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Abstract 

Expectancies, which are higher order prognostic beliefs, can have powerful effects on 

experiences, behavior and brain. However, it is unknown where, how, and when, in the 

brain, prognostic beliefs influence appetitive interoceptive experiences and related 

economic behavior. This study combined a placebo intervention on hunger with 

computational modelling and functional magnetic resonance imaging of value-based 

decision-making. The results show that prognostic beliefs about hunger shape hunger 

experiences, how much participants value food and food-value encoding in the prefrontal 

cortex. Computational modelling further revealed that these placebo effects were 

underpinned by how much and when during the decision process taste and health 

information are integrated into the accumulation of evidence toward a food choice. The drift 

weights of both sources of information further moderated ventromedial and dorsolateral 

prefrontal cortex interactions during choice formation. These findings provide novel insights 

into the neurocognitive mechanisms that translate higher order prognostic beliefs into non-

aversive interoceptive sensitivity and shape decision-making.  
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INTRODUCTION  
 

A fundamental aspect of human cognition is the ability to extract patterns from noisy 

sensory information to form prospective beliefs (expectancies) about the world. Statistical 

frameworks propose that the brain achieves such integration through a computational 

process that continuously updates prospective beliefs based on prior beliefs and new belief-

confirming or disconfirming evidence1. This idea has been shared and challenged by many 

for centuries. An example is Helmholtz’s concept of unconscious inferences2,3, which set the 

foundations for modern enactivist approaches to cognition and computational neuroscience. 

Importantly, it plausibly accounts for placebo effects. Placebo effects are a famous example 

of mind-brain-body interactions, wherein the mere suggestion about the benefits of a 

treatment can shape interoceptive, exteroceptive, and cognitive outcomes4–10.  

Much previous work has measured aversive outcomes, such as pain combined with 

functional magnetic resonance imaging (fMRI), to localize placebo hypoalgesia in the brain 

(for review11). However, placebos, which are inactive sham treatments, can also affect 

appetitive outcome measures. Research on consumption behavior has shown that identical 

goods are more highly valued and more strongly encoded in the brain’s valuation system 

when suggested to be more expensive12,13. These results are paralleled by findings that 

verbal suggestion about caloric ingredients or the homeostatic efficiency of a substance can 

influence the release of satiety signaling hormones14, interoceptive hunger experiences15, 

and digestion-related autonomous nervous system responses16. Similar to placebo effects in 

aversive domains, such appetitive placebo effects are mediated by a participant’s beliefs 

about positive future treatment outcomes, which have also been coined as expectancies or 

prognostic beliefs17.  

Despite ample evidence for appetitive placebo effects, there is, however, no direct empirical 

evidence for when, where, and how, in the brain, an expectancy-based placebo intervention 

affects the experience of appetitive interoceptive outcomes, such as hunger and associated 

value-based decision-making. Addressing these questions is important, because it provides 

an opportunity to understand the effects of higher-order cognitive factors, such as 

prognostic beliefs, more broadly and how the brain integrates them to make inferences 

about bodily signals and shape economic behavior that addresses these bodily signals. 
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To address this question, we built on literature from decision neuroscience that has shown 

that a person’s goals can affect economic choice behavior. More specifically, generic models 

of economic choice propose that the decision process involves valuation and action selection 

(decision) stages18. During valuation, various attributes of alternative choices are integrated 

into stimulus values that approximate hidden preferences that are then compared during 

the decision stage to select the most preferred alternative (i.e., with the higher stimulus 

value). The neural mechanisms of both stages have been well studied and involve regions of 

the brain’s valuation system, such as the ventromedial prefrontal cortex (vmPFC), and 

cognitive regulation system, such as the dorsolateral prefrontal cortex (dlPFC)19–27. 

Furthermore, a person’s goals can influence the valuation stage and its related brain 

responses through cognitive regulation in the form of attentional filtering and value 

modulation19,20,28,29 of relevant information. However, it is unknown whether, when, and 

where suggestions about interoceptive states can generate such cognitive regulation of 

valuation and decision stages in the brain. 

Given the reported placebo effects on hunger experiences and that economic decision-

making addresses hunger, we used a placebo intervention that involved the administration 

of an identical drink (water), together with the verbal suggestion that the water either 

increased or decreased hunger. We hypothesized that the placebo intervention would 

induce prognostic beliefs about the efficiency of the drink’s effect on hunger and through 

them, affect the experience of hunger, dietary decision-making, and its cognitive regulation. 

We combined fMRI with a dietary decision-making task and a time-varying drift diffusion 

model (tDDM) to assess where and to formalize how and when the placebo intervention 

affected hunger-addressing economic behavior in the brain during decision-making.  

In accordance with our hypotheses, we found that the placebo intervention generated 

hunger expectancies in both groups, which then determined how hungry participants felt at 

the end of the experiment and moderated the activation of the medial prefrontal cortex at 

the time of food choice. Consistent with these expectancy-based placebo effects, 

participants in the increased-hunger suggestion group valued food more highly and 

displayed stronger vmPFC activation in response to food value than participants in the 

decreased-hunger suggestion group. Drift diffusion modeling of choice formation showed 

that participants in the increased-hunger suggestion group considered the tastiness of the 
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food more strongly and rapidly, whereas participants in the decreased-hunger suggestion 

group considered the healthiness of the food more strongly and rapidly during the decision 

stage. The drift weights of these two food attributes on the accumulation of evidence 

toward a food choice then moderated how strongly the vmPFC and dlPFC interacted during 

choice formation.  

 

RESULTS 
 

Expectancy ratings 

We first checked whether the placebo intervention was successful in generating prognostic 

beliefs about hunger. Of note, these were not placebo effects, but rather the participants’ 

expectancies of how well the drinks would work. Indeed, the suggestions induced, on 

average, expectancy ratings for both groups that were significantly different from one (i.e., 1 

= no expected efficiency) (t(87)decreased = 20.69, p < 0.001 and t(82)increased = 20.09, p < 0.001, 

one-sample, two tailed t-test). The groups did not differ (mean expected efficiency on 

hunger: decreased-hunger suggestion group: 5.66 ± 0.23 versus increased-hunger suggestion 

group: 5.31 ± 0.22; t(169) = 1.13; p = 0.26, two-sample, two-tailed t-test) (Figure 1a).  

