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1. Introduction

There is great interest in developing time-domain discontinuous Galerkin (TDdG) methods for the full system of
Maxwell’s equations in optics and photonics, for instance to design optical devices with higher complexity. One of the
most famous and general problems is the third order Kerr-type nonlinear model. A few excellent and efficient schemes
are available on developing the finite difference time-domain (FDTD) methods, to solve the nonlinear Maxwell’s equations
in Kerr media (e.g., [1-5]). There are also many studies of TDFEMs for Maxwell’s equations for considering the flexibility
of finite element methods for complex domains and materials. Recent advancements and more references on TDFEMs and
TDdG for Maxwell’s equations with Kerr-type nonlinearity can be found in some recent reviews such as [6-13].

In the past few years, TDAG have gotten considerable attention and are being employed to a wide range of problems
in optics and photonics. To the authors’ knowledge, few mathematical proofs for the convergence of the discontinuous
Galerkin method when applied to Maxwell’s equations were given in the papers [11,14]. These methods allowed a
comparatively easy handling of elements of various types and shapes, irregular non-conforming meshes and even locally
varying polynomial degrees. There are still accessibly few analysis, error estimates, and simulation results by employing
TDdG available for the system of Maxwell’s equations with Kerr-type nonlinearity. Moreover, the results were given mostly
for the 1D case using TDAG schemes.

Our prime object is to develop an energy stable numerical scheme in this paper that can preserve the stability relation
at the semi-discrete and fully discrete levels. Energy preserving schemes are robust since they are able to maintain and
preserve the shape and phase of the waves accurately after long-term numerical simulations. Moreover, error estimates
are also presented at the semi-discrete and fully discrete levels. In this paper, we extend our results about semi-discrete
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conforming mixed finite element methods [15,16] and fully discrete conforming finite element methods [8,17,18] for the
Maxwell’s equations with nonlinearities by a method, which combines a locally discontinuous Galerkin discretization
in space and a time discretization of leap-frog type. For the sake of simplicity, we will present the result in 2D, and
analogous result are obtained for 3D. At the end of this brief and by no means complete overview on the related literature
it should be mentioned that, in the course of preparing this work, the paper [19] was published with the same intention
and comparable results, the authors of which probably were unaware of the first author’s PhD thesis [20]. An essential
part of the presented paper is an revised outcome of [20], in which the ideas and results about the proposed method
were formulated for the first time.

In the spatial discretization we use Qi-type elements on Cartesian meshes, therefore there are restrictions on the
geometry of the domain and a higher computational effort compared to Py-type elements. However, for P, elements
there are indications that such dG methods do not achieve the optimal order of accuracy, and it is also known that
some of the required properties of the L?>-projectors (e.g. property (A2) in [19, Lemma A1]) do not generally hold in the
multidimensional case, especially not for non-tensor product meshes [21].

Let 2 :== (r,s) x (p,q), T <S5, p < q, be a rectangular domain in R? with boundary I" and unit outward normal n. As
usual, D = D(x, t), B=B(x, t), E = E(x, t) and H = H(x, t) represent the electric displacement field, magnetic induction,
electric and magnetic field intensities, resp., where x € £2 and the time variable ¢t ranges in some interval (0, T], T > 0.
Given an electric current density J = J(x, t), we write the transient Maxwell’s equations as

oD—-V xH=] in £ x(0,T), (1)
nodtH+V XE=0 in £ x(0,T), (2)
where

D= eo<(l +xME + x<3>|1-:|25).

Here gy > 0 denotes the constant vacuum permittivity, uo : £2 — (0, co) is the permeability, and x(V, x® : £ — (0, 0o)
are the media susceptibility coefficients. We assume that the coefficient functions are bounded almost everywhere, i.e.

o, X, x® € Loo(£2).
We will consider the derivative

3D = so((1 + xME+ xOLE? + 2EET]8[E>. (3)

as an additional equation.
A perfect electric conductor (PEC) boundary condition on I is assumed, that is

nxE=0 onI x(0,T). (4)
In addition, initial conditions have to be specified:

E(x,0) = Eg(x) and H(x,0) = Hy(x) forallx € £2,
where Eg, Hy : £2 — R? are given functions, and Hy satisfies

V- (uoHg) =0 inf2, Hy-n=0 onT. (5)
The divergence-free condition in (5) together with (2) implies that

V- (uoH)=0 in £ x (0, T).

Here the Transverse Electric mode is considered, where - for simplicity - the direction of propagation coincides with the
direction of the z-axis, i.e. essentially we deal with a two-dimensional problem in space (TE,-mode). This restriction is
only used to simplify the presentation technically; analogous results for the three-dimensional case can be obtained, too.
The fields reduce to D = (Dy, Dy), E = (Ey, Ey), V x E = 0E, — 0)Ex, H = H;, V x H = (3,H;, —3,H,)T, and J = Ux, Iy
where the subscripts x, y and z denote the x-component, y-component, and z-component of the vector field, respectively.
In addition we write X := (x,y)" and [E|* := E? 4 E2. Then

E23,E, + E(E,d,E
T _ x OtLbx xLyOtLy
EE &E = (ExEyatEX +E§8tEy> ’

and the Eqgs. (1)-(3) take the form
0Dy = asz +Jxs
atDy = —0xH, +Jyy
wodtH, = —0Ey + 0,Ey,

0Dx = eo (14 X )0Ex + x UL Ex + 2(E20Ex + EEkE))1),
&Dy = &g ((1 + xDE, + x DUERAE, + 2(EE,E, + Eja[Ey)]).
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The corresponding initial conditions are
Ex(x,0) = E)(X), Ey(x,0)=E)(x) and H,(x,0)=E(x).
The PEC condition (4) reads as
Ex(X, O)ly=p.g = Ey(X, O)lx=r,s = 0. (7)

2. The nonlinear electromagnetic energy at the continuous level

According to the particular structure of the nonlinearity, a “nonlinear” electromagnetic energy of the system (6) can
be defined by
E(E) = IEOI2 1,0 + IHADIZ, + 5 Hl il

t € [0, T), where we have used the notation

/2
IE(t ||w._(/|Ext|a) dx)

for a given weight function w : £ — (0, o©). In the case w = 1, the subscript is omitted.
The following theorem demonstrates that the nonlinear electromagnetic energy is a conservative quantity.

Theorem 2.1. If (Ey, E,, H,) is the weak solution of the system (6) in the case of no sources, i.e. ] = 0, then the nonlinear
electromagnetic energy of the system (6) at any time t € [0, T) satisfies

&(t) = £(0) = IEol2 ;v + IH7 I}, + *|||EO| I?

We skip the proof since the details are similar to the more complicated proof of the semi-discrete energy law
(Theorem 4.1).
The domain £2 is partitioned into rectangular cells K = I; x Jj with [; = (x;
Jj= (yjfl, j+1)'j= 1,2,3,..., Ny, where
2 2

eox®

1,X%,1), 1= 1,2,3,..., Ny, and
2 2

T':ZX1<X;<--~<XN+l:—S p::yl<y;<~--<yNy+l::q.

The mesh sizes are denoted by h} := Xip1—X_ 1 and h = y]Jr2 —Yi_ 1 with h** := max;<i<n, hf and hm&‘X ‘= MaXi<j<n, hj’
The maximal mesh size is defined by h = max{hmax hmax} We assume that the mesh is shape regular ie,, if ox; denotes
the radius of the biggest circle contained in Kj;, we have h"h < CerK,] for all Ki with a positive constant C;. The family
of cells is denoted by 7;, := {Kjj} i=12.3,..n .
j=1.2,3....Ny
The finite element space U,’f is the space of tensor products of piecewise polynomials of degree at most k € N in each

variable on every element Kj:
={u: ulx € Q(K) forall K € T},

where the local space Qi(K) consists of tensor products of univariate polynomials of degree up to k on a cell K. Note that
Uf ¢ C(£2) in general. o

The numerical approximation of a function u : £ — R is denoted by u; € U}f The limiting value of uj, at x; +1 from
the right cell K11 is denoted by uh(x;“+1 ,Y), (uh):r or u;f (x i+l ¥), and from the left cell Kj; by un(x_, + . Y), (uh) ,or

2 2*

u, (x;,1,y) respectively. An analogous convention is used in the y-direction.

