃(a+1,b)
bγ̃(a,b)

,

where γ̃() represents lower incomplete gamma function and

(4.42) a = m+v
2

and b = η

2
.

Proof 5. For a slash distribution, the mixing density follows Be(y; v
2 ,1) and 0< y< 1,v > 0.

Then according to (4.19), we have

q′(y)∝ y
m+v−2

2 exp
(
−η

2
y
)
.

Thus q′(y) is proportional to a Gamma PDF when 0< y< 1. As κ(y)= y, we have

(4.43) E(κ(y))=E(y)=
∫ 1

0 yq′(y)d y∫ 1
0 q′(y)d y

Calculate a and b according to (4.42), then∫ 1

0
yq′(y)d y= γ̃(a+1,b)

ba+1∫ 1

0
q′(y)d y= γ̃(a,b)

ba .
(4.44)
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The expressions in (4.43) and (4.44), give the expression in (4.41) which finalises the proof
.

4.4 Numerical simulations

4.4.1 Target Tracking Models and Noises

In this section, we introduce the target tracking model used in the experimental analysis.

The target moves uniformly in a straight line, and the state-space model is given by (1.3)

Fk =
[

I2 △tI2

0 I2

]
, Hk =

[
I2 0

]
(4.45)

with the observation interval of △t = 1. Furthermore, the process noise wk follows the

Gaussian distribution, of which the covariance matrix is given by

(4.46) Qk = 0.1∗Q, Q=
[△t3

3 I2
△t2

2 I2
△t2

2 I2 △tI2

]
.

Then, three kinds of heavy-tailed measurement noises are selected—the GM, ST and

SGαS noises. Among them, the GM noise has been employed to test the filtering perfor-

mance of RKFs in many references [4, 41, 72]. In contrast, we also consider the ST and

SGαS noises thanks to their capability to fit the practical noises. The GM noise [41, 104]

is written as

(4.47) GM =
N (0,R) with probability 0.9

N (0,ρR) with probability 0.1,

where R= 10I2 is the nominal covariance matrix. Also, ρ is the augment factor which is

taken from a vector [5, 10, 102, 103, 104, 105, 106, 107, 108]. Contrarily, the SGαS and ST

noises have the same scale matrix R, and their shape parameters, α and v, take values

from [0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.85] and [0.3, 0.5, 0.7, 0.9, 1.2, 1.7, 2.5, 3.5, 6],

respectively. The whole tracking process lasts for 100 seconds, and 100 Monte Carlo runs

are simulated.

4.4.2 Benchmark Filters

The RKF-SGαS is compared with 3 kinds of heavy-tailed-distribution-based RKFs in the

following simulations. The first two filters are the RKF based on the variance Gamma
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distribution (RKF-VG) [41] and the RSTKF [39]. Lastly, our improved version of RKF-SL

is also used as a comparison method. Besides, the standard KF with true noise covariance

matrices (KFTNCM) [104] is employed for reference.

For the RKF-SGαS, the performance of the four variants is evaluated, including

RKF-SGαS-IS, RKF-SGαS-GLQ, RKF-SGαS-GSIS, RKF-SGαS-GSGL. Then, for the GS

estimator, Ξ= 30, ε1 = 10−2 and τ1 = 4. Moreover, we set M = 50, ε2 = 10−2 and τ2 = 4 for

all the RKF-based filters.

4.4.3 Estimation of RKF Parameters

In this section, we employ the EM or maximum likelihood estimation (MLE) method to

initialise the shape parameters of the heavy-tailed distributions, uk and Uk. Compared

with manually setting these RKF parameters as in the previous work [41], this can

alleviate the influence of the model errors and provide a fairer comparison among these

RKFs. For the stable distribution, different parameter estimation methods have been

presented, such as MLE [69], the moment-based method [3], Bayesian Monte Carlo

inference [58]. In this simulation, the EM algorithm in [91] is employed. Specifically, the

EM iteration number is 200, and the estimates of the last 15 iterations are averaged for

the final estimate. Besides, to sample the posterior distribution of the Weibull random

variable under this EM parameter estimation framework, a rejection sampling method

is used and the sample number is 2000.

In contrast to the case of SGαS mentioned above, the MLE algorithm is utilised

for the parameter estimation of the variance Gamma (VG), slash and ST distributions.

