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The hidden sensitivity of non-smooth dynamics

Salvador Catsis, Cameron L. Hall, Mike R. Jeffrey *

January 26, 2024

Abstract

Switches in dynamical systems are known to exhibit wildly different
behaviours depending on how they are modelled, for instance whether
they occur as smooth transitions or abrupt jumps, and whether they in-
volve delays or discrete perturbations. These differences arise because
switches are sensitive to perturbation, but there is limited knowledge
about where this sensitivity comes from. Here we take a switch in a
simple one-dimensional system, then discretise time and introduce a
small delay. The resulting system is described by a piecewise-linear
map with incredibly complex dynamics, and is sensitive to parame-
ter changes even if the time-steps and delays are made infinitesimally
small. We show that this sensitivity reveals itself in the more versatile
numerical tool of the transition count, which captures the likelihood
of switching occurring at any instant in a simulation. We use this
to show that sensitivity to parameters persists in a system with two
switches, where it then has large-scale dynamical effects. The use of
transition counts in this way may prove a versatile tool for studying
more complex switching processes in general.

*Dcpartmcnt of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol BS8 1TW,
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1 Introduction

Many real-world dynamical systems exhibit sharp transitions between dif-
ferent modes of behaviour. These transitions are often idealised as instan-
taneous switches between well-understood dynamical laws.

The most widely used method to simulate or analyse such switches is
to approximate them using either discontinuous step functions, or smooth
sigmoid functions, common choices being a hyperbolic tangent in neural
networks [22, 33], a Hill function in biology [15, 12], or a C'*° function in
Sotomayor-Teixeira regularisation [28]. Under strong enough restrictions,
it can be proven that sigmoid approximations give the same behaviour as
step functions in an appropriate limit, and the results are consistent with
so-called nonsmooth or ‘Filippov’ dynamics [28]. However, there are many
situations where such approximations diverge from each other significantly,
resulting in conflicting expectations of the dynamics, due to ‘hidden dynam-
ics’ associated with the switch [14, 26, 17].

In these situations, it becomes necessary to consider more precisely the
non-ideal processes that might be involved in switching. These might involve
time delays or hysteresis in activating a switch, the effect of digital sampling,
the effect of sensors, or system noise. No matter how small, such effects can
entirely alter how a system will behave through a switch. As described in
[17, 18], a discontinuous switch constitutes a singular limit, and any attempts
to model the switch in more detail constitute singular perturbations that can
result in widely conflicting behaviours.

Here we take a specific scenario where this singular limit can be explored
in detail, showing why small changes in parameters can result in very differ-
ent behaviour. Starting from a one-dimensional system with a discontinuous
switch, we perturb the model by discretising the system, and applying a time
delay to the activation of the switch. Both of these (the time-step and delay)
can be made arbitrarily small. One such system can be found in [7], which
studies genetic regulation in discrete time with delay.

Take a single variable that evolves according to & = a > 0 for x < 0, and
& = —b< 0 for z > 0, ideally represented as

t=a—(a+b)H(z), (1)

where H is the Heaviside step function. We will show that if x evolves in
small time-steps dt = £ and experiences a small delay of At = &7 (note we
will use 0t and At to denote a time-step and a time-delay, respectively), for
some small € > 0 and any 7 € N, then it evolves according to the map

z+— z +e(aj — bk) (2a)



where k and j are integers, given in a scaled coordinate u = x/ae and
parameter ¢ = b/a by

o {u+7$+¢)

where [z] denotes the smallest integer such that z < [z].

This seemingly simple result disguises an incredibly complex dynamical
system. Despite involving just a piecewise-constant time-stepping algorithm,
the map (2) is highly intricate, irrespective of how small the time-steps and
delay are. The topology of the map changes with the values of 7 and ¢, and
within any given topology the dynamics itself is highly complex. Maps of
the form (2) are also known as interval translations [23, 5], a special case of
piecewise linear maps [3].

After deriving this map and its parameter dependence, we show how
this leads to variability in the transition counts of switching between system
modes. We then show that, while such variability is constrained to a small
neighbourhood around a single switch, it can have large-scale effects if there
are two or more switches.

More precisely, we will show that if a system switches between two modes
of evolution (#,y) = (a,A) for x > 0, and (#,9) = (=b, B) for z > 0, for
z € R, y € R” and any n > 1, its dynamics over a sufficiently long time
interval T' takes the form

], j=T[k¢—ul , (2b)

&=0(e) ,
y:A+{B—A}1}r¢+O<;), 3)

hence it is well-defined for large T' (where the process of switching between
x > 0 and z < 0 takes place within a small region |z| < ¢ < 1). The
expression (3) corresponds to Filippov’s sliding motion or Utkin’s equivalent
control [10, 30, 17], to order e.

In a system with two such switches, however, the dynamics along the
thresholds is not so well-defined. Take two control variables, x1 and xo,
both switching across 1 = 0 and z2 = 0, with the objective to reach
(x1,22) = (0,0) via a simple extension of (1) with parameters ¢1, g2, p3 > 0,
for example @1 = 1 — (1 + ¢1)H(x1) — ¢p3H (x1)H(x2) and &2 = 1 — (1 +
¢2)H (x2) — ¢3H (x1)H (x2). In place of (3) we will show that the resulting



motion is given by

J',‘1:O(€) 5
1',‘2:0(8) 5
1
- 1 1
Z/—Co+011+¢,1+021+¢2+03M+(9<T> ; (4)

where  p€[0,1],

where the C; are just vector fields generalising the A and B — A of (3). The
salient point here at that, while the error term O (1/7) is small for large
enough 7', there is now also a multiplier u that is indeterminable, and can
lie anywhere in [0,1]. The value of u is determined by the dynamics of a
map that, unlike (2), is not known explicitly, but can similarly be expected
to vary with parameters in a manner that does not disappear in the limit
€ — 0, and we verify this numerically. That is to say, g4 may vary over
u € [0,1], so the y dynamics may vary over a range satisfying

§— (Co+ Crely + Carlsy) €10,1]Cs,

where (3 can be of any size and direction, no matter how small the de-
viation of the switch is from the ideal step function H. In this sense, no
approximation of the switch can be considered a reliable model of the large-
scale behaviour, as it will be sensitive to parameter variations of size ¢ — 0.
Similar results obviously then hold for more than two switches.

It is important to remember that this sensitivity is not an accident of the
small-scale processes (i.e. time-stepping and delay) that leads here to the
particular expression (2), we take this only as it provides an example that
can be explored explicitly. Similar behaviour appears to be typical of the
many other possible processes as shown in [18], as we discuss in section 6.

