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The number of realisations of a rigid graph in
Euclidean and spherical geometries

Sean Dewar∗and Georg Grasegger†

October 11, 2023

A graph is d-rigid if for any generic realisation of the graph in Rd (equivalently,
the d-dimensional sphere Sd), there are only finitely many non-congruent realisa-
tions in the same space with the same edge lengths. By extending this definition to
complex realisations in a natural way, we define cd(G) to be the number of equiv-
alent d-dimensional complex realisations of a d-rigid graph G for a given generic
realisation, and c∗d(G) to be the number of equivalent d-dimensional complex spheri-
cal realisations ofG for a given generic spherical realisation. Somewhat surprisingly,
these two realisation numbers are not always equal. Recently developed algorithms
for computing realisation numbers determined that the inequality c2(G) ≤ c∗2(G)
holds for any minimally 2-rigid graph G with 12 vertices or less. In this paper we
confirm that, for any dimension d, the inequality cd(G) ≤ c∗d(G) holds for every
d-rigid graph G. This result is obtained via new techniques involving coning, the
graph operation that adds an extra vertex adjacent to all original vertices of the
graph.

1. Introduction

A (finite simple) graph is said to be d-rigid if every generic realisation of the graph in d-
dimensional Euclidean space is rigid, i.e., shares edge-lengths with at most finitely many other
realisations in the same space modulo isometries. A d-rigid graph is minimally d-rigid if
removing any edge of the graph forms a graph that is not d-rigid. Given a d-rigid graph, we
would wish to know how many possible edge length equivalent realisations exist for any given
generic realisation solely from the structural properties of the graph. This is unfortunately
not possible for most graphs as the number of equivalent realisations differs between different
generic realisations; for example, see Figure 1. As with many problems in algebraic geometry,
the solution is to extend the problem to allow complex solutions. By doing so, we can concretely
define the number of equivalent complex realisations (modulo congruence) of a generic d-
dimensional complex realisation of a graph G. We refer to this number as the d-realisation
number of G and denote it by cd(G). (See Definition 3.6 for a rigorous definition of the concept.)
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1. Introduction

Here we must make an important technical point: we use the definition of a graph’s
d-realisation number given by Jackson and Owen [23], and as such we consider
reflections of a realisation to be congruent also; for example, the complete graph with
d + 1 vertices has a d-realisation number of 1. The variant of d-realisation number used by
Borcea and Streinu [7] and Capco et al. [10] does for algebraic reasons count reflections, and so
is exactly double the d-realisation number used here. We have opted for the former definition of
a d-realisation number since it preserves an important property of congruence: any two equal-
size ordered sets with the same pairwise distances between points are congruent. We urge any
reader who is cross-referencing with multiple sources to be careful about this technical point,
especially since many algorithms for computing d-realisation numbers use the latter definition
(e.g., [10, 14]).

W

Figure 1: Two realisations of the same graph on 5 vertices with different numbers of equivalent
real realisations. The realisation on the left has 4 non-congruent equivalent real
realisations (two of which are shown), whilst the one on the right has only 2 due to
the edge lengths.

Via tools such as coning — adding a vertex to a graph adjacent to all other vertices, a process
that preserves rigidity between dimensions — Whiteley [29] proved that a graph is rigid when
embedded generically on the d-dimensional sphere if and only if it is d-rigid. Because of
this equivalence, it is natural to ask how many equivalent spherical realisations exist for any
given generic spherical realisation of a graph. Yet again we are required to extend to complex
solutions, where we also consider realisations on the complexification of the sphere. We thus
define the spherical d-realisation number of a graph G, here denoted by c∗d(G), to be the number
of equivalent complex spherical realisations (modulo congruence) of a generic d-dimensional
complex spherical realisation of a graph G. (See Definition 4.5 for a rigorous definition of the
concept.) As noted in Remark 4.10, this number is equal to the analogous realisation number
for hyperbolic space, and so can also be considered to be the non-Euclidean d-realisation
number of a graph.

In recent years, deterministic algorithms have also been constructed for computing c2(G) [10]
and c∗2(G) [14] when the graph G is a minimally 2-rigid. It is also relatively easy to compute the
values c1(G) and c

∗
1(G) for any graph G (see Propositions 3.9 and 4.9). This is, unfortunately,

where the good news stops: when d > 2, there exist no current feasible deterministic algorithms
for computing either cd or c

∗
d for general graphs. One probabilistic method for computing cd(G)

and c∗d(G) when G is d-rigid involves choosing a random realisation for the graph and applying
Gröbner basis computational techniques to the resulting algebraic solution set. Whilst this
algorithm can be used reliably to obtain a lower bound on the d-realisation number of a graph,
it is not deterministic and usually extremely slow (see [10, Section 5] for computation speed
comparisons). Upper bounds can also be determined using mixed volume techniques [27] or
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1. Introduction

Figure 2: 12 equivalent real realisations of the 3-prism graph.

Figure 3: 16 equivalent real realisations of the 3-prism graph on the sphere.

multihomogenous Bézout bounds [4].

1.1. Our contributions

When computing c2 and c∗2 for various minimally 2-rigid graphs, it was observed that the two
numbers occasionally will differ; see Figures 2 and 3 for the smallest 2-rigid graph where c2
is strictly less than c∗2. We also observed that the opposite never held for any of the graphs
whose realisation numbers were computed: to be exact, for every minimally 2-rigid graph
with at most 12 vertices, it was computed that the 2-realisation number c2 is never greater
than the spherical 2-realisation number c∗2(G): this observation can be achieved by combining
implementations of the algorithms [9, 15] and the data set of all minimally 2-rigid graphs with
at most 12 vertices that can be found at [11]. Similarly, randomized experiments with higher
numbers of vertices also exhibited the exact same behaviour. Our main contribution of this
paper is proving that this observation is indeed true for any graph in any dimension.

Theorem 1.1. For any graph G and any positive integer d, we have cd(G) ≤ c∗d(G).

To prove this result, we first show an equivalence between the spherical d-realisation number
of a graph G and the (d + 1)-realisation number of the coned graph G ∗ o, the graph formed
by adding a new vertex adjacent to all other vertices of G.

Theorem 1.2. Let d be a positive integer and let G ∗ o be a coning of a graph G. Then
c∗d(G) = cd+1(G ∗ o).

3



2. Preliminary results for rigidity theory

Our proof for Theorem 1.2 hinges on the observation that realisation numbers for frameworks
are, in the special case of coned frameworks, projectively invariant. Theorem 1.1, however,
requires a more specialised approach to graph coning. We actually prove that cd(G) ≤ cd+1(G∗
o), since Theorem 1.2 then implies the required inequality. Our technique now is as follows.
We construct a very specific space of (d+1)-dimensional realisations of the coned graph G ∗ o
which include realisations where the cone vertex o is mapped to a point at infinity. For this
special class of realisations, the distance constraints stemming from edges connecting the cone
vertex o to each vertex v of G are instead linear constraints that force the vertices of G to lie
in a family of parallel hyperplanes. This allows us to embed our d-dimensional realisations of
G into our new larger space of (d + 1)-dimensional realisations of G ∗ o. From this, we can
then approximate any framework (G, p) by a sequence of frameworks (G ∗ o, p′) in our larger
space such that the required geometric information regarding realisation spaces (i.e., an upper
bound on the number of points) is preserved.

The idea of considering a linear constraint to be a point at infinity is not new; see for example
[12]. Our contribution is to construct a well-defined set of tools that allows us to approximate
d-dimensional general realisations of a graph G by (d+1)-dimensional coned realisations of the
cone graph G ∗ o in a way that preserves some geometric information about their realisation
spaces: in our particular case, the geometric information that is preserved is an upper bound
on the size of the set. Since prior techniques with coning have been focused on the preservation
of linear information of realisations (for example, the space of self-stresses of the realisation),
such results have not been previously possible. We believe our new enhanced coning technique
has the potential to applied to other generic invariants related to framework rigidity (see
Remark 6.5 for further discussion).

1.2. Structure of paper

Our paper is structured as follows. In Section 2 we cover all the necessary background sur-
rounding the topics of rigidity, spherical rigidity and coning. In Sections 3 and 4 we provide
rigorous definitions for the d-realisation number and spherical d-realisation number respec-
tively. Whilst such ideas have been alluded to in prior papers (for example [10, 23]), they have
previously restricted themselves to 2-dimensional spaces only. Due to the various technicalities
that occur when moving between our various higher-dimensional geometries, we have opted
to include thorough proofs of all necessary background results. In Section 5 and Section 6 we
prove Theorem 1.2 and Theorem 1.1 respectively. In Section 5 we also prove that repeatedly
coning a graph will in some sense stabilise its realisation numbers (Theorem 5.2), which can
be utilised to construct infinite families of graphs for each dimension with realisation num-
bers that can be computed deterministically. We conclude the paper by discussing various
computational results we have obtained in Section 7.

2. Preliminary results for rigidity theory

In this section we cover the necessary background results for discussing rigidity in geometries
based over the real numbers. Many of these concepts are extended to geometries based over
the complex numbers in Sections 3 and 4.

4



2. Preliminary results for rigidity theory

2.1. Euclidean space rigidity

A realisation of a (finite simple) graph G = (V,E) in Rd is a map p : V → Rd, and the
linear space of all realisations of a graph is denoted by (Rd)V . A realisation p is said to be
generic if the set of coordinates of p forms an algebraic independent set of d|V | elements.1 A
graph-realisation pair (G, p) is said to be a d-dimensional framework. Two frameworks (G, p)
and (G, q) in Rd are said to be equivalent if (given ∥ · ∥ is the standard Euclidean norm)
∥pv − pw∥ = ∥qv − qw∥ holds for every edge vw ∈ E. A framework (G, p) in Rd is now said
to be rigid if the following holds for some ε > 0: if (G, q) is an equivalent framework in Rd

such that ∥pv − qw∥ < ε for all v ∈ V , then there exists an isometry f : Rd → Rd such that
qv = f(pv) for all v ∈ V .

Determining whether a framework is rigid is NP-Hard for d ≥ 2 [1]. To combat this, we
construct the rigidity matrix R(G, p) of a given framework (G, p). This is the |E| × d|V |
matrix with the row labelled vw ∈ E given by

[0 · · · 0

v︷ ︸︸ ︷
pv − pw 0 · · · 0

w︷ ︸︸ ︷
pw − pv 0 · · · 0].

A framework (G, p) is said to be regular if its rigidity matrix has maximal rank, i.e., for any
d-dimensional realisation q of G we have rankR(G, p) ≥ rankR(G, q). Any framework (G, p)
with a surjective rigidity matrix (i.e., rank(G, p) = |E|) is automatically regular: in such a
case we say that the framework (G, p) is independent. Any generic framework must also be
regular, since the non-regular frameworks form an algebraic set defined by rational-coefficient
polynomials.

Theorem 2.1 ([2]). Let (G, p) be a regular framework in Rd. Then the following properties
are equivalent.

(i) (G, p) is rigid.

(ii) Either G has at least d vertices and rankR(G, p) = d|V | −
(
d+1
2

)
, or G is a complete

graph.

Since every generic framework is regular, Theorem 2.1 informs us that both rigidity and inde-
pendence are generic properties. This motivates the following definitions.

Definition 2.2. A graph G is said to be d-rigid (respectively, d-independent) if there exists
a d-dimensional rigid (respectively, independent) generic framework (G, p). If G is rigid but
G− e is not for each edge e ∈ E, then G is said to be minimally d-rigid.

