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ABSTRACT 

Brain oscillations of different frequencies characterize the electroencephalogram (EEG) during distinct 

cognitive and vigilant states. Theta oscillations (4-8 Hz) are unusual because they have been found in the 

near-opposite conditions of sleepiness and alert cognitive control. Most neuroscience research focuses 

exclusively on the latter, leaving this paradox unresolved. With this thesis, I focus instead on theta during 

sleep deprivation (sdTheta), which has been hypothesized to reflect intrusions of local slow wave sleep 

on wake, based on a study in rats. The goal was to determine whether sdTheta in humans could also be 

considered a form of local sleep in wake, or if it was a manifestation of more typical cognition-related 

theta. I collected high-density EEG data from young healthy adults undergoing sleep deprivation to ob-

serve how sdTheta is affected by time awake, time of day, different tasks, and conditions. To inde-

pendently track the effects of sleep deprivation, I also conducted extensive questionnaires and collected 

pupillometry data. I found that sdTheta can be widespread across the brain, although the specific sources 

depend on the ongoing task. Curiously, theta mostly originated from areas not critical for the task. I found 

that sdTheta occurs in bursts, making it unlike the isolated theta events thought to reflect local sleep. 

Furthermore, I found that independently from changes in the occurrences of such bursts, wake oscillation 

amplitudes increase with time awake, following a homeostatic trajectory. This supports the hypothesis 

that neuronal connectivity increases with time awake, which is what underlies sleep need. Unexpectedly, 

I found that the wake maintenance zone, a time before habitual bedtime when it is difficult to fall asleep, 

can mask these homeostatic changes in oscillation amplitudes. However, the wake maintenance zone 

only minimally affects the presence of sdTheta bursts. Finally, I could not find any evidence that theta 

bursts were the cause of behavioral lapses nor compensating for sleep loss, supporting the previous find-

ing of sdTheta originating from task-unrelated areas. Therefore, I tentatively propose that sdTheta bursts 

are a manifestation of unneeded parts of the brain at rest, although not necessarily “local sleep.” If this 

means that sdTheta is a different type of oscillation from theta involved in cognition, then care will be 

needed to dissociate the two types. Regardless of what it does, theta makes for a robust marker of sleep 

need and can have many clinical diagnostic applications, especially when analyzed effectively. 
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RIASSUNTO 

L’elettroencephalogramma (EEG) è caratterizzato da oscellazioni di diverse frequenze le quali 

distinguono stati mentali. Le oscillazioni theta (4-8 Hz) sono insolite perché sono state riscontrate in 

condizioni quasi opposte di sonnolenza e di elevato controllo cognitivo. La maggior parte della ricercha 

sulle onde theta si focalizza esclusivamente su quest'ultimo aspetto, lasciando irrisolto questo paradosso. 

Con questa tesi, mi concentro invece sulle onde theta che appaiano durante la deprivazione del sonno 

(sdTheta), le quali si ipotizza riflettano una forma di sonno localizzato durante la veglia. L’ipotesi 

alternativa è invece che riflettano una manifestazione più tipica di cognizione, forse contrastando gli 

effetti negativi della sonnolenza. Ho raccolto dati con EEG ad alta densità da giovani adulti sani sottoposti 

a deprivazione del sonno per osservare come sdTheta sia influenzato dalla durata di veglia, dall'orario, 

dall’attività e dalle condizioni. Per rintriacciare in modo indipendente gli effetti della sonnolenza, ho 

raccolto anche estesi questionari e dati di pupillometria. Ho scoperto che sdTheta è diffuso in tutto il 

cervello, anche se le fonti specifiche dipendono dall’attività in corso. Notevolmente, sdTheta ha origine 

principalmente da aree non critiche per il compito. Ho scoperto che sdTheta si verifica a scatti, a 

differenza dalle onde theta singole che si ipotizza riflettano il sonno locale. Inoltre, ho scoperto che, 

indipendentemente dai cambiamenti nelle quantità di tali scatti, le ampiezze delle oscillazioni aumentano 

con la durata di veglia, seguendo una traiettoria omeostatica. Ciò supporta l'ipotesi che la connettività 

neuronale aumenti con il tempo di veglia, il che sottende il bisogno di sonno. Ho scoperto anche che la 

"zona di mantenimento della veglia," un periodo in cui è difficile addormentarsi appena prima dell’orario 

abituale per dormire, può mascherare questi cambiamenti omeostatici nelle ampiezze delle oscillazioni. 

Tuttavia, la zona di mantenimento della veglia influenza solo minimamente la presenza di sdTheta. Infine, 

non sono riuscita a trovare alcuna evidenza che gli scatti theta siano la causa di mancate risposte 

comportamentali o altrettanto che potessero agevolare le prestazioni contrastando la sonnolenza. Ciò 

conferma la precedente scoperta che sdTheta ha origine da aree del cervello non correlate al compito. 

Perciò propongo che gli scatti sdTheta riflettano il riposo delle parti del cervello non attualmente 

necessarie, anche se questo non intende necessariamente "sonno locale." Se ciò significa che sdTheta è 

una forma diversa di oscillazione rispetto alle onde theta coinvolte nella cognizione, sarà necessario 

prestare attenzione su come dissociare le due tipoplogie. Nonostante non sia chiaro la loro funzione, le 

onde theta sono un segnale affidabile del bisogno di sonno, e potranno avere molte applicazioni 

diagnostiche mediche. 
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1 INTRODUCTION 

Being sleep deprived is a miserable experience. Your thoughts move through molasses, your eyelids are 

made of lead, and your emotions rival those of the Grinch at Christmas. Side effects may include head-

aches, nausea, and a general feeling of unwellness. All the while, you can only think about one thing: your 

bed. The big question is of course “why do we sleep?” but put another way: “why is it so awful staying 

awake too long?” What terrible things are happening to our poor neurons when we skip a night of sleep? 

How do we power through it, and what happens when we can no longer cope? 

I’d like to think there are a couple answers to these questions in here, all thanks to theta waves. These 

are brain oscillations between 4 and 8 Hz that become increasingly common the more time you spend 

awake (Aeschbach et al., 1997; Cajochen et al., 2002; Finelli et al., 2000). Theta waves are usually meas-

ured with surface electrodes on the scalp in humans, but fortunately they also appear in rodents (Vyazov-

skiy et al., 2011), so we have some clue as to what neural process causes them. When measured intra-

cortically, theta during sleep deprivation reflects local networks of neurons synchronously firing together 

and being silent together, exactly what happens during sleep to generate slow waves. The hypothesis is 

therefore that theta waves are intrusions of local sleep during wake. This could nicely explain why behav-

ior deteriorates during sleep deprivation. 

The idea that theta activity corresponds to local sleep is compelling but runs into difficulties when com-

pared with almost any other study of brain electrophysiology. The problem is that theta waves are in-

volved in everything, from ADHD to Zen meditation (Angelidis et al., 2016; T. Takahashi et al., 2005). But 

the most problematic of all is that theta is a reliable marker of intense cognition, from arithmetic to work-

ing memory (Arellano & Schwab, 1950; Brookes et al., 2011). There are a lot of possible explanations why 

completely opposite conditions could generate the same brain wave, and identifying the answer is an 

important step towards understanding the role of these waves in either scenario. 

The goal of my research was therefore to better understand theta activity related to sleep deprivation, 

and how it could be different, if it even was different, from the theta associated with cognitive processes. 

Maybe they were slightly different frequencies, or came from different areas, different waveforms, or 

maybe they were indistinguishable, requiring some creative reinterpretation of the evidence. To answer 

these questions, I needed to compare the EEG of the same individuals under the cognitive conditions that 

generate theta waves, and then again under sleep deprivation, determine if they were different in any 

way, and check if these theta oscillations were a help or a hindrance. 

The following introduction brings together all the major literature related to theta, with a focus on areas 

of research that are most in conflict with sleep deprivation theta, or most in agreement. This will be 

followed by the three publications I wrote on this topic. The first is The theta paradox: 4-8 Hz EEG oscil-

lations reflect both sleep pressure and cognitive control (Snipes et al., 2022), which elaborates on the dis-

crepancy and directly compares theta related to cognition with theta related to sleep deprivation. The 

second, How and when EEG reflects neuronal changes in connectivity due to time awake (Snipes et al., 

2023), demonstrates that there is a dissociation between theta occurrences and theta amplitudes across 

time awake, which substantially complicates how to interpret changes in theta power, especially during 

sleep deprivation. The third, EEG markers of sleepiness do not predict lapses in attention during sleep dep-

rivation, unfortunately determines that theta during sleep deprivation is not actually responsible for be-

havioral lapses. In the discussion, I will then attempt to resolve the theta paradox and elaborate new 

findings and suggest some possible future research directions on this topic. 
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I tried to avoid bogging down the text with too much background information; so definitions, brief de-

scriptions, and digressions are often provided as footnotes, with more in-depth explanations and seman-

tic hair-splitting at the end in the Glossary. At the end of each paper there is additional information that 

fills in some unanswered gaps between the publications. There are also colored textboxes scattered 

throughout the document; these are self-standing tangents which I find very interesting, but are not 

strictly related to the main topic of this thesis. They can be read in isolation, or not at all. It’s a long thesis, 

essentially composed of many mini-essays, so I highly encourage selective reading based on the topics 

most of interest to you. To help with skimming, at the end of each chapter, there’s a “tldr” (too long, 

didn’t read) summary, so it’s possible to get the main message of each section by just reading these cap-

tions. 

tldr; theta oscillations characterize the EEG during sleep deprivation, but they can also be found under a va-

riety of cognitive conditions. With this thesis, I try to learn more about theta during sleep deprivation to 

better understand what it could be. 

1.1 Why we can’t stay awake forever 

There are two types of people in the world: those that want to sleep more, and those that want to sleep 

less. They both have the same problem: staying awake for too long gets hard. The first step towards a 

solution is clear: we need to figure out why we can’t just stay awake forever. 

The irony of sleep deprivation is that it is subjectively one of the worst things that can ethically be done 

to research participants, and yet it is surprisingly hard to objectively measure its effects. Consistently, 

sleepiness and other subjective variables have larger effect sizes than any behavioral outcome (Groeger 

et al., 2014; Lo et al., 2012), and somehow the more complex tasks show the smallest effects of all (Lim 

& Dinges, 2010). The explanation for this is that degradation does happen with sleep deprivation, but 

sufficient compensation mechanisms exist to maintain steady performance for the duration of a research 

experiment (Chee & Choo, 2004; Drummond et al., 2005). The implicit understanding is that if we can 

bypass such compensation effects and find a proper objective measure of sleep deprivation, then we can 

understand what is happening during wake that makes sleep necessary. 

Ultimately, with enough sleep deprivation, pretty much any measurable behavior is affected (Boonstra 

et al., 2007; Killgore, 2010). The harder question to answer is why do we need sleep after just 16 hours of 

wake? Behaviorally, not much degrades within that time frame (McMahon et al., 2021; Shekleton et al., 

2013). A good answer is that sleep every night performs regular maintenance, repairing stressed neural 

infrastructure (Vyazovskiy & Harris, 2013) and clearing metabolic by-products (Xie et al., 2013). In this 

case, skipping a night of sleep isn’t damning, but if wake is prolonged for much longer, minor “wear and 

tear” could lead to real damage. Therefore, the mechanism of subjective sleepiness could have evolved 

to ensure regular sleep even when not strictly necessary. 

Another possibility is that sleep is more urgently needed for neuronal plasticity, which is the process of 

strengthening connections, crticial for learning and memory. This is the basis of the synaptic homeostasis 

hypothesis (Tononi & Cirelli, 2014), which posits that during the day, neurons increase their overall syn-

aptic strength, and sleep is necessary to “downscale” this effect in order to maintain homeostasis. Sleep 

is therefore needed to selectively prune synapses that are less important and consolidate those that are 
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worth keeping. An important assumption of synaptic homeostasis is that sleep need accumulates along 

a saturating exponential,1 meaning that the most rapid changes in the brain happen early, and then in-

creasing time awake progressively affects the brain less and less. Therefore, the brain’s plasticity “satu-

rates” sooner rather than later, which would explain why we need to go to sleep every night. 

The fact that sleep is necessary for plasticity rather than just the activity of neurons is a critical distinc-

tion. This means that sleep deprivation should affect learning and memory of new content more so than 

well-learned behavior. In fact, memory consolidation is one of the most well-established functions of 

sleep (Ackermann et al., 2015; Lendner et al., 2022; Ngo et al., 2013; Nishida et al., 2009). Not sleeping 

results in both a reduction in memory consolidation of content learned during the day, as well as impaired 

ability to learn new material after sleep loss (Guttesen et al., 2023). Unfortunately, it’s tricky to track the 

changes in plasticity and learning ability across time awake, because inevitably every repetition of the 

task results in improvements in performance, counteracting the detriment of time awake. The previously 

mentioned results come from comparing performance in one session after (and maybe one before) either 

a period of sleep or wake. Therefore, the catch-22 is that to track the effects of sleep deprivation with 

incrementally increasing time awake, you need a task that doesn’t improve with repetition and therefore 

includes no learning, but the hypothesized reason for sleep need is a reduction in the ability to learn. 

As it turns out, plasticity isn’t the only function that systematically degrades with time awake; the other 

is sustained attention (Lim & Dinges, 2010; Lo et al., 2012). The classic paradigm is the psychomotor 

vigilance task (PVT), which involves monitoring a fixation point, and every 2-10 seconds, a counter starts 

and the participants has to push a button in response to stop it (Basner & Dinges, 2011; Dinges & Powell, 

1985). The PVT is minimally affected by task repetition, so it is ideal for tracking changes in performance 

across extended wake (Basner et al., 2018). With increasing time awake, all responses get slower and 

slow responses become a lot slower (Doran et al., 2001); the latter are known as lapses. These lapses 

increase mostly linearly across wake, although with robust circadian fluctuations with time of day (Graw 

et al., 2004).  

A compelling assumption is that these increasing lapses reflect “state instability” (Doran et al., 2001) and 

the intrusion of sleep on wake (Hudson et al., 2020), which would indirectly reflect the increase in sleep 

pressure. However, no PVT outcome measure reflects the same saturating exponential assumed to be 

behind synaptic sleep pressure, and the PVT is extremely sensitive to circadian and other changes in 

vigilance, so it is not suited to quantify changes in plasticity. Altogether, this means that there are so far 

no good behavioral measures of sleep need and plasticity. Therefore, neural markers are maybe the best 

chance we have to track the brain’s changes with sleep deprivation. 

tldr; to better understand why we need sleep we need reliable measures of accumulating sleep need with 

time awake.  

1.2 Sleep deprivation theta 

It took some time to narrow down, but it eventually became clear that increasing time awake results in 

increased theta activity (Aeschbach et al., 1999; Cajochen et al., 1995; Finelli et al., 2000; Torsvall & 

 

1 See the two-process model and sleep homeostasis in section 7.3.2, page 142. 
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Åkerstedt, 1987). This effect is typically measured in resting-state wake recordings, in which participants 

simply fixate on a point for several minutes while their EEG is recorded. Recordings are performed at 

regular intervals until 24, 48, or even 72h awake. The EEG is then quantified using spectral power analysis, 

and the resulting spectrum is subdivided into standard frequency ranges.1 While this type of analysis 

results in a substantial reduction from the original signal, it allows rapid quantification that can track 

changes in EEG activity across time. 

The increase in theta power with time awake peaks at 6.5 Hz (Finelli et al., 2000).This increase in wake 

was found to correlate with EEG slow wave activity during sleep (SWA; 0.5-4 Hz), with both originating 

primarily from frontal regions (Finelli et al., 2000).2 SWA is the defining feature of NREM sleep,3 decreas-

ing exponentially across the night, and it starts off at higher amplitudes with more time previously spent 

awake. SWA is considered to be a marker of sleep homeostasis, the underlying process of sleep need 

building up during wake and dissipating during sleep. Together with circadian rhythms, this controls when 

and for how long any animal needs to sleep, as explained by the two-process model of sleep (Borbély, 

1982). The combination of these creates sleep pressure, which we subjectively experience as sleepiness. 

The previously described synaptic homeostasis is hypothesized to be the reason for the increase in SWA: 

the more neurons are interconnected, the larger the oscillations. 

The increase in theta with sleep deprivation is specific to wake, and not visible in either NREM or REM 

sleep (Tinguely et al., 2006), and vice-versa slow wave activity does not substantially increase during 

wake (Finelli et al., 2000). Nevertheless, theta in wake and slow waves in sleep reflect the same local 

changes in sleep homeostasis. Huber et al. (2004) found that SWA increases locally during sleep following 

a motor-learning task, indicating that sleep pressure was higher for the specific networks involved in the 

task. Vice-versa, arm-immobilization resulted in local decreases in SWA (Huber et al., 2006). Hung et al. 

(2013) followed up on this, showing the same effect for theta. Participants performed two sleep depriva-

tion bouts, one in which they spent the day playing a driving simulator, the other in which they listened 

to audiobooks, thus involving independent brain networks. During resting EEG recorded between the 

tasks, theta power showed distinct local increases depending on which of the two tasks the participant 

had been engaged in, and these local differences matched those observed in SWA during recovery sleep. 

In other words, areas that underwent more plasticity while awake showed both more SWA in sleep and 

more theta power in wake. Therefore, the simple story is that SWA reflects sleep homeostasis during 

sleep, and theta power reflects sleep homeostasis during wake. 

Unfortunately for the simple story, theta power also reflects circadian rhythms (Cajochen et al., 2002; 

Strijkstra et al., 2003). Theta power decreases following caffeine consumption (Landolt et al., 2004; 

Reyner & Horne, 1997) and increases with melatonin (Cajochen et al., 1996). Theta is higher during dim 

light compared to bright light exposure (Cajochen et al., 1998; Yokoi et al., 2003), with the effect inter-

acting with time of day (Ahlström et al., 2018). Theta power is higher when seated compared to standing 

(Caldwell et al., 2000). It even increases following lunch, what Italians refer to as an “abbiocco post-

pranzo” (Lowden et al., 2004; Reyner et al., 2012). Patients suffering from excessive daytime sleepiness 

have higher theta power, such as those with obstructive sleep apnea at night (Grenèche et al., 2008; Melia 

 

1 More information on power and bands in section 7.2.1, page 135. 

2 I was unable to replicate this with my own data. The original study had an N = 7 but conducted 40 h of sleep deprivation, 
so I withhold judgement. 

3 More information on sleep stages in section 7.3.1, page 140. 
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et al., 2015). All in all, theta power seems to be a general marker of sleepiness and not just homeostatic 

sleep pressure. 

Theta correlates with subjective sleepiness, but only when measured with eyes-open (Gorgoni et al., 

2014; Kaida et al., 2006; Strijkstra et al., 2003). Theta was also found to correlate with the slowing down 

of the fastest reaction times of the PVT (Gorgoni et al., 2014). However, when sorting participants into 

those who show the smallest and largest changes in performance (vulnerable vs resistant to sleep depri-

vation), subjective sleepiness matched the split, but theta power did not (Galliaud et al., 2008). Therefore, 

there is not complete agreement between subjective, behavioral, and EEG measures of sleepiness. The 

idea is therefore that theta more closely reflects sleep homeostasis than other factors. To disambiguate 

theta related to sleep deprivation from the rest, I will henceforth refer to it as sdTheta.  

In general, there are very few studies about sdTheta, largely because they are almost exclusively con-

ducted by sleep researchers, who are by definition more interested in sleep. Theta related to sleepiness 

barely gets mentioned in the main electroencephalography textbooks, certainly nothing related to sleep 

deprivation, and so the discrepancy with cognitive theta has been largely ignored (Schomer & Silva, 2011). 

A few older studies have tried to address the inconsistency between sdTheta and other manifestations 

of theta (section 1.5), but these came before the use of computer-based data analyses. Therefore, we 

don’t have a good idea of what sdTheta actually corresponds to, what it’s doing in the brain, how it’s 

generated, why it’s generated, and whether or not it interferes with normal brain functioning. We don’t 

even really know what it looks like. Nevertheless, the current main hypothesis about sdTheta is that it 

may actually be a form of local sleep. 

tldr; theta activity reflects sleepiness in general, but here I focused on theta that increases with sleep depri-

vation, “sdTheta.” 

1.2.1 Theta as local sleep 

The idea of theta power as a generic marker of sleepiness took a backseat when it was suspected that 

theta waves in wake could be homologous to slow waves in sleep. Vyazovskiy et al. (2011) conducted a 

study in sleep-deprived rats, comparing EEG with neuronal spike firing,1 and found that the increase in 

theta waves observed in the EEG corresponded to synchronized silence of local neuronal spiking, known 

as off-periods. This is the exact same pattern observed during slow waves in sleep, also associated with 

such synchronized silences (Steriade et al., 1993, 2001); the only difference is that slow waves tend to 

involve larger populations of neurons, and the off-periods last longer. This meant that the same firing 

patterns underlying sleep slow waves were behind theta during sleep deprivation, therefore suggesting 

that theta waves were just little slow waves.2 Supporting this, in a sugar pellet reaching task, rats were 

 

1 In research animals, it’s possible to record single (or multiple) neurons’ electrical signals with thin needle electrodes or 
grids of tiny little needles. A neuron then sends a “spike” of electric current to its interconnected neurons, and these spikes 
can get tallied up. Alternatively, a larger electrode is placed on the surface of the cortex in order to record the local field 
potential (LFP), which is slow fluctuations in the electrical field around neurons, and most closely corresponds to the 
human scalp EEG. But you probably knew that. 

2 My understanding is that other types of wake oscillations don’t result in such synchronized off-periods (all neurons silent 
at the same time) even if individual neurons are more often silent than not. 
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more likely to have an off-period just prior to a failed attempt compared to a successful one. Altogether, 

this paper suggested that theta events are actually a form of local sleep during wake.  