Each of the results above is derived in what follows. In section 2 we
derive the map (2) from the system (1) when subject to discretisation and
delay. The map takes a range of topologies introduced in section 3, resulting
in sensitivity, that is, different behaviours of the map that remain distinct
as we shrink the discretisation step and delay to zero (i.e. a singular limit)L.
In section 4 we show that this variability is revealed in the transition counts
between modes, and occurs similarly in a system with two switches. We show
in section 5 why this variability remains hidden for a one-switch system, but
becomes observable with two (or more) switches. A short discussion of how
this extends to other models of a switching process is given in section 6.
Some closing remarks in section 7 discuss further the concepts of transition
counts, and what we mean by ‘sensitivity’ to parameters.



2 A single switch in discrete time with delay

Consider a variable € R, whose rate of change @ switches between values
A(x) for x < 0 and B(x) for z > 0. This could represent the control variable
of a multi-variate problem (&, 7, Z, ...), but let us concern ourselves only with
x for now.

We are only interested in behaviour local to the switch, so let us expand
(3) about x =0 as

t=a—(a+b)H(z) + g(z) (5)

where a = A(0) and b = B(0) represent the two possible values of & across
the switch, while g(0) = 0.

This is an idealised mathematical expression, and its solutions simply
evolve towards = 0 in finite time. What is the effect of adding small-scale
non-idealities that attempt to model a real physical system or a numerical
simulation? This can lead to surprisingly intricate and unpredictable be-
haviour, as demonstrated in [18], and here we are able to show explicitly
how this arises by considering two analytically tractable non-idealities: dis-
cretisation and delay. We discuss what is known about other non-idealities
in section 6, and show in particular that discretisation with hysteresis leads
to similar expressions to what follows.

To begin, taking (5), introduce a small time-delay o in the switch by
writing

(t)=a—(a+b)H(z(t—0))+ gzt —0)). (6)

Then discretise the time variable in fixed steps dt = ¢, for some small positive
e, and let ¢ = e7 for some integer 7. Rescaling with

o=—, U=—-—, (7)

we obtain the map
filun) =un —¢ if u, >0,
Uni1 = . (8)
folun) =up+1 if wpr<O0.

We could prescribe a value u,4+1 at u,—r = 0, but it is enough here to let
Unt1 € [f0(0), f1(0)]]; in what follows in this section, u = 0 will just provide
a boundary point between appliying fy or fi. For simplicity we neglect the
non-local term g, which adds a correction to (8) only of size eu and would
not qualitatively alter the results, but would prevent the explicit analysis



that follows. The local map (8) is sufficient for our purposes, and in section 4
we use its outcomes to develop a more general numerical approach.

Due to the delay, the map (8) is time-dependent, but we can obtain an
autonomous form. The system switches between et = 1 and eu = —¢ either
side of the switching threshold u = 0. Solutions evolve in time-steps 0t = ¢,
indexed by n. Each switch is activated after passing u = 0 with a delay of 7
time-steps, causing trajectories of (8) to change from leftward to rightward
motion, and vice versa, in regions Dy and D; respectively, defined by

Di=(7,741), (9a)

Doy=(—=(r+1)¢, —7¢) . (9b)

Let 6 D; denote the boundary of D;. Since solutions of (8) simply travel back

and forth between D; and Dj, we can restrict our attention to just one of

them. To find the map from D; to itself, compose k steps of the ‘leftward’

map upy1 = Up — ¢ with j steps of the ‘rightward’ map upy1 = u, + 1,
giving

Un+k+j = Up — kgb +] 5 Up € Dl . (10)

The values of k and j are determined by taking an initial condition u,, €
Dy, letting this travel to a point un,4+r € Dy, which implies the condition
—o(7+ 1) < up — k¢ < —¢7. This then returns to a point w44 € D1,
implying 7 < up, —k¢+j < 7+ 1. Since 7 is also an integer these inequalities
can be rearranged into

k:[T—l—l;:—‘ & j=lko+1—un|, (11)
where [z] denotes the smallest integer such that z < [z]. These ‘ceiling’
functions in (11) cause the topology of the map to change with ¢ and 7,
and to change rapidly with 7 when ¢ is small. Note that (10) and (11)
are independent of €, so any results we find concerning the topology and
dynamics of this map in section 3 persist in the limit ¢ — 0.

The same map is obtained if we discretise before introducing delay, i.e.
the ordering of our arguments above does not matter. Despite the simplicity
of the system we started with in section 2, this e-perturbed model reveals
surprisingly intricate dynamics.

3 The many topologies of the 1D map

The map (10) has discontinuities at u-values where the ceiling functions in
(11) change value, leading to jumps in the values of k and/or j. According



o (11), the value of k jumps where
T+%=A@6N (12a)

and the value of j jumps where
kp+17—u=N; eN. (12b)

The corresponding discontinuities in the map (10) occur at u = Uy, or u = U;
which we define as

Up= (N —71)¢ or Ui=k¢—N;+7 (13)

for Nj, N;, € N. The map exhibits different topologies in the parameter
space of (7,¢) as the discontinuities (13) move in and out of the interval
D;. In particular, the topology changes at bifurcation curves in (7, ¢) space
when:

1. A discontinuity Uy lies on a boundary of Dy, i.e. Ug € dD;. The
bifurcation curves can be calculated by substituting u =7 oru =7+1
into (12a), giving

T 1+7
T+-€N or T+
) ¢
2. A discontinuity U; lies on a boundary of Dy, i.e. U; € 6D;. The
bifurcation curves can be calculated by substituting u = 7 or u = 7+1
into (12b), giving

eN. (14)

k¢ € N. (15)

3. A discontinuity maps under (10) to a boundary of Dy, i.e. u = Uy —
0Dy, where u, —k¢+j = {7 or 7+ 1}. The bifurcation curves can be
calculated by substituting u, = {k¢ —j+ 7 or k¢ —j+ 7+ 1} into
(12a), giving

T—7+1

¢

Note that there are no similar curves associated with u = U; — 6D as the
analogous equations turn out to be trivial.

These conditions define a diagram of different map topologies over the
space of (7, ¢) that is somewhat intricate, but importantly is e-independent,
and hence retains its intricate dependence on the 7 and ¢ parameters as
€ — 0. The diagrams are constructed by plotting the curves that satisfy the
above conditions, subject to the values of (7, ¢, k, j) giving valid values of
Uk,U; € Dy and Uy, — u € D; according to (10)-(11). We describe the map
topologies below for ¢ > 1 and ¢ < 1 separately.

k+T+Z£J€N or k4T eEN.  (16)



3.1 The case ¢ > 1

In each region of (7, ¢) space the map takes different sets of k£ and j values.
For ¢ > 1 these fall into just a few topological types, illustrated in fig. 1,
and defined as:

0. j = k¢, the map has one or two jumps and is the identity on a subset
of D1, or has no jumps and is the identity on the whole of D;.