One method that can be used to construct rigid/independent graphs in higher dimensions is
via coning. Specifically: given a graph G = (V,E), we define the cone of G (by the new vertex
o) to be the graph G ∗ o := (V ∗ o,E ∗ o) where o /∈ V , V ∗ o := V ∪ {o} and

E ∗ o := E ∪ {ov : v ∈ V }.

We can now use the next result to move between dimensions whilst preserving rigidity and
independence.

Theorem 2.3 ([29, Theorem 5]). A graph G = (V,E) is d-rigid (respectively, d-independent)
if and only if G ∗ o is (d+ 1)-rigid (respectively, (d+ 1)-independent).
1The requirement that the algebraic independent set has d|V | elements is stated to avoid the possibility of
identical coordinates.
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2. Preliminary results for rigidity theory

2.2. Spherical space rigidity

The d-dimensional (unit) sphere is the set

Sd :=
{
x ∈ Rd+1 : ∥x∥2 = 1

}
.

Similar to the Euclidean case, we define a d-dimensional spherical realisation to be a pair (G, p)
of a graph G = (V,E) and a d-dimensional spherical realisation p : V → Sd. The notions of
equivalence and rigidity can be analogously defined for spherical frameworks by restricting all
realisations to be spherical realisations.

An important observation is that any d-dimensional spherical realisation of a graph G can (for
rigidity purposes at least) be considered to be a (d + 1)-dimensional realisation of the cone
of G. To be more specific: given a d-dimensional spherical framework (G, p), we define the
(d+1)-dimensional framework (G∗o, p′) by setting p′v = (pv, 1) for all v ∈ V and p′o = 0. From
this construction it is easy to see that the framework (G ∗ o, p′) is rigid if and only if (G, p) is
rigid. Slightly less obviously, this remains true if we scale each pv by some positive scalar.

Proposition 2.4. For a graph G = (V,E), let p, q be d-dimensional realisations of the cone
G∗o where po = qo = 0. Further suppose that for each v ∈ V , there exists a scalar rv > 0 such
that qv = rvpv. Then (G ∗ o, p) is rigid if and only if (G ∗ o, q) is rigid, and rankR(G ∗ o, p) =
rankR(G ∗ o, q).

Proof. That rankR(G ∗ o, p) = rankR(G ∗ o, q) follows from the observation that the rank of a
rigidity matrix is projectively invariant; see [22, Theorem 1] for more details. Now choose any
d-dimensional framework (G ∗ o, p̃) equivalent to (G ∗ o, p) and define q̃ to be the realisation of
G ∗ o with q̃v = rvp̃v for each v ∈ V . For every edge vw of G we have

∥p̃v∥2 = ∥p̃v − p̃o∥2 = ∥pv − po∥2 = ∥pv∥2, ∥p̃w∥2 = ∥p̃w − p̃o∥2 = ∥pw − po∥2 = ∥pw∥2,
p̃v · p̃v = ∥p̃v∥2 + ∥p̃w∥2 − ∥p̃v − p̃w∥2 = ∥pv∥2 + ∥pw∥2 − ∥pv − pw∥2 = pv · pw.

(Remember that ov, ow ∈ E ∗ o and p̃o = po = 0.) Using the above equalities, we see that

∥q̃v − q̃w∥2 = ∥rvp̃v − rwp̃w∥2

= ∥rvp̃v∥2 + ∥rwp̃w∥2 − rvrwp̃v · p̃w
= ∥rvpv∥2 + ∥rwpw∥2 − rvrwpv · pw
= ∥rvpv − rwpw∥2

= ∥qv − qw∥2,

and hence (G ∗ o, q) and (G ∗ o, q̃) are equivalent. From this it follows that (G ∗ o, p) is rigid if
and only if (G ∗ o, q) is rigid.

From a combination of Theorem 2.1, Theorem 2.3 and Proposition 2.4, we can now see that
a graph is rigid in d-dimensional Euclidean space if and only if it is rigid in d-dimensional
spherical space.

Theorem 2.5. For any graph G, the following properties are equivalent.

6



3. Counting complex realisations

(i) G is d-rigid.

(ii) Almost every (i.e., with Lebesgue measure zero complement) d-dimensional spherical
framework (G, p) is rigid.

Remark 2.6. It was first observed by Pogorelov [25, Chapter V] that the linear space of
infinitesimal motions of a d-dimensional spherical framework is isomorphic to the linear space
of infinitesimal motions of the d-dimensional framework obtained by a central projection to
Euclidean space. An alternative proof of Theorem 2.5 now stems from the spherical analogue
to Theorem 2.1, which can be proven in an almost identical way.

3. Counting complex realisations

Our aim in this section is to prove that the definition of the d-realisation number for a graph
alluded to in the introduction can be stated in a rigorous manner (see Definition 3.6).

3.1. Complex rigidity map

We recall that an algebraic set is a subset A ⊂ Cn of common zeroes of an ideal I ⊂
C[X1, . . . , Xn], and a variety is an irreducible algebraic set. If an algebraic set forms a smooth
submanifold of Cn then it is said to be smooth. We shall refer to a subset U of an algebraic set
A as a Zariski closed/open/dense subset if U is a closed/open/dense subset of A with respect
to the Zariski topology.

For every point x = (x1, . . . , xd) ∈ Cd, we define [x]i := xi for each i = 1, . . . , d. We now also
consider realisations in Cd by extending (Rd)V to the set (Cd)V . Any realisation in (Rd)V is
said to be a real realisation. We extend the square of the Euclidean norm to Cd by defining
∥x∥2 :=

∑d
i=1[x]

2
i . We note that this is a quadratic form and not the square of the standard

complex norm, and so can take complex values. Later we shall also require the bilinear map
x · y :=

∑d
i=1[x]i[y]i, where we notice that x · x = ∥x∥2.

For any graph G = (V,E) we define the complex rigidity map to be the multivariable map

fG,d : (Cd)V → CE , p 7→
(
1

2
∥pv − pw∥2

)
vw∈E

.

We denote the Zariski closure of the image of fG,d by ℓd(G). Since the domain of fG,d is
irreducible, ℓd(G) is a variety. Note that two realisations p, q of G in Rd are equivalent if
and only if fG,d(p) = fG,d(q). Given O(d,C) is the group of d× d complex-valued matrices M
whereMTM =MMT = I, we define two realisations p, q ∈ (Cd)V to be congruent (denoted by
p ∼ q) if and only if there exists an A ∈ O(d,C) and x ∈ Cd so that pv = Aqv+x for all v ∈ V .
If the set of vertices of (G, p) affinely span Cd, we have the following equivalent statement: two
realisations p, q are congruent if and only if fKV ,d(p) = fKV ,d(q) (see [16, Section 10] for more
details). For all p ∈ (Cd)V , we define

Cd(G, p) := f−1
G,d(fG,d(p))/∼

to be the realisation space of (G, p).

7



3. Counting complex realisations

Our new definitions might look a little strange at first. For example, the elements of O(d,C)
are not isometries of Cd (i.e., they are not unitary matrices), although ∥Ax∥2 = ∥x∥2 for all
x ∈ Cd. However, our previous definitions of independence and rigidity can be encoded in
our new language of morphisms between complex spaces. We first recall that a morphism
f : X → Y between algebraic sets X ⊂ Cm and Y ⊂ Cn (i.e. the restriction of a polynomial
map Cm → Cn) is dominant if Y \ f(X) is contained in a Zariski closed proper subset of Y ;
see Appendix A for more details regarding dominant morphisms.

Lemma 3.1. Let G = (V,E) be any graph. Then the following are equivalent:

(i) G is d-independent.

(ii) The map fG,d is dominant.

(iii) ℓd(G) = CE.

Proof. By the definition of a dominant map, (ii) and (iii) are equivalent. The map fG,d is
dominant if and only if rank dfG,d(p) = |E| for some p ∈ (Cd)V (see Theorem A.1). If G is
d-independent then there exists a p ∈ (Rd)V such that rank dfG,d(p) = rankR(G, p) = |E|,
hence (i) implies (ii). Suppose that G is not d-independent; i. e., for each p ∈ (Rd)V we have
rank dfG,d(p) < |E|. Then the set X := {p ∈ (Cd)V : rank dfG,d(p) < |E|} is a Zariski closed
subset of (Cd)V that contains (Rd)V . Hence, X = (Cd)V , and (ii) implies (i) as required.

Let G = (V,E) be a graph with at least d+1 vertices and fix a sequence of d vertices v1, . . . , vd.
We now define the algebraic set

XG,d :=
{
p ∈ (Cd)V : [pvk ]j = 0 if j ≥ k

}
. (1)

(At certain points in the paper we use vertices w1, . . . , wd to define XG,d, which can be done
by replacing each vi with wi in the above definition.) We further note that XG,d has dimension

d|V | −
(
d+1
2

)
. Since XG,d is defined by a set of linear equations, it is irreducible. With this, we

define the morphism

f̃G,d : XG,d → ℓd(G), p 7→ fG,d(p),

i. e., the restriction of fG,d to the domain XG,d and the codomain ℓd(G).

Lemma 3.2. Let G = (V,E) be a graph with |V | ≥ d + 1, and fix a sequence of d vertices
v1, . . . , vd. For each realisation p ∈ (Cd)V , define the (d− 1)× (d− 1) symmetric matrix

G(p) :=

(pv2 − pv1)
T

...
(pvd − pv1)

T

 [pv2 − pv1 · · · pvd − pv1
]
.

Then there exists a realisation q ∈ XG,d congruent to p if G(p) only has non-zero leading
principal minors.2

2A leading principal minor (of order n) of a square matrix is the determinant of the matrix formed by taking
the first n rows and columns.

8



3. Counting complex realisations

The conditions stated in Lemma 3.2 seem rather bizarre, especially since no such conditions
are required if we restrict ourselves to real realisations. It is also rather easy to see they are not
necessary either: simply choose any realisation p ∈ XG,d where pvi = 0 for each i ∈ {1, . . . , d}.
To see why we need to be so cautious, take G = (V,E) to be the complete graph with 4 vertices
v1, v2, v3, v4, and let p be the 3-dimensional realisation of G where

pv1 = (0, 0, 0), pv2 = (1, 0, 0), pv3 = (2, 1, i), pv4 = (0, 1, 0).

In this specific case, there are no realisations in XG,d that are congruent to p. The framework
(G, p) also has the interesting properties that its vertices affinely span C3 and ∥pv − pw∥2 > 0
for every edge vw ∈ E. Since the matrix

G(p) =

[
1 0 0
2 1 i

]1 2
0 1
0 i

 =

[
1 2
2 4

]
has rank 1, our constructed realisation is not a counter-example to Lemma 3.2.

Proof. Fix p ∈ (Cd)V with the stipulated properties. With this, define p1 ∈ (Cd)V to be the
realisation where p1v = pv − pv1 for each v ∈ V . If d = 1 then p1 ∈ XG,1, so suppose that d ≥ 2.
We now observe that the matrix G(p1) = G(p). In fact, a much stronger statement is true: if
q is a congruent realisation then G(q) = G(p).