As we only consider the zero-mean symmetric noise, the values of both the mean and

skewness vectors for all the distributions are assumed to be known. The measurement

noise sample size is 1000, and 1000 Monte Carlo runs are taken. The shape parameter

(α or v) is estimated by averaging the results. Lastly, 1000 scale matrix estimation

results are modelled by the IW distribution, and the MLE method is used to estimate its

parameters uk and Uk.

4.4.4 Performance Evaluation of RKF-SGαS Variants

Based on the parameter estimation results, the properties of our proposed RKF-SGαS

variants are investigated in this section. The particle number N and the root number L
are taken from the vectors [100, 400, 1000, 4000, 10000, 40000, 100000] and [1, 2, 6, 10,
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Figure 4.2: The target tracking results of the RKF-SGαS-IS under different particle
numbers N. For (a), the x-axis is the particle number index and the y-axis represents
the shape parameter value. In comparison, for (b)-(e), the x-axis is the shape parameter
value, and the y-axis represents the estimation RMSE, iteration number and log(time),
respectively. (a) depicts the shape parameter ranges, where the filter can track the
target steadily. By contrast, (b) and (c) show the position and velocity estimation RMSEs,
respectively. Also, (d) describes the average fixed-point iteration numbers. Besides, the
implementation time is shown in (e).

30, 50, 100], respectively. Also, the measurement noises come from SGαS distributions,

and the parameter selection is explained in Section 4.4.1.

Figure 4.2 shows the experimental results of RKF-SGαS-IS. (1) From Figure 4.2-(a),

larger particle numbers allow for the broader effective ranges of α. The heavier-tailed

distributions contain larger probability spaces, and then more samples are needed for

the IS approximation. (2) The position and velocity estimation RMSEs in Figure 4.2-(b,c)

are not influenced by N within the effective ranges of α. This suggests that the larger

estimation errors of E(κ(λk)) caused by small N have little impact on the estimation of
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Figure 4.3: The target tracking results of the RKF-SGαS-GLQ under different root
numbers L. For (a), the x-axis is the root number index and the y-axis represents the
shape parameter value. In comparison, for (b)-(e), the x-axis is the shape parameter
value, and the y-axis represents the estimation RMSE, iteration number and log(time),
respectively. (a) depicts the shape parameter ranges, where the filter can track the
target steadily. By contrast, (b) and (c) show the position and velocity estimation RMSEs,
respectively. Also, (d) describes the average fixed-point iteration numbers. Besides, the
implementation time is shown in (e).

the position and velocity marginal distributions. (3) From Figure 4.2-(d), the average

iteration number is inversely proportional to N, as the imprecise estimate of E(κ(λk))
causes the EM estimator to fluctuate around the local optimum and cannot satisfy the

convergence inequalities in (4.40). Thus, the convergence process is delayed. (4) From

Figure 4.2-(e), the execution time is proportional to the sample size. Although large N
can reduce the iteration number, the filter with small N is still more efficient because of

the shorter implementation time on the IS.

The tracking performance of RKF-SGαS-GLQ is plotted in Figure 4.3. (1) The effective
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Figure 4.4: The target tracking results of the RKF-SGαS-GSGL under different root
numbers L. For (a), the x-axis is the root number index and the y-axis represents the
shape parameter value. In comparison, for (b)-(f), the x-axis is the shape parameter value,
and the y-axis represents the estimation RMSE, iteration number, log(time) and ratio
value, respectively. (a) depicts the shape parameter ranges, where the filter can track
the target. By contrast, (b) and (c) shows the position and velocity estimation RMSEs,
respectively. Also, (d) describes the average fixed-point iteration numbers. Then, the
implementation time is shown in (e). Besides, (f) paints the ratio of the iterations where
the GS method is replaced with the GLQ estimator.

α range shown in Figure 4.3-(a) is related to the root number. For L = 1, the filter fails

on the whole α range, because the GLQ cannot estimate the integral. By contrast, for

L = 2, the effective range is large. However, when α is large, the target is lost. For the

light-tailed case, the probability space of S(y) concentrates on a small range, and then

the GLQ produces rough estimates. In comparison, the filter is stable on the whole tested

ranges when L ≥ 3. (2) The position and velocity estimation (Figure 4.3-(b,c)) precision
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Figure 4.5: The target tracking results of the RKF-SGαS-GSIS under different particle
numbers N. For (a), the x-axis is the root number index and the y-axis represents the
shape parameter value. In comparison, for (b)-(f), the x-axis is the shape parameter value,
and the y-axis represents the estimation RMSE, iteration number, log(time) and ratio
value, respectively. (a) depicts the shape parameter ranges, where the filter can track
the target. By contrast, (b) and (c) shows the position and velocity estimation RMSEs,
respectively. Also, (d) describes the average fixed-point iteration numbers. Then, the
implementation time is shown in (e). Besides, (f) depicts the ratio of the iterations where
the GS method is replaced with the IS estimator.