Partial sleep and wake have previously been described in specialized animals like marine mammals and 

seabirds (Lesku et al., 2011; Mascetti, 2016), as well as pathological conditions such as sleep walking 

(Castelnovo et al., 2016; Terzaghi et al., 2009, 2012) or stroke (Sarasso et al., 2020). Nobili et al. (2011) 

also found the inverse; local wake oscillations during sleep, measured intracortically in patients. However, 

this result in rats suggested that some form of local sleep in wake could be found across all healthy mam-

mals, and this could explain the behavioral deficits observed during sleep deprivation (Hudson et al., 2020; 

Siclari & Tononi, 2017). 

Unlike with animals, it is generally not possible to measure single-neuron spiking in healthy humans, 

however “circumstantial evidence” suggests that off-periods could in fact underly human sdTheta as well. 

The previously mentioned local changes in theta power with sleep deprivation by Hung et al. are thought 

to reflect local sleep, anticipating the increased SWA that will occur during actual sleep. Bernardi et al. 

(2015) with a similar paradigm were able to show that commission errors in a go no-go task were 

predicted by the presence of these local theta waves. Fattinger et al. (2017) likewise found large wide-

spread theta waves were associated with slower reaction times in children. Therefore, like in rats, per-

formance is impaired when a theta event co-occurs. 

The holy grail however was to find true off-periods intracortically during wake in humans, and Nir et al. 

(2017) attempted just that, looking at single-cell local field potentials of epileptic patients undergoing 

sleep deprivation. Unfortunately, unlike in rats, it was not possible to record as many simultaneous neu-

rons, making it difficult to distinguish these smaller off-periods. Furthermore, epilepsy itself induces “off-

periods” during wake which increase with sleep deprivation, and such pathological events would be in-

distinguishable from local sleep.1 Therefore, despite best efforts, the authors were not able to find evi-

dence of off-periods in humans during wake sleep deprivation (personal communications with Yuval Nir), 

like they were for slow waves in sleep (Nir et al., 2011). They did, however, find local changes in firing 

rates as well as in theta power, which were linked to delays in performance. 

Overall, there is promising evidence to suggest that theta during sleep deprivation in humans is a form 

of local slow wave sleep, but no definitive proof. There are two alternative explanations for theta during 

sleep deprivation in humans. One is that theta related to cognition actually plays a role during sleep dep-

rivation, maybe as some form of compensation. In this case, sdTheta is not about sleepiness pe se, but 

actually resisting sleep (section 1.6, page 25). The second is that sdTheta is a manifestation of sleep in-

truding on wake, just not slow wave sleep. Unlike in rodents, human sleep begins with an additional tran-

sition stage, NREM 1. As it happens, theta activity has also been associated with this stage (section 1.3, 

page 14). Therefore, it is possible that despite both rodents and humans showing sdTheta, the underlying 

cause may differ. 

Determining if sdTheta is local sleep can only really be done with intracortical data, but the shape and 

distribution of theta waves can be indicative. If human sdTheta is a manifestation of local slow waves, 

then it should have similar properties to the first slow waves observed at sleep onset. This means single 

events, often with a stronger negative rather than positive deflection (Nir et al., 2011; Vyazovskiy et al., 

 

1 Sleep deprivation is a procedure done in some patients with epilepsy in order to induce epileptic activity while they are 
being monitored so that the epileptic source can be more carefully identified. 
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2011).1 Furthermore, they need to be sufficiently frequent and of sufficient high amplitude to emerge 

from the background EEG in order to conceivably explain the increase in theta spectral power observed 

with increasing time awake (Finelli et al., 2000). Also, it should be demonstrated that the theta power 

increase from the beginning of the wake period corresponds to these little slow waves; it’s one thing to 

say sleep intrudes on wake when sleep deprived, it’s more extreme to say that it does so from the begin-

ning of a normal waking day. It’s quite possible that normal waking theta activity follows some independ-

ent trajectory across the day, and only when there is high sleep need after >16 h awake do local sleep 

theta waves start to appear. This is the case for microsleeps, which are virtually non-existent for well-

rested individuals, and only start to appear with sleep restriction, sleep deprivation, or clinical conditions 

(Bougard et al., 2018; Hertig-Godeschalk et al., 2020; Moller et al., 2006).2 

tldr; there’s strong evidence in rats, and weak evidence in humans, that sdTheta is actually driven by little 

sleep slow waves intruding on wake. 

1.2.2 Fatigue theta 

Independently from studies of sleepiness and sleep deprivation, increases in theta power have also been 

associated with “fatigue” (Tran et al., 2020). The exact definition of fatigue varies, but differs from sleep 

pressure in that it reflects the deterioration in performance and motivation with increasing time on a 

repetitive or monotonous task, rather than just with time awake. Also, an underlying assumption is that 

rest from the specific task is sufficient to recover from fatigue, whereas sleep pressure needs real sleep 

for recovery.3 Much of the literature on this topic revolves around fatigue related to driving, flying, or 

similar monotonous but dangerous activities, for obvious reasons (Borghini et al., 2014; Hamann & Car-

stengerdes, 2023; Torsvall & Åkerstedt, 1987). Unlike sleep deprivation, fatigue has the advantage of be-

ing investigated during normal working hours. 

In a meta-analysis, Tran et al. (2020) concluded that theta power, and to a lesser extent alpha power, 

increase with time-on-task, whereas delta power is less affected and beta power not at all affected by 

fatigue. Some studies have rather found increases in lower alpha power more than theta (Craig et al., 

2012), which could be interpreted as a spilling-over effect or even a slowing down of alpha (Arnau et al., 

2021). However, others clearly show a robust increase in frontal midline theta with time on task, spatially 

independent from the increase in alpha (Li et al., 2020; Trejo et al., 2015).  

Fatigue researchers also noticed the discrepancy between their theta and theta during cognitive tasks. 

One solution to the discrepancy would be if theta during fatigue is a compensation mechanism, what 

Clayton et al. (2015) compare to “the revving noises of a tired motorcar trying to climb a steep hill.” How-

ever, this is contradicted by the fact that the increase in theta with time on task is found both in the EEG 

 

1 Difference between “events” and “oscillations” is explained in section 7.2.2, page 136. 

2 Difference between “local sleep” and “microsleeps” is explained in section 7.3.4, page 142. For results, see also Figure 
3.8B, page 81. 

3 This is not usually explicitly acknowledged, nor incorporated into the study designs (e.g. measurements after a sufficient 
rest period), and may not be universally considered critical to the definition of fatigue. However I think it’s worth making 
the distinction between tiredness from which one can recover with rest, and tiredness due to plasticity (Nelson et al., 
2021), which requires sleep (more details in section 7.3.5, page 143). Likely, a bit of both happens in most studies. 



 Introduction  

14 

 

during the task and in resting recordings after the task (Li et al., 2020). An alternative explanation is that 

theta actually reflects activity of the default mode network, and therefore deactivation of task-irrelevant 

areas (Trejo et al., 2015), explored more in section 1.5.1 (page 24). However, a final solution is that there 

are at least two manifestations of theta; a cognitive one that processes information, and one reflecting 

fatigue, whatever that might be. This is supported by the fact that theta power measured from the entire 

task recording will show a progressive increase with time awake, whereas stimulus-evoked theta actually 

decreases with time on task (Wascher et al., 2014). The increasing theta occurs between trials, thus 

doesn’t interact with the task-evoked theta (Arnau et al., 2021). 

Like sdTheta, the main property of fatigue-theta is an increase in theta power with passing time, so it 

could reasonably be the same thing. In fact, Nelson et al. (2021) specifically showed that frontal theta 

power increased more with a fatiguing motor-learning task rather than just a motor task, and this in-

creased theta only decreased following a nap rather than passive rest. Therefore, fatigue theta is likely 

sdTheta on a shorter time scale. If sdTheta is actually local sleep, however, this assumption needs to be 

revisited. It’s not impossible that local sleep should occur after just a few hours of wake, but it is a less 

likely explanation, and would require similar validation that single “mini slow waves” are driving this in-

crease in power. 

tldr; theta increases with time on task, but this is likely a manifestation of sdTheta. 

1.3 NREM 1 theta 

The NREM 1 sleep stage marks the transition between wake and sleep. Whether to consider it already 

sleep is up for debate,1 which is why many researchers define sleep onset from the appearance of the first 

spindle or slow wave instead (NREM 2). According to the AASM sleep scoring guidelines, NREM 1 is 

defined by the disappearance of alpha oscillations, slow rolling eye movements, and an increase in low 

amplitude, mixed frequency activity, “predominantly 4-7 Hz” (Berry et al., 2012). 

Given that sleep onset is thus characterized by theta activity, a reasonable hypothesis would be that 

sdTheta was the intrusion of NREM 1 on wake. The main problem with this idea is that when inspecting 

the spectrogram of NREM 1 (Figure 1.1), there is no characteristic “bump” in the theta range that would 

indicate any oscillatory component emerging from the 1/f background activity,2 like there is for alpha 

during wake. Why, then, does the AASM say that NREM 1 is characterized by theta? 

 

1 I vote for it being sleep; the spectral change is larger than anything I’ve seen during wake, sleep deprivation, or any task. 
The argument against NREM 1 being sleep is that it is not associated with a loss of consciousness (Ogilvie et al., 1989), 
but since apparently healthy individuals can still think they are conscious all the way into NREM 3 (Stephan et al., 2021), 
then I would rather rely on EEG changes for classification. However, it may be a gradual change. 

2 If the concept of “aperiodic” and “periodic” EEG is unfamiliar to you, read section 7.2.3 on page 138, it’s important. Briefly, 
the EEG is made of an “aperiodic” signal which is a lot like noise. When plotting the spectral power of this activity on a 
log-log scale, it forms a straight downward sloping line. 
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Figure 1.1: NREM 1 spectrum, log-log scale. N = 18. Eyes-open (EO) wake was taken from the Fixation Baseline Post 
condition, Eyes-closed (EC) wake is from Standing Baseline Post condition. NREM 1 is from the Baseline night. A: 
Front region of interest (ROI); B: center; C: back. ROI channels are depicted in Figure 2.18, page 61. 

First of all, as can be seen in Figure 1.1 and Figure 7.7 (page 141) increasing sleep depth is accompanied 

by a steepening of the slope of the background activity, meaning that lower frequencies have even higher 

amplitudes and higher frequencies have lower amplitudes with respect to each other. In the frequency 

domain, the change is clearly related to the entire spectrum, however visually in the time domain the 

increase in slower frequencies is substantially more evident than the decrease in high frequencies. This 

background aperiodic activity can be easily simulated with “colored noise” (Figure 1.2A); such that by 

increasing the ratio of low to high frequencies, the fake signal clearly mirrors the change from wake to 

sleep observed in the EEG signal (Figure 1.2B). For the majority of NREM 1, for the majority of partici-

pants, this may be the only kind of “theta” present in the EEG. 

 

Figure 1.2: Aperiodic EEG. A: Simulated EEG data of only a 1/f spectrum with different slopes. This is done by creating 
a f-α signal, randomizing the imaginary component (the “phase” of the sinusoids that make up the signal), then doing 
an inverse FFT. By changing the exponent α, you get different slopes. This is an extremely “dumb” simulation, just of 
the shape of the power spectrum, without any information about how the brain works. B: Screenshots of EEG from 
our sleep scoring program, with data classified as wake (top) and NREM 1 (bottom). Vertical lines are spaced 1 s apart, 
horizontal lines indicate ± 37 μV. 

However, some individuals have genuine theta oscillations during NREM 1. Santamaria & Chiappa (1987) 

wrote a review about the EEG and EOG markers while falling asleep and found that across large datasets, 

a subset (from a single individual to ~30%) show some form of theta-like oscillations. The authors provide 

a variety of labels from “fronto-central sharp bursts,” “generalized sharp bursts,” “six-per-second phan-

tom spike waves,” “temporal asymmetric theta/delta,” “rhythmic mid-temporal theta” and “wicket 

spikes,” not to mention the most common “vertex sharp waves.” These waves have different frequencies, 
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durations, amplitudes, and channel locations. Part of the plethora of categories comes from non-stand-

ardized nomenclature across studies, but even within the same authors’ data, there is an incredible vari-

ety of oscillatory activity in the theta range occurring during NREM 1. Given their relative infrequency, 

as well as the variability across individuals, these peculiar manifestations of theta oscillations don’t show 

up in group averages. 

A few studies have found average increases in theta power during the transition from wake to sleep, 

usually at the low end of the theta range, between 1 and 3 Hz (Bódizs et al., 2005), and 3-5 Hz (Achermann 

et al., 2019; Wright et al., 1995). Marzano et al. (2013) did find an increase in occipital theta just after 

sleep onset using a different oscillation detection method. However, a common phenomenon during 

sleep onset is a slowing down of the alpha rhythm, which means it may sometimes enter the upper theta 

range (Santamaria & Chiappa, 1987), and may explain the effect. A study in cats found in-vivo alpha and 

theta oscillations generated by the lateral geniculate nucleus during relaxed wakefulness and drowsiness, 

respectively, and in-vitro they found that the same cells could generate either alpha, theta or delta by 

progressively decreasing doses of a glutamate receptor agonist (Hughes et al., 2004). While this would 

suggest that theta during NREM 1 could be explained as wake rhythms slowing down, given the hetero-

geneity of human theta rhythms described in the literature, this seems to me an oversimplification and 

may reflect some but not all of the changes observed. 

In our own data, we had one participant with remarkable theta oscillations during NREM 1 (Figure 1.3). 

These oscillations were mu-shaped, almost exactly 6 Hz, extremely large (> 50 μV peak to peak), and 

curiously located around the right mastoid. For this reason, when sleep scoring, the waves appeared 

global due to the use of linked mastoids as reference. These bursts were also present during wake, and 

came to dominate the EEG during sleep deprivation (Figure 3.4, page 77). 

 

Figure 1.3: NREM 1 theta burst in P15. Top: 3 second window of EEG with a prominent theta burst during NREM 1. 
Bottom left: topographies of delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-25 Hz) power during the 
above theta burst. Color scale is spectral power in μV2/Hz. Bottom right: power spectrum, untransformed, of the theta 
burst. N.B. the second and third peaks after theta reflect harmonics, due to the non-sinusoidal shape of the oscillation. 
The blue lines indicate the channel specified with the gray dot in the topographies. The gray thin lines represent all 
the other channels. 

It may not be widely known, even among sleep scorers, that there is both a change in background activity 

that characterizes most of NREM 1, and occasionally actual theta bursts. Mostly, this is due to the 
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ambiguity with which scoring manuals describe theta in this stage, whether by accident or by design. For 

an inexperienced sleep scorer, the background activity of virtually all NREM 1 EEG looks like sporadic 

waves that are slower than alpha and faster than delta, so easily interpreted as “theta activity.” Experi-

enced scorers who may be more familiar with the rare participants with NREM 1 theta bursts will instead 

assume that the “4-7 Hz activity” in the manual refers to such occasional bursts. What can also happen, 

as I observed with our own participant, is that scorers can misinterpret NREM 1 theta bursts as alpha 

instead and thus score wake. This is understandable since theta and alpha are not easily distinguished 

visually on 20-30 s timescales (Figure 1.4), especially since theta bursts are more common in the second 

half of NREM 1 and not back-to-back with alpha bursts (Rechtschaffen & Kales, 1968; Santamaria & 

Chiappa, 1987). Therefore, even an experienced scorer, who has for sure come across an individual with 

genuine theta oscillations in NREM 1, may have failed to recognize them as anything but alpha.  

 

Figure 1.4: Misclassified theta bursts in NREM 1. Screenshots from the scoring software used for this study, all from 
the same participant (P15). Left: typical example of pre-sleep wake EEG, characterized by alpha and rapid eye move-
ments. Middle: mu-shaped theta (~6 Hz) during NREM 1 like in Figure 1.3. It’s not visible from this window, but the 
EOG before and after is characterized also by slow rolling eye movements, thus should have been scored NREM 1. 
Right: a different portion of NREM 1, without any oscillations and only displaying the background activity. 

For most applications of polysomnography, it is inconsequential whether theta activity occurs in the form 

of a burst or as a change in background activity, so long as NREM 1 can be clearly identified. However, to 

understand theta oscillations during sleep deprivation, the distinction is critical. Studies looking at 

sdTheta clearly indicate a narrow-band effect (Finelli et al., 2000; Tinguely et al., 2006), which would mean 

it is unlikely to be driven by the change in slope of the aperiodic EEG. However, it is still possible that the 

theta bursts seen in some participants also appear during sleep deprivation. To establish whether this is 

the case, at least a qualitative assessment needs to happen to determine whether these NREM 1 theta 

bursts appear during sleep deprivation, and if they are sufficiently frequent to explain the increase in 

power. Given how rare and variable these individuals are, it is nevertheless unlikely that they can drive 

the sdTheta effect observed with group averages. 

tldr; an alternative explanation for sdTheta is that it is driven by the intrusion of special NREM 1 bursts dur-

ing wake, but these are quite rare. 
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Box 1.1: The history of confusion around NREM 1 theta 

Someone less familiar with EEG might only know about theta waves in the context of NREM 1. This is because 

introductory neuroscience textbooks only describe oscillations related to sleep stages, and associate NREM 

1 with theta (Bear et al., 2016; Kandel, 2013; Purves et al., 2018). Ironically, this is one of the least studied 

manifestations of this oscillation, occurring in just a fraction of the population. How then did this become the 

only entry for theta oscillations in textbooks? 

The association between theta and sleep onset began with the first sleep EEG paper ever, Gibbs et al. (1935). 

At the time, they did not yet have today’s canonical oscillation bands, and more importantly they had limited 

recording equipment. Gibbs identified 3-5 cycles per second (cps) waves appearing after a “flat period” fol-

lowing the disappearance of alpha. Davis et al. (1937) found something similar around 4-5 cps. These papers 

went on to define the first sleep stages, described by Loomis et al. (1937). Stage A was wake and stage B was 

when sleep began, characterized by rolling eye movements and low voltage activity. Stage B was further di-

vided into B1 and B2, the latter of which was when low-voltage delta waves (defined as 4-5 cps) start to 

appear. The transition to stage C occurred when the delta waves increase in amplitude. These delta waves 

are close to theta. However, a contemporary article pointed out that these apparent 3-5 cps waves were in 

fact slow waves (0.5-3 cps); early EEG recording devices’ hardware unintentionally high-pass filtered the sig-

nal in the middle of the delta range, leaving in the recording only upper delta (Blake & Gerard, 1937). 

Following these early results of sleep EEG, there was the second world war. I am not a historian, but there is 

a telling drop in sleep research between the late 1930’s and the 1950’s. During this time, the main repository 

of knowledge about EEG oscillations was the Atlas of Electroencephalography by Gibbs & Gibbs (1941), 

which included an example EEG fragment of sleep onset that supposedly had 5-7 cps waves (Figure 1.5A). 

However, this looks suspiciously like background activity (Figure 1.2A). Walter and Dovey (1944) referred to 

this atlas when officially declaring the band’s name “theta,” which they associated with the “state just pro-

ceeded or following natural sleep.” After WWII, sleep EEG research picked up again, with Roth (1961) subdi-

viding the Loomis sleep stages even further, such that B became 2a, 2b, and 2c; with 2b showing “typical 

waves at 5-6/sec and amplitude of 10-40 μV.” However, no data nor citation is provided to support this. Nev-

ertheless, from this point on theta waves were associated with sleep onset. 

In 1968 Rechtschaffen & Kale published the first manual for sleep scoring, identifying wake, four stages of 

non-REM, and REM. In this manual, the description of NREM 1 managed to be both exceptionally accurate 

and highly misleading. “Stage 1 is defined by a relatively low voltage, mixed frequency EEG with a prominence 

of activity in the 2-7 cps range. […] The highest voltage 2-7 cps activity (about 50-75 μV) tends to occur in 

irregularly spaced bursts mostly during the latter portion of the stage” (Rechtschaffen & Kales, 1968). In a 

footnote the authors argue for the term “relatively low voltage, mixed frequency EEG” instead of “low voltage, 

random,” because “‘random’ means recurring at inconsistent time intervals, rather than denoting a mixture of 

frequencies.” The authors cite Roth as a source. Throughout the manual, many examples of NREM 1 are pro-

vided (Figure 1.5B), but none are described as containing “high voltage bursts” and instead are all of low-

voltage mixed frequency activity and vertex sharp waves. It is not clear whether the 50-75 μV “irregularly 

spaced bursts” refers to theta bursts like in Figure 1.3, or just the mixed frequency activity further increasing 

in amplitude. Regardless, later sleep texts began using “4-7 Hz theta activity” interchangeably with “low volt-

age mixed frequency EEG” as if describing the same phenomena.  

The Rechtschaffen manual was the main source for popular science books on sleep (Hobson, 1989; J. Horne, 

1989), that then became the main sources for the major neuroscience textbooks of today, which ended up 

using the exact same figures from the pop-sci books (Figure 1.5C-D). More crucially, the current AASM sleep 

scoring guidelines score NREM 1 if there is “low-amplitude, mixed frequency EEG activity: predominantly 4-

7 Hz activity” (Berry et al., 2012).  
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Figure 1.5: Historic examples of "theta" during NREM 1. A: Page 48 from Gibbs & Gibbs (1941). "Drifting: ten to 
twelve per second activity absent, replaced by 5-7 per second activity with 18-24 per second waves superimposed.” 
B: Figure 11 from Rechtschaffen & Kales (1968). “Stage 1. This epoch is typical of the early portion of Stage 1. There 
are slow eye movements and a relatively low voltage, mixed frequency EEG throughout the epoch.”  C: from Hobson 
(1989), Chapter 1. In a separate table, Stage I is indicated as being characterized by 4-8 cycles per second, with am-
plitudes of 50-100 μV, called “theta waves.” D: Figure 1.1 from Horne (1989). “Theta activity” is labeled for Stage 1 
and REM. All figures copied for citation purposes. N.B. these examples of theta do not differ from the simulated data 
in Figure 1.2. 

tldr; there’s a long tradition of confusing background activity for theta oscillations.  