Moreover, the more participants in the decreased-hunger suggestion group expected the 

drink to efficiently decrease their hunger, the less their hunger increased over the course of 

the experiment (Pearson’s R = -0.24, p = 0.03, Figure 1b). By contrast, this correlation was 

non-significant among participants in the increased-hunger suggestion group (Pearson’s R = -

0.08, p = 0.44). 

Expectancy encoding in the brain at the time of food choices 

We then investigated where in the brain these prognostic beliefs were encoded and found 

that at time of choice, they correlated significantly with activation of the superior frontal 

part of the medial prefrontal cortex (mPFC) extending into the anterior cingulate cortex 

(MNI = [2, 58, 22], pFWE < 0.05, cluster corrected, Figure 1c, SI Table 1). This finding was again 

significant only for the participants assigned to the decreased-hunger suggestion group. The 

more these participants expected the water to decrease their hunger, the more the mPFC 

was activated at the time of food choice. No significant moderation of choice-related brain 

responses was observed for the increased-hunger suggestion group after correction for 
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multiple comparisons at the cluster level. More fine-grained analysis of the brain mediators 

of hunger experience at the time of food choice formation are reported in the supplement 

(SI sections 1 and 2, and SI Tables 2 to 5). 

 

 
Figure 1. Placebo effects on expectancy ratings. (a) Boxplot graphs displaying the 95% confidence 

intervals for expectancy ratings for the decreased- (red) and increased- (blue) hunger suggestion 

groups with the respective distributions of ratings. Dots correspond to individual ratings in each 

suggestion group. (b) Correlation between expectancy ratings and the change in hunger ratings 

from baseline to the end of the experiment. Each dot corresponds to a participant in the decreased-

hunger suggestion group. (c) Statistical parametric maps of the second-level correlation between 

brain activation at the time of food choice onset and expectancies about hunger in the decreased-

hunger suggestion group. Voxels in yellow are displayed for visualization purposes at an uncorrected 

threshold of p < 0.001, and survived pFWE< 0.05 family-wise error correction at the cluster level. 

Activation was taken at the local maxima (MNI x=6) on the sagittal slice, showing the extent of the 

activation in mPFC from the superior frontal gyrus to the anterior cingulate cortex. SPMs are 

superimposed on the average anatomical brain image from 57 participants. 

 

Placebo effects on hunger experiences 

Consistent with the effects on prognostic beliefs about hunger, a two-factor (i.e., testing 

time point by suggestion group) analysis of variance (ANOVA) revealed a significant main 

effect of testing time point (F(1, 340) = 62.19, p < 0.001) on hunger ratings, which indicated 

that participants were hungrier at the end of the experiment than at the beginning in both 

groups (baseline vs end of the experiment: t(87)decreased = -2.53, p = 0.01 and (t(83)increased = -

8.99, p < 0.001, paired two-tailed t- test; Figure 2). Importantly, this effect interacted with 
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the suggestion (F(1, 340) = 16.84, p < 0.001). Participants in the increased-hunger suggestion 

group reported being hungrier at the end of experiment than participants in the decreased-

hunger suggestion group (t(170) = -4.14, p < 0.001, two-sample two-tailed t-test; Figure 2).  

 

 

 
Figure 2. Placebo effect on hunger ratings. Raincloud plots for hunger ratings from baseline to the 

end of the experiment. Each dot corresponds to a participant’s hunger rating at baseline and at the 

end of the experiment, with distributions of the hunger ratings displayed on the right side of each 

plot for the decreased- (red, left-side panel) and increased- (blue, right-side panel) hunger suggestion 

groups. Boxplots in the middle panel show the 95% CI for both groups at baseline and the end of the 

experiment. *p < 0.05 for significant within group differences between baseline and the end of the 

experiment and interaction group (increased > decreased) by the time of the hunger rating (baseline 

< end of the experiment). 

 

Placebo effects on food valuation 

We then tested the effects of the placebo intervention on hunger-addressing value-based 

decision-making and related brain responses. Participants in the decreased-hunger 

suggestion group assigned less value to food stimuli than the participants in the increased-

hunger suggestion group (mean SVdecreased = 2.09 ± 0.05 versus mean SVincreased = 2.28 ± 0.05; 

t(170) = -2.92, p=0.004, two-sample, two-tailed t-test) (Figure 3a). Consistent with this 

finding, multilevel general linear regression models of food stimulus values showed a 

positive prediction by the tastiness of food in both suggestion groups (βdecreased = 0.54 ± 0.03, 

(t(87) = 16.42, p < 0.001, βincreased = 0.67 ± 0.03, t(83) = 24.64; p < 0.001, one-sample t-tests, 

SI Table 6). Importantly, the effect of tastiness on food valuation was much stronger in the 
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increased-hunger suggestion group than decreased-hunger suggestion group (t(170)= -2.81, 

p = 0.01, two-sample, two-tailed t-test, SI Table 6). These findings are consistent with the 

more fine-grained analyses of the valuation stage concerning the role and interactions 

between calorie content, tastiness, and healthiness reported in Supplementary Information 

Section 3. 

Placebo effects on valuation-related brain responses 

The observed behavioral effects of suggestion on valuation were underpinned by stronger 

activation of the ventromedial prefrontal cortex (vmPFC), nucleus accumbens, posterior 

cingulate cortex, bilateral posterior insula, and precuneus in response to stimulus value 

ratings. Activation of these brain regions correlated more strongly with the food stimulus 

value in the increased-hunger suggestion group than the decreased-hunger suggestion 

group (pFWE < 0.05, family-wise error corrected at the cluster level, Figure 3b, SI Table 7). This 

difference was specific to the encoding of stimulus values. No differences between the two 

hunger suggestion groups were found for the encoding of tastiness or healthiness in the 

brain (see SI section 4, SI Tables 8, 9). 