cannot be improved by larger L although the GLQ can produce more precise estimates of

E(κ(λk)). (3) From Figure 4.3-(d), the convergence of the fixed-point iteration method is

influenced by both α and L. When α is large, smaller L requires more iterations due to

the fluctuation around the local optimum. By contrast, when α< 1.3, different values of

L need similar iteration numbers since the GLQ estimation with small L is still precise

in the heavy-tailed cases. (4) From Figure 4.3-(e), the relation between the execution
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time and L is complicated. When α is small, the filter with small L is more efficient.

Nevertheless, for large α, its efficiency degrades caused by the increased number of

iterations.

The simulation results of the RKF-SGαS-GSGL are plotted in Figure 4.4. (1) For

this hybrid-estimator-based filter, the ratio of the second method, GLQ, is added to

Figure 4.4-(f). For small α, the ratio is 0. However, with the increase of α, the ratio of the

GLQ gradually rises towards 1. This suggests that the GS estimator is more stable when

the noise is heavy-tailed. (2) The effective range is related to L. For L = 1, although the

RKF-SGαS-GLQ always fails in Figure 4.3-(a), the effective range of this hybrid filter is

α≤ 0.7, where the GS estimator always converges. By contrast, for L > 1, the effective

range is the same as that of the RKF-SGαS-GLQ. (3) The position and velocity estimation

results are always precise within the effective ranges. (4) The iteration number and the

execution-time lines overlap for small α, where the hybrid filter mainly relies on the

GS estimator. However, from Figure 4.3-(e) and 4.4-(e), the RKF-SGαS-GSGL is more

efficient than the RKF-SGαS-GLQ in heavy-tailed cases, which is caused by the smaller

computation loads of the GS estimator. By contrast, with the increase of α, their results

gradually become similar due to the rising ratio of the GLQ estimator.

The performance of RKF-SGαS-GSIS is evaluated in Figure 4.5. (1) The ratio of the

second method, the IS method, is similar to that of the RKF-SGαS-GSGL in Figure 4.4-

(f). (2) The hybrid filter is stable on the whole α range, even when N is small. The GS

estimator is unstable for large α, whilst the IS method with few particles can produce

precise results in this case (cf. Figure 4.2). So, the complementary advantages of the

GS and IS strategies extend the effective range of the filter. (3) The hybrid filter can

work in the α ranges where both the IS and GS-based filters fail. For example, from

Figures 4.2-(a) and 4.4-(a), the IS estimator with N = 100 and GS estimator are effective

when α= 1.85 and α≤ 0.7, respectively. However, Figure 4.5-(a) shows the hybrid filter

with N = 100 can also work when 0.7 < α < 1.85. This suggests that although the GS

estimator cannot converge at every iteration in this middle range, the IS method is

effective when the GS diverges. (4) All the position and velocity estimation RMSEs are

close. (5) Based on Figures 4.2-(d-e) and 4.5-(d-e), the hybrid filter is more efficient than

the RKF-SGαS-IS when α is small because of the high ratio of the GS estimator as

shown in Figure 4.5-(f). By contrast, their performances are similar when α is large.

In summary, for the effective range, the performance of RKF-SGαS-IS is worse than

the other filters, and numerous particles are needed for small α. Conversely, the position

and velocity estimation results of all four proposed strategies are similar in the effective
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α ranges. However, benefiting from the complementary advantages of the GS and IS

estimators, the RKF-SGαS-GSIS with few particles performs steadily and then becomes

the most efficient.

4.4.5 RKF-SGαS vs. Benchmark Filters

Figure 4.6: The effective shape parameter ranges of different filters under the three
kinds of measurement noises. The titles of the subplots are the noise distributions. Also,
for simplicity, the parameter ρ of GM distribution is defined as the shape parameter.

Following the thorough analysis of the RKF-SGαS in the previous sections, its com-

parison with the benchmark filters, listed in Section 4.4.2, is presented in this section.

For efficiency, we set L = 2 and N = 100. Also, three kinds of measurement noises are

employed, and their parameter selection is made as explained in Section 4.4.1.