The numerical flux densities are obtained by means of integration by parts. They should be considered and designed
carefully to ensure conservation of energy, numerical stability and optimal accuracy of the approximate solution. The
numerical flux densities are functions that are defined on the cell boundaries. The alternating flux densities are defined

in a simple and elegant way like in LDG (local discontinuous Galerkin) methods for diffusion equations, second order wave
equation and Maxwell’s equations [22-25]. Fixing a constant ¢ > 0 independent of h, the alternating flux densities are:

:E:h(x,yH%J forallj=1,2,3,...,N,— 1,
— é)(,h(xs yNy+%) = 0,
,y) foralli=1,2,3,...,Ny— 1,
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A

Hen(x,y1) = h(x,y%)+ Coll Ex.n(%, y 1)1, (8)
I:IZ,,I(XH% y) = h("1+%’Y) foralli=1,2,3,..., Ny,
Hon(xy. y) = Hy(xy. ) = ollEyn(xy . y)1, (9)

2
where the jump terms in (8), (9) are defined as
[Ex n(x, y1 = E:—h(xs ) 0, [[Ey,h(xl,}’)]] = E+h(X1 y)—0.
2

On interior cell boundaries, the jumps are denoted by [¥] = ¥+ — ¥ ~. For ¢ = % the flux densities (8), (9) match
with the standard upwind flux densities

>

z,h(x,yz) f[H h(xy1)+H xyl)]+ [[Exn(xyl)

A

Hen(x1,¥) = f[H (X1 Y) + Ho (31,901 = *ﬂEy,h(Xl»Y)]],
where the undefined Hy (%, y ) and H | ( ,y) are replaced by H h(x,y%) and H;fh(x%,y), respectively.
3. Spatial discretization by a discontinuous Galerkin method
For the test functions (@15, Pan, P3p)' € (U,’,‘)3, the discontinuous Galerkin formulation for the Egs. (6) with respect to

the semi-discrete solution (Ey, Ey n, H;)' € C1(0, T, U,’j)3 reads as follows (for shortness, we omit the formal differentials
dx in the double integrals):

/ 3Dy D1 — / [(Hzn®yp)y 1 — (Hen®if) o1 1dx + / Hondy®@in — | Jen®in =0, (10)
Kij i K; Kij
/ 0:Dy.pn Pon + /‘[(Hz,h@z}),’_‘_l'y - (I:Iz,hqj;;),'_l,y]dy - f Hzn0x®an — | Jy.n®2n =0, (11)
Kij Ji : : Kij Kij
/ 100 Hep ®3n + f [(Eyn®3)i 1, — (Eyn®3), 1, )dy — / Ey.ndP3n
Kij Jj : : Kij
- / [Exn®sn)ejs = Een®3y)y i 11dx+ / Exndy®sn = 0, (12)
Ii Kij
/ 3Dy D1 = / eo(1 + x")0cExn @1 + / sox“)[mhﬁaﬁx,h D1n + 2(Ef h0cExn @1 + ExnEyndcEy.n am)],
K,'j K,'j K,'j
(13)
/ 0tDy h Pan :f eo(1+ x")3Ey ‘ch-f-/ eox’ [lEh| ¢Ey.n Pon + 2(E yhat y.h Pan + Ex hEy n0tEx n ¢2h)]
Kij K,'j KU
(14)

The initial conditions are defined as
Exn(X,0) = EJj(X),  Eyn(x,0)=EJ,(x) and H,x(x,0) = E7 (X),

where the concrete choice of the discrete initial data (E)?h, E}? w HOOT € (UK will be given later.

4. The nonlinear electromagnetic energy of the semi-discrete discontinuous Galerkin discretization

The nonlinear electromagnetic energy of the semi-discrete discontinuous Galerkin discretization (10)-(14) is defined
by

t s q
64(E) = BRI, 0+ WO + 2 NP+ 2 [ [ [ @002 et [ cgont av],
0 r 12 p 2>

t € [0, T). In the next, we will show that the nonlinear electromagnetic energy at the semi-discrete level of the system
(10)-(14) at time t is conserved and bounded.

Theorem 4.1. Let (Exp, Eyp, H;, e Yo, T, Uh) be the semi-discrete solution of the system (10)-(14) for given J, €
c(o, T, Uh) then the nonlinear electromagnetic energy of the system (10)—(14) for the vanishing current density at any time
t € [0, T) satisfies

e(t) = Ex(0) = BRI 1, oy + IH I3, + S IR o (15)

4
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and for non-zero current density
t 2
En(t) < 2£n(0) + 8(/ ||Jh($)||<go<1+xm))4ds) . (16)
0

Proof. Taking &, := Ex in the Eqgs. (10) and (13), and substituting Eq. (13) into Eq. (10), we have

J

i

eo(1+ x)3Exn Exn +f eox! [ [En|*8¢Ex ph Exn + 2( xhat Exn Exh + ExnEy.n0¢Ey.n Exn) ]

i (17)

/[(Hz hE, h)x1+ (I:Iz,hE;—h)X,j,%]dx “l‘/ Hz,hayEx,h - Jx.nExn = 0.
i @ K

Taking @, := Ey , in the Eqgs. (11) and (14), and substituting Eq. (14) into Eq. (11), we have

/ 80(1+X(1))atEy,hEy,I1+f eox' [|Eh| 9tEyn Ey.n + 2(EJ 0:Ey.n Ey.n + Ex nEy.n0c thyh)]
Ky K
(18)

/[(Hz h yh i+1y (I:Iz,hE;h)i,%,y]dy _/ H; h0xEy n — Jy.hEyn = 0.
K,‘j K,‘j

Adding the Egs. (17) and (18), we get

1d 1
—— eo(1+x“>)|l-:h|2+/ eox P |En|* = 8, [En|?

1
+ / eox2[E, atth+E§,hfatE;h]+ / 0 X2 Bty [y v + 0Exn Byl
K K

/ [(HznEx )y — (HonEfy) o1 1dx + f [(HznEy )i 1.y — oy )1, 1dy
i

+ / Hz,hayEx,h - / Hz,haxEy,h - Jx,hEx,h - .]y,hEy,h =0.
Ki; Kij Kij K,’j
The integrands corresponding to the cubic nonlinearity can be rewritten as follows:

1 1 1
[Eal? 5 0 Enl? + 2[5,3_,,5&52,1 +E hzathh] + Z[Ex nEy n[8¢Eyn Exn + afEthyh]]

1
Zat|Eh| + - I:atE;lh + at ] +2[ thyhat( thx h)]

1

= Zafu-:hr‘ + 5ar(E;‘,h +Ey ) + Oc(Ey nExn)?

1 1 3
= — O |Ep|* + =0 |Ex|* = =0, |Ep|*.
4t|h|+2[|h| 4t|h|
Thus we arrive at

1d 3d

—— [ e(14+ xME +f—fe )|, [*

2dt1<U0( x)ExI? 4dK0X|h|

i

/[(Hz hE h)x]+ (Hz hEx h) i 1]dX+ /[ H,, hE h)1+ v (I:Iz.hE;—h)i,%,y]dy (19)
Ii

<

y

Hz,hayEx,h - / Hz,haxEy,h - .]x,hEx,h - ]y,hEy,h =0.
Kij Kij K,‘j

Taking &3, := H, in the Egs. (12), we have

/ Ho0tHz p Hyp + /[(Ey,hH;’h)H%yy - (éy,th h),,l y]dy f Ey n0xHz p
K; K;

ij Ji ij

(20)
- /[(Ex th h)x1+ - (Ex.hH;h)X’j_%]dX + / ExndyH, p = 0.
I Kij

5
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Adding the Eqs. (19) and (20), we obtain

1d 1d
77/ o(1+ x)En> + - — Mo zh+ SOX(3)|Eh|4

2dt 2dt 4dt

- /[(thE h)xﬁ— _(HZhExh) ; l]dX+ /[ zhE hH— )y (Hz,hE;:h)i_%’y]dy
1)
f By~ Bty 1y = [UEHE) = oty
I;

+ / Hz,hayEXA,h_/ Hz,haxEyA,h_/ Ey,hatz,h+/ Ex‘hasz,h_ / Jx,hEx,h_ Jy,hEy,h =0.
Kij Kij Kij Kij K,'j Kij