 

 
Figure 3. Placebo effect on food preferences and valuation in the brain. (a) Behavioral placebo 

effect on food valuation. Boxplots showing the 95% CI of the stimulus values assigned to food during 

the dietary decision-making task for both groups, with jitter elements showing dots for each 

participant. *p < 0.001. (b) Neural placebo effect on food valuation. Statistical parametric maps 

(SPMs) showing the contrast in brain activation between the increased- versus decreased-hunger 

suggestion group in response to the stimulus value at the time of the food choice. The significant 

voxels in yellow survived family-wise error correction based on peak height and cluster (pFWE < 0.05) 

and are superimposed on the average anatomical brain image. The panel on the right displays peri-

stimulus time histograms (psth) extracted from the ventromedial prefrontal cortex global maximum 
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of activation in response to the stimulus value for each suggestion group. The coordinates 

correspond to the Montreal-Neurological-Institute (MNI) coordinates. 

 

Placebo effects on the decision stage of economic choice 

A time-varying drift diffusion model (tDDM) was fitted to the food choices and reaction 

times and assumed that the decision stage of economic dietary choice is a noisy 

accumulation of evidence in favor of a “yes” over a “no” food choice. This noisy 

accumulation of evidence is determined by a series of hidden latent parameters, such as the 

starting point bias toward a yes or a no choice, sensorimotor integration to select a choice 

button (i.e., the non-decision time parameter), relative starting time for healthiness (relative 

to tastiness) to factor in relative to the tastiness of food, respective importance (i.e., drift 

weights) of healthiness and tastiness, and decision threshold (Figure 4a, SI Table 10). 

Comparing the two suggestion groups for each of these parameters provides insights into 

the hidden cognitive processes that are influenced by the suggestion and associated higher 

order beliefs about interoceptive hunger states.  

Choice and reaction time data were fitted in each group using a tDDM and a standard DDM 

(sDDM; see SI section 5.1 for priors). All chains converged with a Gelman-Rubin convergence 

diagnostic below 1.5 (psrf = 1). Deviance information criteria were smaller for the tDDM (DIC 

= 22,873) than the sDDM (DIC = 23,054). Moreover, the log likelihoods of out-of-sample 

predictions of choices and reaction times observed for even trials by modeled choices and 

reaction times for odd trials were greater for the tDDM (LL = -742.8) than sDDM (LL = -780.8) 

(SI section 5.2.). Parameters could be recovered well using an analogous tDDM with a 

stepwise estimation of the drift rate, as implemented by the deoptim package in R (see SI 

section 5.3, SI Table 11). 

The mean of the posterior distributions of the free parameters of the tDDM revealed that 

the placebo intervention influenced how much and when participants considered the 

healthiness and tastiness of the food during the decision process (SI Table 12 and 12a). Note 

that the health and taste weight coefficients are only defined relative to one another (see 

equations 2a and 2b). After controlling for tastiness, healthiness negatively influenced the 

drift rate, but less negatively for participants in the decreased- than increased-hunger 

suggestion group (mean(PDdecreased- PDincreased) = 0.17, PP = 0.95, Figure 4b, SI table 12). On 
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the contrary, tastiness had the opposite effect on the drift rate with a positive weight that 

was stronger for participants of the increased- than decreased-hunger suggestion group 

(mean(PDdecreased - PDincreased) = -0.19, PP = 0.99, Figure 4b, SI table 12). The suggestion groups 

also differed in the relative starting time, which indicated how much earlier (in seconds) the 

participants considered the tastiness of food relative to its healthiness during evidence 

accumulation. In both groups the relative starting time was positive, which indicated that 

tastiness was considered earlier than the healthiness. Importantly, the relative time was 

shorter for participants given the decreased hunger suggestion than those given the 

increased hunger suggestion (mean(PDdecreased- PDincreased) = -0.24, PP = 0.86, Figure 4b, SI 

table 12). Similar results were obtained when modeling the choices and reaction times with 

a tDDM that used a step-wise approximation of the drift rate and was estimated using the 

deoptim package in R following the procedure of Maier et al. 202030 (SI Table 13, section 

5.4). 

Placebo effects on decision stage-related brain responses 

To localize where in the brain the placebo intervention affected the decision stage, we 

searched for the psychophysiological interaction (PPI) of the vmPFC at the time of food 

choice. We focused on the dlPFC based on previous work providing evidence for the 

implementation of action selection during the decision process by a vmPFC–dlPFC 

interaction19,20,27,31–33. Consistent with the literature, the PPI analysis indicated significant 

covariance of the vmPFC with the dlPFC at the time of choice formation for all participants 

and groups (MNI = [44, 38, 32], pFWE < 0.05 small volume corrected, Figure 4c, SI Table 14 for 

whole brain activation). Average beta coefficients were extracted from this dlPFC region 

(MNI = [44, 38, 32]) and correlated with the difference in drift weights between healthiness 

and tastiness. A significant positive correlation (r = 0.46, p = 0.013) for participants of the 

decreased-hunger suggestion group (Figure 4d) indicated that the more healthiness scaled 

the drift rate relative to tastiness of the food, the more strongly the vmPFC – dlPFC 

interacted during the decision stage of choice formation. The moderation of vmPFC – dlPFC 

connectivity by healthiness (relative to tastiness) was non-significant for participants in the 

increased-hunger suggestion group (r = 0.12, p > 0.05).  
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Figure 4. Placebo effects of the integration of tastiness and healthiness in food preferences. (a) 

Drift diffusion model of food choices. Scheme of the model with free parameters, which involved 

the starting point bias, non-decision time, choice threshold boundary, drift weights for tastiness and 

healthiness, and their relative starting time, for which the time is expressed in seconds when 

healthiness was weighted on the speed of evidence accumulation relative to tastiness. (b) Individual 

parameters for tastiness, and healthiness drift weights and relative starting time. The panels show 

qualitative differences in the drift weights for tastiness, healthiness, and the relative starting time 

between the decreased- and increased-hunger suggestion groups. (c) Psycho-physiological 

interaction analysis. SPMs show significant voxels located in the dlPFC that interacted more strongly 

with the vmPFC seed ROI at the time of making the food choice. The yellow voxels are superimposed 

on a 3D anatomical brain image and survived small volume correction on the cluster level among the 

brain regions that were activated in response to interference resolution during the MSIT task. (d) The 

panel on the right shows the correlation between the vmPFC – dlPFC PPI and drift weight of 

healthiness relative to the drift weight of tastiness obtained in the decreased-hunger suggestion 

group by fitting food choices and reaction times to a drift diffusion model (DDM). 
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DISCUSSION 
 