In Figure 4.6, the effective range results are shown. The RKF-VG fails when the shape

value is small under the ST and SGαS noises. On the contrary, all other benchmark

filters behave stably over the whole tested range. However, the effective ranges of

the RKF-SGαS variants are different. Particularly, RKF-SGαS-GSIS presents steady

performance over the whole interval. Nevertheless, RKF-SGαS-IS fails when the tails

of the noises are heavy. Conversely, in the light-tailed noise scenarios, RKF-SGαS-GLQ

and RKF-SGαS-GSGL fail.

The position and velocity estimation results are depicted in Figure 4.7. Under light-

tailed noise, all the filters produce similar results. However, under the heavy-tailed

noises, their performances vary. Compared to RKF-VG, the RKF-SGαS always performs

better under different measurement noises. Also, the RKF-SL obtains a more precise
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Figure 4.7: The position and velocity estimation RMSEs of different filters under
the three kinds of measurement noises. The titles of the subplots follow the format:
position/velocity-noise distributions. Also, for simplicity, the ρ of GM distribution is
defined as the shape parameter.

estimation than RKF-SGαS under the GM noise, but worse results under ST and SGαS

noises. Further, the RSTKF and RKF-SGαS achieve comparable estimates under GM

and ST noises. Nonetheless, the RKF-SGαS becomes superior under the heavy-tailed

SGαS noise. In addition, for different RKF-SGαS variants, the position and velocity

estimation RMSEs are close in the effective ranges.

Figure 4.8 plots the execution time of different filters. Compared to RKF-SGαS-IS

and RKF-SGαS-GLQ, the benchmark filters are more efficient. However, the comparison

between the hybrid filters and benchmark filters is more complicated. Specifically, under

the light-tailed noises, the computational loads of the hybrid filters are higher. Neverthe-

less, their results become close in the heavy-tailed cases because the high ratio of the GS

estimator increases the filtering efficiency.
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Figure 4.8: The execution time of different filters under the three kinds of measurement
noises. The titles of the subplots are the noise distributions. Also, for simplicity, the ρ of
GM distribution is defined as the shape parameter.

4.5 Conclusion

In this chapter, a new robust Kalman filter framework based on the SGαS distribution

is proposed. First, we present four RKF-SGαS variants based on the different MMSE

estimators of the scale function. Then their properties are investigated. The experimental

results indicate that the RKF-SGαS-GSIS obtains the most efficient performance thanks

to the complementary advantages of the GS and IS estimators. Second, the RKF-SGαS

is compared with the state-of-art RKFs. From the simulations, the RKF-SGαS produces

similar estimates under the GM and ST noises but obtains the best performance under

the heavy-tailed SGαS noise. Considering the importance of the α-stable noise, this

superiority over benchmark filters is significant. Besides, although our RKF-SGαS has

higher computational complexity than the benchmark filters, their execution times

become closer in particularly heavy-tailed cases.

In the future, we will consider applying the proposed framework to the state-space

models with both heavy-tailed signal and measurement noises. In this work, only the

measurement noise is considered heavy-tailed since the parameter estimation of the

one-step prediction noise is more difficult compared to that of the measurement noise.

However, it is straightforward to apply the RKF-SGαS to dynamic models with heavy-

tailed state noise.
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5
RKFNET: A NOVEL DATA-DRIVEN ROBUST KALMAN

FILTER

The proposed RKF-SGαS in the last chapter presents an efficient filtering frame-

work for linear models with heavy-tailed noise, and its robustness is proved

by various systems in Section 4.4. However, its performance relies on accurate

model parameters, and large model errors can degrade its performance. By contrast, in

this chapter, we introduce an innovative RKF method, which combines the heavy-tailed-

distribution-based RKF framework with the deep-learning technique and eliminates the

need for precise parameters of heavy-tailed distributions in traditional RKFs.

The rest of this chapter is organised as follows: We begin with the details of the

proposed hierarchical Gaussian state-space model. Then, Section 5.2 provides the ar-

chitecture of the proposed RKFnet and the USS technique is explained in Section 5.3.

Furthermore, the proposed framework is tested in target tracking scenarios in Section 5.4,

whilst Section 5.5 concludes this work with a summary.