We now form the sequence of congruent realisations p1, . . . , pd in the following inductive way.
Fix n ∈ {2, . . . , d}, and suppose that p1, . . . , pn−1 have already been constructed such that
[pn−1

vk
]j = 0 if k ≤ min{j, n− 1}. For each k ∈ {1, . . . , d}, fix ek to be the vector with [ek]j = 1

if j = k and [ek]j = 0 otherwise. We observe here that the linear space spanned by the
vectors e1, . . . , en−2 contains the points pn−1

v2 , . . . , pn−1
vn−1

. Fix z to be the vector formed from

pn−1
vn by replacing its first n− 2 coordinates with zeroes. It is immediate that z · ej = 0 for all
j ∈ {1, . . . , n− 2}.
Suppose for contradiction that ∥z∥2 = 0, and fix y = pn−1

vn − z. Set A = [pn−1
v2 · · · pn−1

vn−1
]. The

determinant of ATA is the leading principal minor of order n − 2 of G(p) = G(pn−1), and so
is non-zero. Hence, the column span of A is exactly the linear space spanned by e1, . . . , en−2;
importantly, this implies that y is contained in the column span of A. The leading principal
minor of order n− 1 of G(p) = G(pn−1) is the determinant of the (n− 1)× (n− 1) matrix

B =

(p
n−1
v2 )T

...
(pn−1

vn )T

 [pn−1
v2 · · · pn−1

vn

]
=

[
ATA AT (y + z)

(y + z)TA (y + z)T (y + z)

]
=

[
ATA AT y
yTA yT y

]
=

[
AT

yT

] [
A y

]
.

As y is contained in the column span of A, the matrix [A y] has rank at most n− 2. However,
this implies detB = 0, contradicting our leading principal minor assumption for G(p). Hence,
∥z∥2 ̸= 0.

9



3. Counting complex realisations

Fix x := z/∥z∥2. Define the d × d matrix M̃ where M̃T = [e1 · · · en−2 x 0 · · · 0]. We note
that the matrix M̃ is an isometry (in the quadratic form sense) from the linear subspace of Cd

spanned by pn−1
v2 , . . . , pn−1

vn to the linear subspace Cn−1 × {0}d−n+1. By Witt’s theorem (see,

for example, [26, Theorem 11.15]), there exists a matrix M ∈ O(d,C) where Mpn−1
vj = M̃pn−1

vj

for each j ∈ {1, . . . , n}. With this we now fix pnv = Mpn−1
v for each v ∈ V . The result now

follows from completing the inductive argument and fixing q = pd.

The map f̃G,d allows us to more easily define the cardinality of the set Cd(G, p) for most
realisations p.

Lemma 3.3. Let G = (V,E) be a graph with |V | ≥ d + 1, and fix a sequence of d vertices
v1, . . . , vd. Then the image of f̃G,d is Zariski dense in the image of fG,d (and so f̃G,d is
dominant), and ∣∣∣f̃−1

G,d (fG,d(p))
∣∣∣ = 2d|Cd(G, p)|

for almost all3 p ∈ (Cd)V .

Proof. For every p ∈ (Cd)V , let G(p) be the matrix defined in the statement of Lemma 3.2.
With this, we fix the proper algebraic set

Z :=
{
p ∈ (Cd)V : G(p) has a zero leading principal minor, or p does not affinely span Cd

}
.

Since Z contains hypersurfaces in (Cd)V and Z ̸= (Cd)V it has dimension d|V | − 1. By
Lemma 3.2, the set fG,d((Cd)V \ Z) is a subset of the image of f̃G,d. Hence, the image of f̃G,d

is Zariski dense in the image of fG,d.

Since dim ℓd(G) = rank dfG,d(p) for any general realisation p ∈ (Cd)V , it follows from The-

orem 2.1 that G is d-rigid if and only if dim ℓd(G) = d|V | −
(
d+1
2

)
. Suppose that G is not

d-rigid. The extension of Theorem 2.1 to complex realisations gives that the set Cd(G, p) con-
tains infinitely many points for almost all realisations p; in particular, it can be used to prove
that for almost all p ∈ (Cd)V \ Z, there exists a sequence (pn)n∈N of realisations where pn

is not congruent to either pm or p for each m ̸= n, and pn → p as n → ∞ in the standard
complex norm for (Cd)V (note that this is an actual metric and not the quadratic form ∥ · ∥2).
An application of Lemma 3.2 to both p and each pn gives that f̃−1

G,d (fG,d(p)) also contains
infinitely many points as is required.

We now suppose that G is d-rigid, i. e., dim ℓd(G) = d|V |−
(
d+1
2

)
. We split the proof into three

cases.

(Case 1: fG,d(Z) is Zariski dense in ℓd(G) and |V | ≥ d+ 2.) In this case, the restriction
of the map fG,d to Z and ℓd(G), which we now denote by g : Z → ℓd(G), is dominant. Hence,
by Theorem A.1, there exists a non-empty Zariski open subset U ⊂ Z where

rank dg(p) = dim ℓd(G) = d|V | −
(
d+ 1

2

)
3Here we say that a property P holds for almost all points in Cn if there exists a Zariski open subset U ⊂ Cn

of points where property P holds, in which case we say that any point where property P holds is a general
point (with respect to P ).

10



3. Counting complex realisations

for each p ∈ U . Since rank dg(p) ≤ rank dfG,d(p), we have that rank dfG,d(p) = d|V |−
(
d+1
2

)
for

each p ∈ U . As Z has dimension d|V | − 1, it contains an irreducible component of dimension
d|V | − 1. It follows that the nullity of dg(p) is

(
d+1
2

)
− 1 for each p ∈ U . If q is congruent

to p ∈ Z then G(q) = G(p) and q is affinely spanning if and only if p is, hence Z is closed
under congruences. This implies that for each p ∈ U , the map from the affine congruences
of Cd to the corresponding congruent realisation of p in Z is not injective, as otherwise the
nullity of dg(p) would be at least

(
d+1
2

)
for each p ∈ U . Hence, any realisation in U cannot

affinely span Cd. The set of realisations of G that do not affinely span Cd is the intersection of
|V | − d ≥ 2 pairwise-distinct hypersurfaces, and so U is contained in a (d|V | − 2)-dimensional
subvariety in Z. However, this now contradicts that U is a non-empty Zariski open subset of
the (d|V | − 1)-dimensional algebraic set Z.

(Case 2: fG,d(Z) is not Zariski dense in ℓd(G) and |V | ≥ d + 2.) Fix the non-empty
Zariski open set

X :=
{
p ∈ XG,d : f̃G,d(p) is not contained in the closure of fG,d(Z)

}
.

Choose any p ∈ X. By Lemma 3.2, for each realisation p′ ∈ (Cd)V that is equivalent to p,
there exists some other realisation p′′ ∈ XG,d that is congruent to p′. Hence, it now suffices to
prove that p is congruent to exactly 2d realisations (including itself) in XG,d.

Choose any q ∈ XG,d congruent to p, and let A ∈ O(d,C) be the matrix that maps the vertices
of p to the vertices of q. As p, q ∈ XG,d, we have

k∑
n=1

Aj,n[pvk+1
]n = [qvk+1

]j = 0

for each 1 ≤ k < j ≤ d, hence Aj,k = 0 for each 1 ≤ k < j ≤ d. Since AT maps the vertices
of q to the vertices of p, we similarly have Aj,k = 0 for each 1 ≤ j < k ≤ d. As the vertices
of p linearly span Cd, the set f̃−1

G,d (fG,d(p)) is in one-to-one correspondence with the diagonal
orthogonal matrices. The set of diagonal orthogonal matrices is exactly the set of diagonal
matrices A where Aj,j = ±1 for each j ∈ {1, . . . , d}, hence there are 2d of them. This now
concludes the proof.

(Case 3: |V | = d + 1.) Since G is d-rigid, it can be easily verified that G must be the
complete graph on d+1 vertices. Furthermore, every element p ∈ (Cd)V \Z is only equivalent
to congruent realisations ([16, Corollary 8]), and each equivalent realisation is also contained
in (Cd)V \ Z. We now define X = XG,d \ Z and repeat the same technique as was utilised in
Case 2. This now concludes the proof.

3.2. Defining the d-realisation number

Before stating our next result, we require the following technical result regarding dominant
morphisms. The proof of this can be seen in Appendix A.

Theorem 3.4. Let X ⊂ Cm and Y ⊂ Cn be varieties and f : X → Y be a dominant morphism.
Then the following are equivalent:

(i) dimX = dimY .

11



3. Counting complex realisations

(ii) f is generically finite, i.e., for a general y ∈ Y , the fibre f−1(y) is a finite set.

(iii) There exists a k ∈ N and a non-empty Zariski open subset U ⊂ X where |f−1(f(x))| = k
for all x ∈ U . Furthermore, if x ∈ U and x′ ∈ f−1(f(x)), then rank df(x′) = dimY .

Proposition 3.5. Let G = (V,E) be a graph with |V | ≥ d + 1. Then the following are
equivalent:

(i) G is d-rigid.

(ii) The map f̃G,d is generically finite.

(iii) There exists an n ∈ N and a non-empty Zariski open subset U ⊂ (Cd)V where |Cd(G, p)| =
n for all p ∈ U . Furthermore, if p ∈ U and q is an equivalent d-dimensional realisation
of G, then rank dfG,d(q) = d|V | −

(
d+1
2

)
.

Proof. By Lemma 3.3, the map f̃G,d is dominant. Since dim ℓd(G) = rank dfG,d(p) for any
general realisation p ∈ (Cd)V , it follows from Theorem 2.1 that G is d-rigid if and only if

dim ℓd(G) = d|V | −
(
d+ 1

2

)
= dimXG,d.

The result now holds by applying Theorem 3.4 to the map f̃G,d.

Using Proposition 3.5 we can now make the following well-defined definition of the d-realisation
number for any graph.

Definition 3.6. The d-realisation number of a graph G = (V,E) is an element of N ∪ {∞}
given by

cd(G) :=


|Cd(G, p)| for a general realisation p ∈ (Cd)V if |V | ≥ d+ 1,

1 if |V | ≤ d and G is complete,

∞ if |V | ≤ d and G is not complete.

It follows from Proposition 3.5 that a graph G is d-rigid if and only if cd(G) <∞.

We can relate the d-realisation number back to real realisations so long as we allow for equiv-
alent complex realisations when counting. We first require the following technical lemma.

Lemma 3.7. If U is a non-empty Zariski open subset of Cn, then U ∩ Rn is a non-empty
Zariski open subset of Rn.

Proof. For a field F ∈ {R,C}, we fix F[Xn] to be the set of all n-variable polynomials over F.
Define the ideal

F := {f ∈ C[Xn] : f(p) = 0 for all p /∈ U}.

Since U is a Zariski open set, the zero set

Z(F ) := {p ∈ Cn : f(p) = 0 for all f ∈ F}

12



3. Counting complex realisations

is a Zariski closed set and the complement of U . As U is non-empty we immediately have
that F ̸= {0}. For each f ∈ F , there exist two unique polynomials fR, fI ∈ R[Xn] such that
f = fR+ifI : to see this, note that there exists a finite subset A ⊂ Zn

≥0 and real values ax, bx for
each x ∈ A such that f(p) =

∑
x∈A(ax+ibx)p

x (here px = px1
1 · · · pxn

n for each x = (x1, . . . , xn)),
and so fR(p) =

∑
x∈A axp

x and fI(p) =
∑

x∈A bxp
x. For each p ∈ Rn we note that f(p) = 0 if

and only if fR(p) = fI(p) = 0. Fix FR := {fR : f ∈ F} and FI := {fI : f ∈ F}, and for every
set of (real or complex) polynomials S ⊂ C[Xn] fix ZR(S) := {p ∈ Rn : f(p) = 0 for all f ∈ S}.
Then ZR(F ) = ZR(FR) ∩ ZR(FI). Hence, the set ZR(F ) is a Zariski closed subset of Rn since
ZR(FR) and ZR(FI) are Zariski closed subsets of Rn. Furthermore, the set ZR(F ) is a proper
Zariski closed subset of Rn: this follows from the observing the equivalence

ZR(F ) = Rn ⇔ FR = FI = {0} ⇔ F = {0},

with the latter property contradicting our previous observation that F ̸= {0}. The result now
holds as U ∩ Rn = Rn \ ZR(F ).

