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Abstract: Process vessels utilized for liquids and liquid-phase processes are important in the chemical process industries

as they are employed for a number of purposes which include use as reservoirs, surge tanks, transportation tankers and as

reactors. It is therefore often desired to have real-time data about the liquid volume and level especially for partially-filled

vessels. While obtaining volume-level data for filled tanks for common geometries are simple tasks, this is not so for

partially-filled vessels with complex geometries. This paper therefore sets out to develop a useful theoretical tool which can

assist process engineers with the task of calibrating process tanks for these complex yet widely-used geometries. The paper

presents a mathematical analysis of these geometries and develops equations and charts which could be used to estimate

tank volumes from given depth of liquid for any geometry of partially-filled process vessel. The paper also develops a

useful methodology which can assist in the design and sizing of process vessels using the developed charts. The paper is

unique in that it utilized a normalization technique in the mathematical analyses of the partially-filled process vessels.

Fractional volume and fractional depth were introduced as key variables in addition to dimensionless geometric

parameters.

Keywords: Storage tank; Process vessel; Calibration; Unit operation; Level control; Tank volume calculation; Partially-

filled tank

1. Introduction

Liquid process vessels feature frequently in the chemical

process industries as indispensable units utilized for a

number of functions which include storage, buffering,

surge-control, reservoir and reactions. In the downstream

process industries involving transport and distribution of

liquid products, the transportation tankers used are some

form of process vessels. The umbrella of usage of liquid

storage tanks and vessels even transcends the common

process applications to include unconventional terrains like

the storage of wastewater and eventual discharge to river

basins [1], the transportation of liquid wastes, groundwater

reservoirs [2] and overhead reservoirs for surface water

storage [3]. Whether as storage tanks, transportation

tankers, buffer tanks, holding tanks or as reactors, it is often

the desire to determine the volume and depth of liquid in

process vessels especially when they are partially-filled.

This volume-level information is a requirement of proper

calibration which is often a daunting task.

While calibration is easy for simple geometries like

vertical cylindrical and cuboidal tanks, for other complex

geometries like horizontal cylinders and other cylindrical

composites, this is not quite easy, leaving the process

engineer with a task of experimentally calibrating the

vessel. Calibration and metering of process vessels is cru-

cial to continuous plant operation as volume-level infor-

mation are useful for process control purposes, process

monitoring and often for troubleshooting. Calibration gives

the relationship between measured level and measured

volume and it is important to ensure that, throughout the

life cycle of the vessel, what was obtained during
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commissioning do not change over time [4]. Hence, the

need for calibration charts.

Calibration charts are tank capacity tables which show

the quantity of fluid in a containment system at a given

level, depth or height [5–7]. There are now storage tanks

having a capacity as high as 240,000 m3 and therefore one

can see how important the calibration of storage tanks can

be. Because of this, Yeandle [8] claimed in his article that

any calibration-stage error will result in a significant

inaccuracy in the tank table, the consequences of which

will be detrimental.

Calibration charts showing the calibrated volume at

every incremental level can be developed using mathe-

matical equations derived for the known geometrical

shapes of vessels. The use of mathematical equations to

establish volume-level relationship is known as Geomet-

rical or Dry Calibration [9, 10]. Geometrical method of

vessel or tank calibration is adjudged to be faster in gen-

erating tank calibration charts but the accuracy is less when

compared with the Wet method of tank calibration. In

contrast to the dry method, though wet calibration is more

accurate, however, it takes longer time, it is limited to

small-sized vessels (about 60m3), and it is not economical

[11].

This paper therefore sets out to develop a useful tool

which can assist professional engineers with the task of

calibrating process tanks for these complex yet widely-

used geometries without experimentation. The paper pre-

sents a mathematical analysis of these geometries and

develops charts which could be used to estimate tank

volumes from given depth of liquid for any geometry of

partially-filled process vessels. The paper also develops a

useful methodology which can assist in the design and

sizing of process vessels using the developed charts. The

objectives of this research are three-fold. Firstly, the

research’s goal is to develop a useful resource to assist in

the design and sizing of process vessels. Secondly, it is set

out to help in the determination of tank volumes given the

depth of liquid for any geometry of partially-filled process

vessels. Lastly, it presents a methodology based on math-

ematical analyses for the calibration of partially-filled liq-

uid process vessels.