1. The map is a circle homeomorphism with one jump at some u = Uj.
2. The map is injective with one jump at some u = Uk.

3. The map has two jumps at some v = U; and u = Uy.

4. The map has two jumps at different v = U} values.

5. The map has three jumps, one at some u = Uy and two at different
u = Uj values.

type 2 type 3

Un+1

type 5 type 0 N
N
/ N;

-/ / N’ N

Figure 1: The 5 typical topologies of the map, plus the degenerate type 0. The types
are distinguished by the number of jumps IN; where j changes value, and NN}, where
both j and k both change value, according to (11) and with N, Ny, defined in (13).
In type O the map is the identity over all or part of Dy = (7,7 + 1), labelled as types
0 or ', respectively.

The regions of the (¢, 7) plane where the map takes each topology are
shown in fig. 2, with a close up of a typical region in fig. 3. The bifurcation
curves between topologies are given by (14)-(16). In fig. 2 and fig. 3, the hor-
izontal line segments are given by the condition (15), while the curves with



positive gradient are given by (14), and the curves with negative gradient
are given by (16) (more easily seen in fig. 3).

10.0 —
f—— ::1_—2
8.2 I i ——
6.4 Tt
(P = EType 0
4.6 t—% EType 0
S Type 1
EType 2
2.8 EType 3
Type 4
1.0 EType 5

0.0 20 40 6.0 8.0 10.0
T

Figure 2: Bifurcation diagram of the map’s topological types.
magnification and more detailed description.

Figure 3 shows a

Uk 0D UredDi __UredDy
~ \ ] /

2.0

UjE&D]

HEType 0
EType 0'

Type 1
EType 2
EType 3

Type 4
EType 5

00 02 04 06 08 1.0
T

Figure 3: Magnification of the lower-left corner of fig. 2. D} and §D; denote the
upper and lower boundaries of D; (i.e. D] =7 and 6D =74 1).

Each pink ‘tongue’ (where the map has type 1) has a unique k value,

10



bounded by the curves (14) where Uy, € §Di. The value of j jumps at the
horizontal lines (15) where U; € 6Dy, on which the map has type 0 inside
the pink tongues and type 0 in the strips between tongues. The strips are
partitioned into 3 sided tiles of types 2-5 by the curves (16) where Uy +— dD;.

Note that fig. 2-3 are plotted in continuous variables (7, ¢) for clarity,
but 7 is actually an integer in the system above, and so the map only exists
on slices 7 € N taken through these figures.

3.2 The case ¢ <1

For ¢ < 1 the curves from fig. 2 continue in a fairly simple manner, but
the topologies between them fall into an infinite number of different classes,
with different numbers of branches that grow as 1/¢. This happens because
the righthand set Dy is a factor 1/¢ smaller than the lefthand set Dy, and
so maps into Dy under multiple (roughly 1/k) different values of leftward
steps k, with each different k£ giving a different map branch.

The classification above can still be applied, subject to a mapping that
relates the dynamics of the map on Dy for ¢ < 1 to the map on D; for
¢ > 1. More precisely, the coordinate change (u, ) — (—u¢,1/¢) converts
the map in the u-coordinate on u € Dy = (—¢(7 + 1), —¢7) with ¢ < 1, to
a map in the z-coordinate on z € D} = (—(7 + 1), —7) with ¢ > 1.

This means that the bifurcation diagram in (7,¢) € R™ x [0,1] is just
the same as (1,¢) € R" x [1,00), only inverted around ¢ = 1 under the
mapping ¢ — 1/¢, making the types infinitely crowded towards ¢ — 0. The
resulting diagram of topological types of the map is shown in fig. 4.

The outcome for both ¢ > 1 and ¢ < 1 is that changing 7 or ¢ results
in changes in the map topology. Consider any fixed value of ¢, for instance.
The bounding curves in fig. 2-fig. 4, given by conditions (14), have asymp-
totes at each integer 7, meaning that any change in the number of steps 7
in the delay results in a different map topology. No matter how small we
make the time-step At = ¢ and the actual time delay o = e7, this variation
with the value of 7 remains.

3.3 Dynamics of the 1D map

The map (8) for the time-delayed discrete system is piecewise-linear, and
almost every solution eventually reaches the region D;, where its future
trajectory is described by the map (10). (The ‘almost’ here means all orbits
that have at least one iterate in Dy and Dy or beyond them, i.e. away from

11
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Figure 4: Bifurcation diagram of the map's topological types extending fig. 2 to
¢ < 1. The ‘Type' refers to the corresponding class in fig. 2 under the mapping

(U’) ¢> = (_’U’(ba 1/¢)

the switching threshold, excluding some peculiar initial conditions that can
give orbits that live for all time in the interval between Dy and Dy due to
the delay, which are outside our present interest.)

Even within any one of the topological classes above, the dynamics of
such piecewise continuous maps is known to be highly complex. Each class is
an example of an interval translation map, which have an extensive literature
in themselves, see [23, 5] for general results and references. Let us summarise
just a few qualitative aspects here for illustration.

The system exhibits different behaviours depending on the parameter ¢.
If ¢ is irrational then the map displays dense quasiperiodic orbits or multi-
band chaotic attractors. If ¢ is rational, the orbit of any point is eventually
periodic. In fig. 5, the largest period of the attractor in the map is plotted
in the (7, ¢) plane, obtained through simulations of (10). The locations of
the underlying topological tongues fig. 2 are clear, with further complexity
within them.

In piecewise-linear maps with a single discontinuity, the parameter ¢
determines a winding number that governs the periodicity of the map. In
the case of multiple and changing numbers of discontinuities, as we have
here, the situation is more complex and there is no obvious definition of the
winding number. Neverthesless, the parameter ¢ still strongly influences
the period of the attractor, see e.g. [3], as evident in the right-hand picture

12
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Figure 5: Left: largest period of the map (10) plotted for rational values of ¢ (period
indicated by colour). Right: corresponding plot of the denominator of ¢ = p/q.

of fig. 5. In this picture, the denominator of ¢ is shown for rational values
of ¢ represented as ¢ = p/q, where p and ¢ are the minimal values of the
numerator and denominator, respectively. The denominator of ¢ generates
distinct horizontal stripes in the periodicity plot (left-hand picture of fig. 5),
which overlays the topological tongues from fig. 2. These horizontal stripes
represent different periods associated with various rational values of ¢.

However, the bifurcation diagram is even more intricate still, containing
many other structures beyond the tongues and horizontal stripes, some of
which are magnified and shown in fig. 6.

Hence the dynamics of the map (10) is dependent on a combination of
the intricate bifurcations of piecewise-linear maps and the already complex
topologies from fig. 2.

The intricacy of these maps is such that plots of periodicity, such as
fig. 5-fig. 6, can be misleading due to the computational necessity of plotting
rational values of ¢. The maximum period is bounded by the denominator
of ¢ for rational values and is infinite for irrational values. Thus, the precise
patterns observed in fig. 5 are strongly influenced by the method used to
sample ¢, for instance whether we take a particular subset of rational ¢
values or select values randomly, as briefly illustrated in appendix A.