5.1 New hierarchical Gaussian state-space model
based on an unknown heavy-tailed distribution

In this section, we explain our proposed state-space model, which is based on a linear

model with Gaussian signal noise and unknown heavy-tailed measurement noise. We

assume the symmetric heavy-tailed distribution of the measurement noise can be written
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in a hierarchical Gaussian form, i.e.

p(vk;R)=
∫ +∞

0
N (vk;0,λkR)π(λk)dλk,

where R is the unknown scale matrix and π(λk) is the unknow mixing density. Then the

likelihood PDF can be expressed as

(5.1) p(zk|xk;R)=
∫ +∞

0
N (zk;Hkxk,λkR)π(λk)dλk.

Besides, as we only consider the Gaussian state noise, the forecast PDF is the same as in

equation (4.5).

Remark 5. There is a radical difference between our proposed state-space model and
the ones in the previous work. In the traditional RKF frameworks, various heavy-tailed
distributions have been utilised to fit the measurement noise, and the corresponding
likelihood PDFs can be seen as an approximation of equation (5.1). Specifically, π(λk)

is approximated by a fully skewed mixing density, and the uncertainty about the scale
matrix R is represented as an IW distribution [41]. Although showing robustness and
efficiency in many scenarios, the RKFs may fail when the model error is large. By contrast,
an unknown heavy-tailed noise distribution is employed in our new state-space model,
and then the approximation error is eliminated.

5.2 Proposed RKFnet architecture

Based on the forecast and likelihood PDFs in (5.1), the joint posterior distribution can be

expressed as

p(Θ̃|z1:k;R)∝ p(zk|Θ̃;R)p(Θ̃|z1:k−1)p(z1:k−1)

=N (zk;Hkxk,λkR)N (xk;Fkx̂k−1|k−1,Pk|k−1)π(λk)p(z1:k−1).
(5.2)

where Θ̃k = {xk,λk}, and then a new RKF framework can be derived as explained in

Theorem 5.1.

Theorem 5.1. (A similar proof can be seen in [41] Theorem 1) Given the marginal
posterior distribution of λk,

(5.3) p(λk|z1:k;R)=
∫

p(Θ̃|z1:k;R)dxk,

the marginal posterior distribution of xk can be approximated as a Gaussian distribution,
i.e.,

p(xk|z1:k;R)≈N
(
xk; x̂k|k,Pk|k

)
,
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where

x̂k|k−1 =Fkx̂k−1|k−1

Kk =Pk|k−1HT
k

(
HkPT

k|k−1HT
k + R̃k

)−1

x̂k|k = x̂k|k−1 +Kk
(
zk −Hkx̂k|k−1

)
Pk|k = (In −KkHk)Pk|k−1.

(5.4)

while R̃k is the modified measurement noise covariance matrix and can be written as

(5.5) R̃k =
1

E
(
λ−1

k

)R,

where

E
(
λ−1

k
)= ∫ +∞

0
λ−1

k p(λk|z1:k;R)dλk.

Remark 6. Theorem 5.1 provides an efficient RKF framework for the estimation of xk.
However, in equation (5.5), the calculation of R̃k requires the unknown R and 1

E
(
λ−1

k

) .

To estimate 1
E

(
λ−1

k

) and Rk, and produce the posterior state estimation, we present

a new neural network architecture, the RKFnet, combining the RKF framework in

Theorem 5.1 with a deep learning technique. As shown in Figure 5.1, the RKFnet

consists of three blocks, where Block I produces the posterior state estimation based on

the KF framework in equation (5.4). Also, 1
E

(
λ−1

k

) and R are estimated by Block II and

Block III, respectively. The details of the RKFnet are explained below:

1) At any time k, Block I receives the new observation zk and the estimated R̃k, and

then x̂k|k and Pk|k are estimated by (5.4).

2) To estimate 1
E

(
λ−1

k

) , Block II employs an FCN, and the input features are selected

as ∆zk|k−1 = zk −Hxk|k−1 and HPk|k−1HT according to Proposition 5.1. As R and π(λk)

are fixed, they are not incorporated as input features.

Proposition 5.1. At any time k, given the new observation zk, the stochastic properties
of p(λk|z1:k;R) and 1

E
(
λ−1

k

) are determined by ∆zk|k−1, HPk|k−1HT , R and π(λk).

Proof 6. According to equations (5.2) and (5.3), the marginal posterior distribution of λk

can be expressed as

p(λk|z1:k;R)∝
∫

N (zk;Hkxk,λkR)N (xk;Fkx̂k−1|k−1,Pk|k−1)π(λk)p(z1:k−1)dxk.
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By integrating xk, then

p(λk|z1:k;R)∝N (∆zk|k−1;0,HPk|k−1HT +λkR)π(λk).

Hence we have Proposition 5.1.