Corollary 3.8. For each graph G = (V,E), there exists a non-empty Zariski open subset
UR ⊂ (Rd)V of real d-dimensional realisations p where |Cd(G, p)| = cd(G).

Proof. The result is trivial if G is complete and |V | ≤ d. If G is not d-rigid then cd(G) = ∞
and the result holds by Theorem 2.1. If G is d-rigid with |V | ≥ d+1 then we fix U ⊂ (Cd)V to
be the set defined in Proposition 3.5 and define UR := U ∩ (Rd)V . The set UR is now a Zariski
open subset of (Rd)V by Lemma 3.7.

It is important to note that Corollary 3.8 does not guarantee that every other equivalent re-
alisation in Cd(G, p) is also real. In fact we note that this is often not the case. For example,
any minimally d-rigid graph with a vertex of degree d must have general d-dimensional reali-
sations with complex equivalent realisations: this realisation can be chosen in a similar way to
the right realisation pictured in Figure 1. Failing this, it is then natural to ask whether each
graph G has at least one real generic d-dimensional realisation p where every other equivalent
realisation in Cd(G, p) is also real. It was proven in [23] that this too is false when d = 2. It
does, however, remain open whether the statement is false when d > 2. For more on the topic
of equivalent real realisations for a graph, see [3].

When d = 1, it is relatively easy to compute the realisation number of a graph. We first require
the following terminology. A connected graph is biconnected if it has at least 2 vertices and
the removal of any vertex will always produce a connected graph. We remark that the set of
biconnected graphs is exactly the set of 2-connected graphs with the addition of the complete
graph with two vertices. Given a graph G = (V,E), we say that a subset F ⊂ E is a biconnected
component of G if the subgraph H = (V [F ], F ) induced by F is biconnected and no subgraph
of G containing H that is not H itself is biconnected. The biconnected components of a graph
form a partition of its edge set.

Proposition 3.9. Let G be a graph and fix k to be the number of biconnected components of
G. Then c1(G) < ∞ if and only if G is connected. If G is connected with at least one edge
then c1(G) = 2k−1.
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4. Counting realisations on a complex sphere

Proof. If we glue two connected graphs H1 and H2 at exactly one vertex to form a graph H
then c1(H) = 2c1(H1)c1(H2). The result now follows from the observation that c1(G) = 1 if
G is biconnected.

As the number of biconnected components of a graph can be computed in linear time [21],
it follows that there exists a linear time algorithm for computing c1(G). The current fastest
deterministic algorithm for computing c2(G) when G is minimally 2-rigid runs in exponential
time [10]. There are no other known deterministic algorithms for computing cd(G) outside of
restricting to specific families of graphs (e.g., chordal graphs).

4. Counting realisations on a complex sphere

Our aim in this section is to prove that the definition of the spherical d-realisation number
alluded to in the introduction can be stated in a rigorous manner (see Definition 4.5).

4.1. Complex spherical rigidity map

We define

SdC :=
{
x ∈ Cd+1 : ∥x∥2 = 1

}
to be the complexification of the d-dimensional (unit) sphere. As SdC is a smooth connected
variety (and hence irreducible), so too is (SdC)V for any finite set V . Like how we chose to
consider a larger set of realisations by switching from (Rd)V to (Cd)V , we now consider spherical
realisations in SdC by extending the set (Sd)V to the set (SdC)V . Any spherical realisation in
p ∈ (Sd)V is now said to be a real spherical realisation. At a spherical realisation p ∈ (SdC)V ,
the linear space

Tp(SdC)V :=
{
x ∈ (Cd+1)V : xv · pv = 0 for all v ∈ V

}
is the tangent space of (SdC)V at p.

For any graph G = (V,E) we define the complex spherical rigidity map to be the map

sG,d : (SdC)V → CE , p 7→
(
1

2
∥pv − pw∥2

)
vw∈E

= (1− pv · pw)vw∈E .

We denote the Zariski closure of the image of sG,d by ℓ∗d(G). Since the domain of sG,d is
irreducible, ℓ∗d(G) is a variety. The derivative of sG,d at a point p ∈ (SdC)V can be seen to be
the linear map

dsG,d(p) : Tp(SdC)V → CE , x 7→ ((pv − pw) · (xv − xw))vw∈E = (−(pv · xw + pw · xv))vw∈E .

We define two realisations p, q ∈ (SdC)V to be congruent (denoted by p ∼ q) if and only if
p = Aq for some A ∈ O(d + 1,C). If the vertex set of p linearly spans Cd+1, then two
realisations p, q are congruent if and only if sKV ,d(p) = sKV ,d(q). For all p ∈ (Sd

C)
V , we define

C∗
d(G, p) := s−1

G,d(sG,d(p))/∼ to be the spherical realisation space of (G, p).

We can link the infinitesimal properties of rigidity in Cd and in SdC with the following result.
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4. Counting realisations on a complex sphere

Lemma 4.1. Let p ∈ (Cd)V and q ∈ (SdC)V be such that [qv]d+1 ̸= 0 and [pv]i = [qv]i/[qv]d+1

for all v ∈ V and i ∈ {1, . . . , d}. Then rank dfG,d(p) = rank dsG,d(q).

Proof. Define the bijective linear map

φ : Tq(SdC)V → (Cd)V , x 7→
(

[xv]1
[qv]d+1

, . . . ,
[xv]d
[qv]d+1

)
v∈V

.

For any u ∈ Tq(SdC)V we have

(pv − pw) · (φ(u)v − φ(u)w)

=
d∑

i=1

[qv]i[uv]i
[qv]2d+1

+
[qw]i[uw]i
[qw]2d+1

− [qv]i[uw]i + [qw]i[uv]i
[qv]d+1[qw]d+1

= − [qv]d+1[uv]d+1

[qv]2d+1

− [qw]d+1[uw]d+1

[qw]2d+1

+
[qv]d+1[uw]d+1 + [qw]d+1[uv]d+1

[qv]d+1[qw]d+1
− qv · uw + qw · uv

[qv]d+1[qw]d+1

= −qv · uw + qw · uv
[qv]d+1[qw]d+1

.

It follows that u ∈ ker dsG,d(q) if and only if φ(u) ∈ ker dfG,d(p). As φ is bijective, we have
rank dfG,d(p) = rank dsG,d(q) as required.

From Lemma 4.1 we know that a graph is rigid (respectively, independent) in Rd if and only
if it is rigid (respectively, independent) in Sd. Due to this, we can obtain an analogue of
Lemma 3.1 for the map sG,d.

Lemma 4.2. Let G = (V,E) be any graph. Then the following are equivalent:

(i) G is d-independent.

(ii) The map sG,d is dominant.

(iii) ℓ∗d(G) = CE.

Proof. By the definition of a dominant map, (ii) and (iii) are equivalent. Hence, we only
need to prove that (i) and (ii) are equivalent. By Lemma 3.1, we only need to show that
sG,d is dominant if and only if fG,d is dominant. This is equivalent to proving the following:
there exists p ∈ (Cd)V with rank dfG,d(p) = |E| if and only if there exists a q ∈ (SdC)V with
rank dsG,d(p) = |E| (see Theorem A.1). Hence, the result holds by Lemma 4.1.

4.2. Defining the spherical d-realisation number

Let G = (V,E) be a graph with at least d+1 vertices and fix a sequence of d vertices v1, . . . , vd.
We now define the algebraic set

YG,d :=
{
p ∈ (SdC)V : [pvk ]j = 0 if j ≥ k + 1 and [pv1 ]1 = 1

}
(2)

Since YG,d is a connected smooth manifold, it is irreducible. We further note that YG,d has

dimension d|V | −
(
d+1
2

)
. With this, we define the morphism

s̃G,d : YG,d → ℓ∗d(G), p 7→ sG,d(p),
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i. e., the restriction of sG,d to the domain YG,d and the codomain ℓ∗d(G). Since every d-
dimensional realisation of G is equivalent to at least one element of YG,d it follows that s̃G,d is
a dominant map.

The methods utilised in Lemma 3.3 can easily be adapted to work for realisations in the
d-dimensional sphere.

Lemma 4.3. Let G = (V,E) be a graph with |V | ≥ d + 1, and fix a sequence of d vertices
v1, . . . , vd. Then the image of s̃G,d is Zariski dense in the image of sG,d (and so s̃G,d is
dominant), and ∣∣∣s̃−1

G,d (sG,d(p))
∣∣∣ = 2d|C∗

d(G, p)|

for almost all p ∈ (SdC)V .

The spherical version of Proposition 3.5 is also proved in an analogous way.

Proposition 4.4. Let G = (V,E) be a graph with |V | ≥ d + 1. Then the following are
equivalent:

(i) G is d-rigid.

(ii) The map s̃G,d is generically finite.

(iii) There exists an n ∈ N and a non-empty Zariski open subset U ⊂ (SdC)V where |C∗
d(G, p)| =

n for all p ∈ U . Furthermore, if p ∈ U and q is an equivalent d-dimensional spherical
realisation of G, then rank dsG,d(q) = d|V | −

(
d+1
2

)
.

Using Proposition 4.4 we can now make the following well-defined definition of the spherical
d-realisation number for a minimally d-rigid graph.

Definition 4.5. The spherical d-realisation number of a graph G = (V,E) is an element of
N ∪ {∞} given by

c∗d(G) :=


|C∗

d(G, p)| for a general realisation p ∈ (SdC)V if |V | ≥ d+ 1,

1 if |V | ≤ d and G is complete,

∞ if |V | ≤ d and G is not complete.

It follows from Proposition 4.4 that a graph G is d-rigid if and only if cd(G) <∞. It is worth
noting that, while c∗d(G) < ∞ if and only if cd(G) < ∞, this does not mean the two numbers
are always equal. This can be seen in the following example.

Example 4.6. We consider the 3-prism graph. It is minimally 2-rigid with six vertices, all
of which have degree three. For this graph we have c2(G) = 12, which can be computed
with the algorithm described in [10]. In fact, there exist edge-length assignments for which
we also obtain exactly 12 real realisations (see Figure 2). However, the same graph embedded
on the sphere gives c∗2(G) = 16, which can be computed by the algorithm described in [14].
Again there exist edge-length assignments such that each realisation is real (see Figure 3).
(Both algorithms use the alternative definitions for realisation numbers and so the outputted
numbers first need to be halved.)
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The natural analogue of Corollary 3.8 also holds for spheres by a similar method.

Corollary 4.7. For each graph G = (V,E), there exists a non-empty Zariski open subset
UR ⊂ (Sd)V of real d-dimensional spherical realisations p where |C∗

d(G, p)| = c∗d(G).

Remark 4.8. It is currently open whether every graph G has a real generic d-dimensional
spherical realisation that is equivalent (modulo congruences) to exactly c∗d(G) real spherical
realisations. The counter-example used in the previous section for real realisations in the plane
required the existence of a graph H where c2(H) is odd. Similarly, any graph G where c∗2(G)
is odd would be a counter-example to the result, however no such graph has yet been found.