In deriving (10) we neglected higher order terms, so the results above
describe the leading order approximation of a typical system (5) around a
switching threshold. Higher order corrections would perturb the map, the

13
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Figure 6: Magnifications of fig. 5 showing intricate features of the bifurcation struc-
ture.

lowest order corrections giving it a gradient different from one, but simula-
tions not included here confirm similar parameter dependence when higher
order terms are included. The dynamics of such maps are well understood
if they have a single discontinuity, i.e. types 1 and 2. Comprehensive clas-
sifications are given in [3], which present a complex picture of multi-band
chaotic, quasiperiodic and periodic attractors, and these go through band-
count and period-incrementing or accumulation cascades under variation of
parameters. However, since the map has gradient one (or close to one with
non-local corrections) almost everywhere, we are in a very degenerate case,
similar to the point ap = ar = 1 of the bifurcation diagram in Fig. 6.24
of [3]. Less is known about maps with multiple discontinuities, and they
exhibit bifurcation phenomena that have only begun to be explored, see e.g.
[34]. The invariants of maps with multiple discontinuities have been studied
in the context of interval translation maps [23, 5]. The novelty of the map
(10) in our context is that not only does the dynamics of the map depend
intricately on parameters, but so does the basic topology of the map itself,
such as its number of discontinuities. The crucial point, however, is that all
of this intricacy remains as € — 0.

4 Transition counts

We have seen above how a simple switching between modes varies with
parameters in the presence of discretisation and delay. For this simple case
the variation can be described explicitly by the map (2).

Such explicit results cannot be generalised to systems with multiple
switches, or if we introduce further switching processes other than discretiza-
tion and delay, such as hysteresis or stochasticity, each of which in isolation

14



are also known to have complex dependence on parameters, see e.g. [18].

Rather than looking explicitly at the dynamics and its attractors, let us
concern ourselves with the amount of time the system spends in either of
its modes, because this will determine larger-scale observable behaviour, as
we will show in section 5. Alternatively we can count how many times the
system switches from one mode to another, in either direction.

There is good reason for looking closely at both of these two quanti-
ties: the time proportions in each mode and the transition counts between
them. As we shall see, they reveal different features of the behaviour, with
transition counts revealing variability as we show here in section 4, while
time proportions reveal its large-scale consequences as we show in section 5.
Both quantities have the benefit of being easily extendable to systems where
the kind of analysis in the preceding sections is not possible, such as sys-
tems with multiple switches, and perhaps where different switches involve
different small-scale transitions processes, of the kind we discuss briefly in
section 6. Finally, each relate to wider literature in different ways, as we
discuss in section 7.

First we will look first at transition counts in this section, using them to
reveal numerically how the variability of the one-switch system found above,
extends to a system with two switches.

4.1 Transition counts for one switch

Take the one-dimensional system (5), approximated by the map (8). At
each time instant the map

Unt1 = filup) with i = H(up—r)

is applied, using the functions f; given in (8). Hence the map is a discrete-
time process iterating between the two modes ¢ = 0 and ¢ = 1, as illustrated

in fig. 7.
P()()C k Po
B 01

Figure 7: Representation of the one-switch system as a chain, showing the two modes
0 and 1, the transition counts P,,, between them, and the numbers of steps along
them.

P11

Let us identify the mode i = 0, 1, in the n* time step as

my, = H(up—r) , (17)

15



and define a 2 X 2 matrix that counts transitions from mode h to mode 1,
over N time-steps,, with components
P #{ (mp,mp41) = (hyi) forn=1,...,.N—-1}

hi — N )
i.e. the number of steps in a trajectory for which m,4+1 = ¢ and m, = h,
divided by the total number of steps. This matrix is computed numerically
in fig. 8, by iterating the map (8) for a sufficiently long time that the values
of (18) converge. The value plotted in fig. 8 is the spectral gap A\ — Ao,
where A\; = 1 > Ay are the eigenvalues of Pj;. (We should note that the
map here does not represent a Markov process, so the usual results relating
the spectral gap to the mixing time of the system do not hold here, but we
make further remarks on this in section 7).

(18)

0.8

0.6

0.4

0 1.5 T 2.0

Figure 8: Spectral gap of the transition count matrix (18), in the (7, ¢) plane corre-
sponding to fig. 3. The colour map indicates the value of the spectral gap (scale given
on the right).

In each simulation, a random initial u value is chosen, and the system is
run for 10° time-steps dt to calculate the components Pp;, hence T = 10°6¢.
For completeness, one could average over multiple simulations with different
initial values over u € D1, however we find that the results are similar, while
being far more computationally expensive.

The extent of variability is shown by zooming in on portions of fig. 8,
as in fig. 9. The transition counts evidently reflect the topology of the
underlying map (with the black curves in fig. 8 being copied from fig. 2).

Extremely fine-scale structure found around a type 0 boundary is shown
in fig. 10. At this magnification the pattern is also affected by the choice of
initial conditions: the top row of fig. 10 used a fixed initial condition, the
bottom row used a random initial condition for each point. (This effect of
the initial conditions does not have a visible effect on fig. 8-fig. 9.)
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Figure 9: Magnifications of some of the detail from fig. 8.
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Figure 10: Further magnifications of fig. 8 around a class 0 boundary at ¢ = 1.5
reveal extreme intricacy in the transition counts. Top: simulated using a fixed initial
point uy = 10~%. Bottom: simulated with random initial point ug.

Notably these transition counts reveal (though they do not explain) the
dependence of the dynamics on 7 and ¢, without requiring the detailed
modeling and analysis of the switching process itself, as was required to
produce fig. 2-fig. 4, and without the sampling issues of fig. 5. Future work
will look more into the structure of Py; and its relation to invariants of the
dynamics (and we make some further remarks on it in section 7), but it is
sufficient for our purposes here that this permits us to extend these results,
numerically, to a system with two switches, for which such explicit analysis
is not yet known.
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4.2 Transition counts for two switches

Let us define a system similar to (5) but with two switches. Consider two
independent variables, 1 and 3, each governed by an equation similar to
(1), say &; = a; — (a; + b;)H(x;) for i = 1,2, with a;,b; > 0. Let us divide
each through by a; and re-label the scaled variable z;/a; simply as a;, to
give

l"l =1- (1 + ¢1)H(I1) )
By =1— (1+ ¢ho)H (x2) .