Uniquely, this paper employed a normalization tech-

nique in the mathematical analyses of the partially-filled

process vessels considered in the work. It introduces frac-

tional volume and fractional depth as time-dependent

variables for a partially-filled process vessel. In addition,

dimensionless geometric parameters are introduced as

design parameters for each process vessel in terms of the

key dimensions of the geometrical shape or composite

shapes of the vessel. The advantage of this novel analytical

approach to the study of volume-level calibration of par-

tially-filled process vessels is that generalizations about the

relationships between the volume and the liquid depth for

any of the geometries and composites considered can be

made in the closed interval of 0 B x B 1 specifying only

the dimensionless geometric parameters.

2. Analyses of Partially-Filled Vessel Geometries

2.1. Ellipsoidal Vessel

Figure 1 shows a partially-filled ellipsoidal vessel filled to

a depth, h. The ellipsoidal vessel has characteristic

dimensions 2a, 2b and 2c on its three axes. The total depth

or height is H = 2c. The partially-filled volume at a depth h

is

V ¼ pab
3c2

h2 3c� hð Þ ð1Þ

or

V ¼ 4pab

3H2
h2

3

2
H � h

� �
ð2Þ

At maximum capacity, the maximum volume is

Vmax ¼
2

3
pab ð3Þ

By dividing Eq. (2) by (3) and introducing the fractional

volume V and fractional depth �h, we obtain the normalized

volume-level relationship for an ellipsoidal tank as

8 ¼ 3
h

H

� �2

� 2
h

H

� �3

8 ¼ 3�h2 � 2�h3 ð4Þ

where

8 ¼ V

Vmax
ð5Þ

c
h

H a b

Fig. 1 Partially-filled ellipsoidal vessel
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�h ¼ h

H
¼ h

2c
ð6Þ

Equation (4) is graphed in Fig. 2.

2.2. Spherical Vessel

The spherical vessel can be considered as a special case of

the ellipsoidal vessel (Fig. 1) where a = b = c = R and

H = 2R. Therefore, the partially-filled volume for a depth

of h follows from Eq. (1) as

V ¼ p
3
h2 3R� hð Þ ð7Þ

At full capacity, the volume is at the maximum and is

given by

Vmax ¼
4

3
pR3 ð8Þ

When Eq. (7) is divided by (8), we obtain an expression

similar to Eq. (4) from which it follows then that the

expression for the fractional volume V for a spherical tank

is the same as that for the ellipsoidal tank, only that in this

case the fractional depth is

�h ¼ h

H
¼ h

2R
ð9Þ

where R is the radius of the spherical tank.

The chart of Fig. 2 is also applicable to the spherical

tank.

2.3. Horizontal Cylinders

2.3.1. Elliptic Horizontal Cylinders

Consider a horizontal cylinder of length L (Fig. 3) partially

filled with liquid to a depth of h whose cross-section is an

ellipse of major axis 2a and minor axis 2b.

By obtaining the area occupied by the liquid in the

elliptic cross-section and multiplying this by the length of

the tank, the volume of the liquid is obtained. (This is a

general approach to obtaining the volume of all prisms to

which the flat-end horizontal cylinders belong except for

the composites among them with domed ends).

That is,

V ¼ A � L ð10Þ

The cross-section is shown in Fig. 4 on the x–y plane

with a convenient choice of origin such that the centre of

the ellipse is located at (a, b).

From Fig. 4, the area of the occupied (shaded) segment

of the ellipse is

A ¼ Area of elliptic sector POR� Area of triangle POR

A ¼ hab� 1

2
PRj j � OQj j ð11Þ

where hð0� h� pÞ obtained from the trigonometric ratios

is defined by Eq. (12) by considering triangle POQ.

h ¼ cos�1 OQj j
OPj j

� �
¼ sin�1 PQj j

OPj j

� �
¼ tan�1 PQj j

OQj j

� �

ð12Þ

Since Pðx1; hÞ and R x2; hð Þ are points of intersection of

the line y ¼ h and the ellipse x
a � 1
� �2 þ y

b � 1
� �2 ¼ 1, we

obtain x1 and x2 by simultaneous solution of the two curves

thus:

x

a
� 1

� �2

¼ 1� h

b
� 1

� �2

¼ 4
h

2b

� �
� 4

h

2b

� �2

ð13Þ
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Fig. 2 Volume-level relationship for a partially-filled ellipsoidal or

spherical vessel

2a
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Fig. 3 Partially-filled horizontal cylinder with elliptic cross-section
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x1
a
¼ 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s