We finish the section by observing that the spherical realisation number is always equal to the
realisation number when d = 1, which can be proven using the same method as Proposition 3.9.

Proposition 4.9. For any graph G we have c∗1(G) = c1(G).

Remark 4.10. All of the results in this section can be extended from the sphere to the light
cone of any pseudo-Euclidean space. To be specific, we define for each 1 ≤ k ≤ d the quadratic
form

qd,k : Cd+1 → C, (x0, . . . , xd) 7→
k∑

j=0

x2j −
d∑

j=k+1

x2j ,

and we define the light cone

Hd,k :=
{
x ∈ Cd+1 : qd,k(x) = 0

}
.

The map

T : Hd,k → Hd,d, (x0, . . . , xd) 7→ (x0, . . . , xk, ixk+1, . . . , xd)

is an isometry (in the sense that qd,d(T (x) − T (y)) = qd,k(x − y)), and the space Hd,d is
isomorphic to SdC. Hence, the realisation number of a graph G in any space Hd,k is equal to
c∗d(G). Notably, the hyperbolic realisation number of a graph (equivalently, the space Hd,d−1)
is equal to the spherical realisation number of a graph.

5. Coning and the spherical realisation number

In this section we prove Theorem 1.2 by observing that the number of realisations of a frame-
work is projectively invariant (Lemma 5.1). We then prove that cd(G ∗ o) = c∗d(G ∗ o) for any
coned graph G ∗ o (Theorem 5.2).
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5.1. Proof of Theorem 1.2

Throughout this subsection we fix the vertices used to define our various varieties in the
following way. Let G = (V,E) be a graph with |V | ≥ d + 1 and let G ∗ o be its cone. We fix
the vertices v1, . . . , vd ∈ V to define the set XG,d as given in (1). From this, we fix the set

XG∗o,d+1 =
{
p′ ∈ (Cd+1)V ∗o : p′o = 0, [p′vk ]j+1 = 0 if k ≤ j ≤ d

}
.

(This is equivalent to defining the set XG∗o,d+1 as in (1) with the vertices w1, . . . , wd+1 by
setting w1 = o and wj+1 = vj for all j = 1, . . . , d.) We also assume that the fixed vertices
v1, . . . , vd used to define XG,d and YG,d (see (2)) are always identical.

Lemma 5.1. Given a graph G = (V,E) with |V | ≥ d+ 1, choose any p ∈ YG,d and (rv)v∈V ∈
(C \ {0})V . Define p′ ∈ XG∗o,d+1 with p′v = (rvpv, 0) for each v ∈ V and p′o = 0. Then∣∣∣f̃−1

G∗o,d+1

(
f̃G∗o,d+1(p

′)
)∣∣∣ = 2

∣∣∣s̃−1
G,d

(
s̃G,d(p)

)∣∣∣ .
Proof. Define λ := s̃G,d(p) = (1− pv · pw)vw∈E and λ′ := f̃G∗o,d+1(p

′). We first note that for
any vw ∈ E we have

λ′vw =
1

2
∥p′v − p′w∥2 =

1

2
∥p′v∥2 +

1

2
∥p′w∥2 − p′v · p′w = λ′ov + λ′ow + (rvrw)(λvw − 1). (3)

Define S ⊂ f̃−1
G∗o,d+1(λ

′) to be the set of realisations q′ ∈ XG∗o,d+1 where [q′v1 ]1 = rv1 . Note

that for each q′ ∈ f̃−1
G∗o,d+1(λ

′) we have that

[q′v1 ]
2
1 = ∥q′v1∥

2 = ∥q′v1 − q′o∥2 = ∥p′v1 − p′o∥2 = ∥rv1pv1∥2 = r2v1 ;

the first equality follows from q′ ∈ XG∗o,d+1, the second from ov1 ∈ E ∗ o, the third from
f̃G∗o,d+1(q

′) = f̃G∗o,d+1(p
′), the fourth from the construction of p′ from p, and the last from

p ∈ YG,d. Hence, if q′ ∈ f̃−1
G∗o,d+1(λ

′) \ S then we have [q′v1 ]1 = −rv1 , and so −q′ ∈ S, since As

S ∩ (−S) = ∅ and S ∪ (−S) = f̃−1
G∗o,d+1(λ

′), we have that |f̃−1
G∗o,d+1(λ

′)| = 2|S| (note that this

cardinality need not be finite). It now suffices to prove that |s̃−1
G,d(λ)| = |S|.

Choose any q ∈ s̃−1
G,d(λ) and define q′ ∈ XG∗o,d+1 by setting q′o = 0 and q′v = rvqv for each

v ∈ V . It is immediate that [q′v1 ]1 = rv1 and 1
2∥q

′
v∥2 = λ′ov. For each vw ∈ E we have

1

2
∥q′v − q′w∥2 =

1

2
∥q′v∥2 +

1

2
∥q′w∥2 − q′v · q′w

= λ′ov + λ′ow + (rvrw)(λvw − 1)
(3)
= λ′vw,

and so q′ ∈ S. Hence, |s̃−1
G,d(λ)| ≤ |S|.
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5. Coning and the spherical realisation number

Now choose any q′ ∈ S and define q ∈ (Cd+1)V by setting qv = q′v/rv for each v ∈ V . We first
note that ∥qv∥2 = ∥q′v − q′o∥2/r2v = 1 for each v ∈ V , hence q ∈ YG,d. For each vw ∈ E we have

qv · qw =
q′v · q′w
rvrw

=
∥q′v∥2 + ∥q′w∥2 − ∥q′v − q′w∥2

2rvrw

=
λ′ov + λ′ow − λ′vw

rvrw
(3)
= 1− λvw,

and so q ∈ s̃−1
G,d(λ). Hence, |S| ≤ |s̃−1

G,d(λ)|.

A nice corollary of Lemma 5.1 is that the set Cd+1(G ∗ o, p) is projectively invariant, in the
sense that projecting each point pv along the complex line through the points {pv, po} by a
non-zero complex scalar does not alter the number of equivalent realisations.

We are now ready to prove our first main theorem.

Proof of Theorem 1.2. If G = (V,E) is not d-rigid then the result follows from Theorem 2.3. If
|V | ≤ d and G is complete then |V ∗o| ≤ d+1 and G∗o is complete, and so cd+1(G∗o) = c∗d(G).
Suppose that G = (V,E) is d-rigid with |V | ≥ d+ 1. As G is d-rigid, the coned graph G ∗ o is
(d+ 1)-rigid by Theorem 2.3. By Lemma 3.3 and Proposition 3.5, there exists a Zariski open
set U ′ ⊂ (Cd+1)V ∗o such that∣∣∣f̃−1

G∗o,d+1

(
f̃G∗o,d+1(p

′)
)∣∣∣ = 2d+1cd+1(G ∗ o) (4)

for all p′ ∈ U ′. Similarly, it follows from Lemma 4.3 and Proposition 4.4 that there exists a
Zariski open set U ⊂ (SC)d such that∣∣∣s̃−1

G,d

(
s̃G,d(p)

)∣∣∣ = 2dc∗d(G) (5)

for all p ∈ U . Fix U∗ := U × (C \ {0})V . Since U∗ is a Zariski open subset of the variety
YG,d × CV , it is an open and dense subset of YG,d × CV with respect to the metric topology.
Similarly, since U ′ is a Zariski open subset of the variety XG∗o,d+1, it is an open and dense
subset of XG∗o,d+1 with respect to the metric topology.

Define the surjective (and hence dominant) morphism

ϕ : YG,d × CV → XG∗o,d+1,

where, given p′ = ϕ(p, r), we have p′v = rvpv for all v ∈ V and p′o = 0. As ϕ is dominant and
dimYG,d ×CV = dimXG∗o,d+1, it follows from Theorem 3.4 and the inverse mapping theorem
for holomorphic maps (see [13, Theorem 7.5]) that the image of any open dense subset of
YG,d × CV (with respect to the metric topology) contains an open subset of XG∗o,d+1 (with
respect to the metric topology). Hence, the set ϕ(U∗) has a non-empty interior with respect
to the metric topology of XG∗o,d+1. Since U

′ is an open dense subset of XG∗o,d+1 with respect
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5. Coning and the spherical realisation number

to the metric topology, ϕ(U∗) ∩U ′ contains a realisation p′. Choose p ∈ U and r ∈ (C \ {0})V
such that ϕ(p, r) = p′. By (4) and (5) and Lemma 5.1, we have that

2d+1cd+1(G ∗ o) =
∣∣∣f̃−1

G∗o,d+1

(
f̃G∗o,d+1(p

′)
)∣∣∣ = 2

∣∣∣s̃−1
G,d

(
s̃G,d(p)

)∣∣∣ = 2d+1c∗d(G),

and so c∗d(G) = cd+1(G ∗ o).

5.2. Repetitive coning stabilises realisation numbers

Our previous techniques of the section can be repurposed to prove the following interesting
result.

Theorem 5.2. Let d be a positive integer and let G ∗ o be a coning of a graph G. Then
cd(G ∗ o) = c∗d(G ∗ o).

Proof. If G has less than d vertices then the result is trivial, hence we may suppose that G has
at least d vertices. Let H = (V ′, E′) be the graph formed from G ∗ o by coning again, with
V ′ = V ∗ o∪ {o′} = V ∪ {o, o′}. By Theorem 1.2, it suffices to prove that cd(G ∗ o) = cd+1(H).
For our varieties XG∗o,d and XH,d+1, we fix v1 = o and choose d−1 other vertices v2, . . . , vd ∈ V
for G ∗ o, and we fix w1 = o′, w2 = o and wj+1 = vj for each j ∈ {2, . . . , d} for H.

For any realisation p ∈ XG∗o,d ofG∗o, define the realisation p′ ∈ XH,d+1 where p
′
o = (1, 0, . . . , 0)

and p′v = (12 , pv) for each v ∈ V . Choose any p̄ ∈ XH,d+1 that is equivalent to p
′. Since o and o′

are adjacent inH, we have that p̄o = ±p′o = (±1, 0, . . . , 0). Suppose that p̄o = p′o = (1, 0, . . . , 0).
For each v ∈ V we have∥∥p′v − p′o

∥∥2 − ∥∥p′v − p′o′
∥∥2 = ([p′v]1 − 1

)2 − [p′v]
2
1 = 0,

and so

0 = ∥p̄v − p̄o∥2 − ∥p̄v − p̄o′∥2 = ([p̄v]1 − 1)2 − [p̄v]
2
1 = −2[p̄v]1 + 1.

Hence, [p̄v]1 = 1/2 for all v ∈ V also. It now follows that there exists a realisation q ∈
f̃−1
G∗o,d(f̃G∗o,d(p)) such q′ = p̄. Hence, there exists a bijection from f̃−1

G∗o,d(f̃G∗o,d(p)) to the

subset of realisations in f̃−1
H,d+1(f̃H,d+1(p

′)) with the vertex o placed at (1, 0, . . . , 0). As the
remaining realisations can be obtained by a reflection in the hyperplane normal to (1, 0, . . . , 0),
we have |f̃−1

H,d+1(f̃H,d+1(p
′))| = 2|f̃−1

G∗o,d(f̃G∗o,d(p))| for every p ∈ XG,d.