Each of these is described by maps identical to the earlier one-dimensional
system, giving us nothing new, so let us couple them by introducing a switch
H(x1) in the @9 equation and vice versa. Purely for simplicity (one may
consider other such coupling terms), we will take the same term on each
line,

i1 =1—(1+¢1)H(z1) — ¢3H (x1)H(22) ,
To=1-— (1 + ¢2)H(:E2) — ¢3H($1)H($2) , (19)

in terms of the Heaviside step functions H(z;). Denote the four modes on
the righthand-side of (19) as F),y,, that is,

(Z1,22) = Fy0, where v; = H(x;), (20)
labelled by the index pairs (viv2) € {00,01, 10,11}, such that

F(]l:(l’_QSZ)a FOOZ(]-al)a
Fio=(=¢1,1), Fiy = —(¢1 + ¢3, 02 + ¢3) . (21)

Hence setting all ¢; > 0 ensures that in each mode the system evolves
towards the switching thresholds z; = 0 and 2 = 0. One may consider more
general expressions, this will be sufficient to illustrate our central result (for
more general expressions see [17, 18]).

Let us then discretise the system and impose a delay across the switch,
following a procedure similar to (5). Let switching occur with delays o;
across each threshold x; = 0, so that the mode is given by v; = H (z;(t —0;))
for some small 01,09 € R. Then introduce a discretisation into time-steps
0t = ¢, and write the discretised variables as z;,. Finally let o; = e7; for
some 711,72 € N, to obtain the system

(Z1n4+15 T2n+1) = (T10y T2n) + EF 0 0y (22)
where v, = H(Zin—r,) ,
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with the four modes F,,,, given by (21).

An explicit autonomous form for this map is not yet known (unlike the
one-switch system which led to the explicit map (2)). Indeed, such a closed
form may not be possible for two switches, and at least such a map could
not be unique in forward time, because at any given instant a state may
possess different histories of switches yet to run their course. That is, when
a solution reaches x2 = 0, say, it may or may not be waiting the 71 time-steps
needed for a switch across 1 = 0 to be carried out, or vice versa, so the
system evolution is always dependent on its history, and is not determined
by its present state.

Instead, let us use the system’s transition counts to show that, similar to
the one-switch system, this depends on the system parameters in a manner
that will not vanish as € — 0. The system’s representation as a chain is
shown in fig. 11. At any given point (x1,z2) in a mode vjv2, the system can
remain in the same mode, or switch into one of the other three. One may
find similar representations of a discrete-delayed genetic regulatory network
in [7].

Figure 11: Representation of the two-switch system as a chain. Each node shows
the binary vyvo index, with the index m in brackets, and the transition counts P,,,
between then.

It is convenient to re-number the modes {00, 10,01,11} as {1,2,3,4},
and then identify the mode number 1,2,3,4, in the n'® time step as

My = H(z1n—r,) + 2H(220—7,) - (23)

Similar to the one-switch system we then define a 4 x 4 matrix of transition
counts over N time-steps with components

_ #{ (mp,mps1) = (hyi) forn=1,..,N—-1}
= - .

Py (24)
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From an initial condition in an e-neighbourhood of 1 = z9 = 0, we iterate
(22) over a sufficient time interval that the values of Pj; converge. We
represent them in fig. 12 by plotting the spectral gap of the resulting 4 x 4
matrix, in fact here we plot the inverse of the spectral gap to improve the
contrast of the image.

50 M
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2 2

30 50 50

25 25

10 20 30 40 50 10 20 30 40 50

T1 T1

Figure 12: Plots of 1/spectral gap for the two-switch system (20), with value in-
dicated by the colour map (scale given on the right). Left: ¢ = 33/7, ¢ = 7/5,
¢3 = 10/9. Right: ¢1 = 31/15, ¢o = 180/37, ¢3 = 35/29. Note that these plots are
pixelated because they are calculated at discrete 7 values (since we no longer have an
explicit map we cannot plot in continuous 7 as we could in fig. 8).

The spectral gap varies with the two parameters 7;, and since the time-
delays are o; = e7;, and the time-step is e, this variation remains if we
take ¢ — 0 to make the delay and time-step infinitesimally small. Similar
variation can be seen by plotting against the parameters ¢;.

Future work will look more into the use of these transition counts to
characterise the dynamics in more detail, and particularly how different
switching process results in different transition count diagrams. To this end
we briefly summarise what is known about such processes, and how they
relate to the results above, in section 6.

Our real interest is not actually in these local transitions themselves
across the switching thresholds, but rather in the fact that they determine
large-scale so-called sliding dynamics, which occurs when such switching
across x = 0 (or z; = 0 and x9 = 0) affects some additional variable. We
turn to this in the next section.

5 Fine-scale process and large-scale sliding

When a solution in a nonsmooth system encounters a switching threshold,
it might simply cross through the threshold, therefore encountering it only
fleetingly. The systems (5) and (19) model the more interesting situation
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in which solutions become constrained to move along a switching threshold,
commonly referred to as sliding, following [10, 11, 31, 25]. Let us look at how
the dynamics observed above, in the motion across the switching threshold
(in an e-neighbourhood of z = 0), affects motion along the switching thresh-
old (along z = 0) during sliding. We do this first for a system with one
switch, then a system with two.

5.1 Sliding with one switch

Let us revisit the one-switch system (5), with equation & = a — (a+b)H (z),
from the perspective of a Filippov system, and examine how this relates to
the dynamics of the map (2), that is, = — = + £(aj — bk), around x = 0.

Consider a system of variables (z,y), and a switch that depends only on
x, given by

t=a—(a+b)H(x),
y=A+ (B—A)H(x). (25)

Here, y is a vector variable, and A and B represent vector fields (which may
be functions of x and y, but this is not critical for our analysis).

In the Filippov formalism, when a system switches repeatedly across
x = 0, the times spent in the regions x > 0 and z < 0 are used to determine
an aggregate sliding dynamics that approximates the motion along z = 0.
This sliding motion is also known as Utkin’s equivalent control [10, 27]. The
standard argument is as follows.

If, over some time interval, the system spends a proportion p of its time
evolving according to the x > 0 system @ = —b, and the remaining portion
1—pu evolving according to the x < 0 system & = +a, then its overall motion
can be expressed as

letting

Lo {H(x) if 240, 27)

0,1 if 2=0.

Since a and b are positive, this aggregate motion eventually becomes con-
strained to x = 0, from which we can infer that the system must satisfy the
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constraint & = 0. Using (26) with & = 0, we find that p takes the value

1
=134

where ¢ = b/a. Upon substituting the value of p from (28) back into (25),
we obtain the sliding dynamics along x = 0 as

[ (28)

=0,

) =A+(B-A ! 29

i= At (B A (29)
The sliding dynamics described by (29) represents a well-determined, if ide-
alised, motion along an infinitesimal neighbourhood of © = 0. There are
limited results studying how well this approximates less idealised switching
processes. Here, let us use the explicit map for the discrete-delay process to
see how well it is approximated by (29), and we discuss some other processes
in section 6.