ð14Þ

x2
a
¼ 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s

ð15Þ

So,

PRj j ¼ x2 � x1 ¼ 4a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s

ð16Þ

By the application of Pythagoras’ theorem to either of

triangles POQ and ROQ noting that

OQj j ¼ b� h ð17Þ

PQj j ¼ QRj j ¼ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s

ð18Þ

we obtain

OPj j2 ¼ ORj j2 ¼ ðb� hÞ2 þ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s2

4
3
5
2

ð19Þ

OPj j ¼ ORj j ¼ 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

b

� �2

� 1

	 

h

2b

� �
� h

2b

� �2
" #

þ 1

4

vuut

ð20Þ

Now, substituting the known line segments PRj j and

OQj j into Eq. (11), the area becomes

A ¼ hab� 1

2
� ðb� hÞ � 4a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s

ð21Þ

A ¼ ab h� 4
1

2
� h

2b

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s2

4
3
5 ð22Þ

And consequently, the occupied volume is given by

V ¼ abL h� 4
1

2
� h

2b

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s2

4
3
5 ð23Þ

From Eq. (12), h ð0� h� pÞ has the following

expressions when we substitute Eqs. (17), (18) and (20)

h ¼ cos�1
1
2
� h

2bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
b

� �2 � 1
h i

h
2b

� �
� h

2b

� �2h i
þ 1

4

r
8>><
>>:

9>>=
>>;

ð24Þ

h ¼ sin�1

a
b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2b

� �
� h

2b

� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
b

� �2 � 1
h i

h
2b

� �
� h

2b

� �2h i
þ 1

4

r
8>><
>>:

9>>=
>>;

ð25Þ

h ¼ tan�1

a
b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2b

� �
� h

2b

� �2q
1
2
� h

2b

8<
:

9=
; ð26Þ

Any of Eqs. (24), (25) and (26) which gives h as a

function of liquid level h can be used in Eq. (23).

Therefore, the partially-filled volume is given by any of

Eqs. (27), (28) and (29).

V ¼ abL cos�1
1
2
� h

2bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
b

� �2�1
h i

h
2b

� �
� h

2b

� �2h i
þ 1

4

r
8>><
>>:

9>>=
>>;

� 4
1

2

�2
664

� h

2b

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s 3

5
ð27Þ

x

y

0

h

b

2b

x1

P

x2 2a
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0

a

Q

θ θ

Fig. 4 The elliptic cross-section of the horizontal cylinder on the x–y

cartesian plane
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V ¼ abL sin�1

a
b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2b

� �
� h

2b

� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
b

� �2 � 1
h i

h
2b

� �
� h

2b

� �2h i
þ 1

4

r
8>><
>>:

9>>=
>>;

2
664

�4
1

2
� h

2b

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s 3

5
ð28Þ

V ¼ abL tan�1

a
b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2b

� �
� h

2b

� �2q
1
2
� h

2b

8<
:

9=
;� 4

1

2
� h

2b

� �2
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2b

� �
� h

2b

� �2
s 3

5

ð29Þ

where 0� h� 2b.

At maximum capacity when the tank is full, h ¼ 2b, and

the volume is

Vmax ¼ pab ð30Þ

If we define a dimensionless volume

8 ¼ V

Vmax

as the fraction of the maximum capacity of the tank

occupied by the liquid, we obtain the expressions in

(Eqs. 31)–(33)

8 ¼ 1

p
cos�1

1
2
� �hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
b

� �2 � 1
h i

�h� �h2
� �

þ 1
4

r
8>><
>>:

9>>=
>>;

� 4
1

2
� �h

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p
2
664

3
775

ð31Þ

8 ¼ 1

p
sin�1

a
b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
b

� �2 � 1
h i

�h� �h2
� �

þ 1
4

r
8>><
>>:

9>>=
>>;