Considering the outliers of the input features, sign(·)log(1+| · |) is employed to shrink

the values. Also, as HPk|k−1HT ∈Rm×m is a symmetric matrix and ∆zk|k−1 ∈Rm×1, the

number of inputs is 1
2 m2+ 3

2 m. Besides, to ensure a positive estimate of 1
E

(
λ−1

k

) and reduce

the range of FCN output values, exp(·) is connected to the FCN output layer.

3) In Block III, we introduce a neural network parameter Rs ∈ Rn×n, and the scale

covariance matrix R can be estimated by

(5.6) R̂= (ς1Rs)(ς1Rs)T ,

where ς1 > 1 is used to increase the gradient of the loss function to Rs. This allows for

efficient updates of Rs, particularly when the learning rate is small. Also, equation (5.6)

guarantees the symmetry and positive semi-definiteness of R̂.

5.3 Unsupervised training algorithm

Following the introduction of the RKFnet, an unsupervised training method is proposed

in this section, which can benefit various practical applications in scenarios where

the ground-truth data is difficult to obtain. In [78], the unsupervised loss function is

||∆zk+1|k||2. Although achieving satisfactory performance in Gaussian noise scenarios, the

employed L2 norm is sensitive to the outliers of the observation prediction error ∆zk+1|k.

Instead, we adopt the function −log(st(.;v,σ)), where st(.;v,σ) is a one-dimensional ST

PDF with the dof value v and scale parameter σ. Given Ntra j sequences with length T,

the loss function can be written as

L
(⌣
Θ

)
= 1

Ntra j ×T ×m

Ntra j∑
j=1

T∑
k=1

m∑
i=1

st
(
∆zi, j

k+1|k
(⌢
Θ

)
;v,σ

)
+γ1

∥∥∣∣R̂∣∣−1
∥∥2 +γ2

∥∥∥⌣Θ∥∥∥2
,

where ∆zi, j
k+1|k is the i-th element of the observation prediction error at time k in the j-th

trajectory, and
⌢
Θ represents the parameters of the fully connected neural network in

Block II. Also, due to the difficulty of manually giving the parameters of the ST PDF,

we set v = exp(ς2v′) and σ= exp(ς3σ
′), where v′ and σ′ are specified as neural network

parameters, and ς2 > 0, ς3 > 0 are employed to increase the loss gradient related to v′
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Figure 5.1: Structure of the RKFnet

and σ′. Besides, if R̂ is a solution, its scaled matrix ψR̂, where ψ> 0, is also a solution,

implying an infinite set of solutions. To keep the consistency of the training results,∥∥∣∣R̂∣∣−1
∥∥2 with parameter γ1 limits the value of

∣∣R̂∣∣ close to 1. Furthermore,
∥∥∥⌣Θ∥∥∥2

is a

penalty term with parameter γ2, and
⌣
Θ= {

⌢
Θ,v′,σ′,Rs} .

The proposed RKFnet can be seen as a special RNN structure, where the temporally

dependent information is delivered through Block I. Due to error accumulation, the train-

ing process of the RKFnet is not stable especially when the noise is highly heavy-tailed.

Although the scheduled sampling technique [8] can improve the convergence stability

of the sequence-to-sequence models, it cannot be directly employed in our framework

due to its requirement for ground-truth data. Instead, we propose a USS method, of

which the structure is shown in Figure 5.2. At any time k, the input of the RKFnet is

chosen from either
[
x̂k−1|k−1,Pk−1|k−1

]
or the filtering result of a selected traditional

RKF,
[
x̂∗

k−1|k−1,P∗
k−1|k−1

]
based on a coin toss. Also, to reduce the exposure bias caused

by the differences between the training and inference processes, we employ the scheduled

sampling method [8] and the probability of the RKF estimates, pt, decreases linearly,
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i.e.,

pt = max(pmin, pmax −∆p∗ t)

where t is the training iteration number and ∆p represents the decreasing speed. Also,

pmax and pmin are the maximal and minimal probability values of pt, respectively.

Figure 5.2: The unsupervised scheduled sampling technique.

5.4 Simulation results

5.4.1 Target-tracking models and traditional RKFs

The target-tracking model in the following experiments follows the same set as in

Section 4.4, where a linear target-tracking model with various heavy-tailed noises is

considered. Also, all the employed traditional RKFs contain the same parameters as in

Section 4.4.5.