To do this, we calculate the proportions of time the system spends in
either of its two modes. In the neighbourhood of the switching threshold,
the system (5) evolves in time-steps of size &, with a delay o = 7, according
to the map xp1x1; = n +(j — k¢). This map evolves from the region Dy,
across the switch and then back again to D;. In z-space, D; corresponds
to the region et < & < £(1 4+ 7), ensuring that the dynamics remain in an
e-neighbourhood of the switch, consistent with (29) as ¢ — 0. We then wish
to know how y evolves during this process.

The integers k£ and j conveniently count the time increments in each
mode. Consider an orbit that has returned to D; multiple times. Let the
total number of rightward and leftward steps be K and J, respectively.
Then, u, x4y implies Az = xpi x40 — xp = e(J — K¢) € ¢[—1,1]. The
proportion of time spent evolving in the leftward mode can thus be written
as

P SR S S—— +0<1> (30)
PTURE I 14 8E T T4 K)°
hence
t=0(e),
A4 (B-A)— oL (31)
v= 1+ ¢ K)-



This implies that, despite the variability of the left-right switching resulting
from the map (10), the large-scale motion remains approximately consistent
with Filippov dynamics for sufficiently long times K. This, of course, is the
basic premise of Filippov and Utkin’s legacy on sliding modes [10, 27]. In
the next section, we will show that this error ceases to be small for a system
with multiple switches.

There are situations where non-Filippov dynamics can occur at one
switch due to novel ‘hidden’ terms, see [17, 18, 21], and indeed these were
long recognised by both Filippov and Utkin (see classic counter-examples
to the sliding formalism in [10, 27, 21]), but these are beyond our scope
here. A similar result to (31) hold for a system with hysteresis (in place of
discretisation and delay), as can be found in [4].

5.2 Sliding with two switches

Let us derive the corresponding results to section 5.1 for the two-switch
system (19). We shall see that the sliding dynamics is then indeterminate,
allowing the kind of variation seen in fig. 8 to affect the large-scale dynamics.

First consider z; and x5 to inhabit a larger state space (x1,z2,y) for
some vector variable y, and extend (20) to

(C.Cl,i‘g,y) = Fvlvg Where V; = H(xl) N (32)
with modes
Fo1 = (1, —¢2,Co1) , Foo = (1,1,Cqp) ,
Fio = (=¢1,1,Cho) , Fii = —(¢1+ ¢3, 02+ ¢3,C11) - (33)

In terms of the Heaviside step function H we can write this as

1 =1— (14 ¢1)H (1) — ¢3H (x1)H (22) ,

By =1— (14 ¢2)H(w2) — ¢p3H (x1)H (z2) ,
y = Coo + (C10 — Coo) H (1) + (Co1 — Coo) H (22)
+ (C11 + Coo — C10 — Co1) H (z1) H (22) -

The Cj; extend the vectors A, B, from the one-switch system, and similar to
the previous section, we are not concerned with the precise nature of these
(which could be functions of (x1,x2,y)). Our aim is to approximate the
aggregate motion of this system over an extended interval of time when its
motion is constrained to the switching threshold x1 = x2 = 0. To find this,
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let fty,4, represent the proportion of time that the system evolves according
to the mode vjve € {00,10,01,11}. The system can then be described by

&1 = poo — p1(P1 + ¢3) — piod1 + Lot
&9 = popo — p11(P2 + @3) + pio — o192 (34)
¥ = 100Coo + 111C11 + p10C10 + 101Co1

where
pij € (0,1] . (35)
Since the fi,,,, are proportions of time they must sum to unity, so

poo + po1 + pio + pn =1 (36)

Motion along either one of the thresholds z; = 0 (with 2 # 0) or
29 = 0 (with x1 # 0) will follow equations similar to those in the previous
section. Let us look instead at what happens if motion becomes constrained
to the intersection of the two switching thresholds, where 1 = o = 0
and 1 = @3 = 0. Then the motion satisfies (&1,%2) = (0,0), and these
constraints, along with (36), allow us to express three of the time proportions
all in terms of uq1,

g = Pk oy = Pk
1+ ¢1 ’ 1+ ¢o ’
where p17 € [0,1] , (37)

(with poo then given by (36)). In the one-switch system described earlier,
the constraint of sliding along x = 0 provided a well-defined value (28)
for the time proportion p. Now, in the two-switch system, sliding along
1 = x2 = 0 determines the time proportions fi,,,, only up to the set-valued
relations (37). The motion along the threshold x; = x9 = 0 is then given by

T =12=0,
¥ = pooCoo + 101Co1 + 110C10 + 111C11

.1 R R
=Cy +C1———— + Cy + Cspa1 (38)

1+ ¢ 1+ ¢o
where p11 € [0,1],

written for convenience in terms of vectors

C1 = Co—Coo , Cy = Co1 — Coo
03 =C11 — Cyo — (% + 1)01 — (115:;1 + 1)@2 . (39)
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Hence the sliding dynamics of y along the switching threshold is set-
valued, given by (38), expressed in terms of the undetermined multiplier
u11 € [0,1]. This is a well-known indeterminacy of Filippov’s sliding concept
at intersections of switching thresholds, and many approaches have been
made to resolve the resulting dynamical ambiguity, see e.g. [1, 2, 8, 16,
20, 24]. A glance at these references shows that different approaches give
different outcomes, all lying among those making up the set (38), as shown
in a range of numerical ‘experiments’ in [18]. Ultimately the value of u1q
can only be determined through a more detailed modeling of the switching
process at the switch.

We have already noted that an explicit map cannot be obtained for the
discrete-delayed system with two switches, therefore it is not possible to
derive an expression for pi1, or to obtain the corresponding form of (38) in
the presence of discretisation and delay, as we could for one switch in (31).
Instead let us calculate the unknown pi11, namely the time proportion spent
in the mode viv9 = 11, for the simulations in fig. 12. The results are shown
in fig. 13. They clearly reflect the dependence on the parameters 7; seen in
the transition counts in fig. 12.
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Figure 13: Simulations of the time constant p1; for the two-switch system (20), in the
(11, T2) plane. This shows the variation of the dynamics with the time-delays 7;. Left
and right pictures correspond to the simulations in fig. 12. The colour map indicates
the value of the time constant p;; (scale given on the right).

The variability of p1; with parameters is now directly observable in the
sliding motion, and depends on how we model the switch, no matter how
ideal (close to a Heaviside step) that switch is. To see this, let us assume in
analogy to (30) that the constraint of the motion to z1 = O (¢), z2 = O (¢),
determines the time proportions to errors of size 1/T" over a time interval T,
then the dynamics of the system (38), with discretization and delay of size
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€, obeys

.7.31::'62:0(8),

. .1 .
y = Coo + C1 Cs 5 +Csun + O (1/T) (40)

_I_
14+ ¢1 1+¢
where 11 € [0,1] .