� 4
1

2
� �h

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p
2
664

3
775

ð32Þ

8 ¼ 1

p
tan�1

a
b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p

1
2
� �h

( )
� 4

1

2
� �h

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p" #

ð33Þ

where �h is the partially-filled liquid level expressed as a

fraction of the maximum depth of 2b. That is,

�h ¼ h

2b
ð34Þ

A dimensionless parameter, the eccentricity, e, is of

common use to describe ellipses. For the elliptic cross-

section of Fig. 5 with major axis 2a and minor axis 2b, it is

defined as

e2 ¼ 1� b2

a2
; 0\e\1fora[ b[ 0 ð35Þ

Equations (31)–(33) can be re-written to include the

eccentricity,
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Fig. 5 Volume-level

relationships for the elliptic

horizontal cylinder at different
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8 ¼ 1

p
cos�1 1� 2�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4e2

1�e2

h i
�h� �h2
� �

þ 1

r
8>><
>>:

9>>=
>>;

� 2 1� 2�hð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p
2
664

3
775 ð36Þ

8 ¼ 1

p
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

1�e2

� �
�h� �h2
� �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2

1�e2

h i
�h� �h2
� �

þ 1

r
8>><
>>:

9>>=
>>;

� 2 1� 2�hð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p
2
6664

3
7775 ð37Þ

8 ¼ 1

p
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

1�e2

� �
�h� �h2
� �r

1� 2�h

8>><
>>:

9>>=
>>;

� 2 1� 2�hð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p
2
664

3
775 ð38Þ

Equations (36)–(38) were used to produce the chart in

Fig. 5 which shows curves depicting the volume-level

relationships for various elliptic horizontal cylinders with

different eccentricities.

2.3.2. Circular Horizontal Cylinders

Next, we consider a horizontal cylinder of length L with

circular cross-section of radius R partially filled with liquid

to a depth of h. It should be observed that the circular

horizontal cylinder is a special case of the elliptic hori-

zontal cylinder with zero eccentricity (e = 0). For this case,

b = a = R (Fig. 3), and thus the equivalents of Eqs. (27) –

(29) for the partially-filled volume are

V ¼ R2L cos�1 1� 2
h

2R

� �
 �
� 4

1

2
� h

2R

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2R

� �
� h

2R

� �2
s2

4
3
5

ð39Þ

V¼R2L sin�1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2R

� �
� h

2R

� �2
s8<

:
9=
;�4

1

2
� h

2R

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2R

� �
� h

2R

� �2
s2

4
3
5

ð40Þ

V ¼ R2L tan�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2R

� �
� h

2R

� �2q
1� 2 h

2R

� �
8<
:

9=
;� 4

1

2
� h

2R

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2R

� �
� h

2R

� �2
s2

4
3
5

ð41Þ

where 0� h� 2R
Likewise, the fractional volume for the circular hori-

zontal cylinder follows from Eqs. (36)–(38) in which we

set e = 0.

8 ¼ 1

p
cos�1 1� 2�hf g � 2 1� 2�hð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

ph i
ð42Þ

8 ¼ 1

p
sin�1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2
� �q
 �

� 2 1� 2�hð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p	 


ð43Þ

8 ¼ 1

p
tan�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2
� �q
1� 2�h

8<
:

9=
;� 2 1� 2�hð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p2
4

3
5

ð44Þ

where the fractional depth in this case is

�h ¼ h

2R

The chart of Fig. 6 with e = 0 depicts the Eqs. (42)–(44)

for the circular horizontal cylinder.

2.3.3. Trapezoidal Horizontal Cylinders

In some instances, especially in open-channel flows, one

may encounter vessels or channels with trapezoidal cross-

section. Consider Fig. 7 showing a horizontal vessel or

channel with length L and maximum depth H partially

filled with liquid to a depth of h but with a trapezium as its

cross-section. The parallel sides of the trapezium are of

length B and b as shown in the figure.

The volume of liquid obtained as the product of the area

of the trapezium traced out by the occupying liquid and the

vessel length is

V ¼ 1

2
hcota1 þ bþ hcota2ð Þ þ b½ �h � L ð45Þ

V ¼ 1

2
hL h cota1 þ cota2ð Þ þ 2b½ � ð46Þ

The vessel geometry reveals that

Hcota1 þ bþ Hcota2 ¼ B ð47Þ

From (47), it follows that

cota1 þ cota2 ¼
B� b

H
ð48Þ

So, Eq. (46) becomes

V ¼ 1

2
hL B� bð Þ h

H
þ 2b

	 

ð49Þ

As with other geometries, we obtain the dimensionless

fractional volume by dividing Eq. (49) by the maximum

volume of the vessel given by Eq. (50).