In the next step, the Egs. (21) are summed up with respect to both indices 1 <i < Ny and 1 < j < Ny. The sums resulting
from the terms on the second to fourth lines allow the following simplification, see [25, egs. (3.18)—(3.19)]:

Ny
Do By = FenBl ylx = [ 1B )0y — Byl
I I

<
K;

H, y0yEx n +/ ExndyH; p ]= Co /(Ejh)i %dx’
I; ’

y K (22)
Z / [y )iy 1.y — (Fenyfy)i g, ddy + f] [(EynH, )i 1.y — (BynHf)i 1, 1dy
i
- / H; h0xEy n — / Ey noxHz 1 ]= Co /(E;h)zl de’-
Kij Kij Jj 2
Using these relationships we get
= —|IEx|? (144D || Honlls, + = ||| hl H
eo(1+x ) o sox®
2dt 2dt 4.dt (23)

q
+ CO/ (E;—h)ildx-i-Co/ (E;:h)zl dy = / Ux.hEx.n + Jy,nEy nl.
ro %2 » 2y o

The right-hand side of Eq. (23) is estimated by means of Cauchy-Schwarz inequalities as follows:

/ Ux.hEx.n +Jy nEynl < / Jn|[En| =/ Enlv/eo(1+ x D)/ (o(1 + xM)~" < NEn | o140y g5 0yy-1-
2 2 2

Then we obtain from Eq. (23)

1d ’ + 32 K 2
3 e B+ 5 a3 g B+ o [ (B2 st o [ (g5 oy

=< NEnllgge14x0) Iall ggeax0yy-1-

Integration of both sides from 0 to t yields

1 1 !
Egh(f)— 5 1(0) S/ NER(S) s (1450 (S e (1401 IS,
0

hence

t
En(t) < &r(0) + 2/ VES) IS g1 17)-1 G-
0

Then the Gronwall-Ou-lang’s inequality [26] implies that

t
V) < Van0) + 2 / IO Y
0

Squaring this estimate together with an elementary inequality completes the proof of (16). The relationship (15)
immediately follows from integration of (23) for the case J, = 0. «

5. Error estimates for the semi-discrete discontinuous Galerkin discretization

Projection operators play an important role in the error analysis, and we will begin with defining 1D projectors that are
frequently used in discontinuous Galerkin methods [27,28]. In this presentation, we closely follow [25]. Let P,(I;) denote

6
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the kth degree polynomial space over the interval I;, k € N. For any function u € H!(J;), we define
Py HY(I;) — Pull)
by

/(Pju)wdx = /uwdx for all w € Py_1(I;) and Pju(x?“ 1) = u(x,+ 1),
Ii

Ii =2

/(Px_u)wdx = fuwdx for all w € Py_1(l;) and P;u(x';]) = u(x,’ 1).
I 2

i li 2
Analogously, for any function u € H 1(]j), the projection operators in y-direction

P H'(J)) = Py
are defined by

/(P;“u)wdy = /uwdy for all w € P,_1(J;) and P;“u(yj*_%) = u(y;r_%),
Ji Jj

P, u)wdy = [ uwdy forall weP andPu =uly ).
/]j(y)wy /ley we B and Byu(y ) = ()

The standard local L,-projection operators in 1D are denoted by
Py: H'(I) — P(l;) and Py : H'(;) — P(Jj).

The 2D projection operators for the rectangular elements Kj; = I; x J; are defined as tensor products of the 1D projectors.
We define

Ty =P, @ P : H*(Kyj) > Qu(Ky), (24)

which satisfies

/ [Tiw(x, y)dyun(x, y)] = f [w(x, y)dyun(x, y)],
Kij K,'j

le(x,y,+ 1)uh(x,y,+ 1)dx = w(x,y,+ 1)uh(x,y,+ 1)dx
I =3 =3 I J=3 J=3

forall w e HZ(K,»J-) and up, € Qu(Kj) [25,29]. The projection [T, is defined as
I, =P ®P, : H*(Kyj) — Qu(Ky) (25)

and satisfies

[sz(X7 Y)axuh()@ y)] = [w(x7 y)axuh(X7 y)]s
Ky Ky

A;sz(xf;,y)uh(x:r;,y)dy:/];w<xi+ y)uh<l. I )dy

for all w € HZ(K,-j) and u, € Qu(Kj). The projection I75 is defined as
M3 =P, ® P, : HA(Ky) — Qu(Ky). (26)
It satisfies

[Tsw(x, y)un(x, y)] = / [w(x, y)un(x, )],
K;; Kii

/sz XY, 1)uf.(x,y.’+%)dx:/w(x,yj;%)uh@,yj;%)dx,
Ii

/ng Y uh( )dy / (x,;z y)uh< i+ )dy,
Jj

H3w(xi+%,yj+%) - w(xH%,yH%)
for all w € HZ(K,-j) and up, € Q—1(Kj). The use of the H?-spaces for the point values makes sense due to the Sobolev
embedding H?> ¢ C° in 2D. The 2D L,-projection operator is usually defined by

My =P, ®P, : HA(Kyj) — Qu(Kj), (27)
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for their properties see [27,28], [25, egs. (3.33)-(3.42)].

Lemma 5.1. If w is a product of 1D functions, i.e. w(x,y) = f(x)g(y), where f € H'(I;) and g € H'(J;), then
Muw(x,y) = Pf(X)Pygy), Maw(x,y) = Py f(x)Pg(y),
Iw(x,y) = P, f(X)P, g(y), Maw(x,y) = Puf (X)Pyg(¥).

These results demonstrate that the 2D projections are tensor products of 1D projections, for details see [27,28].
Lemma 5.2. The projection operators Iy, ..., I14, defined in (24)-(27), have the following property: For k € N, there exists
a constant C > 0 independent of h such that

1Tt — ) < CH*ull e g
forallu e H*1(2), i=1,...,4

Now we are prepared to derive an error estimate. Let (Ey, Ey, H,)T be the weak solution of (6) and (Ey p, Eyn, H, 1) be
corresponding numerical solution of the semi-discrete scheme (10)-(14). We denote the error terms for later use by

Ox = Ex — Exh = 1x — M, (28)
where

Nx = Ex — IIhEx, nxn = Exp — ITiEx. (29)
Similarly for the y-component of the electric field we set

&y =Ey—Eyn=ny —nyn, (30)
where

ny = Ey — ILE,, nyn:=Eyn— ILE,. (31)
The error terms for the magnetic field are defined by:

& =H,—H;p =06, — 6, (32)
where

6, :=H, — IT3H,, 6,5 :=H,, — IT3H,. (33)

Lemma 5.3. There exists a constant C > 0 independent of h such that

/[ 9277,(11 xj+1 (Gznx h) i 1]dX +/ Gzaynx,h] = Ch2k+2 + ”nx,h”z’
1 Kij

i=

Ny
S [y, = Gengiy iy = [
=1 )i

ezaxny,h] < Ch%2 4 |y 2.
Kij

Proof. See [25, Lemma 3.4]. «

Lemma 5.4. There exists a constant C > 0 independent of h such that
N

/[ 9znxh Xt (9z'7xh) i 1]dx+/
l

Nx
02y ] - / [ a(x, v 1Pdx < CHP42 4 el
Kij i Ii

Ny
> / [(Oeny )y, — Benfi)iy 1y - f Oethyn | - ZCO / [y ey )Py < P2 4 P
_ Jj Kij j=1 Ji

Proof. See [25, Lemma 3.5]. «

Remark 5.5. When ¢y = 0, we obtain PEC boundary condition without the jump terms in (8) and (9). In this case, we
can only control the term },_;_y /(6,7 1,7,)(x, ¢) as follows

> / pp)xc) < h” /(W)zx C)+h/(rlzh)2(x ¢) < CR** 4 hlinznll,

1<i<Ny

8
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by an inverse inequality. Therefore we lose half an order.

The following result formulates the announced error estimate for the semi-discrete problem. As in many cases of
qualitative estimates, higher regularity requirements are placed on the weak solution, which of course do not have to be
met in all real world situations. In particular, we assume that the semi-discrete solution is uniformly bounded. In some
special cases, this assumption can be removed at the expense of additional conditions, mainly a smallness condition to
the nonlinearity [30, Thm. 4.1], [19, Thm. 3].