Thus the variability of w11 in fig. 13 directly translates into variability in the
dynamics of y. Depending on the constants ¢; this can be arbitrarily large.
This is emphasised in fig. 14, which shows two graphs plotting the value of
w11 for each of the two simulations in fig. 13 at a fixed 71 = 50, and showing
how this translates into variability in y. In each case we take a scalar y that
obeys y = (1 —10u11)Coo (using parameters given in the figure caption), for
which numerically we find

0.1 5 111 S 0.2 = —0.05Cyg S Y S +0.1Cy -

Hence gy can take values that are arbitrarily large depending on the size of
Coo, and is not even fixed in direction, as ¢y may even change sign depending
on the value of 7.

\ R
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Figure 14: Graphs of the time constant p11 from the plots fig. 13 with delay 7 = 50.
Also showing an example of ¢, given by (38) with Cyg = C19p = Co1 = —C11/9.

6 Other switching processes

The theory of dynamical systems with discontinuous switches is well estab-
lished, through Filippov [10] and many works that have followed. What has
not been clear in that theory is how well such models approximate less ide-
alised switches of real world systems, or how reliable numerical simulations
are in handling such discontinuities. Several ways of replacing discontinuous
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switches with more detailed switching processes have been considered in the
literature, some motivated by more precise physical modeling, others moti-
vated by ‘regularising’ the switch to obtain a well-defined differential system.
Below we summarise briefly what is known about dynamics involving just
one switching process in isolation, or multiple interacting processes.

6.1 Isolated processes

The most popular analytic model of a switching process is via a smooth
transition function. An example is the well-studied Sotomayor-Teixeira reg-
ularisation [28], which is commonly used in theoretical works (and can even
be extended to deal with ‘hidden’ terms [26]). Smoothing is routinely used
in the sigmoid switches of neural networks, and achieved in numerous ways
such as elastic compliance or force interpolation in physical contact mod-
els. Theoretical results on smoothing have also been extended to multiple
switches, see e.g. [1, 29], which can result in novel behaviour known as
‘hidden’ dynamics [14, 21].

Smoothing is mathematically desirable as it results in a differentiable
system evolving in continuous time, governed by standard theorems of dy-
namical systems theory. From an applied perspective, however, this is highly
idealised, and a switch may behave very differently if the system is discre-
tised, or if the switch involves delay or hysteresis.

When modeling physical systems it is often important to factor in time-
delays. If we return to section 2, we can set the discretization step ¢ = 0
but keep the delay o (or 7) finite, to give a continuous time system with
delay. Solutions of this will be trivial, as Dy and Dg shrink to the points
x = al and x = —bT which form a unique periodic orbit. The situation is
not so trivial if there are two switches, perhaps with different delays. Some
simulations in [18] reveal complex dynamics, but little is understood about
how to characterise it at the time of writing.

Hysteresis (or spatial delay) is also of great importance in physical sys-
tems. This process has been well studied, first heuristically in [10, 32] and
more rigorously in [2, 20]. The dynamics for one switch is trivial, bouncing
between limits x = +D for hysteresis of size D. For two switches this results
in a billiard-like or ‘chatterbox’ problem that was well studied in [1], and
this results in parameter-sensitive dynamics as highlighted in [20]; this is to
our knowledge the only two-switch system where parameter dependence of
the kind in section 5.2 has been proven analytically.

Perhaps more important from the viewpoint of computer simulation is
what happens when we discretise a system. If we set the delay 7 = 0 in
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section 2 but retain the discretization € > 0, the resulting map obtained
from (1) is a unit gradient ‘map with a gap’,
Up) = Up — if w, >0,
folup) =up+1 if wu, <0,

a circle homeomorphism with well understood if already somewhat complex
bifurcation structure, located at the accumulation of various bifurcation
curves at ag = ar, = 1 of the bifurcation diagram in Fig. 6.24 of [3]. In short
this has intervals of periodic orbits if ¢ is rational, and dense quasiperiodic
orbits if ¢ is irrational. Almost nothing is known in general about this
situation if there are two switches.

Let us now consider what little is known if we combine any of these —
smoothing, discretisation, hysteresis, delay — as we have done for discretiza-
tion and delay in this paper.

6.2 Smoothing and hysteresis

Smoothing and hysteresis were in a sense combined in [4], in a unified model
that exhibited either smooth or hysteretic behaviour in different limits. Al-
though involving novel asymptotic balance of the competing limits, the dy-
namics itself is uninteresting, being consistent with the Filippov dynamics
discussed in section 5.1. No such models have been studied for multiple
switches, and it is not obvious whether the outcome would be as straight-
forward as for one switch, but it seems unlikely

6.3 Discretization and hysteresis

If we consider the system (5) and impose hysteresis of size D about z = 0,
and discretise into time-steps ¢, we have the map

if <D,
ot = {:Cn +ea U x, (42)

T, —€b if z,>-D.

T D
ea’ 5 ea’

If we re-scale by introducing ¢ = g, u = then by steps similar

to section 2 we obtain a map

Un+k+j = Un — ko +3, (43)
where k= {unqjﬂ . J=lkd+0—uy].
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This is very similar to the delay map (10), and will have a similar family
of topological types in the (6, ¢) plane leading to dynamics dependent on
parameters as discussed in section 3.3. As in the discrete-delay process, this
does not vanish as the step size ¢ is taken to zero.

For two switches we can expect similarly complex dynamics to that found
with discretization and delay in section 4.2, but, as for that case, an explicit
form for the map may not be possible.

6.4 Discretization and smoothing

It is common practice in many simulations of switching to first smooth out
the switch, replacing any step function with a sigmoid function, and then
discretise the equations for the purpose of numerical computation. Yet even
this case can be less trivial than one may expect.

Take the usual starting point of (1), and replace H (x) with some smooth
sigmoid function H,(x) that tends to H(x) as 0 — 0 (we give some examples
below). Then discretise in time-steps ¢, to obtain the map

Tpy1 =2p+e{a—(a+b)Hy(zn)} - (44)

This is simpler perhaps than the map (2), but similarly exhibits complex
dynamics independent of € — 0, including chaos. The map has a fixed point
x, (corresponding to the sliding solution in the o-neighbourhood of x = 0),
given implicitly by

a
H,(z,) = . 4
() = = (45)
This destabilises in a flip bifurcation where
nir 1—ela+b)H. (x,) = -1
dz., g
2

= H (24) = ——— . 46
o) = o (46)

For a typical sigmoid these two conditions have valid solutions, indicating
that, for some o /e, a period doubling occurs, triggering a period doubling
cascade.

For example, let H,(z) = 2 + 1 tanh(z/0), then H, = 2H,(1— H,) and
the flip occurs at

abe
a+b’

g =
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If we take the Hill function H,(z) = (1+2)Y9/ (1 + (1 + 2)'/7), then H., =
1(1/H, — 1)°H,(1 — H,) and the flip occurs at

= (5) wrw

These results assume a fixed time-step, and it may be of interest to
study what happens with an adaptive step-size. Clearly the complex issue
of regularising switches deserves further investigation in general.