1.4 Hippocampal theta 

For anyone who has studied rodents, the mention of theta activity usually brings to mind just one thing: 

hippocampal theta oscillations. One of the most investigated functions of hippocampal theta is spatial 

exploration of an environment (Buzsáki, 1996, 2005). Hippocampal place cells fire at specific phases of 

ongoing theta oscillations,1 anticipating the upcoming locations in a process known as phase precession 

(Diba & Buzsáki, 2007; Foster & Wilson, 2007; O’Keefe & Recce, 1993; Skaggs et al., 1996) . Essentially, 

while moving across the environment, the neurons representing the current location of the animal will 

fire at the trough of the theta oscillation, and the neurons representing the previous and subsequent 

locations will discharge on the descending and ascending phases, respectively (Buzsáki & Vöröslakos, 

 

1 Place cells are neurons that fire when the individual finds themselves in a specific location in space (Moser et al., 2008). 
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2023). While navigation is the best understood, many other functions of the hippocampus are believed 

to relate to theta, especially episodic memory. 

A related hypothesis to phase precession is that different theta phases are optimized for either encoding 

or retrieving information from memory, such that information from the external world arrives at the 

trough of theta oscillations, whereas information from internal memory arrives at the peak (Hasselmo et 

al., 2002). This is because the trough is associated with “long term potentiation,” i.e. strengthening of 

synapses needed for encoding new memories. Siegle and Wilson (2014) found experimental support for 

this phase dissociation using closed-loop optogenetics,1 targeting hippocampal inhibitory neurons selec-

tively at each phase, either during a memory encoding or memory retrieval portion of a task. They con-

firmed that inhibiting the hippocampus at the theta peak (when information is retrieved) during the en-

coding period improved performance, and inhibiting at the trough (when information is encoded) during 

the retrieval period also improved performance, but no effect was present when inhibiting the opposite 

phases in the respective task periods. Other studies have found similar evidence of a theta phase rela-

tionship to plasticity (Hölscher et al., 1997; Huerta & Lisman, 1995). 

  The hippocampal theta rhythm is not limited to active wake, however. 

It is also the defining feature of REM sleep in rodents (Figure 1.6), so 

much so that it is used instead of actual “rapid eye movements” to score 

this sleep stage (Adamantidis et al., 2019).2 Theta in REM and active 

wake are normally the same frequency, however a mice mutant was 

found to have slower theta during REM but not wake (Shin et al., 2005; 

Tafti et al., 2003), suggesting possibly different generators and func-

tions. REM theta has also been shown to have place-cell phase preces-

sion, suggesting daytime memories are recapitulated during REM sleep 

(Louie & Wilson, 2001). REM sleep is also thought to be important for 

emotional memory processing (Hutchison & Rathore, 2015), which 

would again suggest that theta has a functional role as in wake. 

Hippocampal theta in rodents is different from sdTheta in humans, for several reasons. Most obviously, 

sdTheta is recorded awake and without any task, so unlikely to reflect either REM or task-related cogni-

tion.3 Second, if it is at all possible to measure hippocampal activity on the surface of the EEG, it requires 

careful signal source separation because of how far the hippocampus is from the surface (Joensen et al., 

2023). Hippocampal theta oscillations may or may not be synchronized with the neocortex; while studies 

in rodents find prefrontal theta rhythms synchronized to the hippocampus (O’Neill et al., 2013; Popa et 

al., 2010; Sirota et al., 2008), intracortical studies in humans have shown that theta activity can be inde-

pendent across areas (Brzezicka et al., 2018; Cantero et al., 2003; Cox et al., 2019).4  

 

1 Optogenetics is a method straight from a sci-fi novel where you trick neurons that were firing in a previous moment of 
interest to fire again whenever a light is shined on them. Bonkers! 

2 Apparently, there are no standardized guidelines for sleep scoring animal data. Shocking! 

3 REM sleep takes usually well over an hour of NREM sleep before it appears, otherwise it’s considered pathological. There-
fore, the previously discussed ideas of intrusions of sleep wouldn’t extend to intrusions of REM sleep. 

4 On the one hand, theta in the hippocampus and medial prefrontal cortex in humans can change in opposite directions 
whereas in rodents they are synchronized in a task-dependent manner. On the other, there are substantial differences 

Figure 1.6: Mouse hippocampus 
LFP during sleep. Data from A. 
Osorio-Forero. 
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Especially problematic is the fact that there does not seem to be a prominent theta rhythm in the human 

hippocampus, and it may even be at a slower frequency, around 3 Hz (Moroni et al., 2007; Watrous et al., 

2013).1 Likewise, surface EEG spectra of REM sleep find no periodic component in the theta range (Tin-

guely et al., 2006; von Ellenrieder et al., 2020). Like with NREM 1, any difference from wake is driven just 

by aperiodic activity (Figure 1.7). This doesn’t exclude the presence of occasional theta oscillations in 

human REM sleep, but certainly indicates they are less prominent than theta in rodents (Figure 1.6). 

Indicatively, they must be substantially less common than spindles, which clearly leave a mark in the 

NREM 2 spectrum. Some studies find effects related to theta power during REM sleep in humans 

(Eichenlaub et al., 2018), however again from the spectra they provide, the effect is more likely driven by 

changes in background activity than a specific oscillation.2 Given that theta doesn’t appear in REM sleep, 

and if it exists it’s likely slower, then hippocampal theta is unlikely to drive sdTheta. 

 

Figure 1.7: REM sleep spectrum, log-log scale. Average from 18 participants. NREM 1 and REM are from the baseline 
night, Wake is from the baseline morning Fixation recording. Similar spectra have been published elsewhere (Baird et 
al., 2018; Tinguely et al., 2006; von Ellenrieder et al., 2020). 

Most decisively, already in rats, hippocampal theta has been shown to be distinct from sdTheta: the theta 

power increase during sleep deprivation actually occurs at a lower frequency than the standard hippo-

campal theta in rats (Vyazovskiy & Tobler, 2005). Altogether, this makes it highly unlikely that sdTheta 

is a direct manifestation of hippocampal theta, and instead suggests that there are two different types of 

oscillations that just happen to be in overlapping frequency bands. 

tldr; the most understood form of theta oscillations comes from the hippocampus, proven to be functionally 

relevant to cognitive function, and exist independently from sdTheta. 

  

 

between human and rodent frontal cortices in terms of connectivity and function (Laubach et al., 2018; Schaeffer et al., 
2020) which make it questionable to rely on rodents as a viable animal model for prefrontal activity.  

1 More information in Box 1.2. 

2 Nishida et al. (2009) found a correlation between theta power differences between left and right prefrontal areas and 
emotional memory consolidation, with an actual peak at 5.75 Hz in right prefrontal areas, but this result was not repli-
cated with larger sample sizes (Ackermann et al., 2015). 
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Box 1.2: Do humans even have a hippocampal theta rhythm? 

The presence of a hippocampal theta rhythm is so obvious in rodents, that it is the main signal used to score 

REM sleep, alongside muscle atonia. Other mammals also seem to have hippocampal theta, most reliably 

during REM sleep (Winson, 1972), so it is surprising then that theta does not unequivocally appear in the 

human hippocampus (with similar difficulties for other primates [Crowne et al., 1972; Stewart & Fox, 1991]). 

Unfortunately, the only way to properly measure hippocampal theta in humans is from intracortical record-

ings in epilepsy, so evidence is scarce, but there does not appear to be any consistency across individuals; 

some patients have a hippocampal theta, others do not (Aghajan et al., 2017; Arnolds et al., 1980; Bohbot et 

al., 2017; Cox et al., 2019; Kahana et al., 1999; Uchida et al., 2001). This may be due to individual differences 

in frequency, as suggested by Watrous et al. (2013) and Bódizs et al. (2001). They found hippocampal oscil-

lations rather in the upper delta range during respectively spatial navigation and REM sleep. Similarly, Lega et 

al. (2012) argue that there are two hippocampal rhythms, one at 3 Hz, the other at 8 Hz, with the slower one 

more homologous to rodent theta. Alternatively, the individual differences may be due to differences in elec-

trode locations, as suggested by Cantero et al. (2003). However, Cantero found hippocampal theta to occur 

in bursts around 1 s long, which were shorter than bursts appearing even during quiet wakefulness, therefore 

not exceptional to REM sleep. 

In practice, this means that hippocampal theta rhythms in humans are much less reliable than in rodents, even 

if they are eventually found to exist in all individuals. The effect may be highly sensitive to location, whereas 

rodent cortical EEG is sufficient to detect hippocampal theta (Vyazovskiy & Tobler, 2005) for how strong the 

signal is. Human hippocampal oscillations seem much more variable in frequency across individuals (assum-

ing this is not also a location-dependent effect), whereas rodent REM spectra are more similar than either 

wake or NREM, also across studies (Miladinović et al., 2019). Furthermore, even the best evidence of human 

REM theta shows that it is not a very sustained response, whereas in rodents it is nearly constant. All in all, 

human hippocampal theta is much less impressive than in rodents, and therefore it is unlikely to have as cen-

tral a role in cognition. 

tldr; there is spotty evidence for hippocampal theta in humans, making it unlike theta in rodents, which is 

an extremely clear signal. 

1.5 Frontal-midline theta 

A plausible alternative explanation is that 

sdTheta is a manifestation of frontal midline 

theta (fmTheta). fmTheta is a high-amplitude 

(50-75 μV) oscillation easily identifiable in the 

human surface EEG, around 6 Hz, occurring in 

bursts lasting from less than a second to over a 

minute, with approximately sinusoidal  waves 

(Mitchell et al., 2008). As the name suggests, 

fmTheta peaks over electrode Fz (Figure 1.8), and 

originates from the anterior cingulate cortex 

(ACC) / medial prefrontal cortex (Ishii et al., 1999, 

2014).  fmTheta is found during cognitive tasks such as the N-back working memory task, mental calcu-

lation, and the Uchida-Kraepelin task (Arellano & Schwab, 1950; Ishihara & Yoshi, 1972; Ishii et al., 1999; 

Figure 1.8: frontal midline theta. Left: topography of 
fmTheta for a single participant. Right: ~1 s example of a 
theta burst. Each gray line is a different channel, the colored 
line indicates the channel with the highest amplitude.  
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Mitchell et al., 2008; Sasaki et al., 1996). The common feature of these tasks is focused and sustained 

attention, or a resistance to distractions.  

A critical fact about fmTheta is that it is anticorrelated to the fMRI BOLD signal from its source, a meas-

ure of brain metabolism and therefore activity (Logothetis & Wandell, 2004), so fmTheta reflects inac-

tivity or even inhibition in these areas. This was found for fmTheta both during rest (Scheeringa et al., 

2008) and during tasks (Miller et al., 2009; Ossandón et al., 2011; Scheeringa et al., 2009). Therefore, while 

fmTheta is commonly present during cognition, it is not strictly involved in neuronal computations, and 

in fact originates from task-irrelevant areas. Nevertheless, it may still be functionally relevant.  

Further evidence that fmTheta is not strictly related to cognition comes from the fact that it is only found 

in a fraction of individuals, and it also occurs spontaneously during rest (Inanaga, 1998). Depending on 

the task, fmTheta has been observed between 8 and 67% of individuals (Mitchell et al., 2008), and is 

generally more common in children, adolescents (Ishihara & Yoshi, 1972), and young adults compared to 

older adults (Inanaga, 1998). In addition to age, there is some evidence that fmTheta is dependent on 

personality, such that low anxiety and high extroversion characterizes individuals with high fmTheta 

(Inanaga, 1998). It could also be that individuals with high theta are more susceptible to hypnosis, what-

ever that might indicate about individual differences (Sabourin et al., 1990).1 

Investigation into fmTheta took off with Ishihara and Yoshi (1972), and from this followed a great deal 

of research in Japan throughout the 80’s and 90’s. Unlike later research, this work identified theta oscil-

lations by visual inspection, providing unique insights. Unfortunately, many of these papers are not avail-

able online, and many of their contributions no longer circulate in the modern literature. This turned out 

to be the fate of a series of papers investigating frontal-midline theta during sleep (Hayashi et al., 1987; 

Ishihara et al., 1981; N. Takahashi et al., 1997).  

Hayashi et al. (1987) found that frontal midline theta was present during sleep, especially prevalent in 

REM sleep and to a lesser extent in NREM 1, more so than during wake before sleep onset. This might 

have contributed to the pantheon of NREM 1 theta in section 1.3. Individuals with high fmTheta during 

wake (measured independently from the sleep EEG) were also the ones more likely to present fmTheta 

during sleep. Of course, “prevalent” was at most 8 bursts per 10 minutes of REM, but this nevertheless 

precludes considering fmTheta strictly a wake oscillation. The authors suggest this may be a form of 

“mentation” during sleep. These results are supported by Nishida et al. (2004) who found 2 out of 3 pa-

tients had theta during REM, measured from intracortical ACC electrodes.  

Even more relevant to this thesis, fmTheta during cognitive tasks was related to theta during drowsi-

ness.2 Takahashi et al. (1997) conducted a study taking 39 participants who were found to have frontal-

midline theta during drowsiness (out of 465 male Japanese airmen), compared to controls. They found 

that these participants with drowsiness theta also had fmTheta during a cognitive task, which wasn’t the 

case for controls. Furthermore, the authors could not find any differences in frequency, origin (from a 10-

20 array), or burst duration between drowsiness theta and cognition theta. They suggested that fmTheta 

during light drowsiness may act as some kind of inhibitory mechanism when falling asleep. 

 

1 A recent study found that highly hypnotizable individuals could use hypnotic recordings to reduce sleep onset times 
(Cordi et al., 2020). Putting these concepts together, maybe such individuals could be screened with fmTheta. 

2 The difference between “drowsiness” and “sleepiness” is explained in section 7.3.5, page 143. 
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These studies would therefore suggest that fmTheta and sdTheta are the same thing. They both origi-

nate from frontal areas (Finelli et al., 2000; Mitchell et al., 2008; Tinguely et al., 2006), and when directly 

compared, they were not readily distinguishable (N. Takahashi et al., 1997). fmTheta being anti-corre-

lated to BOLD activity could likewise explain sdTheta. However, all of these are quite old experiments, 

often with fewer than 30 electrodes, and relied on manual classification of theta bursts. An updated in-

vestigation was called for. 

tldr: there’s a prominent theta oscillation from frontal channels called fmTheta that is normally present dur-

ing focused cognition. It is associated with less neuronal activity in the areas from which it originates, there-

fore sdTheta could be fmTheta. 

1.5.1 Mind wandering, meditation, and the default mode network 

The ACC in the medial temporal cortex is one of the most versatile brain areas, implicated in both cogni-

tion and emotion (Bush et al., 2000; Etkin et al., 2011), pain (Kwan et al., 2000), remembering (Weible, 

2013), conflict monitoring (Botvinick et al., 2004), and more. Part of this hodge-podge list of functions 

comes from the fact that the medial cortex is quite large and there are likely subdivisions, although re-

searchers can still disagree on how to interpret even the same results (Ebitz & Hayden, 2016).1 For 

fmTheta though, the most relevant role may be the ventral ACC’s association to the default mode net-

work (DMN) (Greicius et al., 2003). 

The DMN is a set of distributed brain areas whose fMRI BOLD activities are highly correlated with each 

other, but anti-correlated to traditional cognitive tasks and task networks (Fox et al., 2005; Raichle et al., 

2001). While first discovered as areas more active during rest than during such tasks, it was later found 

that the DMN was even more active during internally oriented tasks such as those involving autobio-

graphical memories, imagining future scenarios, and social inferences (Buckner & DiNicola, 2019).2 Dur-

ing externally-oriented tasks, greater activity of the DMN was in fact associated with mind wandering, 

an umbrella term for task-unrelated thoughts (Mason et al., 2007; Smallwood & Schooler, 2015). Sup-

porting this, lesions to the medial temporal cortex lead to substantially less mind wandering in patients 

(Bertossi & Ciaramelli, 2016). Since BOLD deactivations of the ACC are related to fmTheta, it is plausible 

that fmTheta is anticorrelated to the DMN more generally, such that when the DMN is at rest or inhib-

ited, fmTheta is visible in the EEG.3  This is the reason fmTheta is present in so many different conditions: 

because it reflects the inactivity of internally oriented networks. This may even be related, somewhat 

counterintuitively, to meditation. 

Meditation is the practice of training to focus the mind in order to achieve a state of mental clarity, calm, 

and relaxation. It often involves (for beginners) focusing attention on a particular object, or breathing 

 

1 For example Parvizi et al. (2013) used electrical stimulation of the ACC in patients and concluded that the ACC was 
responsible for “the will to persevere,” but the flip side of patients’ descriptions was a feeling of dread, worry, and irritability. 

2 This circles back to those results relating the ACC to emotions and pain, both forms of internal monitoring. I haven’t 
been able to properly sort through the literature, but often times the more cognition related functions of the ACC are 
rather from the dorsal ACC (Carter & van Veen, 2007). 
3 As far as I can tell, most of the link between theta and the DMN is just from the ACC, but this could be due to just how 
the brain is folded, or the ACC is special, I don’t know. 



 Introduction  

25 

 

rhythm, mantra, etc. Prominent theta bursts were discovered during meditation already in 1973 (Ban-

quet, 1973; Hebert & Lehmann, 1977). Later studies confirmed that this was specific to expert meditation 

and not merely sitting with eyes closed (Aftanas & Golocheikine, 2001). Successful meditation is charac-

terized by a resistance to mind wandering, and in fact expert meditators have higher frontal theta power 

during meditative moments compared to moments of mind wandering, despite having overall less mind-

wandering episodes than non-experts (Brandmeyer & Delorme, 2018).1 It is therefore plausible that med-

itation consists of the willful inhibition of the DMN, and this manifests itself with more fmTheta, whereas 

the loss of focused attention and switch to mind wandering decreases fmTheta. 

So how does this relate to sdTheta? The effects of sleep deprivation on the DMN are variable across the 

network (Chen et al., 2018; De Havas et al., 2012; Gujar et al., 2010) and so it is difficult to make any 

predictions about how these changes would affect fmTheta in particular. Furthermore, recent evidence 

suggests that there are at least two subnetworks of the DMN, and interindividual differences make it 

difficult to disentangle these more subtle effects (Buckner & DiNicola, 2019). From the behavioral side, 

mind wandering actually increases with sleep deprivation (Poh et al., 2016), which would predict that 

fmTheta should decrease. However, the increase in “task unrelated thoughts” was undetected by the 

participants, who reported similar levels of meta-aware mind wandering at baseline and sleep depriva-

tion, which could indicate a different “type” of mind wandering during sleep deprivation. In fact, mind 

wandering and mind blanking have been related to topographically distinct manifestations of theta ac-

tivity (Andrillon et al., 2021). Altogether, this means that the relationship between DMN, sleep depriva-

tion, and surface EEG theta are hard to predict. Fortunately, given the specific source of fmTheta, it can 

be readily distinguished from sdTheta if the latter originates from a different source. 

tldr: the areas that generate fmTheta are part of the default mode network, which is active during mind 

wandering and deactivated during meditation and tasks. 

1.6 Cognition theta 

The oscillation most at odds with sdTheta is theta evoked during cognitive tasks, cogTheta. The inter-

pretation of cogTheta has evolved over time, from a means of short-term memory storage, to perceptual 

binding, and then as a form of executive control. cogTheta has been measured on the surface EEG from 

various locations and it is time-locked to specific task events such as stimulus presentation, memory 

retention windows, or behavioral responses. Changes in theta are dependent on task conditions (e.g., the 

more difficult condition, the more theta) and often these changes are related to task outcomes (e.g., more 

theta predicts success). Virtually all research into cogTheta assumes that it is functionally relevant to 

cognition. Most explanations draw inspiration from the hippocampal theta literature (section 1.4), and 

many in fact assume a synchronization between the neocortex and the hippocampus. For example, 

Buzsáki (2010) argues that theta generally acts as a form of “neural syntax” whereby oscillations segment 

neuron firing in a meaningful way.  

 

1 Interestingly, they also found that in experts, as meditative depth increased with time meditating, sleepiness decreased, 
whereas sleepiness increased for non-experts. This suggests that meditation and fmTheta are restorative, possibly like 
sleep itself. *Hint hint*. 



 Introduction  

26 

 

Theta activity was first associated with short term and working memory (Gevins et al., 1997; Lisman & 

Idiart, 1995).1 A typical short term memory experiment involves some variant of a Sternberg task (Stern-

berg, 1966), in which participants are presented with a set of stimuli, then for a couple of seconds they 

have to hold those items in memory, until a probe then asks them if a given stimulus was part of that set 

(e.g. Figure 2.2A on page 38).2 During the retention period, trials with more items to hold in memory have 

higher theta power than those with less items (Brookes et al., 2011; Jensen & Tesche, 2002; Maurer et 

al., 2015; Michels et al., 2010; Scheeringa et al., 2009). An early interpretation of this effect was that theta 

oscillations were responsible for holding all those items in memory (Lisman & Idiart, 1995; Roux & 

Uhlhaas, 2014), with each item “stored” at a different phase of the theta oscillation. However, there has 

been limited evidence for this (Raghavachari et al., 2001), and if anything it’s an oversimplification.  