This study combined computational approaches with brain imaging and behavioral testing to 

provide insight into the putative mechanisms of placebo effects on appetitive interoceptive 

hunger experiences and hunger-addressing value-based decision-making. We leveraged a 

validated placebo intervention that consisted of the administration of an inactive substance 

(i.e., a glass of water) together with the suggestion that the substance either increases or 

decreases hunger15. In accordance with the results of a previous study15, the intervention 

was successful in generating expectancies about how efficiently the drink would decrease or 

increase hunger and through them affected how much hunger participants reported over 

the course of the experiment. Importantly, we provide novel evidence for the underlying 

putative neurocognitive processes of such appetitive placebo effects. The strength of the 

prognostic belief in the efficiency of the drink moderated mPFC activation during food 

choice formation. Consistent with this finding, computational modeling further dissected 

this effect by showing that the suggestions about hunger influenced the valuation and 

decision stages of choice formation and the implementation of these two stages of 

economic choice by the vmPFC and dlPFC.  

Past studies have reported mPFC activation in encoding34 and computing belief-guided 

contextual reward expectancies35,36 or in representing lower pain expectancies under 

placebo hypoalgesia37. Our results provide novel evidence for recruitment of the mPFC 

during decision-making as a function of participants’ higher order beliefs about the efficiency 

of a placebo drink to halt falling energy stores. The moderation was located within the 

medial frontal gyrus, encompassing Brodmann area 10 and extending into the dorsal 

anterior cingulate cortex midway between the vmPFC and dlPFC, which have been shown to 

be part of the brain’s valuation and cognitive regulation system that drives choices under the 

influence of self-control19,20,29,38. Our finding may thus suggest that these participants made 

more self-controlled food choices. However, dietary self-control is commonly measured by 

how much participants can forgo a short-term rewarding tasty food in favor of a healthier 

alternative to meet a goal, such as losing weight or sticking to a healthier diet. In this study, 

participants were asked to rate their natural food preferences under the suggestion that 

they had been administered a substance that was designed to influence their hunger. This 

experimental design is different from that of studies that assess dietary self-
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control19,20,28,29,38 because participants were not instructed to make a choice to meet a 

specific goal under conflict. Given this difference, it cannot be fully inferred that participants 

in the decreased-hunger suggestion group were more self-controlled.  

However, the placebo intervention may have generated other forms of cognitive and 

perceptual regulation. For example, perceptual attentional filtering could have played a role 

during the early phases of the decision-making process and according to the hunger 

suggestions. Attentional filtering consists of reducing the cost of processing task-irrelevant 

information, such as overcoming interference during a Stroop task. During dietary decision-

making under the influence of higher order prognostic beliefs about hunger states, 

attentional filtering could consist of considering belief-relevant information more and 

neglecting belief-irrelevant information. The information under consideration in this 

example is the tastiness and healthiness of the food. To test this idea, we localized brain 

activation associated with interference resolution during the multi-stimulus interference 

task in a supplementary analysis and identified significant activation of the dlPFC. We then 

found that dlPFC activation at the time of food choice was stronger in the increased-hunger 

than decreased-hunger suggestion group. After controlling for this contrast effect of hunger 

suggestion, the dlPFC then positively predicted the increase in hunger relative to baseline 

and formally mediated the overall suggestion effects on hunger reports. Although this 

supplementary finding provides only indirect evidence for attentional filtering to be involved 

when participants make value-based dietary decisions under the influence of their beliefs 

about hunger, it opens a window toward using other experimental approaches. For example, 

brain imaging tools such as electroencephalograms could be used, which have more precise 

temporal resolution to harness the contribution of rapid perceptual regulation mechanisms, 

such as attentional filtering to placebo effects in interoception.  

Another potential cognitive regulation mechanism of the observed placebo effects involves 

value modulation, which consists of the differential weighting of food attributes during 

choice formation. We tested this idea directly by building on generic models of economic 

choices and the finding that the vmPFC is a central hub of the brain’s valuation system that 

computes expected and experienced values across different decision-making problems and 

domains26,39–42. Our results converge on the finding that suggestions and expectancies can 

modulate not only subjective self-reports about how hungry participants felt, but also more 
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objective measures of hunger, such as behavioral choices and how the brain encodes values 

to guide these choices. Computational modelling of choices and reaction times using a time-

varying drift diffusion model disentangled several alternative hypotheses about how and 

when the placebo intervention shaped the decision stage of making the food choice. 

Notably, participants in the decreased-hunger suggestion group considered the tastiness 

relative to healthiness later than the participants in the increased-hunger suggestion group. 

These computational findings were underpinned at the neural level by moderation of the 

interaction between the vmPFC and dlPFC during the decision stage. In particular, the more 

healthiness information weighed on the drift rate, relative to tastiness, the more the vmPFC 

interacted with the dlPFC during choice formation for participants of the decreased-hunger 

suggestion group. This is the first study to show that placebo interventions generate higher 

order beliefs about hunger states and potentially through them, shape how extensively and 

when in time during the decision stage healthy participants weigh attributes and how the 

brain encodes this type of cognitive regulation based on value modulation. 

Most of the moderation results were specific to participants in the decreased-hunger 

suggestion group. One may, therefore, reason that this group showed a placebo effect, 

whereas the increased-hunger suggestion group showed the natural increase in hunger over 

the course of the experiment. However, this idea needs to be more directly tested in future 

studies by also randomly assigning participants to a control group that is administered the 

placebo but without any suggestion about its efficiency in effecting hunger. 

Our findings cannot distinguish between several alternative interpretations about the 

directionality of the generated effects. It may be that the placebo intervention first changed 

hunger and then the valuation and decision stages of hunger-addressing food choices. 

Alternatively, the placebo intervention may have generated perceptual and cognitive 

regulation processes and through them, hunger experiences. Hunger ratings collected in a 

sub-group of participants before the dietary decision-making task, but after the 

administration of the placebo, found that the suggestion groups did not yet differ at this 

time point. Moreover, and as expected, all participants reported being hungrier at the end of 

the experiment due to longer fasting and explicit weighing of food preferences. The 

emergence of a group difference in this change in hunger at the end of the experiment, 

therefore, provides an indication that suggestion-induced cognitive and perceptual 
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regulation may come first and then shape how hungry participants feel. However, more 

direct evidence is needed to fully disentangle the causal links between these nested effects.  