Vmax ¼
1

2
HLðBþ bÞ ð50Þ

Such that,

8 ¼ V

Vmax

¼
h
H B� bð Þ h

H þ 2b
� �

Bþ b
ð51Þ

Or
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8 ¼ 1� kð Þ�h2 þ 2k�h

1þ k
ð52Þ

where k is a dimensionless fractional geometric parameter

relating the two parallel sides of the vessel and is defined as

follows

k ¼ b

B
; 0\k\1 ð53Þ

And �h retains its usual meaning as the fractional depth

of liquid in the vessel defined as

�h ¼ h

H

Figure 8 graphs Eq. (52) for the trapezoidal vessel at

different values of the geometrical parameter k.

2.3.4. Cuboidal Vessels

Cuboidal tanks are very common and partially-filled tank

volume calculations are very easy to determine for this

geometry. For completeness’ sake, it has been included in

this work, mainly because it is a limiting case of the

trapezoidal tank considered in the last section. When

b = B, the trapezoidal horizontal cylinder (Fig. 7) becomes

a cuboid, as such we can estimate the partially-filled vol-

ume from Eq. (49) thus:

V ¼ hLb ð54Þ

Likewise, the fractional volume of the partially-filled

cuboidal tank can be calculated from Eq. (52) with k = 1.

Thus, we obtain that, for the cuboidal tank,

8 ¼ �h ð55Þ

which is a simple linear relationship.

2.3.5. Triangular Horizontal Vessels

A rather uncommon geometry, though possible (as an open

channel or vessel), is the horizontal cylinder with triangular

cross-section. Again, this is a limiting case of the trape-

zoidal horizontal cylinder (Fig. 7) with b = 0. The par-

tially-filled liquid volume can be estimated from Eq. (49)

thus:
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Fig. 6 Volume-level

relationship for the partially-
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V ¼ 1

2
hL B

h

H

	 

ð56Þ

The fractional volume follows from Eq. (52) as a

limiting case when k = 0. Thus, we have

8 ¼ �h2 ð57Þ

2.4. Composite Horizontal Cylinders

In Sect. 2.3, we analyzed the flat-end horizontal cylinders.

However, in most process applications, we often encounter

vessels with composite geometries especially the horizon-

tal cylinder with other shapes at its ends. This section is

given to the analysis of these types of horizontal cylinders.

2.4.1. Elliptic Horizontal Cylinders with Hemi-Ellipsoidal

Ends

Figure 9 shows an elliptic horizontal cylinder with hemi-

ellipsoids at its two ends. The composite cylinder is of total

length L ? 2a comprising a cylindrical part of length L

(whose cross section is an ellipse of major axis 2c and

minor axis 2b) and two hemi-ellipsoidal parts with axes 2a,

2b and 2c.

The partially-filled volume of the vessel can be obtained

by Eq. (58) which is a combination of the volume of a

partially-filled ellipsoid (Sect. 2.1) and that of a horizontal

elliptic cylinder (Sect. 2.3.1).

V ¼ pab
3c2

h2 3c� hð Þ þ bcL cos�1
1
2
� h

2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
c

� �2�1
h i

h
2c

� �
� h

2c

� �2h i
þ 1

4

r
8>><
>>:

9>>=
>>;