A more popular interpretation is that theta is involved in “perceptual binding” across distant cortical ar-

eas, synchronizing activity in order to encode or retrieve items from memory (M. Bastiaansen & Hagoort, 

2003; Benchenane et al., 2011; Herweg et al., 2020; Sauseng et al., 2010). This is like the communication 

through coherence hypothesis (Fries, 2015). This can get borderline philosophical, but at its simplest, co-

herence refers to how distant cortical neurons can be involved in the same mental representation of 

something when it is temporarily held in short-term memory, especially when different neuronal sub-

strates are required to then act upon that information. The idea is that only phase-locked neurons can 

communicate effectively, because they will be receptive to inputs at the same time. Data from hippo-

campal theta found evidence of phase-specific effects for encoding and retrieval, which could explain 

similar mechanisms in the neocortex.  

Intracortical studies in monkeys provide the best evidence of this long-distance theta coherence. In two 

similar experiments (H. Lee et al., 2005; Liebe et al., 2012), macaques were trained to perform a short 

term memory task, with multi-unit recordings of both visual (V4) and parietal/frontal areas. As in the 

hippocampus, single cell firing was found to be locked to specific phases of theta oscillations, especially 

during the delay window in which visual items were held in memory. These theta oscillations were syn-

chronized between visual and prefrontal areas. Unfortunately, when a similar short term memory exper-

iment was done in humans, despite theta reliably increasing during the retention window, there was no 

synchronization across distant areas (Raghavachari et al., 2006). 

Instead, in human intracortical data there is rather evidence of increased synchronization being related 

to episodic memory, with greater medial-temporal lobe and prefrontal coherence during encoding peri-

ods predicting better memory retrieval (K. L. Anderson et al., 2010; Solomon et al., 2017). Surface EEG 

studies have also found correlations between theta power during encoding and subsequent successful 

memory retrieval (Khader et al., 2010; Osipova et al., 2006), with the effect localized to the MTL 

(Hanslmayr, Volberg, et al., 2011).3 Additionally, pre-stimulus theta before recall was also associated with 

successful retrieval (Addante et al., 2011; Gruber et al., 2008; Herweg et al., 2016).  

 

1 Short-term memory is just holding items in memory briefly (like remembering a phone number until you can write it 
down), and working memory involves additionally manipulating that information, like performing sums or re-ordering the 
items. Episodic memory is long-term memory related to specific events in time and space.  

2 The equally common task for working memory is the N-back task, in which a stream of letters is presented, and the 
participant has to keep track of whether there are repetitions, N-many letter back. It gets really hard after 1 back. 

3 This study also found that BOLD activity was higher for successful encoding trials in the right parahippocampus, but this 
did not perfectly overlap with the source of theta. Furthermore, the fluctuations of theta across trials did not correlate 
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Other than strictly for memory, theta has been found in many other cognitive tasks, including visual de-

tection (Missonnier et al., 2006), error detection and action monitoring (M. X. Cohen, 2011; Luu & Tucker, 

2001), goal updating (Cooper et al., 2017), planning (Domic-Siede et al., 2021), and interference resistance 

(Staudigl et al., 2010). This has led to the interpretation of theta as a manifestation of a-specific executive 

control (Cavanagh & Frank, 2014), possibly with frontal cortices exerting influence on other areas through 

synchronized theta oscillations (Cavanagh et al., 2009). Most of these studies identify frontal-midline 

sources of theta, so basically what I described before for fmTheta applies (section 1.5, page 22). These 

interpretations of cognitive control would seem at odds with fmTheta reflecting inhibition, however, 

there are two possible explanations: one is that theta as inhibition is a form of executive control, inhibiting 

task-irrelevant networks to improve performance; and the other, not mutually exclusive idea, is that 

there are multiple manifestations of theta. 

The latter has actually been demonstrated, even within the same trials of a task (Brzezicka et al., 2018; 

Töllner et al., 2017). Pastötter & Bäuml (2014) for example found that there were two changes in theta 

related to episodic memory encoding: a slow theta (2-4 Hz) which was higher for correctly recalled 

memory items, located over central and right-mastoid clusters; 1 and a fast theta (5-7.5 Hz) higher for 

forgotten items, originating from frontal-midline areas, arriving a bit later in the trial. This slow theta 

could actually be hippocampal theta, given that it matches human intracortical recordings which find the 

same dissociation between slow and fast theta in the hippocampus (Lega et al., 2012). Therefore, cogTh-

eta related to memory and coherence exists in addition to and independently from fmTheta, with differ-

ent functions and relationship to behavior. However, it’s important to remember that fmTheta is sub-

stantially larger than cogTheta. 

Unlike fmTheta that can be observed in the raw EEG trace, all these results of theta during cognition 

emerge from time-frequency analyses involving averaging many trials time-locked to either the onset of 

the stimulus or response (or retention window), and identifying the changes across frequencies that 

emerge relative to a baseline period (M. X. Cohen, 2014). Invariably, this means that these manifestations 

of cogTheta would not be visible in the average recording power spectra. This makes it unlikely that 

cogTheta could explain the dominant presence of theta during sleep deprivation, and more likely that the 

two coexist, like cogTheta and fmTheta, or sdTheta and hippocampal theta in rats. 

However, it’s still possible for cogTheta to be behind sdTheta, in which case sdTheta would have to be 

some form of compensation mechanism, such as an increase in cognitive control to stay awake and on 

task. sdTheta could reflect some top-down signal required to stay awake, originating from the prefrontal 

cortex (Steenland, 2014). This explanation doesn’t work so well for theta related to fatigue (section 1.2.2, 

page 13), given that the increase with time on task was also present when the task wasn’t being per-

formed (Li et al., 2020), but in the case of sleep deprivation, the self-control needed to stay awake is also 

present during passive rest. If sdTheta is a form of cognition theta, then two predictions should be met: 

sdTheta should be highest during more difficult cognitive tasks, especially those suspected of maintaining 

 

with BOLD activity across trials. Therefore, the higher BOLD activity and theta may possibly come from neighboring but 
not overlapping areas. 

1 I found the right-mastoid especially noteworthy, since it matches the source of theta in my special P15 (Figure 1.3). I 
suspected that this unusual theta might be from the hippocampus because of its unusual source; what other notable brain 
structure would have a peak over the mastoids? Those channels are probably the absolute closest to the hippocampus, 
with the least amount of unrelated cortex in between. 



 Introduction  

28 

 

performance through compensation mechanisms (Lim & Dinges, 2010); and even more so than at base-

line, theta during sleep deprivation task trials should be related to better performance. 

If sdTheta and cognition are instead distinct, it begs the question of what would happen if sdTheta occurs 

on top of the usual cognition theta. Do the same oscillators get repurposed? Or are they completely in-

dependent, maybe even mutually exclusive oscillations? Is this what drives sleep deprivation deficits? 

Careful analyses would be needed to answer these questions, with a better understanding of how to 

distinguish the two different waveforms. 

tldr; a lot of research finds theta activity related to cognition. If cogTheta is behind sdTheta, then it may be 

a compensation mechanism for staying awake.  

1.6.1 Theta synchronization 

As mentioned with regards to hippocampal phase precession and perceptual binding, an important fea-

ture of brain oscillations are phases. Even in the absence of changes in oscillation amplitudes, there is 

compelling evidence that information transfer across distant brain regions is facilitated by phase syn-

chronization of oscillations like theta across distant cortical areas (Fell & Axmacher, 2011).1 For example, 

Polanía et al. (2012) found in a working memory task that 0 phase differences between parietal and frontal 

areas resulted in improved reaction times, and then demonstrated that in-phase theta tACS stimulation 

improved reaction times,2 whereas out-of-phase stimulation resulted in worsened reaction times. Other 

studies found that greater memory load increased theta coupling between these areas, making the case 

that phase synchronization is more important to cognitive function than oscillatory amplitude (Payne & 

Kounios, 2009; Sauseng, Klimesch, Schabus, et al., 2005).  

This is all compelling evidence for the functional role of theta in cognition, but because it doesn’t neces-

sarily correspond to changes in the overall amount of theta, it doesn’t explain why bursts of oscillations 

sometimes do or don’t happen.  The presence of an unrelated burst in the same frequency would theo-

retically disrupt this careful orchestra of synchronized oscillations. This makes the hypothesis of multiple 

types of theta a little problematic; it would be important to show that these different types of theta come 

from non-overlapping areas, and if they do co-occur in task brain areas at a critical moment in time, there 

should be some kind of behavioral deficit.  

tldr; theta phases synchronized across the brain are functionally relevant to cognition, but theta during 

sleep deprivation could disrupt this function. 

 

1 Technically, any increase in an oscillation amplitude reflects a local increase in phase synchronicity; that’s how the signal 
becomes strong enough to emerge on the surface. Changes in local phase synchronicity can only emerge as changes in 
amplitude, which can be tricky to interpret, but changes in synchronicity across distant areas can be quantified based on 
phase locking between the two signals. 

2 Transcranial alternating current stimulation (tACS). A relatively weak current is sent through the brain, usually at a 
frequency typical of the brain. It feels like a mild tingling on your skin.  
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Box 1.3: Speech theta & entrainment 

Like with other forms of cognition, speech processing is associated with increased theta power (M. C. M. 

Bastiaansen et al., 2005). However, a fancier function for theta oscillations during natural speech would be 

entrainment. Entrainment refers to the synchronization of endogenous EEG oscillations to external rhythmic 

stimuli in order to predict the timing of upcoming signals and improve detection (Thut et al., 2011).1 As it 

happens, the envelope of speech (Figure 1.9) is in the delta-theta range in all languages (Ding et al., 2017). 

Therefore, the hypothesis is that theta oscillations 

during continuous speech predict the timing of subse-

quent syllables, thus improving detection (Giraud & 

Poeppel, 2012; Hyafil et al., 2015). In a noisy environ-

ment, theta entrainment should allow specific syn-

chronization of the listener to just one stream of 

speech, such that incoming syllables will arrive at theta 

phases where neurons are highly excitable, resulting 

in better recognition, whereas anything out of phase 

would just as easily end up in theta phases of low neu-

ronal excitability (Buzsáki & Vöröslakos, 2023; Giraud 

& Poeppel, 2012). Supporting this, tACS applied during 

speech processing in noise has been shown to im-

prove speech comprehension (Riecke et al., 2015, 

2018).  

The main problem with this hypothesis is that even if speech is approximately rhythmic, it is not rhythmic 

enough that it becomes predictable (Cauldwell, 2002; Jadoul et al., 2016); the easiest way to perceive the 

difference between predictable and unpredictable speech is to talk synchronized to rhythmically clapping 

hands. Ultimately, entrainment would help speech perception if it is rhythmic, but this is a general feature for 

any form of rhythmic stimulus (Hickok et al., 2015; Lakatos et al., 2013). When speech is not rhythmic, which 

it usually isn’t, entrainment would actually be a hindrance since off-beat syllables would get suppressed. 

An alternative explanation as to why some studies find theta-related EEG activity during continuous speech 

is that listening to speech is a form of “fuzzy” frequency tagging.2 Because speech is an auditory stimulus which 

comes as a sequence of syllables more or less in the theta range, this will result in the brain responding to this 

incoming stream at approximately the same frequency, regardless of whether the speech is understood (Ding 

et al., 2015). 

tldr; theta might help with speech comprehension through entrainment. However, it is more likely that the 

association with theta is just a by-product of the brain processing a semi-rhythmic signal. 

 

1 “Synchronization” is when two or more oscillators start oscillating at the same frequency, such that the phase difference 
is constant. “Entrainment” is when one oscillator causes another to synchronize with it. So an external stimulus can en-
train the brain, but different brain areas synchronize between each other, unless robustly proven otherwise.  

2 Frequency tagging is a clever paradigm in which you present a stimulus at a certain frequency, e.g. one picture per second 
of abstract shapes, then once every N pictures, the shapes make up a face. Then, you can see in the power spectrum of the 
EEG if there is both a peak at the frequency of the overall images, and then, if the difference of the oddball was detected, 
there should also be a second peak at a lower frequency for the faces. This can be used to determine whether new-born 
infants can already discriminate faces (Buiatti et al., 2019). 

Figure 1.9: An audio speech signal in time. A: The en-
tire speech waveform, around 1 s. B: The speech enve-
lope. 



 Introduction  

30 

 

1.7 What could theta during sleep deprivation be? 

As you can see, there is an enormous amount of literature on theta oscillations. There is sufficient evi-

dence to tell some types of theta apart, and merge other types together. Unfortunately, little evidence 

has directly compared theta during sleep deprivation to other manifestations of theta. The most popular 

hypothesis is that sdTheta is a form of local sleep, composed of little slow waves intruding on wake. 

However, evidence for this in humans is extremely limited, and this interpretation is highly incompatible 

with the more well-studied theta oscillations during cognition. Depending on whether these are the same 

or different types of oscillations, sdTheta could be a direct reflection of accumulating sleep need with 

time awake, or indirectly a compensation mechanism for resisting sleep. More specifically, here is the 

final list of hypotheses of what theta during sleep deprivation could be: 

1) A sleepiness oscillation: sdTheta oscillations may uniquely reflect the cognitive state of sleepiness, 

making them completely distinct from all forms of theta observed under normal, well-rested condi-

tions; this would be like the difference between wake alpha and sleep spindles. If sdTheta is notably 

distinct from other types of theta (e.g. in frequency, source, or waveform), this would make it a reli-

able objective biomarker. Such theta could further be: 

a) Unique to wake drowsiness: Theta could be unrelated to the underlying cause of such drowsiness 

and it could be as present during early morning sleep inertia as during sleep deprivation. 

b) Unique to time spent awake: It is also possible that these theta oscillations are not present for 

any type of drowsiness, but only high sleep homeostatic pressure. 

c) NREM 1 theta bursts intruding on wake.  

2) Local slow waves: the increase in theta power could be just like that observed in rats; the intrusion 

of little slow waves during wake. 

3) A slowing of alpha oscillations. This is unlikely, as alpha is primarily occipital and sdTheta primarily 

frontal, but it hasn’t ever been directly ruled out. 

4) An increase in frontal-midline theta: it’s also possible that sdTheta in humans is just a manifestation 

of fmTheta, which for whatever reason increases with time awake. 

5) An increase in cognition theta: it’s also possible that the theta observed during sleep deprivation is 

indistinguishable from theta activity observed during cognitive tasks. In this case sdTheta would have 

to reflect a compensation mechanism. 

To figure out which was the correct answer, I conducted an extended wake study in young healthy adults 

performing a variety of tasks under different conditions.1 The main goal was to determine whether the 

increase in theta power could be explained by an increase in little slow waves or instead resembled theta 

activity during cognitive tasks.  

tldr; there are a lot of possibilities as to what theta oscillations during sleep deprivation represent, so my 

thesis is about testing some of the most likely options. 

  

 

1 The difference between “extended wake” and “sleep deprivation” is provided in section 7.3.3, page 142. 
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This paper was published in The Journal of Neuroscience in October (Snipes et al., 2022). It details the 

methods of my experiment, the problem of theta related to both sleep and cognition, and analyses on 

how fmTheta compared to sdTheta. I designed this experiment, wrote the ethics, programmed the tasks, 

collected the data, preprocessed and analyzed the data, and wrote the paper. Elena Krugliakova con-

ducted the source localization analysis. Elias Meier helped prepare the experiment material, recruited 

participants, collected the data, and helped with some of the preprocessing. Reto Huber supervised the 

design and execution of the project, provided equipment and financing. All authors contributed to editing 

the manuscript. 

2.1 Abstract 

Human electroencephalographic (EEG) oscillations characterize specific behavioral and vigilance states. 

The frequency of these oscillations is typically sufficient to distinguish a given state, however theta os-

cillations (4-8 Hz) have instead been found in near-opposite conditions of drowsiness during sleep dep-

rivation and alert cognitive control. While the latter has been extensively studied and is often referred to 

as “frontal midline theta,”1 the former has been investigated far less but is considered a marker for sleep 

pressure during wake. In this study we investigated to what extent theta oscillations differed during cog-

nitive tasks and sleep deprivation. We measured high-density EEG in 18 young healthy adults (9 female) 

performing 6 tasks under 3 levels of sleep deprivation. We found both cognitive load and sleep depriva-

tion increased theta power in medial prefrontal cortical areas, however sleep deprivation caused addi-

tional increases in theta in many other, predominantly frontal, areas. The sources of sleep deprivation 

theta were task-dependent, with a visual-spatial task and short-term memory task showing the most 

widespread effects. Notably, theta was highest in supplementary motor areas during passive music lis-

tening, and highest in the inferior temporal cortex (responsible for object recognition) during a spatial 

game. Furthermore, while changes in task performance were correlated with increases in theta during 

sleep deprivation, this relationship was not specific to the EEG of the same task and didn’t survive cor-

rection for multiple comparisons. Altogether, these results suggest that both during sleep deprivation 

and cognition theta oscillations may preferentially occur in cortical areas not involved in ongoing behav-

ior. 

2.1.1 Significance statement 

EEG research in sleep has often remained separate from research in cognition. This has led to two incom-

patible interpretations of the function of theta brain oscillations (4-8 Hz): that they reflect local sleep 

 

1 After publication, I realized that there was actually not much overlap between papers referring to fmTheta and to cogni-
tive control. 
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events during sleep deprivation, or that they reflect cognitive processing during tasks. With this study, 

we found no fundamental differences between theta oscillations during cognition and theta during sleep 

deprivation that would suggest different functions. Instead, our results indicate that in both cases, theta 

oscillations are generated by cortical areas not required for ongoing behavior. Therefore, at least in hu-

mans, theta may reflect either cortical disengagement or inhibition. 

2.2 Introduction 

Oscillations in the EEG have been associated with behavioral states such as alertness, drowsiness, and 

sleep. This typically allows oscillations to be used as objective markers for vigilance. The exception are 

theta oscillations (4-8 Hz), which have been separately identified as indicators of drowsiness and intense 

cognition. 

Theta oscillations increase during sleep deprivation in animals (Vyazovskiy & Tobler, 2005) and humans 

(Aeschbach et al., 1997). Theta is considered to reflect sleep pressure, i.e. the interaction between circa-

dian rhythm and time spent awake determining when an individual feels the need to sleep (Borbély, 1982; 

Cajochen et al., 2001). Given the presence of theta oscillations when and where sleep pressure is highest 

(Finelli et al., 2000), they have been hypothesized to be a form of local sleep during wake (Siclari & Tononi, 

2017; Vyazovskiy et al., 2011). During sleep, slow waves (0.5-4 Hz) in the surface EEG correspond to 

synchronized silencing of neuronal spiking, known as “off periods” (Steriade et al., 2001). Vyazovskiy et 

al. (2011) found these off periods to also occur during sleep deprived awake rats, corresponding to theta 

oscillations in local field potentials. 

Equally robust research has separately linked theta activity to cognition. Theta has been associated with 

a variety of functions (Buzsáki, 2005), most notably hippocampal theta during spatial navigation in rats 

(Buzsáki, 1996; O’Keefe & Recce, 1993) and frontal-midline theta during cognitive tasks in humans. 

Frontal-midline theta (fmTheta) has been associated with arithmetic (Ishihara & Yoshii, 1967; Ishii et al., 

2014), working memory (Gevins et al., 1998; Jensen & Tesche, 2002), and even meditation (Banquet, 1973; 

D. J. Lee et al., 2018). fmTheta has been source-localized to the anterior cingulate cortex and medial 

prefrontal cortex (Ishii et al., 2014; Michels et al., 2010; Onton et al., 2005), where it has been anti-corre-

lated to fMRI BOLD (functional magnetic resonance imaging, blood-oxygen level dependent) activity in 

these areas (Scheeringa et al., 2008, 2009). The exact function of fmTheta oscillations in cognition is still 

unresolved although various explanations have been proposed (Hsieh & Ranganath, 2014; Klimesch et al., 

2005; Sauseng et al., 2010). One of the most well-elaborated hypotheses is that theta is responsible for 

synchronizing neuronal firing across cortical regions (Lisman & Jensen, 2013). This has been supported 

by intracortical recordings in macaques for short-term memory tasks (H. Lee et al., 2005; Liebe et al., 

2012). Evidence in humans has been mixed (Brzezicka et al., 2018), however given the strong association 

with tasks, theta is generally hypothesized to be functionally relevant for cognitive processing.  

Currently, research in theta oscillations increasing with sleep deprivation (sdTheta) (Finelli et al., 2000; 

Vyazovskiy et al., 2011) has remained largely independent from research in cognition and fmTheta (Ishii 

et al., 2014; Jensen & Tesche, 2002; Maurer et al., 2015). It is therefore unknown if these represent either 

two distinct oscillations in the theta range or the same, as has been suggested by Takahashi et al. (1997) 

and Mitchell et al. (2008). If sdTheta and fmTheta are distinct, this would resolve the apparent paradox 

of an oscillation reflecting both drowsiness and cognition. If sdTheta is instead a manifestation of 

fmTheta, then its interpretation as local sleep should be reconsidered. 
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We conducted this exploratory sleep deprivation study in young healthy adults to disentangle the 

changes in theta related to both drowsiness and cognition using high-density EEG. Six tasks were per-

formed under three levels of sleep pressure (Figure 2.1). To determine whether sdTheta and fmTheta 

could be considered the same oscillation, we first looked at their topography within a short-term memory 

task and source-localized their neural substrates. We also inspected their spectrograms to determine if 

they could be differentiated by peak frequency. To explore more generally if sdTheta is affected by be-

havioral state, we compared its topography and source localization in all 6 tasks. Lastly, to determine 

what impact sdTheta and fmTheta might have, we correlated changes in theta with changes in behavioral 

performance.  