Fix the set

Z :=
{
p′ ∈ XH,d+1 : p

′
o = (1, 0, . . . , 0), p′v = (1/2, pv) for each v ∈ V

}
and define the bijective map ψ : XG∗o,d → Z that maps p to its unique realisation p′ as defined
above. Next, fix the dominant map ϕ : Z×CV ∗o → XH,d+1 where, given p′′ = ϕ(p′, r), we have
p′v = rvpv for all v ∈ V ∗ o. Now choose a non-empty Zariski set U ⊂ XG∗o,d where

|f̃−1
G∗o,d(f̃G∗o,d(p))| = 2dcd(G ∗ o)
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6. Proof of Theorem 1.1

for each p ∈ U (Lemma 3.3). Note that the set ψ(U) is a non-empty Zariski open subset of Z.
By our previous work we have that for each p′ ∈ ψ(U) we have

|f̃−1
H,d+1(f̃H,d+1(p

′))| = 2|f̃−1
G∗o,d(f̃G∗o,d(p))| = 2d+1cd(G ∗ o).

Since the set ψ(U)×(C\{0})V ∗o is a non-empty Zariski open set, its image under the dominant
map ϕ is a Zariski dense subset of XH,d+1. It now follows from Lemma 5.1 that there exists a
Zariski dense subset U ′ ⊂ XH,d+1 where for each q ∈ U ′ we have

|f̃−1
H,d+1(f̃H,d+1(q))| = 2d+1cd(G ∗ o).

Hence, by Lemma 3.3 we have cd+1(H) = cd(G ∗ o) as required.

By combining Theorems 1.2 and 5.2, we obtain the following immediate corollary.

Corollary 5.3. Let H be a graph formed from a graph G by performing k > 0 coning opera-
tions. Then cd+k(H) = c∗d+k(H) = c∗d(G).

6. Proof of Theorem 1.1

Using Theorem 1.2, we can prove Theorem 1.1 by instead proving that cd(G) ≤ cd+1(G ∗ o).
Because of this, we need to be able to evaluate d-dimensional realisations of G and (d + 1)-
dimensional realisations of G ∗ o at the same time. One way of considering this is by fixing
the cone vertex at the point at infinity so that the distance constraints between the cone
vertex and all other vertices becomes a set of linear constraints forcing the vertices into a
d-dimensional hyperplane. With this general idea in mind, we begin to construct such a space
and the resulting variant of the rigidity map that comes from it.

We begin with the following prototype function that we will improve to give our required map.
For any graph G with vertex u, fix hu to be the morphism

hu : (C(d+1))V × C → CV \{u}, (p, r) 7→
(r
2
∥pv∥2 − [pv]d+1

)
v∈V \{u}

.

The map hu can be used to check for equivalent realisations for the coned graph when we
invert the last coordinate of the cone vertex.

Lemma 6.1. Let p, q be two realisations of G ∗ o in Cd+1 with pu = qu = 0 for some u ∈ V ,
[po]j = [qo]j = 0 for each j ∈ {1, . . . , d} and [po]d+1 = [qo]d+1 ̸= 0. Given r := 1/[po]d+1, then
fG∗o,d+1(p) = fG∗o,d+1(q) if and only if fG,d+1(p|V ) = fG,d+1(q|V ) and hu(p|V , r) = hu(q|V , r).

Proof. For each v ∈ V we have

1

2
∥pv − po∥2 =

1

2
∥pv∥2 − pv · po +

1

2
∥po∥2

=
1

2
∥pv∥2 −

1

r
[pv]d+1 +

1

2r2

=
1

r
hu(p|V , r)v +

1

2r2
,

and similarly ∥qv − qo∥2 = 1
rhu(q|V , r)v +

1
2r2

. Hence, fG∗o,d+1(p) = fG∗o,d+1(q) if and only if
fG,d+1(p|V ) = fG,d+1(q|V ) and hu(p|V , r) = hu(q|V , r).
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6. Proof of Theorem 1.1

For the remainder of the section we fix G = (V,E) to be a d-rigid graph with |V | ≥ d+1, and
we also fix the distinct vertices v1, . . . , vd of G. We first need to reformat XG∗o,d+1. Define the

((d+ 1)(|V ∗ o|)−
(
d+2
2

)
)-dimensional linear space

X ′
G∗o,d+1 :=

{
p ∈ (Cd+1)V ∗o : [pv1 ]d+1 = 0, [po]k = 0, [pvk ]j = 0 for all 1 ≤ k ≤ j ≤ d

}
.

Importantly, this space forces the vertex v1 to lie on the origin and the cone vertex o to lie on
the (d+1)-axis. We can link our new space X ′

G∗o,d+1 with our previously used space XG∗o,d+1

(see (1)) by the bijective linear map L : X ′
G∗o,d+1 → XG∗o,d+1 where, given q = L(p), we

have [qv]1 = [pv]d+1 − [po]d+1 and [qv]j = [pv]j−1 − [po]d+1 for each j ∈ {2, . . . , d + 1}. Hence,
any result that uses the space XG∗o,d+1 can be easily replaced by a result that uses the space
X ′

G∗o,d+1; for example, general realisations in X ′
G∗o,d+1 have identical properties to general

realisations in XG∗o,d+1.

Next, we define the ((d+ 1)|V | −
(
d+2
2

)
+ d)-dimensional linear space

ZG,d+1 :=
{
p ∈ (Cd+1)V : [pv1 ]d+1 = 0, [pvi ]j = 0 for all i, j ∈ {1, . . . , d}, j ≥ i

}
.

Note that the space XG,d embeds into ZG,d+1 under the injective linear map

λ : XG,d → ZG,d+1

where, given q = λ(p) and a vertex v ∈ V , we have that [qv]j = [pv]j for each j ∈ {1, . . . , d}
and [qv]d+1 = 0. Let

ϕ : ZG,d+1 × (C \ {0}) → X ′
G∗o,d+1

be the injective open map where, given ϕ(p, r) = q, we have qv = pv for all v ∈ V and
qo = (0, . . . , 0, 1/r). The only realisations in X ′

G∗o,d+1 not contained in the image of ϕ are
those of the form p with [po]d+1 = 0.

With all of these spaces defined, we are now ready to define our main morphism:

g : ZG,d+1 × C → CE × CV \{v1} × C, (p, r) 7→ (fG,d+1(p), hv1(p, r), r) .

As proven by our next result, the map g is effectively identical in behaviour to f̃G∗o,d+1 over
the realisations in the image of ϕ.

Lemma 6.2. For any p, q ∈ X ′
G∗o,d+1 where [po]d+1, [qo]d+1 ̸= 0, the following are equivalent:

(i) fG∗o,d+1(p) = fG∗o,d+1(q).

(ii) g ◦ ϕ−1(p) = g ◦ ϕ−1(q), or g ◦ ϕ−1(p) = g ◦ ϕ−1(−q).
Hence, |f̃−1

G∗o,d+1(fG∗o,d+1(p))| = 2|g ◦ ϕ−1(p)|.

Proof. It follows from our construction of X ′
G∗o,d+1 that [po]d+1 = ±[qo]d+1 ̸= 0. The result

now follows from Lemma 6.1.

With our new set-up, any point (p, 0) will, in some sense, behave like a realisation of the coned
graph G ∗ o with the coned vertex “placed at infinity”. It also forces a subset of such points
(i.e., those where p is flat in the hyperplane Cd×{0}) to act like they are one dimension lower
(minus the coned vertex). In fact, the map g shares many properties with the map fG,d when
we restrict to a certain subset of elements of ZG,d+1 × C.
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6. Proof of Theorem 1.1

Lemma 6.3. Let p̃ ∈ XG,d be a general realisation of G. Fix p = λ(p̃) ∈ ZG,d+1. Then the
following properties hold.

(i) For each (q, r) ∈ g−1(g(p, 0)) we have r = 0, fG,d+1(q) = fG,d+1(p) and [qv]d+1 = 0 for
each v ∈ V .

(ii) For each q̃ ∈ XG,d where fG,d(q̃) = fG,d(p̃), we have g(λ(q̃), 0) = g(p, 0).

(iii) |f̃−1
G,d(fG,d(p̃))| = |g−1(g(p, 0))|.

(iv) For every (q, r) ∈ ZG,d+1 × C we have rank dg(p, 0) ≥ rank dg(q, r).

(v) For every (q, r) ∈ g−1(g(p, 0)), the left kernels of dg(q, r) and dg(p, 0) are identical.

Proof. (i): As g(q, r) = g(p, 0), we have that r = 0 and fG,d+1(q) = fG,d+1(p). Hence,

hv1(q, 0) = hv1(q, r) = hv1(p, 0) = 0,

with the latter equality holding since [pv]d+1 = 0 for all v ∈ V . Since hv1(q, 0) = 0, it now
follows that [qv]d+1 = 0 for each v ∈ V \ {v1}. The equality [qv1 ]d+1 = 0 also holds since
q ∈ ZG,d+1.

(ii): This follows immediately from the observation that fG,d(q̃) = fG,d+1(λ(q)) and fG,d(p̃) =
fG,d+1(p).

(iii): This follows from points (i) and (ii) and the observation that λ is a bijection between
realisations in XG,d and realisations in ZG,d where the (d+ 1)-th coordinate of each vertex is
zero.

(iv): For any (q, r) ∈ ZG,d+1×C, the Jacobian of g at (q, r) will be a (|E|+|V |)×((d+1)|V |+1)
matrix of the form

dg(q, r) =

dfG,d+1(q) 0|E|×1

A
(
1
2∥qv∥

2
)
v∈V \{v1}

01×(d+1)|V | 1

 ,
where 01×(d+1)|V | is the 1 × (d + 1)|V | all zeroes matrix and A is the (|V | − 1) × (d + 1)|V |
matrix where for the (v, (w, i)) entry (with v ∈ V \ {v1} and (w, i) ∈ V × {1, . . . , d + 1}) we
have

Av,(w,i) =


r[qv]i if w = v, i ≤ d

r[qv]d+1 − 1 if w = v, i = d+ 1

0 otherwise.

Note that the rank of dg(q, r) must satisfy the following upper bound:

rank dg(q, r) ≤ dim(ZG,d+1 × C) = (d+ 1)|V ∗ o| −
(
d+ 2

2

)
. (6)

Now we observe the Jacobian of g when (q, r) = (p, 0). By moving all columns of dg(p, 0) that
correspond to the (d+ 1)-th coefficients of the vertices to the right, we obtain the matrix dfG,d(p̃) 0|E|×1 0|E|×|V |

0(|V |−1)×1 (12∥pv∥
2)v∈V \{v1} −I|V |−1

01×(d+1)|V | 1 01×|V |

 , (7)
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6. Proof of Theorem 1.1

where I|V |−1 is the (|V | − 1) × (|V | − 1) identity matrix. Since p̃ is a general realisation of a
d-rigid graph, we have that

rank dg(p, 0) = rank dfG,d(p̃) + |V | = d|V | −
(
d+ 1

2

)
+ |V | = (d+ 1)|V ∗ o| −

(
d+ 2

2

)
. (8)

By combining (6) and (8), we have that the derivative of g has maximal rank at (p, 0).

(v): It follows from (i) that r = 0 and there exists q̃ ∈ XG,d where λ(q̃) = q and fG,d(q̃) =
fG,d(p̃). By reformatting the matrix dg(q, 0) into the same format as the matrix in (7), we
see that the left kernels of dg(q, 0) and dg(p, 0) agree if and only if left kernels of dfG,d(p̃)
and dfG,d(q̃) agree. Since p̃ is a general realisation, its image is a smooth point in the Zariski
closure ℓd(G) of the image of fG,d: indeed if this was not true then p̃ would be contained in
the preimage of a proper algebraic subset of ℓd(G) under the morphism fG,d, contradicting
that it is a general realisation. It follows from the inverse mapping theorem for holomorphic
maps (see for example [13, Chapter I, Theorem 7.5]) that the tangent space of ℓd(G) at fG,d(p̃)
(respectively, fG,d(q̃)) is exactly the left kernel of dfG,d(p̃) (respectively, dfG,d(q̃)). Since
fG,d(p̃) = fG,d(q̃), the left kernels of dfG,d(p̃) and dfG,d(q̃) are equal. This now concludes the
proof.