2
664

�4
1

2
� h

2c

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2c

� �
� h

2c

� �2
s 3

5 where 0� h� 2c

ð58Þ

At full capacity, the volume of the vessel is given by

Eq. (59)
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Vmax ¼
4pabc

3
þ pbcL ð59Þ

The fractional volume is therefore obtained by dividing

Eq. (58) by Eq. (59) and defining the fractional depth as

�h ¼ h

2c

If we define the following dimensionless geometric

parameters for the composite horizontal cylinder

k ¼ 2a

Lþ 2a
; 0\k\1 ð61Þ

and the eccentricity e for the elliptic horizontal cylinder

part

e2 ¼ 1� b2

c2
; 0\e\1forc[ b[ 0 ð62Þ

The fractional volume for the composite becomes

2.4.2. Horizontal Cylinders with Hemispherical Ends

Another common composite is the truly horizontal cylinder

(of circular cross-section) with hemispherical ends. This

composite is a special case of the elliptic horizontal

cylinder with hemi-ellipsoidal ends considered in

Sect. 2.4.1. For this special case, 2a = 2b = 2c = 2R where

R is the radius of the horizontal cylinder and its hemi-

spherical ends. The partially-filled volume is defined as

V¼p
3
h2 3R�hð ÞþR2L cos�1 1�2 � h

2R


 �	
�2 1�2 � h

2R

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2R

� �
� h

2R

� �2
s 3

5 where 0�h�2

ð64Þ

And the full-capacity volume is

Vmax ¼
4pR3

3
þ pR2L ð65Þ

The fractional volume is therefore obtained by

8 ¼
2k�h2 3� 2�hð Þ þ 3

p 1� kð Þ cos�1 1� 2�hf g � 2 1� 2�hð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

ph i
3� k

ð66Þ

where in this case, the dimensionless geometric parameter

k is defined as

k ¼ 2R

Lþ 2R
ð67Þ

And the fractional depth

�h ¼ h

2R
ð68Þ

Equation (66) is graphed in Fig. 10 which shows, for

various values of k, the relationship between the fractional

level of liquid in the partially-filled horizontal cylinder

with hemispherical ends and the fractional volume. It can

be observed that when k = 0, we have a limiting case of a

horizontal cylinder with flat ends while for k = 1, we have

8 ¼ V

Vmax

¼

4
3
� 2aL � �h2 3

2
� �h

� �
þ 1

p cos�1
1
2
��hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
cð Þ

2�1
� �

�h��h2½ �þ1
4

q
8<
:

9=
;� 4 1

2
� �h

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p
2
4

3
5

2
3
� 2aL þ 1

ð60Þ

8 ¼

2k � �h2 3� 2�hð Þ þ 3
p 1� kð Þ cos�1 1�2�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4e2

1�e2

� �
�h��h2½ �þ1

q
8<
:

9=
;� 2 1� 2�hð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h2

p
2
4

3
5

3� k
ð63Þ
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a spherical vessel without the horizontal cylinder part (i.e.

L = 0).

2.5. Conical Vessels

To obtain volume-level relationships for vessels of this

category, a truncated elliptic cone (Fig. 11) would be

considered to give a quite general picture of conical vessels

from which others may be derived. The vessel of height H

is a frustum of an inverted cone partially-filled with liquid

to a depth of h. The base of the vessel is an ellipse of axes

2a0 and 2b0 while the top is an ellipse of axes 2a and 2b.

The volume of the liquid in the vessel is

V ¼ 1

3
pa1b1 hþ xð Þ � 1

3
pa0b0x ð69Þ

where x is the height of the cut-off cone.

It can be observed that the three elliptic surfaces

involved in Fig. 11 are similar; and in order to establish the

expression for this observed similarity, Fig. 12 which

shows the semi-axes (major and minor) of the elliptic

surfaces along the vessel height, becomes helpful. From it,

these basic expressions can be written (similar triangles)

from which other useful relationships may be derived.

a0
x
¼ a1

hþ x
¼ a

H þ x
ð70Þ
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b0
x
¼ b1

hþ x
¼ b

H þ x
ð71Þ

From Eqs. (70) and (71) respectively, we express x in

terms of the known geometric parameters thus,

x ¼
a0
a H

1� a0
a

ð72Þ

x ¼
b0
b H

1� b0
b

ð73Þ

which establish that

a0
a
¼ b0

b
¼ k ð74Þ

So that

x ¼ kH

1� k
ð75Þ

From Eq. (70) and (71), we can deduce the relations for

a1 and b1 in terms of the vessel’s known geometric

parameters:

a1 ¼ a k þ ð1� kÞ h
H

	 

ð76Þ

b1 ¼ b k þ ð1� kÞ h
H

	 

ð77Þ

Substituting Eqs. (74)–(77) in Eq. (69), we obtain

V ¼ 1

3
pabH k þ ð1� kÞ h

H

	 
2
h

H
þ k

1� k

	 

� 1

3
pabH

k3

1� k

ð78Þ

which on expansion and simplification becomes:

V ¼ 1

3
pabH ð1� kÞ2 h

H

� �3

þ 3k 1� kð Þ h

H

� �2

þ 3k2
h

H

� �( )
ð79Þ

The maximum capacity of the vessel,

Vmax ¼
1

3
pabH 1� kð Þ2 þ 3k 1� kð Þ þ 3k2

n o
ð80Þ

or

Vmax ¼
1

3
pabH k2 þ k þ 1

� �
ð81Þ

The fractional volume is therefore

8 ¼ ð1� kÞ2�h3 þ 3k 1� kð Þ�h2 þ 3k2�h

k2 þ k þ 1
ð82Þ

where k (defined by Eq. (74)) is the ratio of either of the

major or minor axis of the elliptic base to that of the top.

For a circular cone, however,

a0 ¼ b0 ¼
d0
2

ð83Þ

a ¼ b ¼ D

2
ð84Þ

So that

k ¼ d0
D

ð85Þ

which is the ratio of the diameters or radii of the base and

top of the circular truncated cone.

While Eq. (82) for the fractional volume still remains

valid for this, the volume and maximum volume are

respectively:

V ¼ 1

12
pD2H ð1� kÞ2 h

H

� �3

þ 3k 1� kð Þ h

H

� �2

þ 3k2
h

H

� �( )
ð86Þ

Vmax ¼
1

12
pD2H k2 þ k þ 1

� �
ð87Þ

For truly conical process tanks for which d0 ¼ 0, k ¼ 0

V ¼ 1

12
pD2H

h

H

� �3

ð88Þ

Vmax ¼
1

12
pD2H ð89Þ

8 ¼ �h3 ð90Þ

Equation (82) shows the relationship between the

fractional volume and fractional level for a partially-filled

conical vessel at different values of the dimensionless

geometric parameter k.

3. Conclusions

This paper sets out to develop a useful theoretical tool

which can assist process engineers with the task of cali-

brating process tanks. The paper presents a mathematical

analysis of common geometries and composites and

develops equations and charts which could be used to

estimate tank volumes from given depth of liquid. A nor-

malization technique was used in the mathematical analy-

ses of the partially-filled process vessels such that

fractional volume and fractional depth were introduced as

key variables in addition to dimensionless geometric

parameters which take values between 0 and 1. This

technique enables the study of process vessels in general.

The fractional volume when multiplied by 100 (100� 8)
expresses what percentage of the full capacity of the tank,

the liquid holds. Similarly, the fractional depth, when

multiplied by 100 ð100� �h), can give the wetted depth of

the tank as a percentage of full height or depth of the tank;

or simply, the liquid level in the tank as a percentage of the
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full level. The advantage of using fractional volume and

depth is that irrespective of the size of the vessel, the

volume and depth of liquid can be determined for the tank

geometry of interest using the dimensionless geometrical

parameters. When the actual volume and depth are required

however, they can be obtained by simply multiplying the

fractional volume (8Þ and fractional depth (�hÞ by the

maximum volume (Vmax) and maximum height (H)

respectively.

Another possible use of the derived volume-level rela-

tionships is in the design of process tanks. The equations

and charts can be used to answer design questions such as:

‘‘What depth of liquid in a horizontal cylindrical tank

would correspond to a 75% liquid capacity?’’; ‘‘What

geometrical dimensions are required to give a liquid level

holdup of 80%?’’ and so on.

Furthermore, the characteristic geometrical parameters

of the vessel take care of the vessel’s uniqueness, size and

shape. Hence, the fractional volume-level charts and

equations also lend itself to usage for scale-up procedures.

A vessel can be studied at a small scale or size as a model

to a large-scale prototype design; the dimensionless geo-

metrical parameters of the small vessel will be the same as

that of the large vessel to be constructed, allowing cali-

bration studies to be conducted on the small model and

then scaled-up for the actual larger design of the prototype.

Besides aiding in design studies, these derived volume-

level relationships will also prove to be very useful as they

can be input or programmed into level measuring devices

used in calibrating process tanks to calculate or estimate

liquid volume for a measured depth without further

experimentation.

In conclusion, there are enormous potential uses and

applications of the geometrical calibration equations and

charts put forward in this paper for different geometrical

shapes of process tanks for which the reading engineer and

allied practitioners can adopt and adapt the volume-level

relationships in their daily practice.
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