 
Figure 2.1: Experiment timeline. Each block indicates an EEG recording session. Filled blocks indicate data analyzed 
in this paper. Color indicates the activity participants engaged in: sleep (dark blue), the maintenance of wakefulness 
test (MWT, purple), TV watching (pink), resting state recordings (orange), and tasks (yellow). The height of each block 
indicates the condition in which data was collected: lying in bed (short), seated in a comfortable armchair with foot 
and backrest (medium), and seated at a desk (tall). The desk task block included the six tasks of this paper (STM, LAT, 
PVT, Speech, Game, Music) in randomized counterbalanced order, repeated three times during baseline (BL), sleep 
restriction (SR) and sleep deprivation (SD). The armchair task blocks included the PVT and LAT, in the same order for 
each participant as in the desk task block. These were counterbalanced to either come before or after the desk task 
block. Two additional armchair LAT recordings were performed after the SD session. Brief empty spaces indicate tran-
sition periods allowing for delays. Six longer breaks were included prior to each TV block in which participants were 
provided with meals. The exact timing was adjusted to individual habitual bedtimes, with the above diagram depicting 
the schedule for a bedtime of 00:00. Participants were free to wake up when they wished at baseline and during the 
recovery night and were woken up after 4 h during the first sleep deprivation night. 

2.3 Materials & methods 

2.3.1 Participants 

Participants were recruited from Swiss universities through online advertisements and word of mouth 

and screened for eligibility with an online questionnaire. Out of 75 applicants, one was recruited for tech-

nical pilots (data not included), 31 passed but did not initiate contact or were unable to meet the sched-

uling requirements, 19 participants were recruited, and one dropped out midway and so was not included 

in further analyses. Of the 18 participants who completed the experiment, 9 were female and 3 were left-

handed. Mean age (± standard deviation) was 23 ± 1 years old. All participants self-reported above-aver-

age English fluency (68% ± 13% on a scale from terrible to native speaker), with 1 participant a native 

English speaker. All had corrected-to-normal vision and self-reported no hearing impairments. 
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Applicants were screened prior to participating in order to: A) have a uniform, neurotypical population; 

B) avoid potential drop-outs due to adverse reactions to the experimental conditions; C) ensure partici-

pants’ lifestyles were similar enough to the requirements of the control week (the week prior to each 

recording session) so as not to cause major disruptions; D) avoid any health or life conditions that could 

interact negatively with sleep deprivation or other experimental conditions; E) ensure participants were 

at least somewhat vulnerable to sleep deprivation in order to avoid floor effects.  

Inclusion criteria were: 

• Age between 18 and 25 (A) 

• Good sleepers, with a PSQI ≤ 5 (Pittsburgh Sleep Quality Index; [Buysse et al., 1989]), few night-

time awakenings, and resistance to adverse environmental conditions such as background noise 

or dim lights (B) 

• A regular sleep-wake rhythm, with an MCTQ score between 2 and 6.5 (Munich Chronotype 

Questionnaire; [Roenneberg et al., 2015]), sleep duration between 6 and 11 h, a preferred bed-

time between 21:00-01:00 and wakeup time between 06:00-11:00 (A, C) 

• A BMI (body mass index) between 18 and 30 (A, D) 

 

Exclusion criteria were: 

• Habitual napping (C) 

• Sleep-related disturbances or disorders such as insomnia or daytime sleepiness (D) 

• Pregnancy or currently experiencing a difficult period in life (stress, loss, etc.) (D)  

• Any medical, psychological, or psychiatric conditions (B, D)  

• Any physical impairment at the time of recording or recent use of a long-term cast/bandage (D) 

• Sensitive skin (B)  

• Currently or recently taking prescription medication, excluding contraceptives (A, D) 

• Regular recreational drug consumption, use of prescription stimulants, heavy consumers of al-

cohol (either daily consumption or occasional binge drinking), or smokers (A, C) 

• Habitual consumption of more than 3 cups of coffee per day (C)  

• Prior experience with shift work, regular experience with changing time zones, or spending > 20 

h awake (E) 

• Resilience to sleep deprivation (E) 

Data collection and interaction with participants was conducted according to Swiss law (Ordinance on 

Human Research with the Exception of Clinical Trials) and the principles of the Declaration of Helsinki, 

with Zurich cantonal ethics approval BASEC-Nr. 2019-01193. All participants signed informed consent 

prior to participation and were made aware that they could terminate the experiment at any time. Due 

to scheduling restraints caused by the COVID-19 pandemic, some leniency was allowed for edge cases 

of the screening criteria (e.g. one participant was 26 at the time of recording, another had early morning 

work experience as a baker). 

2.3.2 Experiment design  

Participants came to the laboratory twice, first for the baseline then the sleep deprivation bout, separated 

by at least 4 days. Experiments were typically conducted on weekends. The baseline was scheduled first 

to determine whether participants could in fact sleep in the laboratory and tolerate the EEG net before 

attempting the substantially longer sleep deprivation protocol. Data was collected between February and 
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December 2020, overlapping with the COVID-19 pandemic and consequent lockdowns. Due to schedul-

ing restraints, 4 participants conducted the baseline after the sleep deprivation recording, so the experi-

mental session orders were not balanced, nor uniform.  

During the week prior to each session, participants were asked to maintain a regular sleep wake cycle, 

going to bed and waking up within 1 h of a pre-determined sleep and wakeup time based on their personal 

preference. These individualized sleep and wake times were then used during the experiment. During the 

control week, participants wore a wrist accelerometer (GENEActiv, Activinsights Ltd.) and filled out reg-

ular sleep reports to ensure compliance. Participants were further asked to abstain from alcohol in the 3 

days prior to the measurement, and limit caffeine consumption to no more than the equivalent of 2 cups 

of coffee, and never after 16:00. They were asked to avoid time-zone travel and any activities they knew 

could affect their sleep (e.g. parties, skiing, sauna). 

Baseline: Participants first prepared for bed, then the EEG net was set up. After impedances were 

checked, participants were given careful instructions on how to perform the different tasks (with brief 

practice demonstrations), and to avoid touching the net or other movements during recordings. After-

wards, participants went to bed at the agreed-upon time (21:55-00:47) and were left to sleep for as long 

as they wished (6.2-10.3 h). In the morning, participants first filled out a sleep quality questionnaire (data 

not included). Then, participants were provided breakfast and given time to wake up. Finally, participants 

performed the baseline (BL) task block (8:10-11:17), 1.8 ± 0.6 h from wake onset. Additionally, a brief 

resting wake recording was conducted in the evening and in the morning, however the data was not 

included in this manuscript. The complete schedule is depicted in Figure 2.1. 

Sleep deprivation: Participants went to bed at the same time as the baseline. They were woken up 4 

hours later. Throughout the day, participants repeated 6 cycles, each consisting of a break, 2 TV episodes 

from a series of their choice, and a brief rest recording. During the breaks, participants were provided a 

small home-cooked meal (selecting items from a menu beforehand), thus eating the same plate during 

every break. They repeated 2 of these cycles in the early morning, then conducted the morning sleep 

restriction (SR) task block after 6.4 ± 0.2 h from wake onset (within 7.7 ± 39.5 min of the BL block). The 

SR block was included to identify the effects of time spent awake and asleep while controlling for circa-

dian clock time. Participants went through 4 more cycles before conducting the sleep deprivation (SD) 

task block, after 20.0 ± 0.1 h from wake onset and within 2.6 ± 10.5 min of the prior night’s bedtime . 

Following the tasks, participants preformed a final rest test, then a maintenance of wakefulness test 

(MWT) in which they had to try and stay awake in a dark room for as long as possible (data not included).1 

After 23.6 ± 0.5 h of wake, participants went to bed and slept for as long as they wished. As with the 

baseline bout, additional rest recordings were conducted before and after each night (data not included). 

During wake recordings, participants were monitored by an experimenter to ensure they did not fall 

asleep. From the evening before the first night to the day after the recovery night, participants remained 

in the sleep laboratory and did not have access to clocks or external time cues. Two participants reported 

nausea with increasing sleep deprivation and were therefore provided a break outside just prior to the 

SD block (in complete nocturnal darkness). 

 

1 Unfortunately, I never got to use this data. It was recorded in case resisting sleep really did seem to be what generated 
sdTheta, in which case theta during the MWT should have been higher than during actual sleep onset a few minutes later. 
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2.3.2.1 Tasks 

Each task block lasted approximately 2 hours. The six tasks were performed seated upright at a desk in a 

well-lit room (~100 lux at eye level), on a laptop. The order of tasks was randomized and counterbalanced 

across participants. For each participant, tasks were conducted in the same order for all three blocks. In 

addition to the main task block, two tasks (LAT, PVT, see below) were performed under soporific condi-

tions (comfortable armchair, 10 lux lighting), counterbalanced either before or after the main desk task 

block, as well as after the first evening and last morning rest recordings of the sleep deprivation bout (see 

Figure 2.1). This condition is not included in this manuscript. Each task began and ended with a 1 min rest 

period allowing participants to adjust and get comfortable. After each task, participants answered a task 

battery questionnaire asking how they experienced the task. 

Short-Term Memory Task (STM): Participants performed a ~25 min delayed match-to-sample / short-

term memory task, adapted from Habeck et al. (2004) and Maurer et al. (2015). The task consisted of 120 

trials divided in 4 blocks, with 3 memory load levels randomized across trials for a total of 40 trials per 

level. Stimuli are depicted in Figure 2.2A. Each trial was separated by a 1-2 s pause with a black screen. 

The encoding window began when a red fixation square appeared in the center of the screen for 1 s. Then 

1, 3, or 6 symbols (selected from a pool of 30 “letters” of the Aurebesh fictional alphabet) were displayed 

around the fixation point in 8 possible locations for 2 s. Participants were instructed to maintain fixation 

on the red square while memorizing these symbols. This was followed by a 4 s retention window in which 

only the fixation point was displayed, and participants had to hold in memory the symbols. The trial ended 

with the probe window, in which a probe symbol replaced the central fixation point and participants had 

to indicate with left or right arrow keys whether the probe symbol was contained in the encoding set or 

not, within 3 s. The probe was from the encoding set in 50% of trials. No feedback on performance was 

provided. Accuracy was the primary outcome measure of the STM task, calculated as the percentage of 

correct rejections + correct acceptances to the probe relative to the total number of trials. 

Psychomotor Vigilance Task (PVT): This is a standard reaction-time task used in sleep deprivation par-

adigms, based on Basner and Dinges (Basner & Dinges, 2011). The total task duration was 10 min. Partic-

ipants were presented with a red fixation rectangle on a gray background (Figure 2.2B). Every 2-10 s, the 

rectangle was replaced with a millisecond countdown and participants had to press a button as fast as 

possible to stop it. The response time would then freeze for 1 s and be colored in yellow if less than 0.1 s 

(false alarm), green if between 0.1 and 0.5 s (correct response), and red if later than 0.5 s (lapse). If par-

ticipants did not respond within 5 seconds, an alarm would sound to wake them up. The following per-

formance outcome measures were evaluated: mean, median, and standard deviation of reaction times 

(RTs); mean RTs of the fastest 10% of trials and the slowest 10%; and the total number of lapses (RT > 

0.5 s). 

Lateralized Attention Task (LAT): This was a 12 min visual-spatial reaction time task, modelled after 

the PVT. 6 blocks (2 min each) alternated between having the left or right visual hemifield in white, and 

the other in black (Figure 2.2C). Participants had to maintain fixation on a red rectangle in the center of 

the screen, and covertly attend to the white half of the screen. Every 2-10 s a feint grey circle (1 cm 

radius, #F7F7F7) would appear randomly in any location of the illuminated hemifield and shrink away 

completely within 0.5 s. Participants were instructed to press a button before the circle disappeared, in 

which case the circle would freeze and flash green. Responses up to 0.5 s after the circle completely dis-

appeared were considered late, no response within this time was a lapse, and a response at any other 

time a false alarm. If 5 stimuli were missed consecutively, an alarm would sound to wake up the 
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participant. During the delay periods, 50 ms pink noise tones were presented every 1.5-5 s at ~50dB. 

Participants were instructed to ignore these tones. Performance outcome was measured as: mean, me-

dian, and standard deviation of RTs; mean RTs of the fastest 10% of trials and the slowest 10%; percent-

age of correct responses (0.1 s < RT < 0.5 s), late responses ( 0.5 s < RT < 1 s), and lapses (no response). 

Unlike the PVT, the LAT allows the distinction between slower RTs and complete lapses of attention. 

Speech Fluency Task: Participants performed a tongue-twister reading task in English for 5-10 min. This 

consisted of 20 trials, one per sentence. Each sentence was repeated during each task block. A trial began 

with the sentence written on the screen (Figure 2.2D). Participants were instructed to read it in their 

head once or twice to get familiar with it, but not practice speaking. When they were ready, they could 

press a button, and a green bar would appear below, steadily shrinking to count down a 10 s reading 

window. In this time, participants had to read out loud the sentence as many times as possible, as clearly 

as possible, and as correctly as possible, while their speech was being recorded. This was the only task in 

which the researcher was not in the room in order to reduce participants’ self-consciousness. Perfor-

mance outcome was measured as the number of correctly spoken words per second, and the number of 

mistaken words per second. Speech scoring was conducted manually by author SS, blinded to session 

and participant. A mistake was whenever a word was unfinished, not in the prompt, skipped, repeated 

(even partially, e.g. “se-seashells”), switched with a synonym (or any other unrelated word), or inter-

rupted (e.g. by giggling). Switching two syllables of two words was counted as two mistakes (e.g. Yew 

Nork), whereas switching the order of two words was counted as one mistake. 

Game: Participants played the mobile game BBTAN (based on the 1986 game Arkanoid by Taito) for 10 

minutes (Figure 2.2E). They started each session from level 1. The game involved a robot with a ball at 

the bottom of the screen, and a row of 1-6 bricks at the top. By tapping and dragging on the screen, 

participants could orient an arrow from the robot, and the ball would be launched from the robot in the 

indicated direction. The goal was to bounce the ball against the walls and hit as many bricks as possible, 

such that every time the ball hit a brick, the brick lost a point, and when the brick had no more points, it 

disappeared. At each round, after the ball was launched, hit the bricks, and bounced back to the bottom, 

the remaining set of bricks descended by 1 row, and a new row of bricks appeared at the top. When the 

bottom-most row of bricks reached the robot, the player lost the game. There were additional game fea-

tures to help remove bricks faster. This was a “simple but addictive” game, requiring a minimum amount 

of spatial strategy to win, without any time pressure. No outcome measure was recorded for this task. 

Music: Participants listened to two songs for 2.5 min each: the beginning of the instrumental soundtrack 

Light of the Seven composed by Ramin Djawadi from Game of Thrones: Season 6, and the beginning of 

the soundtrack Finale (William Tell Overture) composed by Hans Zimmer from The Lone Ranger. 
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Figure 2.2: Task stimuli. A-D: Tasks were performed on a Lenovo ThinkPad P53 laptop (15.6” FHD, Intel Core i7-
9750H) with Windows 10. The computer was kept at 50% volume and 100% brightness for all tasks. The tasks were 
programmed in Python v3.6.5 using the PsychoPy v3.2.4 toolbox. Digital triggers were sent from the task computer 
to the EEG recording system via USB. Responses for the PVT and LAT were recorded with the USB-connected MilliKey™ 
button box. E: The Game was played on a 10.1” Huawei MediaPad T5, running Android Oreo. 

2.3.3 Questionnaires 

A custom-built online survey tool, the Experiment Web Organizer for Questionnaires (EWOQ), was cre-

ated for collecting questionnaire data through a web browser, written in React/typescript and hosted on 

Netlify and Google Cloud Platform. During the laboratory experiments, all questionnaires were filled out 

on a tablet, whereas the screening questionnaire and daily sleep reports were filled out on the partici-

pants’ personal devices. Only the PSQI, MCTQ and KSS are external, validated questionnaires. All others 

were created for this experiment and have not been tested on a broader population. The task question-

naires were conducted to evaluate subjective experiences during each task. Answers were given on a ~10 

cm continuous slider with labels, which are indicated on the y axes in Figure 2.16. 
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2.3.4 EEG recording and analysis 

High-density EEG was recorded using HydroCel Geodesic Sensor Nets™ with 128 channels, connected 

to DC BrainAmp Amplifiers and recording software Brainvision Recorder (Vers. 1.23.0003, Brain Products 

GmbH, Gilching, Germany). Data was recorded with a sampling rate of 1000 Hz with Cz reference. Im-

pedances were set to be < 5 kOhm for ground, reference, and external electrodes, and < 25 kOhm for all 

other electrodes. After re-checking impedances, gel was refreshed every 4-6 hours during the sleep dep-

rivation bout, and in the morning after each night of sleep. 

All data preprocessing, analysis, and statistics was done with custom scripts in MATLAB (R2019b) based 

on the EEGLAB toolbox v2019.1 (Delorme & Makeig, 2004). All further analyses involving source locali-

zation were performed with the FieldTrip toolbox v20210606 (Oostenveld et al., 2011).  

Preprocessing: EEG data was filtered between 0.5-40 Hz and downsampled to 250 Hz. Visual detection 

of major artifacts and bad channels was conducted by author SS, blind to participant, task, and session. 

Overall, 4 ± 3 channels were removed on average per recording, out of 120 (Figure 2.20A). ICA was then 

used to remove physiological artifacts, mainly eye movements, heartbeat, and muscle activity (Dimigen, 

2020). On average, 39 ± 12 components were removed from each recording (out of 106-122, Figure 

2.20B). The Speech task had significantly more components removed, and the Music task the least. The 

majority of components removed were related to muscle artifacts. Bad channels were interpolated, and 

only the first 4 min of clean data were used, with average reference. The full pipeline is described in detail 

in Figure 2.19. 

Channel space power calculation: The power spectral density (PSD) estimate was calculated using 

MATLAB’s pwelch function, with 8 s windows, Hanning tapered, and 75% overlap. To account for large 

interindividual differences in theta power (Figure 2.22) and the 1/f power amplitude distribution across 

frequencies, PSD for each frequency was z-scored. For theta topographies (e.g. Figure 2.7), z-scored PSD 

values between 4-8 Hz were averaged. For power spectrums (e.g. Figure 2.11), z-scored PSD values were 

averaged into 3 pre-selected regions of interest (ROIs): Front, Center, and Back. Exact channels are indi-

cated in Figure 2.18. For mean theta values (e.g. Figure 2.5B), these ROI spectrum averages were further 

averaged between 4-8 Hz.  

Source localization: Beamformer source localization was done with the dynamic imaging of coherent 

sources (DICS) algorithm from FieldTrip (Gross et al., 2001; Westner et al., 2022). A finite-element head 

model was implemented with the SimBio toolbox (Vorwerk et al., 2018) based on the segmentation of a 

standard MRI template brain. A 3D grid with 10 mm resolution (3294 voxels) was used as a source model. 

After being projected into the source space, power was z-scored for each frequency. For visualization, t-

tests were conducted for all gray-matter voxels, cluster corrected for multiple comparisons (Maris, 2012; 

Maris & Oostenveld, 2007), and significant clusters projected onto the inflated brain. To determine the 

main anatomical sources, z-scored data was parcellated based on the Automated Anatomical Labelling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002). The median value of all voxels within each area was then 

averaged across frequencies. For both pipelines, only cortical areas were included, as there is currently 

little evidence that activity from deep brain structures reaches the scalp. The exact pipeline is provided 

in Figure 2.21. 

Trial analysis: Data from the STM task was separately analyzed by trial type, using data from the entire 

25 min recording. Each trial was first divided into 2 s epochs for each window (encoding, first retention, 

second retention, and probe), and power was calculated with pwelch using a Hanning tapering window. 
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The retention window was divided into 2 epochs in order to have the same duration as the encoding and 

probe epochs. Trials with more than 25% of samples marked as noise (during preprocessing step B in 

Figure 2.19) were excluded. The minimum number of trials for each memory load level for each session 

was 25. These remaining trials were then split by level and averaged. For each participant and each fre-

quency, power values were then z-scored across epochs, trial types, channels, and sessions. The exact 

pipeline is provided in Figure 2.18. 

2.3.5 Statistics 

All parametric statistics were based on α = 5%. One PVT BL recording is missing, otherwise there were 

always 18 EEG datasets per task, per session.  

ANOVAs: each two-way repeated measures analysis of variance (rmANOVA) was calculated using 

MATLAB’s Statistics and Machine Learning Toolbox. Greenhouse-Geisser corrected p-values were al-

ways used due to occasional violations of sphericity. Eta-squared (η2) effect sizes were calculated using 

the Measures of Effect Size (MES) Toolbox based on Hentschke & Stüttgen (2011).  

T-tests: whenever only two conditions were being compared, paired t-tests were calculated. Hedge’s g 

effect sizes are reported when t-values are described in the text. These were calculated using the MES 

toolbox. 

Correlations: Spearman’s rank correlations were conducted between behavioral outcome measures and 

untransformed EEG theta power in pre-selected regions of interest. Untransformed power values were 

used in order to better capture inter-individual differences. 

FDR correction: Corrections for multiple comparisons were done by controlling for the false discovery 

rate, according to the procedure by Benjamini and Hochberg (1995). This was done using the Mass Uni-

variate ERP Toolbox. FDR was chosen over other methods because it required the fewest a-priori as-

sumptions and thresholds (Groppe et al., 2011). 

2.4 Results 

2.4.1 Changes in sleep architecture and subjective sleepiness confirm the effec-

tiveness of the sleep deprivation protocol 

To determine whether the sleep deprivation protocol was successful in increasing sleep pressure, we 

evaluated changes in sleep architecture between the baseline night and recovery night following sleep 

deprivation (Table 2.1). We found shorter sleep onset latencies and more deep sleep (NREM3), key indi-

cators of increased sleep pressure. 