Finally, interoception corresponds to the sensing of bodily states43. Here, we used a measure 

of interoceptive sensitivity by asking participants to self-evaluate their hunger. The question 

is still open to what extent hunger can be objectively sensed and whether a person’s beliefs 

about her hunger can affect other dimensions of interoception, such as behavioral and 

neural measures of interoceptive accuracy and metacognitive confidence in bodily signal 

detection.  

 

MATERIALS AND METHODS 
 

Ethical considerations 

The study protocol followed the Declaration of Helsinki and was approved by the local ethics 

committee. All participants provided written and informed consent and were debriefed at 

the end of data collection. 

Participants 

In total, 188 female participants (mean age = 34.9, sem = 1.02 years, SI Table 15) were 

recruited for the study via public advertisement in the Paris area.  

Participants were screened for right-handedness, normal to corrected-to-normal vision, no 

history of substance abuse or any neurological or psychiatric disorder, and no medication. 

Participants of the fMRI experiment were additionally screened for the absence of metallic 

devices. All participants were tested in the morning between 8 am and 12 pm after 

overnight fasting. Participants were asked to fast overnight and to not drink tea or coffee at 

least 2 h before arriving for the experiment. Inclusion was restricted to female participants 

to minimize gender influences on dietary self-restraint44. Participants were paid 15 euros for 

their participation in the behavioral experiment and 60 euros for their participation in the 

fMRI experiment. 

Exclusion criteria were a baseline hunger rating < 2 (no hunger), pregnancy, claustrophobia, 

permanent make-up or metallic implants that were not reported at time of recruitment, and 

technical problems with the fMRI scanner. Based on these exclusion criteria, 16 participants 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.14.527858doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.14.527858
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

were excluded from the data analysis due to problems with the fMRI scanner (n = 1), not 

being hungry after overnight fasting at baseline (n = 5 in the decreased-hunger suggestion 

group and n = 10 in the increased-hunger suggestion group).  

After these exclusions, data from 88 participants in the decreased-hunger suggestion group 

were compared to data from 84 participants in the increased-hunger suggestion group.  

Hunger ratings 

Hunger was assessed by three factors: (1) overall experienced hunger (i.e., How hungry do 

you feel?), (2) homeostatic hunger (i.e., How much food could you eat right now?), and (3) 

hedonic hunger (i.e., How pleasant would it be to eat, now?). Responses were given on a 7-

point Lickert scale from “1” (“not at all”) to “7” (“very much”) and averaged to a common 

score across the three questions. Hunger ratings were collected at two times during the 

behavioral study: (1) at baseline, before the placebo intervention and (2) at the end of the 

experiment, and three times during the fMRI experiment: (1) at baseline, (2) after the 

placebo intervention but before starting the fMRI session, and (3) at the end of the 

experiment.  

Randomization 

The probability of being assigned to one of the two suggestion arms was fixed to p = 0.5 and 

constant for the entire duration of the study. Randomization was performed before 

participants were enrolled using standard permutation algorithms implemented in MATLAB. 

The algorithm drew 2 integers of 1 and 2. If the integer was ‘1’, the participant was assigned 

to the suggestion group 1 (decrease hunger suggestion). If it was ‘2’, the participant was 

assigned to suggestion group 2 (increased hunger suggestion). To ensure an equal number of 

participants in each suggestion group the permutation was repeated 63 times for the 

behavioral pilots and 31 times for the fMRI participants.  

Placebo intervention 

All participants were administered a glass of mineral water at the beginning of the 

experiment (®Eau minérale Evian Naturelle). However, the label on the water bottle was 

specifically designed to provide information about the water’s ingredients to either decrease 

or increase hunger (Figure 5). In addition, the experimenter explained the labels and all 

participants read an information booklet about the water’s ingredients and their respective 
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effects on hunger (for further details on the placebo intervention see supplementary 

information section 6).  

Briefly, after rating their baseline hunger, the participants were assigned to the decreased- 

or increased-hunger suggestion group according to the randomization.  

Participants in the increased-hunger suggestion group were told that the drink (water) was 

enriched with zinc, iron, and plant-based supplements, such as St. John’s Wort, because 

these ingredients are known for their powerful stimulating effect on appetite through the 

potentiation of hunger-stimulating hormones, such as ghrelin. By contrast, participants in 

the decreased-hunger suggestion group were told that the water was enriched with vitamin 

B12, iron, and riboflavin, because these ingredients had a powerful effect on appetite to 

curb food cravings through the potentiation of hunger hormones such as leptin. 

The experimenter made sure that the participants understood the information about the 

drink before pouring it into a glass (8.45 oz).  

Expectancy ratings 

After drinking the glass of water and before performing the dietary decision-making task, 

participants rated their expectancy about how efficiently they believed the water drink 

would decrease or increase their hunger on a 10-point Lickert scale (starting at 1). 

Dietary decision-making task 

All participants performed a dietary decision-making task19,20,29,38 and a sub-group of 61 

participants performed the task during fMRI. The task consisted of the participants choosing 

whether they wanted to eat snack foods of varying tastiness and healthiness on a trial-by-

trial basis. The task counted 200 trials (behavioral pilot) or 152 trials (fMRI sub-group) for a 

total duration of 20 to 30 min (Figure 5). Each trial started with the display of a food item on 

a computer screen and participants indicated on a 4-point-Lickert scale, from a strong no to 

a strong yes, whether they wanted to eat the food item. All food stimuli were selected from 

a database of 600 food images validated for tastiness and healthiness ratings by 300 

participants from a prior Mturk study conducted in-house. The food images were presented 

on a computer screen in the form of high-resolution images (72 dpi). MATLAB and 

Psychophysics Toolbox extensions45 were used for presentation of the stimulus and 
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recording of the responses. Participants of the fMRI experiment saw the stimuli via a head-

coil–based mirror and indicated their responses using a fMRI compatible response box 

system. The task was incentive compatible, because one food was chosen by chance for 

consumption at the end of the experiment19,20. Participants also rated each food on its 

tastiness and healthiness using the same 4-point Lickert scale at the end of the experiment.  