Theorem 5.6. Suppose that a weak solution (Ey, E,, H;)! € C1(0, T, H**1(£2))?, k € N, of the system (6), and a finite element

solution (Eyn, Ey n. Hzn)" € C'(0, T, UF N Loo(£2)) of the system (10)(14) with the initial data E{ := IT{EJ, E), == IE),
Hzoh = 173HZ°, respectively exist, where the L..-boundedness of the finite element solution is uniform w.r.t. h. Then, if h > 0 is

sufficiently small, the following error estimate holds with a coefficient C(t) > 0 independent of h:
IE(t) = Exn(Ollega 40y + IEy(t) = Eyn()l g1 0y + 1Ho(6) = Hon(B)ll4g < COORY, £ €(0,T).

(The concrete structure of C(t) will become apparent from the proof.)

Proof. Subtracting the Eqs. (10)-(14) from the weak formulations of the Eqs. (6), using the error identities (28), (30), and
(32), for all test functions @1, Pon, P3n € Qu(Kjj), we obtain

[ a0 =D~ G0y — G0l ylix+ [ Eaen =0, (34)
Kij I Kij
/ 8D, — Dyn)om + [z y, — (E05)_y v — [ Eddm =0, (35)
Kij Jj Kij

/ M00:&, P3p + /[(fy‘p;h)pr%y - (fydﬁ;h)i_%’y]dy
Kij ]j

~ [ oaa— [1Go5)0y ~ @iy ylix+ [ Ga,em =0
Kij Ii Kij

f 3(Dy — Dy p)®1n = / o1+ x")3&ePn + / sox“)[nmz—|Eh|2]at5x<z>m
Kij Kij

Kij

+ [En[20[Ex — ExnlPun + 2((E2 — E2,10Ex®in + [ExEy — ExnEy,n13.Ey 1)

+ 2(E2 0 [Ex — ExnlP1n + EonEynde[Ey — Ey,h]am)], (36)

/ 0:(Dy — Dy p)P2n = / eo(1+ x1)3: gy ®an + [ <90X(3)[[|E|2 — |En|*18,EyPan
Kij Kij

Kij
+ |Enl0c[Ey — Eynl®an + 2([E; — E} 10:Ey@an + [ExEy — ExnEy n10:Ex®an)
+ 2(E 04 By — By n®an + ExnBy ke — Enl®an) |- (37)

First we substitute the Eqgs. (36)-(37) into the Egs. (34)-(35), respectively. Further decomposing the terms in the resulting
equations using (29), (31) and (33) and taking @1 = nxn, Pon = nyn and @3, = 6, , we obtain, after a few slight
rearrangements,

/ eo(1+ xM)demen nxn + / SOX(3)|:|Eh|23t77x,h Mxh + 2E238e0en xn + 2Ex nEy ndeTly.h nx.h]
Kij Kij

- /[(éz,hnx_.h)x’j_F% - (éz,hn;h)x,j_%]dx'i‘/ 02,10y Mx,n

I; Kij

:/ go(1+ X(U)atnx Nx,h “l‘/ SOX(3)|Eh|28tnx Nx,h — /[(élnx_,h)x,j—k% - (éznzh)x,j—%]dx‘f'/ 6070y x
Kij Kii Ii Kii

+ [ eox® [ B — BaPIocEs e
Kij

o+ 2EZ = B2 10kt + 20EEy — ExnBynlocEy tn + 2E2,000 1 + 2EnByadiny e |, (38)

9
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and

/ eo(1+ x")demy.n Uy,h+f eox’ [|Eh| dny.n Ny + 2E hatﬂyhnyh+2Ethyhat77xh77yh]
K" K"

/[(92 h’]yh),+ v ( z,h1y, h)l_,y]dy / 07.00xMy.h

Kij
/K,.

o(1+ X(U)atny Ny.h + / 50X(3)|Eh|28tﬂy Ny.n + f[(ézny_,h)i_*_%.y - (ézﬂ;:h)i_%’y]dy - / 62 0xy.n
Jj

ij Kij I Kij
+ [ cox[UBR — BPILE,
K,-j
o+ 20E7 — B 100y ny + 2By — BunyaldcEx iy + 2E5,300, My + 2BciEyndi iy | (39)
For the magnetic field we have that

/ 1400070 021 + /[(ﬁy,h@;h)w%y - (ﬁy,hg;ih)i,%,y]dy
K;

ij Ji

- /[(f)x,hgzth)x,jur% - (ﬁx,hez’rh)x_j,%]dx - /

ny,haxez,h+/ ﬂx,hayez,h
Ii Kij K

i

- / Hodkb Oz + / 051y — (25 1y
K;

i Ji
- / Ny0xOzh — /[(ﬁxe.;h)x,j+l — (7 92 h)xjfl]dx +/ Nx0y0z 1. (40)
Ky ki : Ky
Now we apply similar arguments as in the proof of Theorem 4.1. Adding the Egs. (38)-(40), summing over the indices
1 <i<Nyand 1 <j < N, and making use of the identities (22), we obtain the left-hand side of the result as

LHS = LHSL + LHSN
with

1d
LHSL i= 5 = [l gy DnllZyy oy + 182117

+Z/ (Ben — 05y dx+2[<0;h Do)y )y

(41)
d
= 5 eIl oy W21y + 182l ]
Ny Ny
+ Y <o /[n,ﬁh(x,y%)lzdx +Y <o /[nyf,,(x%,y)]zdy,
i=1 Ii j=1 Jj
where the last equation follows from the definition of the boundary flux densities (8), (9) (cf. (22)). Furthermore,
2
LHSN = /Q gox? [ iar[mmz(nih +15.4) ] + 0 (Exnnen + Eynny.n)
(42)

1
- 5(”3& +n5,h)af|Eh|2 - xh nxh afE;,h 775 h 23[( ExhEy, h)’?x hTly,h ]
The right-hand side gets the form
RHS = RHSL + RHSN,

where
RHSL := / [e0(1 + x ") [Benx 1xn + Beny 1y.n] + 140067 021
2

Nx
[ /’ (e )esss — ey e+ /
i=1 1

0, 8y nx,h]
Kij

10
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Ny
+ Z[/[(ezny_,h)i_;_%,y - (@n;fh)i_%,y]dy - / ezaxny,h:l
j=1 Zi Kij
and

RHSN := / eox™ [ (1B = 1E2][AcEx n + 6E,y ]
2
+ 2[E} — EZ,10¢Ex e + 2[E; — E} 419:Ey ny.n + 2[ExEy — ExnEy n1[9:Ey nen + ¢Ex ny.n ] (43)

+ 2E2 1 0¢1x M + 2E; y 0y 1y.n + 2ExnEy n[0eny e+ 9e1x y.n ] + [Enl® [9e1x mn + 0emy 1y.n] ] :
Next, using 0;Ex = 9;nx + 0:(/T1Ex) and 0;E, = 9,1, + 0:(/TE,) (see (29), (31)) in the nonlinear terms (43), we obtain

RHSN = / 80x<3>[[(5x + Exn) (Ex — Exn) + (Ey + Ey.n) (Ey — Ey.n) | [0c(IT1Ex) M + 8¢ (TT2Ey ) 1y ]
2

+ |E|2[8t77x Nx,h + O¢y ny,h] + 2[(Ex + Ex.h) (Ex - Ex,h)]at(HlEx) TIx,h
+ ZEgatﬂx Nx,h + 2[(Ey + Ey.h) (Ey - Ey,h)]at(HZEy) Ny.h + ZEﬁatﬂy Ny.h + Z[Ey(Ex - Ex,h)

+ Ex,h(Ey - Ey,h)][at(HZEy) Nx,n + 0¢(JT1Ex) ny,h] + 2ExEy[atny Nx.h + 0nx ny,h]:l~

Furthermore, since Ex — Ex y = nx — nx.» and E, — Ey = ny, — 1, n, We have, after some rearrangement,

RHSN = / SOX(”[[Exnxat(nlEx)+Ex,hnxat(n1£x)+ Eynyd(IT1Ex) + Ey nmyd(TT1Ey)
2

+ |E[*8nx + 2Exnxd:(IT1Ex) + 2Ex nnx (T Ey)