All sleep stages except REM sleep showed a significant change between baseline and recovery, with 

NREM3 increasing 30% at the expense of wake (-30%), NREM1 (-47%), and NREM2 (-16%). Sleep onset 

latency (SOL) significantly decreased from 16.8 minutes to 5.6 minutes. Overall sleep duration was 

shorter during the recovery night, although this was not statistically significant (p-value = .108), and sleep 

efficiency increased from 92% to 96%. Together, these results indicate that sleep pressure, specifically 

for slow wave sleep, increased over the 24 h wake period. 
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BASELINE PRIOR NIGHT 

RECOVERY 

NIGHT 

PRIOR NIGHT 

VS BASELINE 

RECOVERY 

NIGHT VS 

BASELINE 

RECOVERY 

VS PRIOR 

NIGHT 

Wake 40.6 ± 30.1 18.1 ± 17.2 20.7 ± 9.3 .001 .008 .544 

NREM 1 22.3 ± 12.3 10.8 ± 8.8 10.6 ± 4.8 < .001 < .001 .919 

NREM 2 257.6 ± 34.2 115.1 ± 22.3 214.3 ± 51.6 < .001 .001 < .001 

NREM 3 89.7 ± 40.1 64.6 ± 23.8 109.6 ± 37.0 < .001 .027 < .001 

REM 111.8 ± 32.0 33.4 ± 13.2 118.2 ± 29.8 < .001 .450 < .001 

SOL 16.8 ± 7.8 16.9 ± 13.2 5.6 ± 2.1 .986 < .001 .002 

SDu 481.8 ± 31.1 224.2 ± 16.8 453.0 ± 76.2 < .001 .108 < .001 

WASO 28.1 ± 26.0 5.7 ± 8.4 17.1 ± 9.0 .001 .076 .001 

SE (%) 92.5 ± 5.2 92.6 ± 7.0 95.6 ± 1.8 .950 .018 .080 

ROL 103.5 ± 47.5 98.7 ± 41.2 60.9 ± 19.4 .458 < .001 < .001 

Table 2.1: Sleep architecture. All values in the first three columns are in mean minutes ± standard deviations, except 
SE which is in percentages (100 * SDU / Total time in bed). The last three columns indicate p-values from paired t-
tests between the different nights. PRIOR NIGHT refers to the 4 h night that begins the sleep deprivation session, 
and RECOVERY NIGHT refers to the night after. Acronyms: REM (rapid eye movements), SOL (sleep onset latency), 
SDU (sleep duration), WASO (wake after sleep onset), SE (sleep efficiency), ROL (REM onset latency). 

To determine the degree of sleep deprivation experienced by the participants, a two-way rmANOVA was 

conducted on KSS subjective sleepiness scores (Figure 2.3A) with factors session, task, and their interac-

tion (all other questionnaire data in Figure 2.16). There was a highly significant and very large effect of 

session (F(2, 30) = 35.42, p < .001, η2 = .355), a significant medium effect of task (F(5, 75) = 14.7, p < .001, η2 = 

.073) and a non-significant interaction (F(10, 150) = 0.96, p = .440, η2 = .008). This was the only subjective 

rating with a large effect of session, followed next by motivation (η2 = .07, all statistics in Figure 2.16). 

During sleep deprivation, participants felt less sleepy during the Game and most sleepy during the STM 

task (Figure 2.3B). 

 

Figure 2.3: Subjective sleepiness ratings. Based on an adapted visual-analogue Karolinska Sleepiness Scale (KSS) 
collected after each task. The labels were those of the original categorical KSS, but participants could choose inter-
mediate values on the continuous scale. A: Average scores for each task and each session. Each colored line represents 
a task (STM: red, LAT: orange, PVT: yellow, Speech: green, Game: blue, Music: purple). White-filled circles indicate a 
significant change from BL, FDR corrected for multiple comparisons. Figure 2.16 provides the results for all other 
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questions. B: KSS scores during the SD task block. Gray circles represent each participant, the boxplot indicates me-
dian and interquartile range for each task. Stars indicate significant differences in paired t-tests (the color indicates 
one task, the location of the star the other), FDR corrected for multiple comparisons, such that: * p-value < .05, ** p-
value < .01, *** p-value < .001. The empty tick mark indicates a trend (p-value < .1). 

2.4.2 fmTheta is more localized than sdTheta 

For fmTheta and sdTheta to be considered the same oscillation, they should originate from the same 

brain areas. To determine if this was the case, we analyzed changes in theta from the short-term memory 

task (STM) during the retention window. 

fmTheta was calculated by comparing z-scored power spectral density (PSD) changes between 4-8 Hz 

from L1 trials (1 symbol to hold in memory) to L3 trials (3 symbols to hold in memory), at BL during both 

the first and second retention epochs (Figure 2.17). Only the first epoch resulted in a significant increase 

in theta in any channel, therefore all further analyses were conducted on this epoch. L6 trials were also 

compared to L1 (Figure 2.17) but this did not yield different results from L3 vs L1. Because of the higher 

memory load, we had originally expected L6 to have more theta than L3. Given that performance for L6 

trials was barely above chance level (Figure 2.14A), we interpret this result as L6 being too difficult, caus-

ing participants to not engage in at least some of the trials. Therefore, we focused on L1 vs L3. 

 

Figure 2.4: Sources of fmTheta and sdTheta. Theta is measured as average z-scored power between 4-8 Hz during 
the first retention epoch of the STM task. A: Frontal-midline theta, calculated as the difference between trials with 3 
items vs 1 item to hold in memory, from the BL session. B: Sleep deprivation theta, calculated as the difference 
between SD trials and BL trials with 1 item to hold in memory. I: Theta changes represented in a 2D topography of 
EEG channels, as a head seen from above (nose on top). Black dots indicate all channels, white dots indicate channels 
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in which the change was statistically significant (p-value < .05) based on paired t-tests, FDR corrected for multiple 
comparisons. Source localization is presented in II-V as inflated brains. T-values are plotted with the same color scale 
in the channel and source space, such that red indicates a positive increase in theta from L1 to L3 in A, and from BL 
to SD in B. In the source space, voxel-wise cluster correction was implemented to mask non-significant effects. Figure 
2.17 provides the topographies also for the second retention window and L1 vs L6 trials. II: Left hemisphere, lateral 
view. III: Right hemisphere, lateral view. IV: Left hemisphere, medial view. V: Right hemisphere, medial view. C: 
Change in t-values for all areas between the fmTheta (A) and the sdTheta (B) comparisons, based on the AAL atlas. 
Lines in gray depict areas that showed no significant effects in either comparison, after FDR correction. Lines in red 
indicate areas showing a significant change in sdTheta, and lines in purple both in sdTheta and fmTheta. No area was 
only significant for fmTheta. Exact t-values can be seen in Figure 2.9. 

In the channel space, two significant channel groups emerged (Figure 2.4A I): the frontal peaking over 

ch11 (Fz; t(17) = 5.61, p = .002, Hedge’s g = 0.76); the posterior peaking over ch75 (Oz; t(17) = 5.61, p = .002, 

g = 0.76). Source localization identified the left medial frontal cortex as the main source (Figure 2.4A IV), 

especially the anterior cingulate cortex (t = 4.76) and the superior frontal gyrus, medial (t = 4.06) as well 

as orbital part (t = 3.59; t-values for anatomical areas provided in Figure 2.9). These results replicate pre-

vious findings (Ishii et al., 2014; Maurer et al., 2015; Michels et al., 2010; Onton et al., 2005; Scheeringa et 

al., 2009). The right medial cortex also showed increases in theta, however these areas did not survive 

correction for multiple comparisons. 

sdTheta was calculated using the same first retention epochs but comparing L1 trials from BL to L1 trials 

from SD (Figure 2.4B). Unlike for fmTheta, this necessitates a between-session comparison. sdTheta was 

more widespread across the cortex than fmTheta, showing cluster-corrected increases in 38% of gray 

matter voxels relative to 21%, respectively. All areas showing load-effects of fmTheta were also signifi-

cant for sdTheta (Figure 2.4C), and the areas showing highest sdTheta were not among those signifi-

cantly increasing in fmTheta. Specifically, the peak location of sdTheta was different in both the channel 

space (ch5) and source space: right middle frontal gyrus (t = 6.95) and superior frontal gyrus (t = 5.94; 

Figure 2.4B III). sdTheta extended along the medial cortex up to the cuneus (maximum t-value tmax = 5.15) 

and was additionally present around the left insula (tmax = 4.58), and the temporal poles (tmax = 3.67). There-

fore, sdTheta and fmTheta have different primary sources, and different spread throughout the cortex. 

2.4.3 fmTheta fades with increasing sleep deprivation 

If sdTheta and fmTheta are independent oscillations, they should both be present during sleep depriva-

tion when performing the STM task. fmTheta was therefore calculated at every session, for both L3 vs 

L1 and L6 vs L1 (Figure 2.5A). Surprisingly, fmTheta decreased in amplitude with increasing sleep depri-

vation, until no channel showed statistically significant differences with memory load during SD.  

A two-way rmANOVA was conducted with factors session, load, and their interaction, separately for 

three regions of interest (ROIs). In the Front ROI there was both a significant and large effect of session 

(F(2, 34) = 17.17, p < .001, η2 = .287), a significant but small effect of load (F(2, 34) = 5.92, p = .008, η2 = .030), 

and a small significant interaction (F(4, 68) = 3.74, p = .017, η2 = .016). In the Center ROI there was a signifi-

cant effect of session (F(2, 34) = 10.16, p < .001, η2 = 0.198), no effect of load (F(2, 34) = 1.35, p = .271, η2 = .006), 

and a trending interaction (F(4, 68) = 2.37, p = .095, η2 = .022). In the Back ROI there was a significant effect 

of session (F(2, 34) = 4.64, p = .028, η2 = .072), a small trending effect of load (F(2, 34) = 2.63, p = .096, η2 = .013), 

and a significant interaction (F(4, 68) = 3.88, p = .019, η2 = .014). 

The interaction between load and session was driven by a larger increase in theta for low memory load 

trials during sleep deprivation (Figure 2.5B). To better understand this, we compared sdTheta topogra-

phies (BL vs SD) for each memory load level (Figure 2.5C). L1 showed the largest and most widespread 
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increase in theta (tmax = 7.28, p < .001, g = 1.57), L3 the lowest and most local increase (tmax = 4.32, p = .024, 

g = 0.87), and L6 was intermediate (tmax = 4.93, p = .007, g = 1.45). As a result of sdTheta increasing more 

in low memory load trials, fmTheta effectively disappeared. However, given that for most of the partici-

pants these three sessions were performed in order, it is also possible that this disappearing fmTheta is 

driven by a repetition effect, although previous studies (Habeck et al., 2004) have not found repetition 

effects of behavior in this task design.  

 

Figure 2.5: Interaction between STM task level and sleep deprivation theta power. A: Difference in theta power for 
the first half of the retention period during the STM task between level 3 (top row) and level 6 (bottom row) relative 
to level 1 for every session. Color represents t-values such that red indicates greater theta power in L3/L6 relative to 
L1. White dots indicate a significant effect, FDR corrected for multiple comparisons. B: Mean z-scored theta power 
across sessions for each load level at each region of interest (ROI). White circles indicate a significant change from 
BL, filled circles a trend, FDR corrected for multiple comparisons. C: Change in theta power topographies during the 
first retention epochs between SD and BL, split by memory load. Same color scale as A, with red indicating more theta 
in SD relative to BL. Figure 2.18 illustrates the analysis pipeline. 

2.4.4 Sources of sdTheta are task dependent 

The results from Figure 2.4 show distinct topographies for fmTheta and sdTheta. The literature has iden-

tified fmTheta to consistently originate from the same medial region, however similar source localization 

has never been done for sdTheta. To determine whether sdTheta is consistent or task-dependent, we 

compared theta changes from BL in 6 different tasks. Mean theta values for all tasks in regions of interest 

are provided in Figure 2.6. Figure 2.7 depicts the sdTheta changes for both SR and SD relative to BL in 

the channel space, and Figure 2.8 provides the source localization for SD relative to BL displayed on in-

flated brains. Figure 2.9 provides the t-values for all anatomical regions found to be significant in at least 

one comparison of SD relative to BL.  

A two-way rmANOVA was conducted for each ROI with factors session, task, and their interaction (mean 

values in Figure 2.6A-C). The Front ROI had a significant effect of session (F(2, 32) = 28.02, p < .001, η2 = 

.224), a trending effect of task (F(5, 80) = 22.51, p < .001, η2 = .249), and a significant interaction (F(2, 160) = 1.88, 

p = .090, η2 = .010). The Center ROI also had a significant effect of session (F(2, 32) = 13.09, p < .001, η2 = 



 The theta paradox: 4-8 Hz EEG oscillations reflect both sleep pressure and cognitive control  

45 

 

.105), a significant effect of task (F(5, 80) = 14.05, p < .001, η2 = .239), and a significant interaction (F(2, 160) = 

2.53, p = .035, η2 = .021). The Back ROI did not have a significant effect of session (F(2, 32) = 2.41, p = .111, 

η2 = .021), but a strong effect of task (F(5, 80) = 21.67, p < .001, η2 = .305), and no interaction (F(2, 160) = 0.79, p 

= .549, η2 = .007). Therefore, although the effects were small, sdTheta was significantly task dependent. 

While the Game had the overall highest frontal theta (Figure 2.6D), the increase with sleep deprivation 

was more pronounced in the STM, PVT, and LAT (Figure 2.6E). 

 

Figure 2.6: Change in theta across sessions for all tasks by region of interest (ROI). Mean z-scored theta power for 
3 ROIs: Front (A), Center (B), and Back (C). Open circles indicate within each task a significant change in theta relative 
to BL, filled circles indicate a trend, based on paired t-tests, FDR corrected for multiple comparisons within each plot. 
D: Mean theta power for all tasks at baseline in the front ROI. Gray circles represent each participant, the boxplot 
indicates median and interquartile range. Stars indicate significant differences between tasks (the color indicates one 
task, the location of the stars the other) such that: * p-value < .05, ** p-value < .01, *** p-value < .001. E: Hedge’s g 
effect sizes of the changes in theta in the front ROI from BL to SR (light colors) and SD (dark colors). The disk indicates 
Hedge’s g, the bars indicate 95% confidence intervals. Figure 2.19 illustrates the preprocessing pipeline. Figure 2.20 
indicates the channels and components removed during the preprocessing. 

When comparing theta changes across the whole topography, all tasks showed increases in theta be-

tween BL and SR in most channels, however no channel was significant for the Speech and Music condi-

tions after FDR correction (Figure 2.7, center). The highest overall increase was seen for the LAT over 

ch109 (tmax = 5.74, p = .002, g = 1.33), accompanied by widespread increases. Due to the otherwise me-

dium-low effect sizes, the comparison between BL and SR was not further investigated with source lo-

calization. However, these results demonstrate already in the channel space how task-specific changes 

are present also when controlling for circadian time. 

From BL to SD, the task-specific sdTheta topographies become even more evident (Figure 2.7, right). 

The LAT, STM, and PVT showed the most widespread increases, as well as the highest amplitude (PVT: 

tmax = 7.52, p < .001, g = 1.85; LAT: tmax = 7.10, p < .001, g = 1.24; STM: tmax = 6.31, p = .001, g = 1.80). The 

Speech task showed the lowest and most local increase in theta (tmax = 5.50, p = .005, g = 1.51). 
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The source space allowed further anatomical localization of the origin of theta. All tasks except the Game 

showed a predominantly right, frontal increase in theta (Figure 2.8),1 although no anatomical area sur-

vived FDR correction for the Speech task (Figure 2.9). One of the primary sources of sdTheta across all 

tasks was the right superior frontal gyrus. All tasks (except Speech) also had significant theta originating 

from the right hippocampus, parahippocampus, anterior and middle cingulate cortex. The STM and LAT 

had further extensive increases across both dorsal and medial frontal areas, with the STM showing high 

theta activity along the left lateral sulcus (Rolandic operculum, insula), and the LAT in the right lateral 

sulcus (Heschl’s gyrus, Rolandic operculum, insula). Unfortunately, source localization along this sulcus 

is challenging due to how gray matter is folded and may require subject-specific MRI structural scans for 

accurate results.  

The overall strongest source of sdTheta was the left supplementary motor area during the Music task 

(Figure 2.9, tL = 6.54), extending contralaterally (tR = 4.77) as well as into the middle cingulate cortex. 

Bilateral supplementary motor areas were also the main sources of theta for the PVT (tL = 4.70, tR = 4.96). 

The supplementary motor area showed significant increases in the LAT and STM but to a lesser extent 

(STM: tL = 3.13; LAT: tR = 4.17) and were not significant in the Game. 

Finally, the most atypical distribution of sdTheta came from the Game (Figure 2.8), which showed mini-

mal increases in frontal cortices and primary sdTheta originating from the right inferior temporal cortex 

(inferior temporal gyrus, mid temporal gyrus, fusiform gyrus; tmax = 5.65). The only other task to show 

significant sdTheta in these regions, to a lesser extent, was the LAT (inferior temporal gyrus, t  = 2.99).  

Overall, the majority of sdTheta occurred in medial and superior frontal cortices, with a right lateraliza-

tion. LAT and STM were the most widespread in the source space (Figure 2.8; 39% and 35% of significant 

voxels, respectively), the Game, Music, and PVT intermediate (28%, 27%, 25%), and Speech the least 

(9%). While most sdTheta sources were frontal, there were substantial differences between tasks. The 

high theta from the supplementary motor area in the Music task and in the inferior temporal cortex in 

the Game suggests a preference of sdTheta for cortical areas not critical for the ongoing behavioral task. 

 

1 In hindsight, this higher frontal gyrus theta might reflect changes in oscillation amplitude (and synaptic strength with 
sleep pressure) more than task-specific changes in the quantities of oscillations, since it’s in common across tasks (next 
paper). 
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Figure 2.7: Theta sleep deprivation topographies by task. First column: mean z-scored theta power topographies at 
BL. Second & third column: the change in theta power from BL to SR and SD, respectively. Color indicates t-values, 
with red indicating an increase relative to BL. Black dots indicate all channels, white dots indicate channels in which 
the change was statistically significant (p-value < .05), FDR corrected for multiple comparisons. 
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Figure 2.8: Change in theta from BL to SD in the source space projected on inflated brains. Color indicates t-
values, such that red indicates an increase in power from BL to SD. Voxel-wise cluster correction was implemented to 
mask non-significant effects. Figure 2.21 illustrates the analysis pipeline for the source localization. 
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Figure 2.9: T-values of the change in theta by anatomical source. Only areas with at least one significant test (BL 
vs SD in all tasks; L3 vs L1 from fmTheta and L1 BL vs L1 SD for sdTheta in the STM) are included. Text in gray indicates 
areas not significant after FDR correcting for multiple comparisons. Text in white indicates the top 10% of t-values 
in the whole table. 
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Figure 2.7, left column, illustrates how the average theta power at baseline more resembles fmTheta 

(Figure 2.4A I), especially for the Game, than it does sdTheta within tasks. This suggests that sdTheta 

occurs in addition to task-related fmTheta found at BL. In order to determine whether sdTheta could be 

further distinguished from this baseline fmTheta, we inspected the spectrograms of the different tasks 

for all participants. In particular, we were interested in whether tasks with high frontal BL theta showed 

an additional distinct peak in the theta range following sleep deprivation. This would support the hypoth-

esis of theta during sleep deprivation as a separate oscillation from task-related, baseline fmTheta. 

Paired t-tests between BL and SR/SD z-scored power spectrums confirmed that the effect of sleep dep-

rivation was specific to the theta range, resulting in a prominent peak in the average SD Front ROI spec-

trum for all tasks (Figure 2.10). However when inspecting individual participants’ spectrums, sdTheta 

often did not occupy a single consistent peak within or across individuals (Figure 2.11). Instead, individ-

uals’ peaks were spread over the entire theta range, often with multiple smaller peaks within the same 

participant. Furthermore, the maximum peak frequency for a given participant was not consistent across 

tasks (Figure 2.12A-B). 

 

Figure 2.10: Average z-scored power spectrums from each ROI for each task. Thin lines indicate the spectrum at 
each session, averaged across participants. Thick lines indicate statistically significant changes (paired t-tests, p-
value < .05, FDR corrected) for a given frequency relative to BL. The frequency axis is log-transformed. The y-axis 
represents power spectral density, z-scored. N.B.: while there is an increase of both theta and beta (15-25 Hz) with 
sleep deprivation, the lack of increase in the delta (1-4 Hz) and alpha (8-12 Hz) ranges indicate that the spectral 
changes are not due to broadband increases. 
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Figure 2.11: Z-scored power spectrums from the front ROI for each task. Overlapping spectrums from the Front 
ROI of each task for every participant. The base curve of each colored patch represents the BL spectrum, the upper 
curve the SD spectrum, and the filled-in area reflects the increase in power. The average power change across partic-
ipants is the final patch in black. Figure 2.22 provides the uncorrected spectrums. 

The exception was the Game, which showed the overall highest amplitude frontal theta as well as the 

most clearly defined peak both during BL and SD (Figure 2.12C-D), with prominence values (calculated 

as the difference in z-scores between the maximum theta amplitude and the closest trough in the spec-

trum) of 1.72 ± 1.14 (MEAN ± STD) at BL and 2.94 ± 1.88 at SD. By contrast, the STM task had a promi-

nence of 0.33 ± 0.27 at BL, and 0.71 ± 0.94 at SD. Unexpectedly, the STM task had low BL frontal theta, 

similar to Speech and Music (Figure 2.6D). 

 

Figure 2.12: Prominence and peak frequency 
of z-scored power spectrums from the Front 
ROI. Each color represents a different partici-
pant, the black line indicates the average. Aster-
isks indicate significant differences from paired 
t-tests between tasks, FDR corrected, such 
that: * p-value < .05, ** p-value < .01, *** p-value 
< .001. A-B: The highest amplitude peak in the 
3-9 Hz range.  C-D: Prominence refers to the 
amplitude difference between the highest peak 
and the closest trough to that peak within a 3-
9 Hz range. 