5.4.2 RKFnet parameters

In Block II, a 3-layer FCN is used in our tests, and the corresponding hidden-layer

sizes are 32, 64 and 32, respectively. Also, the LeakyReLU function, characterized by a

negative slope parameter of 0.1, is applied across all hidden layers. Furthermore, the

initial values of each element in Rs are drawn from a uniform distribution U[0, 1
ς1

], and

ς1 = 300. Besides, for the loss function, ς2 = ς3 = 300, γ1 = 0.1 and γ2 = 0.0001.
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5.4.3 Training dataset and optimiser

In every tracking scenario, the training, cross-validation, and testing sets consist of 3200,

200, and 200 trajectories with length T = 100, respectively. Also, there are 2000 iterations

in every training process, and we adopt the Adam optimiser, where the learning rate

starts from 0.0002 and is halved every 400 iterations. The training batch size is 200 and

for the USS, pmax = 1, ∆p = 1
600 .

5.4.4 Performance evaluation in relation to pmin of USS

Based on the target-tracking model, we evaluate the influence of pmin, which takes its

value from [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. Also, the target tracking

model with the SGαS measurement noise is considered, and the shape parameter is

selected from [0.3, 0.7, 1.1, 1.5, 1.85]. The filtering results of the RKF-SGαS-GSIS are

employed for the USS training method. To analyse the stability and consistency of the

training results, 5 Monte Carlo experiments are run. As shown in Figure 5.3, due to

the exposure bias, large pmin can cause worse filtering results, especially in the highly

heavy-tailed noise scenario (α= 0.3). By contrast, for small pmin, the estimation results

are more precise and stable.

5.4.5 Comparison between the employed ST loss, L1 and L2

To ascertain the selected ST-based loss function, this experiment compares it with the

classical L1 and L2 loss functions. The GM, ST and SGαS-based measurement noises

are selected, and their shape parameters are selected from the same vectors as in

Section 4.4.5. We set pmin = 0 and run 5 Monte Carlo experiments, where the optimal

results are selected as the final results. As depicted in Figure 5.4, in the light-tailed

noise scenarios, the filtering results based on the different loss functions are similar. In

comparison, when the noise contains heavy outliers, the ST-based loss function obtains

the best estimation due to its less sensitivity to the outliers.

5.4.6 RKFnet vs traditional RKFs

In this experiment, our proposed RKFnet is compared with three heavy-tailed-distribution-

based RKFs, RSTKF, RKF-SL and RKF-SGαS. Also, the target tracking models are

the same as in Section 4.4. Besides, to evaluate the influence of the filtering results

from different RKFs on the RKFnet performance, all these three traditional RKFs are
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Figure 5.3: The tracking results of the RKFnet under the RKF-SGαS measurement
noise. In every subplot, the title is the shape parameter α of the SGαS distribution, the
x-axis represents pmin, and the y-axis is the position estimation error. Also, the "MC"
represents the 5 independent Monte Carlo experiment results, and the corresponding
maximal and minimal errors are depicted by "Maximum" and "Minimum", respectively.
The filtering performance of the RKF-SGαS-GSIS is shown as a reference.

employed to produce the reference sequences. Besides, pmin = 0, and we run 5 Monte

Carlo experiments, where the optimal results are selected as the final results. From

Figure 5.5, when the noise distribution is light-tailed, the RKFnets achieves similar

results to the traditional RKFs. Nevertheless, the RKFnets perform better than the

other traditional filters under the heavy-tailed noise scenarios, where larger model

errors and the approximation of the VB method in the RKF frameworks degrade the

filtering accuracy. Moreover, we should notice that the RKFnets based on the different

traditional RKFs obtain similar estimation results. This suggests that the RKFnet has

no requirement for precise reference sequences, which is only employed to stabilise the

convergence in the early stage of the training process. When the pmin gradually reduces

towards zero, the RKFnet can converge to a satisfying position without the assistance of

the RKF estimates.
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Figure 5.4: The filtering results of the RKFnet with different loss functions. The titles
of the subplots are the distributions of the heavy-tailed measurement noise. The x-axis
is the shape parameter index, and the y-axis represents the position estimation error.
(a) plots the estimation errors under the GM noise, while the results under the ST and
SGαS noise are shown in (b) and (c), respectively.