 
Figure 5. Experimental procedure. The scheme illustrates the temporal organization of the 

experiment. The black panels correspond to computer screenshots of individual events for the 

hunger and expectancy ratings given before and after fMRI (outside the MRI scanner), and the 

dietary decision-making task and multi-stimulus interference task performed during fMRI. For the 

two fMRI tasks durations are shown in seconds. 

 

MRI data acquisition 

T2*-weighted multi-echoplanar images (mEPI) were acquired using a Siemens 3.0 Tesla 

VERIO MRI scanner with a thirty-two-channel phased array coil. Three echos were acquired 

for the best compromise between spatial resolution and signal quantity in the orbitofrontal 

cortex (OFC)46,47. To further reduce signal drop out in the OFC, we used an oblique 

acquisition orientation of 30° above the anterior–posterior commissure line48. Each volume 

comprised 48 axial slices collected in an interleaved manner. To cover the entire brain, the 

acquisition sequence involved the following parameters: echo times of 14.8 ms, 33.4 ms, 

and 52 ms; FOV = 192 mm; voxel size = 3 x 3 mm; slice thickness = 3 mm; flip angle = 68°; 
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and TR = 1.25s. Whole-brain high-resolution T1-weighted structural scans (1 x 1 x 1 mm) 

were acquired for all 61 subjects and co-registered with their mean mEPI images and 

averaged together to permit anatomical localization of the functional activation at the group 

level. 

fMRI preprocessing 

Image analysis was performed using SPM12 (Welcome Department of Imaging 

Neuroscience, Institute of Neurology, London, UK). Preprocessing involved the following 

steps: segmentation of the anatomical image into gray matter, white matter, and 

cerebrospinal fluid tissue using the SPM12 segmentation tool. The three echo images of 

each fMRI volume were summed into one EPI volume using the SPM12 Image Calculator49–

51. Then, the summed EPIs were spatially realigned and motion corrected, co-registered to 

the mean image, and normalized to the Montreal Neurological Institute (MNI) space using 

the same transformation as for the anatomical image. All normalized images were spatially 

smoothed using a Gaussian kernel with a full-width-at-half-maximum of 8 mm.  

Behavioral analyses 

Statistical tests were conducted using the MATLAB Statistical Toolbox (MATLAB 2018b, 

MathWorks), R (3.3.2 GUI 1.68) within RStudio (RStudio 2022.02.3+492) and JASP (JASP 

0.16.4). 

Placebo effects on hunger ratings 

For each session (baseline, before MRI, end of experiment) hunger ratings were averaged for 

the three hunger questions to form one hunger score for each participant. Hunger scores for 

the baseline and end of the experiment were then analyzed using factorial analysis of 

variance (ANOVA) with two factors: hunger suggestion group (i.e., decreased hunger coded -

1, increased hunger coded 1) and measurement time (i.e., baseline coded -1, end of 

experiment coded 1). Post-hoc paired and two-sample t-tests were conducted to 

characterize the main effects (of group, time) and interaction (group by time). Pearson 

correlations were conducted for both suggestion groups to assess how the hunger ratings 

were associated with expectancy ratings. 
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Placebo effects on dietary decision-making 

Two sample, two-tailed t-tests, along with Bayesian independent sample t-tests, were 

conducted to compare average stimulus value ratings (SV) between the increased- and 

decreased-hunger suggestion groups. To further test how the hunger suggestions affected 

the computation of food preferences at the valuation stage, a multilevel general linear 

model (GLM) was fitted to stimulus value ratings (SV) following equation (1): 

(1)  𝑆𝑉 = 𝛽0 + 𝛽HR𝐻𝑅 + 𝛽TR𝑇𝑅 + 𝛽trial𝑡𝑟𝑖𝑎𝑙 + 𝛽HR*TR𝐻𝑅*𝑇𝑅 + 𝛽𝐻𝑅*𝑡𝑟𝑖𝑎𝑙 HR*trial + 𝛽𝑇R*𝑡𝑟𝑖𝑎𝑙 TR*trial+ 𝜀 

At the individual level, the GLM assumed that food SV was determined by the linear 

integration of tastiness (TR) and healthiness (HR) attributes of the food, with the rate of 

integration (beta weights, 𝛽) varying idiosyncratically between participants. This assumption 

is consistent with many other decision-making problems and at the core of the valuation 

phase proposed by models of economic choices. The GLM also included a trial number (trial) 

regressor to control for fatigue effects and three interactions (TR*HR, TR*trial, HR*trial) to 

assess how much change occurred in the weights given to the tastiness and healthiness 

attributes across trials and relative to each other. SV, TR, and HR regressors were mean 

centered (i.e., coded –2 (strong no), –1 (no), 1 (yes), or 2 (strong yes)). Individual beta 

weights for each regressor (i.e., 𝛽) were then fitted into a second level random effects 

analysis using two-tailed, two-sample t-tests to compare the two suggestion groups. More 

fine-grained analyses on dietary decision-making are reported in the Supplement (SI table 6).	

Computational modeling 

To test how and when suggestions about appetite influenced latent variables of the action 

selection stage of the decision-making process, SVs were collapsed into binary yes/no 

choices and fitted together with reaction times by a time-varying drift diffusion model 

(tDDM). This version of a standard sequential sampling model of action selection has 

recently been validated by two independent studies for dietary decision-making30,52.  

The model assumed, similar to traditional sequential sampling frameworks53–55, that 

committing to a choice results from a noisy accumulation of evidence up to a certain 

threshold in favor of one outcome option (for example, “yes”) over an alternative (for 

example, “no”). Importantly, the time-varying version of the DDM further assumed that the 

two sources of evidence, the tastiness (TD) and healthiness (HD) of the food, linearly scaled 
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(ωtastecp, ωhealthcp) the drift rate (Ecpt(t)) of evidence accumulation at different times (Timecp) 

within the interval between the reaction time and the non-decision time (DT = RT - nDT). For 

example, if taste entered the evidence accumulation first, the drift rate (δcpt=Ecpt(t)) at each 

timestep (t with dt = 8 ms) was determined by equation 2a30: 

(2a)  Ecpt = Ecpt-1 + (ωtastecp * TD + (t > | Timecp/dt | * ωhealthcp * HD)) * dt + noise 

If healthiness entered first, the drift rate at each timestep (dt = 8 ms) was determined by 

equation 2b: 

(2b)  Ecpt = Ecpt–1 + ((t > | Timecp/dt | * ωtastecp * TD) + ωhealthcp * HD) * dt + noise  

The differences in the tastiness and healthiness ratings for choosing a food item (yes 

response) versus not (zero response) for a given trial were denoted by TD and HD and 

respectively scaled the updating of the evidence (the drift rate) by ωtastecp and ωhealthcp. 