 

Due to the clear presence of fmTheta at BL in the Game, we considered this task to be the most likely to 

show both an fmTheta peak and an sdTheta peak during SD. The BL peak frequency was significantly 

different from the SD peak frequency, increasing from 5.7 ± 1.0 Hz to 6.4 ± 0.5 Hz (t(17) = 2.62, p = .018, g 

= 0.84). For reference, the STM peak was 6.0 ± 1.4 Hz at BL, and 6.4 ± 0.7 Hz at SD, but the increase was 

not statistically significant (t(17) = 0.87, p = .397, g = 0.30). However, as can be seen in the individual Game 

spectrums in Figure 2.11, only a single peak is present for most participants, with the baseline theta peak 

merely shifted in frequency and increased in amplitude during SD. Multiple peaks were instead found in 
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all other tasks during SD, which may indicate a multitude of different theta oscillations not found in the 

Game. 

Visual inspection of the EEG data provided further insight into task-related theta differences. At BL, 

fmTheta bursts as described by Mitchell et al. (2008) were visible primarily in the Game task (Figure 

2.13A) in 11 individuals. These were frontal midline bursts that lasted 1-5 s with amplitudes around 15-

20 μV. No other types of prominent theta oscillations were similarly detectable by visual inspection in 

any task at BL (best example, Figure 2.13C). During SD, fmTheta became even more prominent in the 

Game EEG (Figure 2.13B), with higher amplitudes and longer bursts, appearing for 13 participants and 

increasing in other tasks as well. In addition to fmTheta, widespread bursts often with frontal peaks ap-

peared during sleep deprivation especially in the LAT and STM (Figure 2.13D). These had a much shorter 

duration (2-3 oscillations), but with a higher peak amplitude (> 40 μV). As can be seen from the spectrums 

(Figure 2.13 II), Game theta bursts yielded narrow-band theta power, whereas the LAT bursts had more 

widespread spectrums. These examples support an interpretation of at least 2 types of oscillations in the 

theta range that increase with sleep deprivation. 

 

Figure 2.13: Examples of theta bursts. Taken from the same participant during BL (A, C) and SD (B, D), and from the 
Game (A, B) and the LAT (C, D). I: EEG data in time, amplitude in microvolts. All channels are represented in gray, and 
the channel expressing the highest theta in color. II: Power spectrums of all channels in gray, and peak theta channel 
in color. X-axis is log-transformed. III: Average theta power mapped across all channels from the 2 s shown in I. The 
scale is normalized for each plot separately to the min-max. Colored dot indicates the same channel highlighted in I 
and II (ch6 for Game, ch118 for LAT). 
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2.4.5 Short-term memory performance does not relate to either fmTheta or 

sdTheta 

Given that the presence of sdTheta and fmTheta are dependent on the ongoing task, we wished to ex-

plore whether there was a relationship between theta and behavioral outcomes. If fmTheta is functionally 

relevant, or if sdTheta is a form of local sleep, then the changes in theta across individuals should correlate 

with the extent of behavioral deficits. 

Maurer et al. (2015) found that the increase in fmTheta with short-term memory load was negatively 

correlated with the change in accuracy, such that the more fmTheta, the worse participants performed 

with increasing load. We did not replicate this correlation for either the first retention epoch (r(16) = -.05, 

p = .850) nor the second (r(16) = -.30, p = .233).  

Before determining whether there was any correlation between STM performance and sdTheta, we eval-

uated whether there was an effect of sleep deprivation on performance using a 2-way rmANOVA with 

factors session, level, and their interaction. We found no effect of session (F(2, 34) = 0.45, p = .636, η2 = .002), 

a very large effect of level (F(2, 34) = 275.68, p < .001, η2 = .717), and no significant interaction (F(4, 68) = 0.43, 

p = .717, η2 = .001). Performance accuracy across sessions is provided in Figure 2.14A. 

Despite the lack of an effect of sleep deprivation on STM accuracy, we still performed correlations be-

tween the change in performance for each memory load level and the change in theta power from BL to 

SD for the three ROIs. Neither the Front (L1: r(16) = -.04, p = .862; L3: r(16) = -.02, p = .935; L6: r(16) = -.13, p 

= .605), Center (L1: r(16) = -.06, p = .810; L3: r(16) = -.14, p = .585; L6 r(16) = -.08, p = .749) nor Back ROI (L1: 

r(16) = -.15, p = .542; L3: r(16) = -.37, p = .128; L6: r(16) = -.30, p = .231) showed significant correlations between 

the difference in theta and the difference in behavior. Therefore, short-term memory performance accu-

racy was not related to either fmTheta or sdTheta.  

 

Figure 2.14: Task performance. A: STM recall accuracy for every memory load level (1, 3, 6) at every session. The y-
axis indicates percentage of correctly identified probes (both true positives and correct rejections). Thin lines indicate 
individual participants, thick lines indicate the mean. Chance level was 50%. No level showed a significant change 
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from BL. B: PVT performance. Left: mean reaction times (RT) in seconds. Right: number of trials for which the RT > 
0.5 s. C: LAT performance. Left: mean RTs. Middle: percentage of trials for which the RT was between 0.1 s and 0.5 s 
(i.e., while the stimulus was still visible). Right: percentage of trials for which no response was given. D: Speech Flu-
ency Task performance. Left: rate of correct words per second across sessions. Right: rate of mistaken words per 
second across sessions. Asterisks indicate significant differences from paired t-tests between sessions, FDR corrected, 
such that: * p-value < .05, ** p-value < .01, *** p-value < .001. Figure 2.23 highlights the performance for the 4 partic-
ipants who conducted the baseline after the sleep deprivation bout. 

2.4.6 Behavioral performance is not directly related to the increase in sdTheta 

In rats, local sleep events were found to result in behavioral lapses in a reaching task (Vyazovskiy et al., 

2011). Therefore, we expected that an increase in response lapses in the PVT and LAT would correlate 

with increases in theta. More generally, to determine whether the occurrence of sdTheta could affect 

any behavioral measure, we first established which outcome measures changed significantly with sleep 

deprivation (Figure 2.14, Figure 2.15A), and then correlated the change from BL to SD for each perfor-

mance measure with the change in theta from BL to SD for each ROI.  

STM performance accuracy for all three memory load levels were the only measures which did not show 

a statistically significant change with sleep deprivation (as anticipated by the previously described 2-way 

ANOVA). The PVT (Figure 2.14B) and LAT (Figure 2.14C) showed a worsening of performance with in-

creased reaction times (PVT: t(16) = -3.45, p = .003, g = 0.84; LAT: t(17) = -4.51, p < .001, g = 0.80) and in-

creased number of lapses (PVT: t(16) = -2.94, p = .010, g = 0.84; LAT: t(17) = -4.44, p < .001, g = 0.93), con-

sistent with the literature (Basner & Dinges, 2011). The Speech task (Figure 2.14D) unexpectedly showed 

a significant reduction in the number of mistakes (t(17) = 4.81, p < .001, g = -1.17) and an increase in words 

per minute (t(17) = -3.16, p = .006, g = 0.39). N.B. these two variables were not significantly correlated 

between each other (r(16) = -.37, p = .129) although they both showed improvement with sleep deprivation. 

The PVT has previously been shown to be unaffected by task repetition (Basner et al., 2018), and the 

outcome measures of both the PVT and LAT performed under soporific conditions in this experiment all 

returned to baseline following recovery sleep (data not shown). Similarly, the STM task has also been 

shown to be unaffected by task repetition (Habeck et al., 2004), albeit with two repetitions instead of 

three. Therefore, the behavioral changes in the Speech task are the only ones that may have been af-

fected by learning.1 

To determine whether any of these behavioral changes in performance (both positive and negative) were 

related to sdTheta, we correlated each measure with the change in untransformed theta power for each 

ROI during the first 4 minutes of the respective tasks. A significant correlation was found between the 

decrease in number of Speech mistakes per minute and the increase in frontal theta (r(16) = -.53, p = .025), 

as well as number of correct words per minute (r(16) = .54, p = .023), such that the more participants im-

proved, the more theta they had. The increase in mean reaction times (RTs) of the fastest 10% of re-

sponses of the PVT was positively correlated with the increase in theta over the Back ROI (r (15) = .54, p = 

.027). No other performance measure showed a significant correlation with sdTheta of the same task. 

In a previous sleep deprivation study, Gorgoni et al. (Gorgoni et al., 2014) also found a positive correlation 

between the increase in the mean of the fastest 10% of PVT RTs with increases in centro-posterior theta 

power. However, theta was measured during a separate resting EEG, recorded just prior to the task. 

 

1 This is a good example of why tasks with a learning component doesn’t work for repeated measures. 
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Inspired by this, we then correlated all of our behavioral outcome measures with sdTheta in all tasks, for 

each ROI (Figure 2.15B). No correlation between behavioral outcome measure and sdTheta survived FDR 

correction for multiple comparisons, including the within-task ones previously described. We therefore 

provide the correlations with uncorrected p-values and limit ourselves to cautious interpretations. 

Similar to Gorgoni et al. for the PVT, we found significant positive correlations for the increase in fastest 

10% RTs also with the LAT sdTheta (Front: r(15) = .65, p = .006, Center: r(15) = .69, p = .003, Back: r(15) = .58, 

p = .016) and Music sdTheta (Back: r(15) = .55, p = .025). Significant correlations were additionally found 

with the LAT sdTheta and mean PVT RTs (Center: r(15) = .52, p = .034, Back: r(15) = .54, p = .027) and median 

RTs (Center: r(15) = .61, p = .010, Back: r(15) = .50, p = .041), as well as with Back Music sdTheta and mean 

RTs (r(15) = .57, p = .019), median RTs (r(15) = .51, p = .038), and lapses (Back: r(15) = .50, p = .043).  

 

Figure 2.15: Correlations between changes in behavioral performance and changes in theta for each ROI. A: 
Hedge’s g effect sizes for paired t-tests comparing BL to SD for each behavioral outcome measure. Bars indicate 95% 
confidence intervals. Positive values indicate an increase in that outcome measure from BL to SD. B: R-values for each 
pairwise correlation between behavioral measure and theta power for each task for each ROI. Comparisons within the 
same task are outlined with a dotted edge. Red in-dicates positive correlations, blue indicates negative. N.B. the R 
values within the dotted line are not higher than outside it. 

Notably, despite robust decreases in LAT performance with sleep deprivation (Figure 2.15A), no outcome 

measure was significantly correlated with LAT sdTheta. Instead, significant negative correlations were 

found between Front Music and LAT late responses (r(16) = -.49, p = .041), the slowest 10% of RTs (r(16) = 

-.57, p = .015), and the standard deviation of RTs (r(16) = -.66, p = .004).  
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Finally, the reduction in mistakes in the Speech task was significantly negatively correlated with Front 

sdTheta in all tasks except trending in Music (STM: r(16) = -.58, p = .012; LAT: r(16) = -.73, p = .001; PVT: r(15) 

= -.57, p = .017, Speech: r(16) = -.53, p = .025; Game: r(16) = -.74, p < .001; Music: r(16) = -.44, p = .067), and to 

a lesser extent significant in the Center ROI for sdTheta in the STM, LAT, and Game, and Back sdTheta 

in the STM and Game. Notably, the correlations between mistakes and theta were higher for the STM, 

PVT and Game than for the Speech sdTheta itself. The increase in Speech words per minute was posi-

tively correlated with sdTheta in the Speech (Front: r(16) = .54, p = .023), STM (Center: r(16) = .63, p = .007), 

and PVT (Center: r(15) = .50, p = .045). 

Overall, these results show that behavior and sdTheta can correlate but not necessarily, nor even espe-

cially, within the same task. While none of these correlations survive correction for multiple comparisons, 

the absence of a clear preference for within-task correlations is indicative.  

2.5 Discussion 

In the literature, there exists two opposing interpretations of theta oscillations: one posits that they re-

flect cognition, the other that they reflect sleep pressure and possibly even local sleep. With this study, 

we investigated whether this paradox could be resolved by the existence of separate oscillations in the 

theta band. Our results clearly indicate that theta caused by sleep deprivation is not strictly a manifesta-

tion of classic fmTheta because: A) their primary sources are in different cortices, namely the right supe-

rior frontal gyrus for sdTheta and the left anterior cingulate cortex for fmTheta; and B) sdTheta is present 

in a broader subset of areas (Figure 2.4). 

Despite these differences in sources, we did not find evidence of the simultaneous occurrence of sdTheta 

and fmTheta during the short-term memory task performed under sleep deprivation (Figure 2.5), nor 

distinct theta peaks in EEG power spectrums (Figure 2.11) which would have further supported an inter-

pretation of two independent oscillations. In Vyazovskiy and Tobler (2005), sdTheta in rats was at a lower 

frequency than the wake hippocampal theta rhythm (5.5 Hz vs 7.5 Hz), with both peaks present during 

sleep deprivation. This was not replicated in our Game condition where only a single theta peak was 

present during sleep deprivation, despite a strong, slower, baseline fmTheta (Figure 2.6D). Rather than a 

separate, additional spectral peak, it appears that fmTheta itself increased in amplitude with sleep depri-

vation.  

For all other tasks, sdTheta occupied a broad range with multiple peaks (Figure 2.11). This can be ex-

plained by the different waveforms visually identified (Figure 2.13): long steady trains of theta in the 

Game, and high amplitude irregular short bursts in other tasks. These morphological differences make 

the theta trains comparable to occipital alpha bursts, and the short bursts more comparable to isolated 

slow waves in sleep. This could mean that sleep deprivation in humans induces two types of changes in 

theta: an increase in fmTheta when already present at baseline, and the appearance of local sleep. 

An alternative, simpler explanation is that theta may reflect the same mechanism during both cognition 

and sleep deprivation, regardless of waveform. Simultaneous EEG-fMRI studies previously found that 

fmTheta originating from the medial prefrontal cortex corresponds to BOLD deactivations in these areas 

(Scheeringa et al., 2008, 2009). Our source localization of sdTheta across the different tasks also suggests 

that these oscillations may be a marker for cortical areas not in use. 

First, we found high sdTheta activity in the bilateral (but especially left) supplementary motor area in the 

Music listening condition. It is compelling that the one task not requiring movement showed such strong 
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theta activity in brain areas involved in complex motor planning (Goldberg, 1985). The PVT also showed 

strong activity in bilateral supplementary motor areas, which may seem contradictory. However, the PVT 

required simply pushing a button after a very obvious stimulus appeared; this is a reflexive response with 

little need for deliberative action. By contrast the LAT, which had identical motor requirements but dif-

ficult to detect stimuli, despite otherwise widespread high-amplitude theta, showed less activity in the 

supplementary motor areas than the PVT (Figure 2.9). Supporting this distinction between reflexive and 

deliberative action, mean reaction times of the LAT were ~20% slower than during the PVT (Figure 

2.14B-C), despite identical task requirements (respond within 0.5 s). Vice versa, supplementary motor 

area activity did not significantly increase in the Speech or Game, two tasks characterized by deliberative 

motor control. 

Second, high sdTheta was found in the right inferior temporal cortex in the Game, extending all the way 

to the fusiform gyrus. These areas collectively form the ventral visual pathway responsible for object 

recognition (Ishai et al., 1999). This is in opposition to the dorsal visual pathway running from the occipital 

cortex to dorsal parietal areas such as the supramarginal gyrus and parietal sulcus, where object location 

is processed (Freud et al., 2016). The Game was almost exclusively a spatial task, requiring participants 

to map out a target path for a bouncing ball. The only other task to show significant theta activity in the 

inferior temporal cortex was the LAT, a spatial attention task. Instead the STM, in essence an object 

recognition task, showed no significant increase in these areas (Figure 2.9). 

One possible interpretation for theta in unused areas is that it has a role in active inhibition. Such a hy-

pothesis has already been proposed for theta during cognition. Buzsáki in 1996 suggested that theta in 

the hippocampus could act as a low-energy solution to selective inhibition (Buzsáki, 1996; Thompson & 

Best, 1989), such that only neurons synchronized to fire at the correct phase of an ongoing oscillation 

would successfully transmit action potentials. The role of theta phases in inhibition was supported by 

phase-targeted closed loop stimulation in mice (Siegle & Wilson, 2014). It may therefore be the case that 

fmTheta and sdTheta in humans also reflect a low-energy active inhibitory state that conflicting brain 

networks enter to compensate for cognitive load and sleep deprivation, respectively. 

Alternatively, theta could reflect passive cortical disengagement. In this scenario, an entire network or 

brain area ceases to receive inputs, and essentially goes in “standby.” This is comparable to alpha oscilla-

tions in visual areas during eyes closed (Kirschfeld, 2005). An interpretation of theta as disengagement, 

more so than inhibition, would also explain theta activity occasionally found in NREM 1 (Santamaria & 

Chiappa, 1987), at the transition between wake and sleep. In essence, theta as inhibition would be a com-

pensation mechanism for sleep deprivation, whereas theta as disengagement would be a consequence of 

sleep deprivation, bringing the brain closer to true sleep.   

Regardless of whether theta reflects inhibition or disengagement, our behavioral results support the 

source localization finding that sdTheta occurs primarily in task-irrelevant areas. Despite large changes 

in performance with sleep deprivation across most outcome measures in the LAT, PVT, and Speech tasks 

(Figure 2.15A), these changes were not especially correlated with sdTheta in their respective tasks (Fig-

ure 2.15B). Equal or even larger correlations were found between changes in performance and sdTheta 

in different tasks (although without surviving FDR correction). Therefore, it is unlikely that the changes 

in behavior can be attributed to the occurrence of theta oscillations. As it is, these results suggest only a 

general relationship between the impact of sleep deprivation on performance and on theta. 

The most unexpected finding was the decrease in mistakes during the Speech task, and subsequent anti-

correlation with sdTheta in almost all tasks and all ROIs. To our knowledge, there is no prior study with 
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tongue twisters during sleep deprivation, however a study by Tucker et al. (2010) used a verbal fluency 

task in which participants had to come up with as many words as possible starting with a specific letter. 

The authors found both a practice effect and a sleep deprivation effect, such that both improved perfor-

mance. While we cannot dissociate these effects in our data, we do see that of the four participants who 

did the baseline session after the sleep deprivation, two still showed notably higher performance during 

SD compared to BL, and two showed no change (Figure 2.23D). It is therefore possible that this speech 

task also improves with both repetition and sleep deprivation. A possible explanation could be that the 

more “sleep deprived” prefrontal control areas are, the less inhibited participants, especially non-native 

speakers, become. Alternatively, given that sdTheta is hypothesized to reflect plasticity and therefore 

ability to learn, the same interindividual differences in changes in theta with time awake could be re-

flected as individual differences in tongue-twister learning ability. More studies investigating the link 

between sdTheta and learning are needed to resolve this problem. 

While our study offers unique insight into theta under different conditions, it also suffers limitations. 

First, the sessions were not conducted in counterbalanced order. While previous studies (Bernardi et al., 

2015; Hung et al., 2013) have demonstrated sdTheta returns to baseline following recovery sleep, it is still 

possible that some of the effects we observe (e.g. disappearance of fmTheta with sleep deprivation) are 

a consequence or at least an interaction with task repetition. Furthermore, caution is needed when in-

terpreting the source localization data, given the lack of structural MRIs and digitization of electrode 

positions. Finally, there are many other factors that can influence theta (fatigue, age, etc.), and fmTheta 

is not even the only manifestation of theta during cognition within a single task (Brzezicka et al., 2018; 

Pastötter & Bäuml, 2014). These results therefore cannot be generalized beyond classic frontal-midline 

theta as recorded from surface EEG. It is imperative to verify and expand these results with other exper-

iments, analyses, and participant populations.  