Lemmas 6.2 and 6.3 indicate that our map g can be used to consider both the d-realisation
number of G and the (d+1)-realisation number of G∗o by observing the fibres of either specific
or general elements of the domain of g respectively. Our next lemma allows us to compare the
fibre sizes of these two types of elements.

Lemma 6.4. Let f : Cm → Cn be a holomorphic map and let x ∈ Cn be a point in Cn where:

(i) |f−1(f(x))| <∞,

(ii) rank df(x) ≥ rank df(y) for all y ∈ Cm, and,

(iii) the left kernels of df(x) and df(z) are identical for all z ∈ f−1(f(x)).

Then there exists an open neighbourhood U ⊂ Cm of x (with respect to the metric topology for
Cn) where rank df(y) = rank df(x) and |f−1(f(x))| ≤ |f−1(f(y))| for all y ∈ U .

Proof. Label the points in f−1(f(x)) as x1, . . . , xk, with x1 = x. As a consequence of the
inverse mapping theorem for holomorphic maps (see for example [13, Chapter I, Theorem
7.5]), pairwise disjoint open sets U1, . . . , Uk ⊂ Cm and smooth manifolds V1, . . . , Vk ⊂ Cn so
that for each j ∈ {1, . . . , k} the following properties hold: (i) xj ∈ Uj , (ii) the set Vj is an
open neighbourhood of f(xj) in the image of f , (iii) the tangent space of Vj is the left kernel

of df(xj), and (iv) the restricted map f |Vj

Uj
is biholomorphic (i.e., invertible with holomorphic

inverse). Since the left kernel of each Jacobian df(xj) is identical, we may choose our sets so
that V1 = . . . = Vk. Choose any y ∈ U1. Since f |V1

U1
is biholomorphic, rank df(y) = rank df(x).

For each j ∈ {1, . . . , k}, we observe that, since Vj = V1, there exists a unique point yj ∈ Uj so
that f(yj) = f(y). As the sets U1, . . . , Uk are pairwise disjoint, |f−1(f(y))| ≥ k.

We are now ready to use the map g to prove our second main theorem of the paper.
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7. How and when do spherical and planar realisation numbers differ?

Proof of Theorem 1.1. By Theorem 1.2, it suffices to prove that cd(G) ≤ cd+1(G ∗ o). By
Theorem 2.3, it also suffices for us to prove the specific case where G is d-rigid (and hence G∗o
is (d+ 1)-rigid) with at least d+ 1 vertices. All notation we now use is in line with our prior
notation for the section.

Choose a general realisation p̃ ∈ XG,d of G and define p = λ(p̃) ∈ ZG,d+1. It follows from
Lemma 6.3(iv), Lemma 6.3(v) and Lemma 6.4 that there exists an open neighbourhood U ⊂
ZG,d+1 × C of (p, 0) (with respect to the metric topology) where for all (p′, r′) ∈ U we have
|g−1(g(p, 0))| ≤ |g−1(g(p′, r′))|. Since the map ϕ is an injective open map with dense image,
it follows that there exists a general realisation q ∈ X ′

G∗o,d+1 where ϕ(q) ∈ U . Hence, by
Lemma 6.2, Lemma 6.3(iii) and Lemma 3.3, we have that

2d+1cd(G) = 2|f̃−1
G,d(fG,d(p̃))|

= 2|g−1(g(p, 0))| ≤ 2|g−1(g(ϕ(q)))|
= |f̃−1

G∗o,d+1(fG∗o,d+1(q))|

= 2d+1cd+1(G ∗ o).

Thus cd(G) ≤ cd+1(G ∗ o) as required.

Remark 6.5. The map p 7→ |Cd(G, p)| has two important properties: (i) it is constant over
the set of general realisations, and (ii) it is locally minimized at every regular realisation of G.
Theoretically, any algebraic property that satisfies points (i) and (ii) will be amenable to the
techniques given in this section.

7. How and when do spherical and planar realisation numbers
differ?

In this section we compare the d-realisation number and spherical d-realisation numbers of
graphs using computational means. Since we are utilising computational methods, we will,
for the most part, restrict to results for minimally d-rigid graphs. The reason for this is two-
fold: (i) all known deterministic algorithms for computing realisation numbers require that the
graph is minimally 2-rigid, and (ii) Gröbner basis computational methods are too expensive
even for comparably small graphs.

A common operation we use in this section is the (d-dimensional) 0-extensions. This is the
graph operation where a new vertex is added to a graph and is set to be adjacent to exactly d
vertices of the original graph. It is well-known that, given a graph G and a graph G′ formed
from G by a d-dimensional 0-extension, the graph G′ is (minimally) d-rigid if and only if G
is (minimally) d-rigid (see for example [28, Proposition 5.1]). As can be seen by the following
result, this operation also behaves very well with realisation numbers. (See Appendix B for a
proof of this result.)

Lemma 7.1. If G′ is a 0-extension of a graph G, then cd(G
′) = 2cd(G) and c

∗
d(G

′) = 2c∗d(G).

In what follows we use the combinatorial algorithms from [10, 14] respectively their imple-
mentations [9, 15, 17]. Note again that the results from these computations are the double of
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the realisation numbers of what we consider in this paper. We include computations for all
minimally rigid graphs with at most 12 vertices. The respective numbers of realisations for
the plane can be found in [11].

7.1. Ratio of spherical to planar realisation numbers

In this subsection we evaluate the ratio of spherical d-realisation number to d-realisation num-
ber for minimally d-rigid graphs. We begin by first proving that the minimum possible ratio
is, due to our previous results, not an especially interesting value to look into.

Proposition 7.2. For any pair of positive integers n > d,

min{c∗d(G)/cd(G) : G is minimally d-rigid with n vertices} = 1.

Proof. By Theorem 1.1, the minimum for any given value of n is at least 1. Define Gd+1 to
be the complete graph with d + 1 vertices. Then cd(Gd+1) = c∗d(Gd+1) = 1. Now construct a
sequence Gd+1, Gd+2, . . . of minimally d-rigid graphs, whereby Gn+1 is formed from Gn by a
0-extension. It now follows from Lemma 7.1 that for each n > d we have cd(Gn) = c∗d(Gn) =
2n−d−1.

We now turn from the minimum of the ratio to its maximum. For any positive integers n > d,
define

θd(n) := max {c∗d(G)/cd(G) : G is minimally d-rigid with n vertices} .

Here things seem to be possibly more interesting. For example, it follows from Figures 2 and 3
that θ2(6) ≥ 16/12 = 4/3. In fact we have θ2(6) = 4/3, since every other minimally 2-rigid
graph G with 6 vertices has c∗2(G) = c2(G) = 8.

Our first easy observation about θd(n) is that it is increasing: this is an immediate corollary of
Lemma 7.1. Our next (slightly less easy) observation about θd(n) is that it is bounded above
by an exponential function.

Proposition 7.3. For each positive integer d, there exists a constant α ≥ 1 such that θd(n) =
O(αn).

Proof. As shown in [6], there exists a constant α > 1 such that

max {c∗d(G) : G is minimally d-rigid with n vertices} = O(αn).

Since cd(G) ≥ 1 for any minimally d-rigid graph G with at least d+ 1 vertices, it follows that
θd(G) = O(αn) also.

Following from Proposition 7.3, we define αd to be the infimum of all values α ≥ 1 such that
θd(n) = O(αn). By Proposition 7.2, we have αd ≥ 1 for any positive integer d. An immediate
corollary to Proposition 4.9 is that α1 = 1. To prove that αd > 1 for any d ≥ 2, it in fact
suffices to prove that θd(n) > 1 for some positive integer n.
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Proposition 7.4. Suppose that there exists a minimally d-rigid graph G where c∗d(G)/cd(G) >
1. Then αd > 1.

Proof. Fix H to be any minimally d-rigid graph where c∗d(H)/cd(H) > 1. If H has d vertices
or less then c∗d(H) = cd(H) = 1, thus H has at least d + 1 vertices and at least one edge.
Choose any edge v0v1 of H. Given H1 = H, we inductively define the graphs H1, . . . ,Hd by
constructing Hj+1 from Hj by adding a new vertex vj+1 adjacent to v0, . . . , vj and d − j − 1
other vertices. Now fix G := Hd. Since G is formed from H by a sequence of d-dimensional
0-extensions, it is also minimally d-rigid. By Lemma 7.1 we have that

c∗d(G)

cd(G)
=

2d−1c∗d(H)

2d−1cd(H)
=
c∗d(H)

cd(H)
> 1.

We now fix S := {v0, . . . , vd} to be the constructed clique in G.

Fix v and e to be the number of vertices and edges of G respectively. We now construct for
each positive integer k the n = (v − d)k + d vertex graph Gk by gluing k copies of G at the
clique S; see Figure 4 for an example of G4 when G is the minimally 2-rigid 3-prism.

Figure 4: Gluing four copies of the 3-prism at a common triangle subgraph.

We first claim that each graph Gk is minimally d-rigid. It is relatively intuitive that Gk is
d-rigid (for a rigorous proof of this statement see [19, Theorem 2.5.2]). Since each graph Gk

has k(v − d− 1) + d+ 1 vertices and

k

(
e−

(
d+ 1

2

))
+

(
d+ 1

2

)
= k

((
dv −

(
d+ 1

2

))
−
(
d+ 1

2

))
+

(
d+ 1

2

)
= d(k(v − d− 1) + d+ 1)−

(
d+ 1

2

)
edges, Gk is also minimally d-rigid.

We next claim that cd(Gk) = cd(G)
k and c∗d(Gk) = c∗d(G)

k. In lieu of a technical proof, we
sketch a proof of this claim as follows. Choose a general realisation p of G in Cd (respectively,
Sd). If we fix the vertices v0, . . . , vd and count the number of equivalent realisations of (G, p),
then we see that (G, p) has cd(G) (respectively, c∗d(G)) such equivalent realisations. Hence,
each time we glue another copy of G to go from Gi to Gi+1, we must scale the number of
realisations by cd(G) (respectively, c

∗
d(G)).
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Given the graph Gk has n = k(v − d− 1) + d+ 1 vertices, we see that

c∗d(Gk)

cd(Gk)
=

(
c∗d(G)

cd(G)

)k

=

(
c∗d(G)

cd(G)

)n−d−1
v−d−1

=

(
c∗d(G)

cd(G)

) −d−1
v−d−1

((
c∗d(G)

cd(G)

) 1
v−d−1

)n

.

Hence αd ≥ (c∗d(G)/cd(G))
1

v−d−1 > 1.

Corollary 7.5. (4/3)3/8 ≤ α2 ≤ 2 · 31/2.

Proof. The upper bound for α2 follows from the method employed in Proposition 7.3 with the
upper bound for c∗2 over all n vertex minimally 2-rigid graphs being given by

8 · 3−7/2 · (2 · 31/2)n−2;

see [5, Theorem 18] (remember that our d-realisation number is exactly half of the defined
d-realisation number used in [5]).