During the decision time, the time at which the healthiness weighed on the drift rate relative 

to the time tastiness factored in was expressed by the Timecp parameter. If t > Timecp /dt 

was false, it equaled 0, whereas if true, it equaled 1. Multiplying one of the two weighted 

attributes by zero until t > Timecp /dt became true meant that this attribute did not factor in 

determining the drift rate until a specific time step t. The relative starting time (Timecp) 

parameter was defined by the difference in the time at which healthiness started to scale 

the drift rate minus the time at which tastiness factored in. A negative Timecp indicated that 

healthiness influenced the drift rate earlier than tastiness. A positive Timecp indicated that 

tastiness weighed on the drift rate before healthiness. Note, a Timecp = 0 corresponded to a 

standard DDM.  

Overall, fitting choices and reaction times with a tDDM allowed us to break down the action 

selection phase into the following hidden latent variables that were then compared between 

suggestion groups to test how they were influenced by the contextual hunger suggestion: (1) 

the strength of evidence for a “yes” over a “no” choice (e.g. drift rate), (2) the temporal 

dynamics of evidence accumulation, assessed by the relative starting time (Timecp), (3) how 

carefully participants made their choices, which was approximated by the decision threshold 

boundaries, (4) the initial choice bias toward a yes or no food choice, and (5) the non-
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decision time, which approximated the time taken to initiate a choice and corresponding 

motor response.  

Model specification  

The model was specified using the RWiener package via the run.jags function of the JAGS 

package in RStudio. More specifically, the tDDM was implemented by a one-dimensional 

Wiener process, where the state of evidence (dEt) at each timestep (dt) evolved 

stochastically following differential equation (3): 

(3) dEt /dt ~ N(Et, σ2) 

Where Et is the evidence accumulation defined by equations 2a and 2b above. In practice, a 

stochastic node (y) reflected a certain state of evidence at a specific timestep (dt) (or the 

predicted choice data and reaction times) and was distributed according to a univariate 

Wiener distribution: 

ycpt ~ dwieners(αt = 2, τcpt, βcpt, , δcpt , ɑcp) 

Choice and reaction time (RT) data were coded in a way that “no” food choices were given 

negative RT values and “yes” food choices positive RT values. 

The evidence accumulation started with an initial value of evidence equal to the value of the 

starting bias parameter (ßcpt), which was allowed to vary between participants as a random 

effect (more details about the priors for ß are provided in SI section 5.1.). The boundary 

separation parameter (αt) was fixed to a maximum value of 2 on a trial-by-trial basis but 

varied between participants as a random effect. Since each participant was allowed to still 

have their own boundary separation parameter, the prior for the participant specific alpha 

(αcp) was drawn from a joint normal distribution: αcp = N(μαcp, σ2
αcp), with a mean μαcp, that 

was itself drawn from a continuous uniform distribution between 0.001 and 2 and a variance 

σ2
αp drawn from a gamma distribution with a shape of 1 and a rate of 0.1.  

The model estimated the noise in the drift rate (δcpt), which differed on a trial-by-trial basis 

and between participants. The prior for the drift rate was drawn from each trial (t) from a 

normal distribution: δcpt = N( Ecpt , e.p. Ƭcp), with a trial-specific mean that corresponded to 

the evidence (Ecpt) accumulated up to this trial following equations 2a and 2b and a variance 
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(e.p. Ƭcp) drawn from a gamma distribution with a shape and rate determined by the error 

terms of the regression function (see SI section 5.1) that was truncated between 0.001 and 

2. The priors for the tastiness (wtastecpt) and healthiness drift weights (whealthcpt) were defined 

by uniform distributions between –5 and 5. Both drift weight-free parameters were allowed 

to vary between participants as random effects. 

The non-decision time (τcpt) was also allowed to differ between participants as a random 

effect, with a mean drawn from a uniform distribution between 0 and 10 and a variance 

drawn from a gamma distribution with a shape of 1 and a rate of 0.1. Finally, the relative 

starting time parameter varied between participants as a random effect and was drawn 

from a joint normal distribution with a mean that itself was drawn from a uniform 

distribution between -5 and 5 and a variance drawn from a gamma distribution with a shape 

of 1 and a rate of 0.01. 

Model estimation 

Suggestion groups and behavioral and fMRI participant samples were estimated separately. 

The six free parameters (αp, ß, ωtaste, ωhealth, τ, and RST) were estimated by Gibbs sampling 

via the Markov Chain Monte-Carlo method (MCMC) in JAGS56 to generate posterior 

inferences for each parameter. We drew a total of 5000 samples from an initial burn-in step 

and then ran three chains of 10,000 samples. Each chain was derived from three different 

random number generators with different seeds (see SI table 10). We applied a thinning of 

10 to the final sample, which resulted in a final set of 5000 samples for each parameter. 

Gelman-Rubin tests were conducted for each parameter to test for the convergence of 

chains. The potential scale reduction factor (psrf) did not exceed 1.02 for any parameter at 

the participant or population level, and the deviance (the log posterior) had a prsf ~ 1. 

Model selection criteria 

Choice and reaction time data were fitted using a tDDM and compared to a standard DDM 

(sDDM) without the relative starting time parameter. Deviance information criteria were 

used to compare the model fits. The DIC was defined following Gelman et al.57 as DIC = 

0.5*var/mean(deviance) and was smaller for the tDDM (DIC = 22.873) than sDDM (DIC = 

23.054). Parameter recovery, reported in supplementary information, provided estimates 

that were identifiable (SI table 11). Moreover, posterior checks of predicted and observed 
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choices and reaction time distributions are shown in the supplement (SI figure S9). 