+ 2E} 80y + 2Eynxd(I12Ey) + 2E, nny 8, (IT2Ey) + 2ExEy 8y |0

+ [Exnxd(IT2Ey) + Exnnid:(ITEy) + Eyny0i(I2Ey) + Ey ay 0 (ITEy)

+ |E[*0ny + 2Ey1y0;(ITEy) + 2Ey 51y 0:(IT2Ey )

+ 2E}9imy + 2Eyn,d:(IT1Ey) + 2Ey 10y 0:(IT1Ey) + 2EEy 0y |1y

+ [—Ed:(IT1Ex) — Exn0(TT1Ex) — 2Exd(TT1Ex) — 2Ex 00 (T Ey) — 2E, 0, (IT2E)) |02

+ [—Ey0:(ITzEy) — Ey n0:(I1Ey) — 2Ey0,(IToEy) — 2Ey, 40, (IT2Ey) — 2Ex w0 (IT1Ex) |y

+ [—Eyat(H1Ex) — Eyn0e(IEx) — Ex0((ITEy) — Ex n0:(IT2Ey) — 2E0;(IThEx) — 2Ex,h3t(any)]77x,h77y,h:|-

In a next step, we shift the last two terms of (41) to RHSL and the last four terms of (42) to RHSN. Then the new left-hand
side is
1Hs = 1 4 [
T 2dt
1 2
+ / 80X(3)[53r[||‘3h|2('7§,h +15.4)] + 0 (Exnnen + Ey.nny.n) ]
2
while the new right-hand side is
RHS’ := RHSL' + RHSN’

2 2 2
el gy el oy + 162112 ]
(44)

with

Nx Ny
RHSL' :=RHSL— ) ¢q [ [nfalx,y ) Pdx =) "o / [nyy(x 3, y)PPdy.
i=1 i j=1 Jj

1
sox(”[*(nf,h + 02 4) 3 [Enl?

RHSN' :=RHSN + / 2

2
+ OEL g+ OEy oy + 20 (Ex,hEy,h)ﬂx,hﬂy,h]~

11
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The first three terms from RHSL are estimated using the Cauchy-Schwarz inequality and Lemma 5.2:
/ [e0(1 + x"™)[Benx mxn + ety ny.n] + 1400:02 021 ]
2

=< ||at77x||go(1+x<1))||77x,h||50(1+X(1)) + ||at77y||so(1+x(1))||77y,h||50(1+x(1)) + 1186z [l 11 1102,1 1l g
k+1
< GCh * [||'7x,h||ao(1+x(1)) + ||77y,h||50(1+x(1)) + ||Qz,h||y.0],

where the constant C; > 0 depends on [leo(1 4+ xV)lliy @), 140 llao(2)s 10cExllk1¢@y 10cEyllgr1¢oy, and [[0cH, (|1 ), as
can be seen be the following exemplary argument:

1Ml g1y < N1E0(T + X Dllso() 19emxll < CLE T 3Bl s -

The remaining terms from RHSL' are estimated by means of the Lemmata 5.3, 5.4:

Nx
> [- / () yg — (o) gy e+ /
i=1 i

0, ay nx,h]
Kij

Ny
+ Xl:l:/]j[(ezn%h)i+%’y - (9zfl;fh),<_%,y]dy - /I; ezaxny,h]
j= i

Ny Ny
= Yo [ yyPac= Yo [y Py
i=1 Yl =1 Y

< CH**2 4 Innl® + lly.nll?
= Ch?+2 + [I(go(1 + X(U)r1 ||Loo(!2)[||ﬂx,h”iO(HX(l)) + ||’7y,h||§0(1+x(1))]~
The terms from the right-hand side part RHSN can be estimated as follows:

RHSN < | x®(1 + x“’)‘l||Lw<m[[HEXHW)||at(n1Ex)||Lm(m||nx||50(1+xm)

+ 1Bl el g1, 10T EE) o) + 1By oot 1y lega 0y 1 T B ey
+ 1yl Iy g1y 13 UTEO N o) + TER a2y 18emell o150
+ 20 Bl 1l 1, ) 19 T E lac(2) + 20B i@ 11, 0y 19 T E e 2)

+ 202l @9 ey 0y + 21y liee@ el ag 1y 19 T B ()

2Bl a1 0 NI E i)+ 21l Bl e | ey

[t el 0 10 TE2E )

+ IEx o) 1Ml eg14x ) 10 (TL2Ey) Lo (2) + IEy o) 1My s 1450y 18e(TT2Ey )l o 2)
+ 1Eynlloo(@) 1y lega-s ) 18 TT2Ey o) + NEI ooy 191y ll g1 1)

+ 20Ey o) 17y lsg(14x )y 18 (TT2Ey o) + 2HEy nllLoo(e2) 1y lleg(1-4x 0y | e(TT2Ey )l 1o 2)

+ 20E2 Lo @) 10y g1 40y + 1By lso(e) 17l g1 0y 19 IT1 E)ll oo 2)
+ 2[|ExhllLeo(@) 1My g1 ) 10 (T Ex) | oo 2) + 2||Ex”Loo((z)||Ey||Loo(Q)||atnx||go(1+x(1))]||77y,h||so(1+x(1))

+ [||Ex”LDO(Q)”at(HlEx)”Lw(Q) + 1 Ex,nll oo (s2) 10 (TT1 Ex)l Lo (22)
+ 2||Exlloo(2) 10 (IT1 Ex)ll Lo (2) + 21 Ex,n Il Loo(e) 11 0 (IT1 Ex) Il 1o 2)

- 20Ey et 1L TE Mty [ I,

+ I:”Ey”LQQ(Q)||3t(HZEy)||Loo(.Q) + 1Ey,nlloo(2) 10 (T2 Ep )| Lo (2)

+ 21Ey |10 (2)10:(IT2Ey )| Lo (2) + 211Ey, kIl Lo (2) 10 (TT2Ey )l Lo (2)
12
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2
+ 20l AT ED ety I 12, ey

+ I:”Ey”Loo(Q)||8t(HlEx)”Loo(S2) + Ey.nlloo(2) 10 (TT1 Ex) | Lo (2)

+ NExlltoo() 10 (T2 Ey )l Lo (2) + IEx.nloo(e2) 10 (T2 Ep ) 1o(2)
+ 20Ey o) 10 (IT1Ex) | Loo(2) + 2||Ex,h||Loo(S2)||8t(H2Ey)||LOQ(Q)] ||Ux,h||go(1+x(1>)||77y,h||50(1+X<1>)]~

This estimate shows that we have to discuss upper bounds for the terms || Ex|li.(2) IIEyllioo(2) IIE|? lLoo(2)s ||E lLoo(2)s

IE2 o2y, 19eCTIED N Laos2)e 10e(T2E ooy Wellegsge 1y legcasyy 18eTxllegqrsxiye 18y llagcaymy [1Exhlliace2), and
||Ey,h|| Lo(2)- The first five terms are bounded thanks to the assumption w.r.t. the weak solution and the continuous
embedding H**1(£2) C Loo(£2) for k € N, see, e.g., [31, (3.1.4)] (this embedding remains valid for d = 3, too). The eighth
to eleventh terms are estimated by means of Lemma 5.2, for instance:

1/2
7ellegraxy < N1+ x % gy Il < CHFYIExll i gy,

where here the constant C > 0 depends on ||eg(1+ x(V MlLeo(2)- The last two terms are bounded thanks to the assumption
w.r.t. the numerical solution.