7 Closing remarks

7.1 On sensitivity of nonsmooth dynamics

The importance of the variation shown throughout the analytical and nu-
merical results above (from fig. 2 for the 1-switch system to fig. 14 for the
2-switch system), is that it constitutes an infinite sensitivity of the system
to the parameters of the switching process. By this we mean that the be-
haviour of the system undergoes order 1 variations as the parameters 7 (or
71,2) change, independent of the small parameter ¢, therefore persisting even
when the delay and time-step are reduced as € — 0.

Our main result here has shown how this sensitivity to parameters results
from considering the fine processes that accompany switching in dynamical
systems. For one switch, this sensitivity reveals itself only in the transition
between system modes, not in the large-scale dynamics. For two switches
the sensitivity is evident both in the switching transitions and in the large-
scale dynamics. In other words, we have shown that sensitivity already
exists in the transition counts of the one-switch system, but it only becomes
observable on the large-scale when there are two or more switches, upon
which the times spend in each mode and the resulting sliding dynamics vary
sensitively with parameters.

We derived explicitly how this happens for the specific situation of a
discretised system with delays, and discussed what is known about the ex-
tension to other non-ideal models of switching.

One simplification we made in section 2 was to take only the leading order
approximation of the vector field, resulting in a map with unit gradient. If we
do not make this approximation and consider a varying vector field, the map
(10) is qualitatively similar but with a non-unit gradient. The topological
types and sensitive dynamics arise similarly, but an explicit map like (10)
with both nonlinearity and delay in not known.
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Instead, such a system can then be studied using the transition counts
introduced for switching in section 5. This way of studying nonsmooth
systems appears to hold great potential, being easily applied to any number
of switches, and any kind of switching processes.

7.2 On transition counts versus time spent in modes

We saw above that the transition count matrix Pj; shows variability with
the parameters of the switching process, for both the one and two-switch
systems. Contrast this with the proportions of time p (just p for the one-
switch system and p;; for two-switches), which only show variability in the
presence of at least two switches. The theory of nonsmooth (or piecewise-
smooth or Filippov or variable structure) systems, has typically focussed on
these time proportions, rather than transition counts. The transition count
reveals that the process of switching is inherently afflicted by variability, but
because this does not affect the time proportions at a single switch, that
variability has been hidden in much of the history of nonsmooth dynamics.

The two quantities are closely related, of course. That is, the time
proportions p spent in different modes, must be related to the transition
counts Pj; between modes. Write the time proportions as a vector p =
(u, 1 — p) for one switch, or g = (po0, o1, 10, #11) for two switches (with
the normalization (36)), then

(i) the components of g sum to unity,
(ii) the rows of Pp; sum to unity, that is, >, Py, = 1,

(iii) g is the eigenvector of the transpose of Py;, associated with unit eigen-
value and normalized according to (i), that is, PTp = 1 or in com-

ponents >, Prifptn = fi-

These properties of Py; resemble those of the transition probability matrix of
a Markov chain, and indeed, if the switching process is Markovian then the
association is exact, and the spectral gaps studied in section 4 characterize
the mixing time of the process. In our case, due to the delays, the process is
not Markovian, however clearly Pj; plays a analogous role here, one whose
theory we plan to extend in future work.

7.3 On types of switching

The obvious features that might be involved in the process of discontinuously
switching modes across a threshold can be separated into certain types:
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1. discrete but deterministic: hysteresis, delay, discrete time;

2. continuous deterministic: so-called Filippov systems, or regularisation
by smoothing, or (not considered here but see e.g. [6, 9]) switching
mediated by additional variables;

3. stochastic: e.g. additive noise, stochastic delay, fuzzy thresholds,
stochastic decision making such as drift-diffusion.

We have covered class 1 here and shown they result in the most intricate
dynamics around a switch. Class 2 has been studied at length and is much
more regular in its behaviour. The two are apparently non-commensurate.
Of class 3 little is known besides some preliminary simulations in [20, 18],
and some results for special cases, e.g. border collision maps [13].

The problem studied here is an even more extreme simplification of the
genetic regulation and investment games in [18], and the pilots’ dilemma
in [19]. These all begin with two ‘controllers’ or ‘players’ making simple
decisions according to obvious logical rules. Although those rules govern
the decisions made at any instant, as time passes, the logical outcome be-
comes lost in the problem’s dynamical evolution, which becomes sensitive
to the slightest intricacies of how the players’ decisions interact, resulting in
unpredictability.

These intricacies become a significant problem when we are dealing with
networks of multiple decision makers. For example, is it even possible to
define uniquely the sequencing of decisions made by controllers or players
in a large distributed system? To do so requires a global clock on a net-
work of switchable agents that defines simultaneity and ordering between
the players, the precise timings or delays with which each agent acts, and
how these may perturb the probability of their choices in response to each
other. It might be obvious that differences in these might alter a large sys-
tem’s behaviour, but this work reveals that the dynamics of even a small
system can be infinitely sensitive (since the small parameters can be taken
arbitrarily small) to the simplest imperfections, even before more large-scale
social factors like different agents’ biases or beliefs might be taken into ac-
count. In future work we hope to look more at how the sensitivity derived
here manifests in such decision problems.
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Appendix

A The sampling problem

In fig. 5 we plotted the periodicity of the map (10) and its relation to the
parameter ¢. When the map has only a single jump this represents the
winding number of the map, but how we sample ¢ in these plots affects
their appearance. For instance, we might take ¢ values at regular intervals,
or use Farey sequences to generate all rationals, or select random ¢ values.
To highlight the issue and avoid mis-interpretation of the results, we show
here plots for the same map obtained by sampling ¢ from the rationals in
different ways.

In fig. 15 we plot the maximum period of the map (10) for all rational
¢ of the form p/q for 1 < ¢ < @Q, taking @ = 50 and @ = 100 in the
first two plots. The overall pattern is similar, but crucially the value of Q)
directly determines the maximum periods that are found, i.e. the height of
the vertical axis (and trivially the latter plot also has more points).

More crucial, and perhaps less obvious, is that the patterns in these
plots reflect not only the dynamics of the map, but are strongly influenced
by the non-uniform distribution of taking all rational numbers up to a fixed
denominator. To ‘wash out’ this influence we can instead sample values of
¢ in a more uniform manner. As an example, in the last plot of fig. 15 we
randomly sample 1000 values of ¢ from the previous plot.

This shows that the overall maximum periodicity of these graphs is a
reliable measure of the dynamics of the map at those values, but we must
keep in mind that higher periods will be seen at ¢ values between these, be-
coming unbounded to indicate quasi-periodicity at irrational values between
those. More importantly, the clear curve patterns in the top two graphs are
indicative of the sampling of ¢, not the variation of periodicities in the map
itself, and hence do not appear in the last graph.
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