Comparison of free parameters between appetite suggestion groups 

To determine whether latent, hidden parameters of the tDDM were different between 

suggestion groups, the posterior probability of such difference was calculated following 

equation 4. 

 (4) PP = mean((dincreased – ddecreased) > 0) 

In more detail, a total of 3 posterior parameter distribution chains, counting each 10000 

samples, were concatenated for behavioral pilots and fMRI groups for a total posterior 

distribution over 60000 samples per group-level parameter and suggestion group (e.g., 

dincreased, ddecreased). Then, for each value in each sample a difference was calculated leading 

to a binary vector of the length 60000. The values in this vector were coded 0 if the 

difference was smaller then zero (i.e., dincreased < ddecreased) and 1 if the difference was greater 

then zero (i.e., dincreased > ddecreased). The mean of those 60000 binary outcomes for each 

parameter corresponds to the posterior probability that the population parameter 

distributions  (i.e., decreased versus increased suggestion group) differed. Note, except for 

the healthiness drift weight, all comparisons were made with the prior prediction (H1) that 

the difference in the posterior parameter distributions between increased and decreased 

suggestion groups would be greater than zero (SI Table 12 and 12a for group-level mean 

posterior distributions, and posterior distributions of parameters in each group). In addition, 

as a sanity check, the individual parameters estimated by a stepwise approximation of the 

tDDM drift rates and implemented by the deoptim package in R were compared between 

suggestion groups using Bayesian independent sample t-tests (SI section 5.4 and Table 13). 

Brain imaging analyses: 

fMRI data were analyzed using Statistical Parametrical Mapping (SPM12, Welcome 

Department of Imaging Neuroscience, Institute of Neurology, London, UK)58. Analogous to 

behavioral analyses, we searched for suggestion effects on brain responses related to the 

valuation and action selection phases of dietary decision-making. 

fMRI timeseries were fitted using multilevel general linear models (GLM). A first GLM (GLM1) 

included the following regressors at the first level: an onset regressor at the time of food 
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image display (boxcar duration: reaction time) that was parametrically moderated by the 

stimulus value, and an onset regressor for missed trials (boxcar duration: 3s). Regressors of 

non-interest included six realignment parameters (x, y, z, roll, pitch, and yaw) to correct for 

head movement. Boxcar functions for each trial were convolved with the canonical 

hemodynamic response function. Individual contrast images for onset choice and the 

parametric modulator, the stimulus value, were then fitted into a second-level random 

effects analysis that used two-sample t-tests to localize brain voxels that were activated 

differently at the time of choice formation and in response to the stimulus value in the 

decreased-hunger suggestion group (N = 28) relative to the increased-hunger suggestion 

group (N = 29). Moreover, to test whether brain responses at the time of choice were 

moderated by expectancies about hunger outcomes, expectancy ratings were added as 

second-level covariates of the choice onset regressor in a separate GLM (GLM2). GLM2 

included the onset regressor at time of choice, with a duration corresponding to the reaction 

time, and a missed trials onset regressor of a boxcar duration of 3s at the first level. At the 

second level, one-sample t-tests were used to test how much expected hunger modulated 

brain responses at the time of choice onset in each suggestion group.  

Time courses  

We extracted the activation time courses at the maxima of interest for all reported time 

course analyses. The response time courses were estimated using a flexible basis set of finite 

impulse responses separated by one TR of 1.25 seconds. 

Psycho-Physiological-Interaction (PPI) analysis 

PPI analysis aimed to localize the brain regions that exhibited choice formation-related 

functional connectivity within the brain and how such connectivity was linked to free 

parameters of the tDDM model in each suggestion group. We chose the vmPFC as a seed 

ROI because it is one of the central hubs of the brain’s valuation system (BVS) that encodes 

both expected and experienced rewards. Moreover, the vmPFC has been reported to 

implement action selection in connection with other fronto-parietal brain regions, such as 

the dorsolateral prefrontal cortex19,20,27,32. 

Functional timeseries were fitted by a third GLM (GLM3), with three onset regressors at 

the first level: the time of fixation (duration = 0.5s), choice (duration = reaction time), 
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and missed trials (duration = 3s). Realignment parameters were included as regressors 

of non-interest to control for head movement. We then extracted average BOLD activity 

timeseries from a 5-mm sphere centered around the vmPFC ROI (MNI coordinates = [0, 

52, -12]) for the contrast choice versus fixation and estimated a fourth GLM (PPI-GLM4), 

which included a psychological regressor that modeled the choice formation as : 

reaction time - long boxcars at the time of food choice onset, the physiological regressor 

of the BOLD activity timeseries of the vmPFC seed region, and the interaction of the 

psychological and physiological regressors, which was the PPI regressor of interest. 

Individual betas for this PPI regressor were fitted into a second-level random effects 

analysis using one sample-t-tests (See whole brain PPI activations in SI table 14). 

Linking tDDM drift weights to vmPFC-dlPFC implementation of evidence accumulation 

Beta coefficients from the dlPFC reflected the interaction (in terms of covariance) at the 

time of choice formation with the vmPFC seed ROI. Beta coefficients from this dlPFC ROI 

were correlated across participants to the difference between the healthiness and 

tastiness drift weights from the tDDM (whealthiness – wtastiness) using Pearson’s correlations 

in the both hunger suggestion groups, respectively. 

dlPFC ROI definition  

The PPI with the vmPFC seed at the time of choice formation was small-volume corrected 

(SVC) using a dlPFC ROI defined by MNI = [40, 42, 26], which was significantly activated 

during interference resolution measured by the MSIT task (see SI section 1 and SI Table 

3). Average beta coefficients reflecting the vmPFC–dlPFC interaction strength at the time 

of food choice were extracted from a 5-mm radius sphere that was centered around the 

dlPFC MNI coordinate [44, 38, 32], which survived SVC (pFWE < 0.05, peak height and 

cluster level). 

 

Data and code availability 

Behavioral data, task code, and materials used in the analysis are available on the Open 

Science Framework website, and can be accessed via the following link: 

https://osf.io/7j4qs/?view_only=d5c0886514d740c293ebdc14524f37a6. 
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