So it remains to investigate the sixth and seventh terms. Taking into account the commutation property 9;(IT1Ey) =
IT4(9:Ex), we first observe that there exist at least one element Kj; such that

10e(IT1EllLo(2) = IHT1(0eE) | Loo(2) = IHT1( 0 Ex)ll oo ky)-
The latter norm can be estimated by an inverse inequality [31, Thm. 3.2.6]:
T3 (BB ooty < Kyl ™2 1T (0 Ex)y00)

(note that we need only a local variant, i.e. we may omit the inverse assumption [31, (3.2.28)]). Using the triangle
inequality, we get

10e T EllLo(2) < 1K1 ™2 [19:Exlliyciy) + 171 (0 Ex) — 0¢Exlliyi)]
< 1Ky~ 2 [1Kg 12 19eExlotiiy) + CIKG IS 2 18 Eellger ]

The estimate of the first term in the square brackets results from Holder’s inequality, whereas the second term is estimated
by means of a local variant of Lemma 5.2, see [27, Lemma 3.2]. So if the mesh size h is sufficiently small, we get

1T (BB o) < 18cExlliactiy + CIKG1 2 19eExllreyy < Cll9eExll i gy,

where we have used the continuous embedding H*'(£2) C L,(£2) in the last step again. An analogous argument applies
to the seventh term.
So in summary we arrive at the estimate

RHSN < GH* [ l1menll 140y + 1yl egas )]
+ C3||'7x,h||2 (11, T C4||77y,h||2 (11,0 T Cllmxnllegeax oy lmy.nllcgqr,m)
< R Imenlloga ) + 1ynllegre ] + Cs[llnxhll (14,0 T ”nyh”(co (1440 )]

where the constants C,, Cs depend on || x /(14 xM)~1||, (@), the C(0, T, H**1(£2))-norms of Ey, E, and the C'(0, T, Uf N
Loo($£2))-norms of Ey , Ey p.
Furthermore the remaining terms from RHSN’ can be bounded from above by

3 1)y—1
I x®P1+ x™) ™ o) [ ] Y e [||'7X"'||eo(1+x + ”'7yh||go(1+x m)
+ 10E2 Ml oo 1, ””50(1+x“)) + 118 yhlch,Q(fz)llnyhllg0 1y (D)
+ 2”at(Ex,hEy,h)”Loo(.Q)||nx,h||ao(1+x(1))||77y,h||50(1+x(1)):| .

Here we have to take care of ||3[|Eh|2||Lw(g), ||3[Efvh||Loc(_Q), ||8tEj_’h||Loc(g), and [|0¢(Ex nEy.n)llLeo(2), but all these terms can
be bounded from above by the C'(0, T, U,’f N Loo(£2))-norms of Ey p,, E; ». Therefore we get the upper bound

Ll iy oy + Iyl )
13
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where the constant C depends on || x®(1 + x")~![l.(e) and the C'(0, T, Uf N Lo (£2))-norms of Ey , Ey 4. Since such a
term already occurs in the upper bound of RHSN, we modify the constant Cs correspondingly and conclude

RHSN' < Czhk+][||71x,h||50(1+x(1)) + ||77y4,h||go(1+x(1))] + CG[||77x.h||§0(1+X(1)) + ”ﬂy,h”?o(]_,_x(l))]- (45)
Combining the right-hand side estimate (45) with the left the-hand side (44), we obtain

1d

2dt

1
+ [ eox®[SA0E 02 + )]+ 8Bt + Eray)’]
2

[l o+ Iyl oy o+ 1022, ]

k+1 2 2
< G I lleg1400) + 1y.nllegr ] + C6[||77x.h||€0(1+x(1)) + ||77y,h||80(1+x(1))]~

Setting

Di(6) = (O, 3ty + 1y.0(OII

2
EO(1+X(1)) + ||92’h(t)”l/-0

+ / eox‘”[lEh(r)lz(nih(r)+n§,h(r))+ 2(Ex,h(t)nx.h(r)+Ey,h(t)ny,h(r))2],
2
we get

1d 2 k+1 2 2
Eaph(t) < Gh + [||77x,h||ao(1+x(1)) + ||77y,h||50(1+x(1))] + C6[||’Ix,h||80(1+x(1)) + ||77y,h||80(1+x(1))]

< GV2h Dy (t) 4 CoDA(1).

Integrating this inequality with respect to time, we obtain
t
DX(t) < Du(0) + 2/ [Cv/2h 1 Dy(s) + CsDi(s)]ds.
0

Now we apply a Gronwall-type lemma [32, Lemma 4.1] and obtain
Dy(t) < Dyp(0)ee! + Cov/2hK+1teCet,

From this and the triangle inequality in conjunction with Lemma 5.2 the statement follows. «
6. The fully discrete scheme

The energy stable semi-discrete method (10)-(14) can now serve as a starting point for full discretization. We have
chosen a relatively simple method as an example, which in the end only leads to a conditional stability, as is natural in
leap-frog methods.

We divide the time interval (0, T) into N € N equally spaced subintervals by using the nodal points t" := nAt,

n=0,1,2,...,N,and At := % Given initial values (E,‘zh, E}?,h’ H2,1)T € (UF)? of the electric and magnetic field intensities,

3
the fully discrete scheme w.r.t. the electric and magnetic field intensities (E)’Zf, Eﬂ], H:_J,:z FeUkPn=12,..,N-1,
reads as
Dyt' =Dy, antd o antl oL n+1 n+4
/K —r ‘Dlh—/l[(Hz,n Pidejpy — (Hy " Py 11dx + /K H, h 3y¢’1h—/fo,h P =0, (46)
ij i ij ij
Dn+l —_p" 1 1 1 1
,h Lh Nty Nty n+5 n+y
LRy I(H,,  Py) 1, — (Hy 2 @3, 1 Jdy — | Hy 2 0x@on — | ], % ®an =0, (47)
K; At 7 2y ' 2y K K
]l lj U )
n+3 ntl
H ,2—H,k?
z,h z,h An+1 p— an+1 5+
/ MOiAt D3y +/[(E;h qjgh),#%,y _(E;,h ¢3h)i,%_y]dy
Kij Jj
+1 ANl g — Al g+ +1 _
_ /K EN by —/I[(E;h D31y — B3, xyji%]dx—i-/K EM19,dg, = 0, (48)
ij i ij

/ (DI — Dby = f o1+ xONEM! — B )0u
K..

K,-j ij
1
+ / eox“)[5[(5;‘,;1)2+(E;',h)2+(E;f)2+(E;,,1)2](E;F—Ef_h)cbm

14
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+ (LEGY + B PUES — Ex P + [ELLES + EGEy W J(ES L — By )@ )], (49)

(D)} — D} )®an = / eo(1+ xONE) T — Ej 1 )®an
Kii K

1
+ /K sox‘”[5((5:;1)2+(E;th)2+(E;,#)2+(E;,h)2)<f;i#—E;,h)%h

+ (LERY + B PAES — By )P + [ExFEy L + EVEy BV — E ) ®an )] (50)

for all test functions (@14, @2n, P31)" € (UF)®. The differences Dﬂ] — D}, and D;fh] — Dj, play the role of auxiliary
variables, and the flux densities are defined by

E‘fﬁ](x,yﬁ%) = E;:w(x,y”%) forallj=1,2,3,...,N,— 1, 51)
E‘;;l(x,y%) = E‘;J’;l(x, yNy+%) =0, (52)
Eﬂl(xw%,y) = E;,ngﬁ(xw%,y) foralli=1,2,3,...,Ny— 1, (53)
E;,J,T(x%,y) = E;’ng(x,\,ﬁ%,y) =0, 54)
I:I;I%(x’yﬂ%) = H;I%’_(x, yH%) forallj=1,2,3,...,N,, (55)
ity = o+ SET 0p + B ) (56)
I:IZZ%(XH%,J/) = H:I%*_(xw%,y) forallj=1,2,3,..., Ny, (57)
AL g = H g ) - %[Eyﬂf("?” + Ef,h(xg’y)]. (58)

Due to the PEC condition (7) we have E} 7 (x, yT) = Ej ' (x, yi)—E)'(‘f,:l(x, y7)=[E;H (x, 2 ) in Eq. (56), and the analogous
one for the other artificial viscosity in Eq. (58%. The boundary terms are defined as follows:

Antd _ ~ntl
O = = — /I[(Hz’hz(EH] +En) )x.j+% - (Hz.hZ(E:,Jﬁl + E;,h)+)x,j—%]dx

A n+3 n+d ~ n+3 nt+l
- [[(Egtl(Hz,llz +Hz.h2) )x,j+% - (Eg};l(Hz,hz +Hz,h2)+)x,j—%]dx’

ANty _ Aty
ojh = /, [(H* By Ep ) Dipxy — (2 (BT + Epp) ™), Jdy
lj
n+3 n+1 n+3 n+3

+ /[(E;},JI;](HZ,h +H,h )_)i+%,y_(éﬂl(Hz,h +H, )+)i—%,y]dy’
].