It follows from the proof of Proposition 7.4 that we can maximise our lower bound for α2

by searching for minimally 2-rigid graphs G with v vertices that contain a triangle where

the value (c∗2(G)/c2(G))
1

v−3 is high. In Table 1 we have collected some examples where this
value is high. The name of each graph comes from an integer representation of its adjacency
matrix, where we take the entries of the upper triangular part (since we always have loop-
free graphs) and consider the sequence of row-wise entries as binary digits. For example, the
triangle graph K3 can be written as (1, 1, 1)2=̂7, and the 3-prism (Figure 2) can be written
as (1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0)2=̂7916. See [18] or [11] for more details. The graphs in the
table are those that achive the highest value for (c∗2/c2)

1/(v−3) with the respective number of
vertices.

v G c2 c∗2 c∗2/c2 (c∗2/c2)
1/(v−3)

6 7916 12 16 1.3333 1.10064

7 1256267 24 32 1.3333 1.07457

8 170957470 64 96 1.5 1.08447

9 2993854888 160 288 1.8 1.10292

10 4847160401729 400 768 1.92 1.09767

11 5366995734673421 864 2048 2.3704 1.11391

12 37615476241376327552 2016 5120 2.5397 1.10911

Table 1: Graphs and the ratios we obtain from their number of realisations.

Fix G to be the 11 vertex graph 5366995734673421, pictured in Figure 5. From observation

of the table, G has the highest value for (c∗2/c2)
1

v−3 at (2048/864)
1

11−3 ≈ 1.11391. Hence,
α2 ≥ (4/3)3/8 = (2048/864)1/8 as required. (Note that there can be graphs with more vertices
which give a better bound but have not been computed yet.)

By rounding the lower bound down and the upper bound up, Corollary 7.5 informs us that
1.1139 ≤ α2 ≤ 3.4642. It is conjectured in [18] that c2(G) ≥ 2|V |−3. If this conjecture is true,
we could immediately improve our upper bound to be roughly 1.7321.
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Figure 5: A graph (known as 5366995734673421) with 864 realisations in the plane and 2048

on the sphere which gives a bound for the triangle-fan of (2048/864)1/8 = (4/3)3/8.

We conclude the subsection by making the following conjecture.

Conjecture 7.6. For every d > 1 we have αd > 1.

As can be seen from Proposition 7.4, it suffices for us to find a single minimally d-rigid graph
in each dimension d > 2 where c∗d(G) > cd(G). It follows from Corollary 5.3 that the problem
cannot be solved by merely finding a suitable graph for one dimension and then coning to
obtain similar suitable graphs in higher dimensions. Since there is no deterministic algorithm
for higher dimensions, we could only use polynomial system solving tools (like for instance
Gröbner basis) with random edge lengths. As well as only being able to give a probabilistic
answer, this method is computationally infeasible and can only be done for small numbers of
vertices. For the graphs we were able to compute using this method we saw that c∗d(G) = cd(G)
always, but this is most likely because they were too small for the values to begin differing.

7.2. Exploring data sets

The next computational question we approach is the following: how often do the spherical
d-realisation number and the d-realisation number agree for minimally d-rigid graphs? Inter-
estingly these two numbers seem to differ more than they agree. Figure 6 shows the amount
of minimally 2-rigid graphs for which the two realisation numbers differ. We solely consider
those minimally 2-rigid graphs with minimal degree 3 since the removal of a degree 2 vertex
alters both the spherical 2-realisation number and the 2-realisation number by a factor of 1/2.

n = 6 1 1 2

n = 7 1 3 4

n = 8 7 25 32

n = 9 42 222 264

n = 10 330 2859 3189

n = 11 3063 43614 46677

n = 12 32855 781020 813875

# graphs with c2 = c∗2 # graphs with c2 ̸= c∗2

Figure 6: The number of minimally 2-rigid graphs (up to isomorphism) with n vertices and
minimum degree 3 for which c2(G) is the same as/different from c∗2(G).

In light of this experimental data, we believe that the following conjecture is true.
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Conjecture 7.7. Let d be an integer greater than 1. Let An,d (respectively, Bn,d) be the set of
all minimally d-rigid graphs (up to isomorphism) with n vertices and minimum degree 2d− 1
where c∗d(G) = cd(G) (respectively, c

∗
d(G) ̸= cd(G)). Then |An,d|/|Bn,d| → 0 as n→ ∞.

After discussing the number of graphs for which the realisation counts differ, we are also
interested in how they differ. Figure 7 shows this relation for all 813875 minimally 2-rigid
graphs with 12 vertices and minimum degree 3. We observe that there are 9916 different pairs
(c2(G), c

∗
2(G)) (ignoring repetition) that occur. Only five of those pairs have equal coordi-

nates (i.e., c2(G) = c∗2(G)): (512, 512), (768, 768), (869, 869), (960, 960) and (1024, 1024). The
majority (30789) of graphs for which c2(G) = c∗2(G) have 512 realisations. In the figure we
colour coded the amount of occurrences of the pairs (c2(G), c

∗
2(G)), with blue indicating few

occurrences and red implying many occurrences. The most frequent pair is (768, 1024), which
occurs for 76025 graphs. The pair with the largest difference is (2496, 6144) which is obtained
by a single graph. Including the graph indicated in the last row of Table 1, there are 20 graphs
with the pair (2016, 5120), which gives the largest ratio.

In Figure 8 we analyse more deeply the ratios c∗2(G)/c2(G) for minimally 2-rigid graphs with
minimal degree 3. We can see, confirming Proposition 7.2, that the minimum achievable ratio is
1. The maximum ratio in the range is achieved by some graphs with 12 vertices, one of which
is given in Table 1. Interestingly, the median ratio varies between 1.39 and 1.4 depending
on vertex number. Although the maximum achievable ratio is increasing exponentially (see
Corollary 7.5), the range of the quartiles do not seem to vary much as the number of vertices
is increased. Note, however, that the size of the graphs considered is rather limited.

c2

c∗2

1000 2000 3000

2000

4000

6000

Figure 7: The distribution of pairs (c2(G), c
∗
2(G)) for all minimally 2-rigid graphs G with 12

vertices and minimum degree three. We use colour to represent the number of oc-
currences of a given pair: the more often a point appears in the list of all possible
pairs, the more red its coordinate representation is in our plot. All points lie above
the dashed line representing the equality c2(G) = c∗2(G), showing the main result of
the paper.
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A. Dominant morphisms

Dominant morphisms can be defined in a variety of different but equivalent ways.

Theorem A.1 ([8, Section AG, Theorem 17.3]). Let X ⊂ Cm be an algebraic set and Y ⊂ Cn

be a variety. Then the following are equivalent for any morphism f : X → Y :

(i) f is dominant.

(ii) For some irreducible component X ′ of X, there exists a point x ∈ X ′ such that x is a
non-singular point of X ′ and rank df(x) = dimY .

(iii) There exists a Zariski open subset U ⊂ X where for each x ∈ U , x is a non-singular
point of X and rank df(x) = dimY .

It follows immediately from Theorem A.1 that for any varieties X,Y , the existence of a dom-
inant morphism from X to Y implies dimX ≥ dimY . As can be seen by Theorem 3.4, more
powerful statements can be attained relating to f if dimX = dimY . To prove Theorem 3.4,
we require the following two results.

Corollary A.2 ([24, Section 8, Corollary 1]). Let X ⊂ Cm and Y ⊂ Cn be varieties and
f : X → Y be a dominant morphism. Then there exists a non-empty Zariski open subset
U ⊂ Y such that U ⊂ f(X), and for every y ∈ U , every irreducible component of the algebraic
set f−1(y) has dimension dimX − dimY .

Corollary A.3 ([20, Proposition 7.16]). Let X ⊂ Cm and Y ⊂ Cn be varieties and f : X → Y
be a dominant morphism. Suppose that there exists a non-empty Zariski open subset U ⊂ Y
where |f−1(y)| <∞ for every y ∈ Y . Then there exists a k ∈ N and a non-empty Zariski open
subset U ′ ⊂ U where |f−1(y)| = k for every y ∈ U ′.

Proof of Theorem 3.4. It is immediate that (iii) implies (ii). Fix U ⊂ Y to be the Zariski open
set from Corollary A.2. An algebraic set is a finite set if and only if it is zero dimensional.
Hence, (i) and (ii) are equivalent. Suppose that dimX = dimY . Fix U ′ ⊂ U to be the
non-empty Zariski open subset from Corollary A.3. Define the set

C := {x ∈ X : x is singular or rank df(x) < n}.

By Theorem A.1, C is a proper Zariski closed subset of X. As dimC < dimX = dimY , the
set f(C) is not dense in Y . It now follows that the complement of the Zariski closure of f(C)
in U is a non-empty Zariski open subset of Y . Hence, (i) implies (iii), concluding the proof.
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B. The effect of 0-extensions on realisation numbers

B. The effect of 0-extensions on realisation numbers

In this section we prove Lemma 7.1. The specific case where d = 2 was originally proven in
[7]. We restrict to the non-spherical case throughout this section since the proof is almost
identical.

Lemma B.1. Let p0, . . . , pd ∈ Cd be affinely independent points where [pj ]k = 0 for all 1 ≤
j ≤ k ≤ d. Then there exists exactly one point x ∈ Cd \ {p0} which is a solution to the set of
equations

∥x− pj∥2 = ∥p0 − pj∥2, j ∈ {1, . . . , d}. (9)

Proof. First note that we must have that [p0]d ̸= 0 for p0, . . . , pd ∈ Cd to be affinely indepen-
dent. Let x ∈ Cd be a solution to the equations in (9). Then the set of points {x, p1, . . . , pd}
have the same set of pairwise distances between them as the set of points {p0, p1, . . . , pd}.
Hence, there exists a map M ∈ O(d,C), where Mpj = pj for each j ∈ {1, . . . , d} and Mp0 = x;
see [16, Section 10] for more details. Since M is invariant over p1, . . . , pd, it follows that M
is either the identity matrix or M is the diagonal matrix with Mjj = 1 for each j < d and
Mdd = −1. The result now follows immediately.

Proof of Lemma 7.1. For the linear spaces XG,d and XG′,d, fix the vertices v1, . . . , vd ∈ V to be
the vertices adjacent to the new vertex u that is appended during the 0-extension operation.
Fix a general realisation p ∈ XG,d of G. For each q ∈ f̃−1

G,d(fG,d(p)), define the dominant
morphism

fq : Cd → Cd, x 7→
(
∥x− qvj∥2

)d
j=1

and the non-empty Zariski open set Uq ⊂ Cd of points not contained in the affine span of
qv1 , . . . , qvd . Since each map fq is dominant, it follows from Corollary A.2 that there exists a
non-empty Zariski open set U ⊂ Cd such that

U ⊂
⋂{

fq(Cd) : q ∈ f̃−1
G,d(fG,d(p))

}
.

From this we note that the set

U ′ :=
⋂{

Uq ∩ f−1
q (U) : q ∈ f̃−1

G,d(fG,d(p))
}

is a non-empty Zariski open set. Hence, there exists a general realisation p′ ∈ XG′,d of G′ with
p′v = pv for all v ∈ V and p′u ∈ U ′. By applying Lemma B.1 to every realisation in XG′,d that
is equivalent to p′, we see that∣∣∣f̃−1

G′,d

(
fG′,d(p

′)
)∣∣∣ = 2

∣∣∣f̃−1
G,d (fG,d(p))

∣∣∣ .
The result now follows from Lemma 3.3.
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