5.5 Conclusion

In this chapter, we presented a DD-MB RKF framework, RKFnet, combining the tradi-

tional heavy-tailed-distribution-based RKFs and a deep-learning technique. Specifically,

the mixing-parameter-based function is estimated by an FCN, and the scale matrix can

be calculated based on an introduced neural network parameter. Also, the USS training

method is proposed to improve the stability of the training process. Besides, a compari-

son between the proposed RKFnet and three heavy-tailed-distribution-based filters was

conducted. The experimental results show that in the light-tailed scenarios, all the filters
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Figure 5.5: The filtering performance comparison between the RKFnet and traditional
RSTKF, RKF-slash and RKF-SGαS. The titles of the subplots are the distributions of
the heavy-tailed measurement noise. The x-axis is the shape parameter index, and the
y-axis represents the position estimation error. (a) plots the estimation errors under
the GM noise, while the results under the ST and SGαS noise are shown in (b) and (c),
respectively.

produce similar results. However, the RKFnet achieves the best performance under

various heavy-tailed noises. In particular, the performance of the RKFnet does not hinge

on accurate filtering results from the traditional filters. Although these outcomes are

employed in the early USS training stage, the RKFnet can be trained in a free-running

manner when pt is gradually reduced to zero.

In the future, we will consider applying the proposed framework to more complicated

scenarios. In this work, we focus on linear models with heavy-tailed symmetric mea-

surement noise. However, an extension to the linear models with skewed heavy-tailed
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signal and measurement noises can also be considered, which can benefit more practical

applications.

99





C
H

A
P

T
E

R

6
CONCLUSION

This thesis is dedicated to enhancing sequential Bayesian filters, offering advancements

applicable across a multitude of scenarios.

Considering particle degeneracy of the standard PF, Chapter 3 provides our proposed

novel hybrid filtering approach, the PSMF, using ideas from SMF. Also, two variants

of the PSMF, PSMF-L and PSMF-NL, are presented, adopting linear and nonlinear

transport maps, respectively. Besides, two sets of experiments involving four widely

employed state-space models were implemented to validate the proposed hybrid filters.

The first experimental setup shows that for medium and large numbers of particles, the

PSMF-L yields better results than the benchmark approaches. Nevertheless, in some

cases, the PSMF-NL can provide more accurate estimation than to the PSMF-L, where

the linear approximation of the linear map causes large errors. By contrast, the second

experiment demonstrates that the PSMF-NL is more tolerant to parameter changes

than the PSMF-L, benefiting from the flexibility of nonlinear maps.

Although the PSMF presents robust filtering performance, it suffers from expensive

computational costs due to its Monte Carlo sampling strategy. Instead, Chapter 4 focuses

on the RKF framework, providing efficient solution under linear models with heavy-

tailed noise. Specifically, we proposed a new robust Kalman filter framework based on

the SGαS distribution, RKF-SGαS, and then its four variants are presented based on the

four MMSE estimators of the scale function. Also, the comparison among these variants

is implemented in the first experiment, and the RKF-SGαS-GSIS obtains the most

efficient performance. In the second simulation, the RKF-SGαS is compared with the
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state-of-art RKFs, and its filtering advantage under the SGαS noise is shown. Besides,

although our RKF-SGαS is more computationally expensive than the benchmark filters,

their computational burdens become closer when the noise distribution is heavy-tailed.

To alleviate the reliance of the proposed RKF-SGαS on precise state-space models,

we present a new neural network architecture, combining the traditional RKF methods

with the deep learning technique and hence called RKFnet, which is based on the new

hierarchical Gaussian state-space model. Also, the USS training method is proposed

to improve the stability of the training process. To validate our proposed work, three

experiments are conducted. The first two experiments clarify the selections on the USS

parameters and the loss function. By contrast, the last experiment demonstrates that

the RKFnet can performance better than the traditional filters under the heavy-tailed

noise.

6.1 Discussion and Future Work

In this thesis, we have presented novel filtering approaches to address challenges in

target tracking scenarios. Our proposed filters have shown promising results and opened

up various avenues for future research and improvements. The following points outline

the potential directions for future work:

1. The PSMF extension to higher-Dimensional models: The PSMF has exhibited

impressive performance in low-dimensional models. To enhance its practicality,

further research can be directed toward higher-dimensional problems [75, 96].

Additionally, investigating the integration of the DMF [87] with our hybrid filters

presents an exciting avenue for exploration.

2. The applications of the RKF-SGαS and RKFnet to state-space models for com-

plex scenarios: The proposed RKF frameworks have primarily dealt with linear

models characterized by heavy-tailed symmetric measurement noise. To make our

framework even more versatile, future work will aim to extend the RKF filters to

linear/nonlinear models with skewed heavy-tailed signal and measurement noises.

This will enable our filters to cater to a broader range of practical applications.
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