It should be noted that a nonlinear system of equations remains to be solved in each time step. An investigation of
nonlinear solvers, especially under the aspect of energy conservation also for the approximations obtained with them, is
still pending. However, we have had very positive experiences in the application of Newton (or Newton-like) methods in
solving such similar nonlinear problems that arise when applying conforming methods [8].

The proof of the energy relation in the subsequent section is based on the following lemmas.

Lemma 6.1. Forn=1,2,..., N, with the flux densities (51)-(58), we have

N Ny Ny 1 43 41 N N Ny
n+s n+s n+s=
S [ ae s arae hh] 20 Y
n=0 i=1 j=1 *Ki n=0 i=1 j=1
Ny—1 ¢ , s :
N+3 1
=3[ el - [ ()
o I XJjty r xJjt3
Ny Ny N
N+1q g N+3 0 3 Co P ntlg | g2
+ZZ ; Ecn OH, = — ExpdyH ), +5Z (Een " +E, MR
i=1 j=1 % n=0 "
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Proof. For details see [25, Lemma 4.1]. <«

Lemma 6.2. Forn=1,2,..., N, with the flux densities (51)-(58), we have

N Ny Ny ] 3 ; N Ny Ny
-y / [ 0B + B + B o + D]+ 303 o
n=0 i=1 j=1 *Kij n=0 i=1 j=1

Nx—1 q 3 q 1
=2 [_ /p (ES;TL”IHZF >i+%.y+ /p (E;’;,T IIHjh]])i%y]
Ny Ny i3 s o N
+ ZZ/K [_Eﬁmtzm 2 +E5?,h8XHZ,I] +5 Z/p (BT + By )]
i=1 j=1 Y% n=0

Proof. For details see [25, Lemma 4.2]. «

7. The nonlinear electromagnetic energy of the full discretization

The nonlinear electromagnetic energy for the fully discrete approximation (i.e. both in space and time) of the system
(46)-(50) att",n=20,1,2,...,N, is defined by

2

n. n ”*% 2 n,2
& = |E ) IH 7 15 + IERE] o0

I
eo(1+x(M)

In analogy to the conservativity and boundedness results for the continuous and semi-discrete nonlinear electromagnetic
energy (Theorems 2.1, 4.1), in this section we demonstrate a stability result for the fully discrete nonlinear electromagnetic
energy of the system (46)-(50).

1
Theorem 7.1. Let (Ey;, E} . HZ-;;Z )€ (UF), n e N, be the fully discrete solution of (46)-(50) for given J, € C(0, T, UF)%.

Then, if At > 0, h > 0 are sufficiently small and if At/h is bounded by some constant, the fully discrete nonlinear
electromagnetic energy satisfies
1 2
N 0 02 22 0,2
& =38 = 3[||Eh||go(1+xm) +IH 15, + [ 1ERI Hsox(3):|

for vanishing current density and

N-1
n+d
5,’1\’ < exp(8T + 1)|:38,? + At E 1], : ”(ZSO(HX(U))_]]
n=0

for non-zero current density.

Proof. Taking &, := (E)’:;1 + Ey ;) in Eq. (49), we have
| oo + B
= [ et OE — e )
1
+ /K o X<3>[5[(Eﬂ1)2 + (B3 + ()T + (B P )V H — Exp MES +Exy)
(LR + (B PIERS — ELGER + En) + (Enp En + BBl E — ELn)ER +EL)) - (59)
Taking @y, = (E}/;' + EJ,) in Eq. (50), we have
1
[ o3t = ope + )

- / eo(1+ xOXEME — B EMET +ET,)
Kij

16



A. Anees and L. Angermann Results in Applied Mathematics 19 (2023) 100393

1
[ eox[FIEEF + B + (B3 + (L NE = BRI + )

(LB + (B IES — B R + Ep) + LB B + ELER (L — ELERY +Epw) | (60)

Adding the Egs. (59) and (60), we see that

(D"~ DL + E) + [ (O35 = DTS + L)
K,‘j Ki,j
2 1 2 2
=/ 80(1+X(U)[|Ez+l| —|EZ|2]+/ SOX(3)|:5[|EZ+1| +|EZ|2][|EZH| _|Ez|2]
Kij

Kij
+ IESY + By IR — (B 1+ LE) T + (B W PILE) TV — (Ey )]

+ [EH]EH] + EQhE;,h][E;,JJ;lEﬂI + E;?,hEyn,Jr:] - E;JElE;,h — Ej hEyp]

LB LR IET B+ B B — ELuER — Bl

The term in square brackets in the second integral of the right-hand side can be simplified as follows:

1 2 2 4
-] = S L+ Tl — ]+ i

4 +14 4
ECnl” +1Eyy | — [E) ]

+2[EGTEN + B (BN EN — BByl

1 4 4 4 4 4 4 2 2 2 2
=SB — BRI+ IEG T + 1B — IEgul” — IEyal® + 21E5 CIESE T — 2B, 7IEy,

3

OB — 1B ],

Hence we get

; (D = DR ES + Epy) + /K Dyt — Dy W Ey+ + Ey )
ij ij

-,

Taking @1 := 2At(E; " + Ef,) in the Eq. (46), we have

2 3 4
eo(14+ x")[IER| —|EZ|2]+5/ eoxP[IEFT" — [ERI*]. (61)

i Kij

A +1
2 / (DR — D EME! + ) — 24¢ [ (B2
K;;

_ At
1 (Ei' +Efp) )x.;+% — (H,, 2 (B} +Eg,h)+)x,j7%]dx

1 1
+ 2At/ Ho o2 oy(E S + ENy) — 2At/ Jen2(EMT 4Bl =0, (62)
Kij KU
Taking @, == 2At(EH1 + Ey ) in the Eq. (47), we have
n+%
z,h

Al B N
2/K (D3t = Dy )Ept! +E;$h)+2At/J[(szh2(E;‘f +HE ) gy — (H
ij lj

1

(Bl + Ep) )y )y

1 1
- 2At/ H, 2 O(EDT! —i—E;h)—ZAt/ Jyn(EMET+EN) = 0. (63)
Kij Kij

. n+3 n+dl
Taking @3y := 2At(H, ,* +H,,*) in Eq. (48), we have

n+do o ontd n+3

n+3
2/ MO(HZ,hZ _Hz,h )(Hz,h +Hz,h )
Kij

n+3 n+l
E;:";la"(Hz,h ‘4 Hz,h ’ )

ij

n+% n+%

~ _ A~ +§ +l
+ 2At ‘/&[(E;I](Hz,h + Hz,h ) )i+%,y - (E;};%Hzn.h ’ + H:,hz )+) ]dy — 24t
].

—

1
I=3.y

n+% n+%

E;Zﬁh—1 a}’(Hz,h + Hz.h ) =0.

1 3 1
n+5 n+3 n+5

. 43 ~ .
— ZAI/I[(E;;](HZ}:Z +Hz,h ) )x,j+% - (E;I,-I:l(Hz,h +Hz,h )+)x,j—%]dx+ 24t

—

<
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Adding the Eqs. (62) and (63), substituting the result in Eq. (61), we obtain

2 +3 +1 4
2/ eo1 + xO)[EF] —|Ez|2]+2/ polH 2 — Ay 4 3f eox [EFT — BN
K; K;

ij Kij ij
—oar [T E 4By _(MTE v det 24t [ HY g, (EM 4 En
1[( on (Exn +Edp) )x,j+% (H,p " (Egn +Ecp) )x,j—%] X+ | e y(Egn + Exp)
i ij
n+ _ n+ n+
+ 2At/][(HZ n(Eytl+ES L) )i+%’y—(H Z(Eﬁ1 +E;$h)+)i_%yy]dy— 2At/K H, %, (E"+1 +E}p)
lj ij
- n+1 n+ n+ioL n+ n+1
+ 2Ar/[(5ﬂ1( 4+ H,,2) ity ~ (E““( 24+ H,, 2 1,ldy — 24t Eyi'o(H, > +H, ,?)
]j Kl]

n+2 n—#—2

- 2Ar/[(5;;1( ;':2 +H"+2) sy — EEH ::2 +Hy 1)), ldx+ zm/ EM1a,(H, +H )
K

_2At/K i (E"E'+ENp) +2At/ el (EM! +EDy).

Summing up over the 1 <i < N,, 1 <i < N,, and with respect to time from n = 1 to N, and using the Lemmas 6.1-6.2
we arrive at

N+3 1 2
2 NN I2 oy — WERIZ ooy NEL 212, = W22, | + 3[IEY T2 ) = MESTIZ, o
_2AtZ/ e (BT 4 BN +2At2/ e (EMT 4+ ENy)
N+1 0 N+1 N+ 0
— 28, (BN HL )+23 (B2, H; )+ 28, (B ,thz) — 2B, (Eyh,H2 ): (64)

where the bilinear forms are defined as

B, (E;f,H:?) = At ZZ/

11]1KIJ

n+3 n+
B (Er HLL ) = At ZZ/ E''a, 2+Z/ (Exn);| 1[[thz 1]

i=1 j=1

(cf. [25, Proof of Thm. 4.1] or [33, eq. (4.1)]). Using an inverse estimate (cf. [25, Proof of Thm. 4.1] or [33, Lemma 4.1]),
we have that

E"“BHHZ‘FZ/ yhl+1[[ n+2]],+1dy]

C
B, (1 HIL ) = 280G S BT e I

where Cyyy is a positive constant that is independent of h and At, and C,,, := [[(gopo(1 + x1))~1/? ||Loo o The right-hand

side is estimated by means of Young's inequality with ¢ (see, e.g., [18, Lemma 1, 2)]), where the parameter called here
o > 0 will be determined later:

n+ n+
By(sgf,Hz,,Z) = B0, g0y + (AtCow “’“) IHI 212, (65)
Similarly we get (with the same parameter «)
n+
BX(E}:;HH” ) = @B, 0y + (MG 8“) IH 212, (66)
and
0 2 Csu
B (EQy H2y) = AtCo 2 [ 1D, )+ THE 2, | (67)
1
Bx(E;,)h, H2 ) < AtCINV [|| h||§o(1+x(] + ||H, h”llo] (68)

The first two terms from the rlght—hand side of Eq. (64) are estimated by means of Young’s inequality, too. This gives

2At Z/ e (E":' +EM))
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N

= 2At Zf(eo(lﬂ“ N Heg(1 4 50 WVAES + Exp)
2

n=0

N N
n+l oo +1
= A6 Y Wn Wgugmyr + A8 2 NEG +Efl oy
= n=0

N
nty 0 )
= 4t Z ”]X,hz ”(80(1+x -1+ 24t Z[”En eo(1+x(1 + IE h”Eo(Hx )]
=0

N N
n+l
=AY W W gy 448 D NEGT I oy + 28 BRI 1oy (69)
= n=0
and
il N N N
2 n+l n n+32 n+1 0 2
24t Z/ (Byh' +En) = A6 Y Wy Wgeas oyt + 446 2 IES I oy + 240 NI 0 oy (70)
= n=0

Finally, using the estimates (69), (70), and (65)-(68) in (64), we obtain

N+1 N+12)2
2[ 1Y) |+ P2

N

<44t Y B2 () + 24T BRI
n=0

N+
)+ IH 2112

o(14+x 1o

Ce N+2
+ 20 B} +4(AtCw 2 ) IH 212,

o(1+x(M) o(1+xM)

N
2 : nt3o

+ At ”Jh ”(50(1"’)((1)))71
n=0

1
2 o S (IR, o, + 2IHZ 2, |+ 2[UBDIR, oy + 22, |+ SUIESL

eox3”
Now we chose « := 1/2 and move the corresponding term to the left-hand side. If the condition
At . 1 1
h 4Cny G,y 4h

is satisfied, we obtain

N+3
ISR 4y + I 212, + NES I g
N
n+1 n3
= 4AE Y BT I 1y + 2ALIERIC oy + AL Z”J egcrxciny-
n=0 n=0

1
[||E°||€(HX +2IH2, 12 o]+ 2 VBRI oy + IHZ 2, | + SIERIIZ,

x1

N
+1)2 nyoo 0 3
<4At ZHE,': 12 gy + AE D W 202 et + 3[||E 12 1y + D22, + NESCIZ .
n=0 n=0

If we strengthen the condition (71) to
At . 1 1
po=mn {4C,chw; 4h} ’
then we may apply a discrete Gronwall’s inequality [34, Lemma 5.1] (also cited in [18, Lemma 2]) to obtain

3
N+1 N+35 2 N+1,2
IERTI oy oy I 202, + EY P2

n+
<exp(4Aer—4Ar )[AtZIIJ IR gy 3[IEIZ o + U2, + 11ES) ||80X<3)H.

n=0
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If even
. 1
— <My ———; = (>
h { 4Cy G,y 8h }
holds, then

N+1 +3 2 N+1,2
IE, IIS(HXerIIth2 + IIEY )12

”/Lo sox®

N
< exp(8T + 1) [At anh P gy 3[VERIZ oy + U2, + 11ES) “mmﬂ
n=0

n+
Since the term At Zn ol ? ||(50(1+X

regarded as being bounded 1ndependently of h.
To prove the first statement, the estimates (69), (70) are not needed, and we immediately get from (64) the relation

[nEN“n

_; can be interpreted as an approximation to fo (s || (ea(144(1 Ids it can be

eo(1+x(1 s0xC

o+ IH ||#0]+|||E”+1| 12
N+
< 20 lB IR,y + 440 G ) I,

(9 1
+ 28t G =2 [ IDIE, 1) + 21 hlluo]H[llE‘)llg gy IHAIZ, | + SN2, o

Now the condition
At 1

—_ S S —
h 4Cny Cepe
already leads to the statement. «

8. Error behavior of the fully discrete solution

If the assumptions of Theorem 5.6 and Theorem 7.1 are combined with the additional requirements that the Yveak
solution (Ey, E,, H,)" of the system (6) belongs to C2(0, T, H**1(£2))*, k € N, the fully discrete solution (Exp Epp HZ"J,:?)T €
(UK)? of (46)-(50) is uniformly bounded w.r.t. h and n € N and the initial values are chosen such that £ < Ch2*+ is

satisfied, then it is possible to prove a bound for the norm

N+l
IR — E(T)ll o440y + IH, = Ha(T) g

of the error of optimal order, i.e. of the type C(h*+! + (At)?).

The proof is based on the stability result Theorem 7.1 and runs structurally like the proof of Theorem 5.6, whereby on
the one hand the assumed boundedness of the fully discrete solution (similar to the proof of Theorem 5.6) and on the
other hand standard estimates for time discretizations (cf. [35, Sect. 9.8]) are used.

We do not want to describe the proof in detail, not only because it is quite technical (and therefore very lengthy), but
above all because we see a conceptual discrepancy between the fact that on the one hand the introduced family of spatial
dG discretizations can be shown to be energy stable (see Theorem 2.1), while on the other hand - as far as known to
the authors - (nonlinear) results analogous to Theorem 7.1 are only available for a few selected temporal discretization
methods of first and second order. Although there is active research on methods that are aimed at establishing or
improving certain conservation properties (for instance implicit Runge-Kutta methods [36], implicit-explicit Runge-Kutta
(IMEX-RK) methods [37] with an appropriately chosen IMEX strategy, or symplectic methods [38]), most of the theoretical
results (if any) are related to the classical (linear) Maxwell’s system. To carry over these results to a nonlinear situation
like the one above, however, nontrivial modifications are required, which lead to challenging additional theoretical end
experimental investigations.

9. Summary

In this paper, a TDdG has been developed for a system of Maxwell’s equations with a cubic nonlinearity. The new
capabilities of the proposed method permit that linear and nonlinear effects of the electric polarization are modeled in
an efficient manner that conserves the energy or is energy stable. The novel approach allows energy stability both at the
semi-discrete and fully discrete levels, which were not yet available for the full system of nonlinear Maxwell’s equations.
Although the fully discrete method is only conditionally stable, the semi-discrete method naturally offers the potential
to also use other discretization methods, whose unconditional stability would of course also has to be shown. A detailed
error estimate is provided for the semi-discrete problem. The approach is almost completely general and could replace
the electric field formulation, magnetic field formulation, and A-formulation.
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