In conclusion, we do not provide a definitive resolution to the theta paradox but suggest three possible 

explanations for our results: 1) fmTheta and sdTheta are separate oscillations, but both can occur during 

sleep deprivation, maybe one as a compensation mechanism, the other as local sleep; 2) sdTheta is merely 

a more widespread form of fmTheta, and both reflect active cortical inhibition of task-irrelevant net-

works; 3) or both reflect passive cortical disengagement. 
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2.6 Supplementary material 

2.6.1 Published supplementary figures 

 

Figure 2.16: Questionnaire answers for each task. All answers were given on a ~10 cm slider with labels at specific 
intervals (indicated on the y-axis). White-filled circles indicate a significant change from BL, small colored circles a 
trend, FDR corrected. Each question was asked in this order. A 2-way rmANOVA was conducted for each question with 
factors session, task, and their interaction. Due to occasional missing data, not all analyses included every participant, 
therefore for each statistic, the degrees of freedom (subscript in F(A, B)) indicate the sample size (N=  B/A+1). No anal-
ysis had fewer than 16 participants, and the majority had all 18. A: “Please indicate your sleepiness right now.” (Ses-
sion: F(2, 30) = 35.42, p < .001, η2 = .35; Task: F(5, 75) = 14.7, p < .001, η2 = .073; Interaction: F(10, 150) = 0.96, p = .440, η2 = 
.008) B: “How did you experience this task? [Relaxing]” (Session: F(2, 30) = 5.13, p = .012, η2 = .019; Task: F(5, 75) = 41.97, 
p < .001, η2 = .530; Interaction: F(10, 150) = 1.11, p = .365, η2 = .010) C: “How did you experience this task? [Engaging]” 
(Session: F(2, 30) = 6.42, p = .015, η2 = .027; Task: F(5, 75) = 43.63, p < .001, η2 = .548; Interaction: F(10, 150) = 1.52, p = .191, 
η2 = .010) D: “How focused on the task were you?” (Session: F(2, 30) = 5.25, p = .016, η2 = .039; Task: F(5, 75) = 13.63, p < 
.001, η2 = .235; Interaction: F(10, 150) = 0.39, p = .853, η2 = .006) E: “How hard was it to perform this task?” (Session: F(2, 

30) = 7.02, p = .006, η2 = .038; Task: F(4, 60) = 31.67, p < .001, η2 = .426; Interaction: F(8, 120) = 0.71, p = .585, η2 = .008) F: 
“How much effort did you put into performing this task? (Think about how much you tried to do well, and how much 
more you could have done).” (Session: F(2, 28) = 2.17, p = .139, η2 = .022; Task: F(4, 56) = 4.84, p = .015, η2 = .114; Inter-
action: F(8, 120) = 0.37, p = .838, η2 = .006) G: “How well do you think you did the task?” (Session: F(2, 30) = 2.02, p = .156, 
η2 = .025; Task: F(4, 60) = 8.96, p < .001, η2 = .134; Interaction: F(8, 120) = 1.04, p = .401, η2 = .023) H: “How motivated 
were you during the task?” (Session: F(2, 20) = 6.93, p = .021, η2 = .070; Task: F(5, 50) = 19.61, p < .001, η2 = .381; Interac-
tion: F(10, 100) = 3.33, p = .020, η2 = .04). 
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Figure 2.17: Difference in theta power topographies between levels at BL for every epoch of the STM task. Level 
1 is compared to Level 3 (top row) and level 6 (bottom row) for each 2 s epoch. Encoding was when participants were 
viewing the items to memorize. Retention1 is the first half of the window in which participants had to hold the items 
in memory. Retention2 is the second half. Probe is when participants had to indicate whether a probe symbol was 
part of the original set. Participants’ answers ended the probe window, therefore this 2 s epoch could also encompass 
some of the rest window that followed. The color scale is the same as in Figure 2.4, with red indicating an increase in 
theta relative to L1. 
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Figure 2.18: STM EEG analysis pipeline. Starting data was preprocessed as described in Figure 2.19. Sections in black 
indicate steps in common between more than one analysis. Purple indicates steps for calculating power spectrums, 
teal indicates steps specific to topographies, and green steps for average region of interest (ROI) power. The ROI 
channels were pre-selected, and in the diagram the Front ROI is in blue (3, 4, 5, 6, 9, 10, 11, 12, 13, 15, 16, 18, 19, 
20, 22, 23, 24, 112, 118, 124), Center in yellow (7, 30, 31, 35, 36, 37, 41, 42, 47, 51, 52, 53, 54, 55, 60, 61, 62, 78, 79, 
80, 85, 86, 87, 92, 93, 97, 98, 103, 104, 105, 106, 110, 129), and Back in red (65, 66, 69, 70, 71, 74, 75, 76, 82, 83, 
84, 89, 90). STM epochs were all of 2 s duration, however the encoding epoch was shifted 0.1 s earlier to avoid initial 
retention EEG responses. The pipeline for all other task EEG analyses (e.g. Figure 2.7) is identical, except without trials 
or epoching, and using 8 s windows with 75% overlap across the first 4 minutes of data. 
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Figure 2.19: Pipeline for data preprocessing. Red steps were conducted on the data used for the power analysis (250 
Hz sampling rate, 0.5-40 Hz). Blue steps were conducted on the data used for the independent component analysis 
(ICA; 500 Hz sampling rate, 2.5-100 Hz). White-filled steps (B, G, I) involved manual work. A: First, data was low-pass 
filtered at 40 Hz using EEGLAB’s default filter. A Kaiser notch filter was then applied to remove 50 Hz line noise and 
subsequent harmonics. Data was then down-sampled to 250 Hz. A 0.5 Hz high-pass Kaiser-window based FIR filter 
was then applied (0.25 Hz stopband, 60 dB stopband attenuation, 0.05 passband ripple). B: The data was visually 
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inspected to identify bad channels (Figure 2.20A), bad time windows, and bad single-channel segments (i.e. snippets). 
Bad channels were considered as such that if they contained any non-physiological signals (anything not from the 
brain, muscles, or eyes) that occurred either continuously or repeatedly throughout the recording. Furthermore, ex-
ternal channels outside the EGI net were automatically removed (49, 56, 104, 113), as well as the face channels (126, 
127). Bad time windows were any segments in time in which an artifact affected multiple channels at once, often due 
to body movements or brief muscle clenching. Bad snippets were non-physiological artifacts affecting only a few 
channels. C: Prior to removing artifacts with ICA, bad channels were removed, snippets interpolated, and the data re-
referenced to the average. However, bad time windows were not removed. These are removed later (J). D: Data used 
for calculating the ICA was filtered and downsampled differently from A to maximize the detection of eye-movement 
artifacts. E-F: For ICA, only clean data was used, Cz was restored, and all channels re-referenced to the average. EE-
GLAB’s “runica” ICA algorithm was applied, with principal component analysis (PCA) rank reduction. Using EEGLAB’s 
ICLabel function (v1.2.4), the first 60 components were automatically classified as either brain data or artifacts. Com-
ponents were marked for removal if they had a “brain” classification value lower than .1 but restored if they had a 
classification as “other” larger than .6 (i.e. an unknown component). G: Visual inspection was then conducted to cor-
rect any misclassifications, or mark for removal additional bad components outside the first 60 (total components 
removed in Figure 2.20B). H-I: After the components were removed, one final visual inspection of the data was done 
to remove any additional bad channels, and possibly repeat the preprocessing if notable artifacts remained in the 
data. J: To have the same amount of data for each task, the first 4 minutes of clean data was used to calculate power. 
K: Channels 17, 48 and 119 were further removed from all datasets, as these were often removed due to poor signal 
quality in steps B and I. Channel 129 was removed for the source localization as its coordinates were not available. 

 

Figure 2.20: Removed channels and components for each recording and each session. A: Number of channels 
removed (out of 120). Each colored line represents a participant. The black line is the group average. B: Number of 
removed components after ICA (max 120). Asterisks indicate significant differences from paired t-tests between ses-
sions, FDR corrected, such that: * p-value < .05, ** p-value < .01, *** p-value < .001. 
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Figure 2.21: Pipeline for source localization analysis. A: To compute theta power for the source localization, we 
used a fast Fourier transform (FFT) with a Hanning taper, applied to each 8 s window. To construct the forward model, 
we obtained a finite-element head model, implemented with the SimBio toolbox based on the segmentation of the 
template T1 MRI image from the Montreal Neurological Institute into gray matter, white matter, cerebrospinal fluid, 
scalp and skull. Subsequently, a standard 3D grid (10 mm spacing, 3294 voxels inside the head) and the head model 
were used to compute the leadfield matrix. To avoid depth bias, the leadfield was normalized. As an inverse solution, 
we used the DICS beamformer technique. We first computed common spatial filters based on a cross-spectral density 
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matrix obtained from pooled conditions, with a regularization parameter lambda set to 5%. The pre-computed com-
mon spatial filters were then applied independently to each condition. After projecting each recording to the source 
space, each frequency was z-scored for each participant (as done in the channel space). B: 3D brain source maps. Non-
parametric cluster correction was implemented instead of FDR because it was only intended as a mask for the inflated 
brains plots, and not as hypothesis testing. First, independent samples t-tests for all voxels was done for the contrast 
of interest (2-tailed, p < .05). Next, significant neighboring voxels were clustered if they showed the same direction 
of effect. To assess the statistical significance of each cluster, a cluster-level test statistic was calculated by computing 
the sum of all t-values in the cluster. The significance of each cluster was estimated by comparing the cluster-level 
test statistic to a reference permutation distribution derived from the data. The reference distribution was obtained 
by randomly permuting the data 5000 times. The cluster p-value was estimated as the proportion of the elements in 
the reference distribution exceeding the cluster-level test statistic. For the visual representation of results, significant 
clusters of t-values were projected on the inflated brain surface. Due to uncertainty regarding the ability of surface 
EEG to detect deep brain structures’ electrophysiological activity (thalamus, amygdala, etc.) these areas were covered 
in a patch and not included in the next analysis. C: We additionally performed parcellation of the grid into 80 regions 
of interest (parcels), in accordance with the AAL atlas. Regions of the basal ganglia and cerebellum were excluded 
from further analysis. The median power for each frequency across voxels was used for each anatomical area. Power 
for all theta frequencies was then averaged, and paired t-tests were conducted for each parcel, FDR correcting for 
multiple comparisons. 

 

 

Figure 2.22: Uncorrected power spectrums from the front ROI for each task. Overlapping EEG power spectrums, 
untransformed, from the Front ROI of each task for every participant. The base curve of each colored patch represents 
the BL spectrum, the upper curve represents the SD spectrum, and the filled-in area reflects the increase in power. 
The average power change is the final patch in black. 
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Figure 2.23: Task performance by experiment order. Same data as Figure 2.14. Participants who conducted the 
baseline night after the sleep deprivation session are highlighted in blue (N = 4), the remainder are in yellow (N = 14). 

2.6.2 Spectrums for the short-term memory retention period 

Figure 2.24 provides the z-scored average spectrums for the three ROIs (front, center, back) for the first 

2 s retention period of the short-term memory (STM) task, highlighting the differences across memory 

load for each session. Notably, L3 theta has a double peak at BL in the 4-8 Hz range, whereas all levels 

have comparable frontal spectrums during SD. Given the low frequency resolution for 2 s windows (0.5 

Hz), these spectra were not used in the manuscript to determine whether fmTheta had a different peak 

frequency than sdTheta. 

 

Figure 2.24: Spectrum of the first half of the retention period (2 s) of the STM task. Each row represents a different 
ROI, each column a different session. The thin lines represent the spectrums for the three memory loads (1, 3 and 6 
items). Thick lines represent frequencies that were significantly different from L1, FDR corrected. The x-axis is log-
transformed. Acronyms: PSD (power spectral density), STM (short term memory task), BL (baseline), SR (sleep re-
striction), SR (sleep restriction), SD (sleep deprivation), FDR (false discovery rate), ROI (region of interest). 
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2.6.3 Reading increased sdTheta more than speaking 

The speech task had the lowest overall theta power, and the lowest and least widespread sdTheta. This 

task also had the most artifacts and was consequently the most preprocessed (i.e., it had the highest 

amount of artifact components removed using ICA). Therefore, results from this task should be taken 

with caution. It is however plausible that physical activity results in less theta; a study by Caldwell et al. 

(2000) found theta power was reduced when participants were standing compared to seated. To evaluate 

whether the reduced amount of theta was due to the preprocessing, or whether speech results in less 

theta activity, we compared theta power during epochs in which participants were reading and silently 

practicing the tongue twisters (between 2-30s) relative to when they were speaking (10 s). 

We calculated a two-way rmANOVA with factors Session (BL, SR, SD) and Epoch (Reading, Speaking) 

in the three ROIs. In the front ROI there was a significant effect of session (F(2, 30) = 18.145, p < .000, η2 = 

.372), a trending effect of epoch (F(1, 15) = 3.45, p = .083, η2 = .012), and a significant interaction (F(2, 30) = 6.78, 

p = .015, η2 = .022). In the center ROI there was a significant effect of session (F(2, 30) = 3.82, p = .034, η2 = 

.100), no effect of epoch (F(1, 15) = 0.08, p = .785, η2 < .000), and a significant interaction (F(2, 30) = 3.65, p = 

.047, η2 = .018). In the back ROI there no effect of session (F(2, 30) = 1.73, p = .197, η2 = .032), no effect of 

epoch (F(1, 15) = 0.39, p = .541, η2 = .001), and no interaction (F(2, 30) = 1.50, p = .240, η2 = .003).  

The interaction in frontal theta was driven by a steeper increase in theta with sleep deprivation during 

reading epochs, such that theta was higher when reading compared to speaking, but only during SD (Fig-

ure 2.25A). We compared theta topographies of SD and BL for the reading and speaking epochs sepa-

rately, and the speaking and reading epochs during SD (Figure 2.25B). The reading epochs had a larger 

and more widespread (max g = 2.16, N significant channels= 24) theta increase than speaking epochs 

(max g = 1.62, N chs = 8). When directly comparing SD Speaking and SD Reading, there was a decrease 

in theta in frontal channels, but no channel survived FDR correction. Overall, while it may still be the case 

that the preprocessing of the Speech EEG removed more data than in other tasks, the act of speaking 

results in slightly less theta than the act of reading in frontal channels. This supports the idea that the 

more engaging an activity, the less overall theta. 

 

Figure 2.25: A: Mean theta power during the Speech task for reading (dark green) and speaking epochs (pale green) 
across sessions for the three ROIs. White circles indicate a significant change from BL, filled circles a trend, FDR 
corrected. B: Difference in theta power (as Hedge’s g) between Speaking and Reading epochs from BL to SD, such that 
red indicates more theta during SD, and then Speaking and Reading during SD, with red indicating more theta during 
Speaking. White dots indicate a significant change, FDR corrected.  
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2.6.4 Innovations 

2.6.4.1 EWOQ 

Simone Accascina and I created the Experiment Web Organizer for Questionnaires (EWOQ). This al-

lowed us to first conduct anonymized online screening, in full compliance with Swiss Ethics. Then, 

throughout the experiment, we were able to easily collect digital questionnaires involving over 2000 

questions throughout both the control week (on participants personal devices) and during the experi-

ment (on standardized tablets). These questionnaires were reactive, such that depending on the answers 

given, there would be either further follow-up questions or not. In the case of the screening question-

naire, it also provided an immediate judgement on whether the applicant was qualified to participate or 

not. This was a robust system that maintained full anonymity while carefully organizing the question-

naires of all the individuals, with no data loss. It was easy to use for both sleep-deprived participants and 

experimenters.  

A key feature of EWOQ questionnaires that was not available on current commercial survey platforms 

was the option of visual analogue scales (Figure 2.26) that would not start with a default answer. This 

was important to avoid anchoring,1 as well as avoid defaulting to the same answer. We also implemented 

a feature that allowed participants to click on the provided labels so that they could easily give a precise 

answer if they preferred. Incidentally, this revealed that despite having a generous 9 options in the KSS, 

participants still preferred to give intermediate values. As demonstrated in section 3.6.2, page 94, these 

values could mean the difference between measuring the wake maintenance zone, or not. 

 

Figure 2.26: EWOQ questionnaire interface. Experimenter first selected the session information (Day, Block), then 
the participant continued the questionnaire, with each question appearing incrementally. The three-word code for 

 

1 Anchoring is when a participant’s answer is biased by some previously displayed information, usually a number (Furnham 
& Boo, 2011). 
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each participant was written at the top; this code linked all the questionnaires for a single participant together on 
the online server, fully anonymized. 

In addition to this project, EWOQ was used for two other studies in our lab, the Rebound closed-loop 

auditory stimulation project (Krugliakova et al., 2022), and the epilepsy project (Leach et al. in prep). 

2.6.4.2 4/24 extended wake paradigm 

Sleep deprivation studies are difficult and resource intensive. For this study, only me and one master 

student were involved in data collection, so we could not afford to conduct the ideal 40 h of sleep depri-

vation. Furthermore, it felt a bit “wasteful” to have a 24 h sleep deprivation paradigm, in which the only 

time participants were truly sleep deprived was the last 6 hours. Not only that, but the point of maximal 

homeostatic sleep pressure would then coincide with a compensatory circadian wake pressure in the 

morning, thus minimizing the effect.  

The solution was to shift the 24 h wake period during a single day. This meant two people could supervise 

the entire experiment taking shifts; a morning shift who woke the participant up in the middle of the 

night and kept them awake and entertained until midafternoon, and an evening shift that kept them 

awake until the end. This meant that all sleep deprivation recordings were done at elevated levels of 

homeostatic sleep pressure, which incidentally revealed the WMZ (section 3, page 70). 

2.6.4.3 Net mats 

EGI high-density nets are one of the most comfortable options available for sleep research, while main-

taining decent signal quality across the night, however they can still be quite painful. As my participants 

had to wear the nets for over 36 h, I decided to include an additional mat to place on the pillows of par-

ticipants (Figure 2.27). I knitted some spongy covers that eased the pressure points of the electrodes, 

although an acceptable alternative is IKEA TOFTBO bathroom mats, which have the advantage of being 

standardized, although not as comfortable. 

 

Figure 2.27: Hand-knit pillow cover. Eases pressure points of the EGI nets during sleep.  
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This paper will be published in iScience any day now, but is already available on BioRxiv (Snipes et al., 

2023). The experiment was designed as a replication of Finelli et al. (2000). Here, I determine to what 

extent the changes in power observed in the wake EEG are due to changes in the quantity of oscillations, 

or their amplitudes. 

I designed the experiment, collected the data, analyzed the data, and wrote the paper. Elias Meier helped 

me collect the data, created the preprocessing and analysis pipeline for the pupil data and helped write 

the relevant portions of the manuscript. His master’s thesis was on pupillometry during sleep deprivation. 

I only lightly adjusted the pipeline, and normalize pupil sizes across multiple measurements using irises. 

Sarah Meissner and Marc Bächinger provided supervision for this pupillometry work, designed the Odd-

ball task, and provided recording equipment. Sarah continued to follow the project until the end, offering 

advice on preprocessing, analysis, and interpretation. Hans-Peter Landolt provided advice at the begin-

ning of the project for the experiment design, but most importantly provided access to the climate con-

trolled sleep laboratory in which we conducted our experiments. All authors contributed to editing the 

manuscript. 

3.1 Summary 

Being awake means forming new memories, primarily by strengthening neuronal synapses. The increase 

in synaptic strength results in increasing neuronal synchronicity, which should result in higher amplitude 

electroencephalography (EEG) oscillations. This is observed for slow waves during sleep but has not been 

found for wake oscillations. We hypothesized that this was due to a limitation of spectral power analysis, 

which does not distinguish between changes in amplitudes from changes in number of occurrences of 

oscillations. By using cycle-by-cycle analysis instead, we found that theta and alpha oscillation amplitudes 

increase as much as 30% following 24 h of extended wake. These increases were interrupted during the 

wake maintenance zone (WMZ), a window just before bedtime when it is difficult to fall asleep. We found 

that pupil diameter increased during this window, suggesting the ascending arousal system is responsi-

ble. In conclusion, wake oscillation amplitudes reflect increased synaptic strength, except during the 

WMZ. 

3.2 Introduction 

Good sleep is essential for daily functioning and overall quality of life. The reason we need sleep is so that 

physiological systems used during the day have a dedicated period to rest and conduct structural mainte-

nance (Vyazovskiy & Harris, 2013), clear metabolic by-products (Hauglund et al., 2020; Xie et al., 2013), 

restore overall functioning to baseline levels (Killgore, 2010; Van Dongen et al., 2003), and more. This 
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means that we accumulate sleep need with time awake and can only restore balance following sleep, a 

process referred to as sleep homeostasis. Also important is the timing of sleep, controlled by a 24-h circa-

dian rhythm which allows independent systems across the body and brain to synchronize their recovery 

to the external world’s day/night cycle and thus optimize overall performance (Hastings et al., 2007; Patke 

et al., 2020). These homeostatic and circadian fluctuations make up the two-process model of sleep 

(Borbély, 1982). 

The homeostatic process of the two process model in particular was designed to explain the notable 

changes in sleep slow waves, electroencephalographic (EEG) oscillations between 0.5 and 4 Hz that char-

acterize NREM sleep (Achermann & Borbély, 2003). Slow wave activity decreases exponentially during 

NREM sleep, reflecting homeostatic sleep pressure dissipation. Vice versa, slow wave activity at the be-

ginning of sleep depends on the duration of prior wake, following an increasing saturating exponential 

function (Dijk et al., 1987, 1990). This means that the buildup in sleep need is steepest during the initial 

hours of wake, then gradually saturates with additional time awake (Figure 3.1A). 

A possible explanation for this increase in slow wave activity with prior wake is that wakefulness pro-

gressively increases neuronal synaptic strength when forming new memories, which then requires sleep 

to restore overall synaptic balance. This is referred to as synaptic homeostasis, as described by the syn-

aptic homeostasis hypothesis (Tononi & Cirelli, 2003). In essence, learning and acquiring memories re-

quires changes to the brain in the form of strengthened synaptic connections between utilized neurons. 

Increased synaptic strength increases overall connectivity which leads to increased synchronicity across 

the brain. This increased synchronicity between neurons will result in more synchronized oscillations in 

the surface EEG, detected as oscillations with larger amplitudes and steeper slopes as time awake in-

creases. The hypothesis then predicts that sleep, when inputs cease and new memories are no longer 

acquired, is the only time when synaptic balance can be re-normalized to baseline levels (Tononi & Cirelli, 

2003, 2014). Using computational models (Esser et al., 2007), animal sleep data (Vyazovskiy et al., 2007), 

and human sleep data (Riedner et al., 2007), the proponents of the synaptic homeostasis hypothesis 

demonstrated how decreasing synaptic strength across sleep results in the decrease of slow wave ampli-

tudes and slopes. 

While the combined models of sleep homeostasis and synaptic homeostasis can explain changes in slow 

wave activity across sleep, they do not likewise explain changes in wake oscillations. Human wake EEG 

is predominantly characterized by alpha oscillations (8-12 Hz) and to a lesser extent theta oscillations (4-

8 Hz), often measured as power in the frequency domain. Theoretically, the increased connectivity with 

time spent awake should affect these oscillations along a similar increasing saturating exponential func-

tion as for slow waves in sleep. However, while theta power does increase with sleep deprivation, the 

effect is rather linear (Finelli et al., 2000). Furthermore alpha power actually decreases (Cajochen et al., 

2002; Strijkstra et al., 2003). 

In addition to neither oscillation following a homeostatic trajectory, both are also affected by circadian 

rhythmicity (Aeschbach et al., 1997; Cajochen et al., 2002; Finelli et al., 2000; Strijkstra et al., 2003), further 

masking potential homeostatic effects. Alpha activity fluctuates in phase with core body temperature, a 

reliable circadian marker peaking in the middle of the day and lowest in the middle of the night (Åkerstedt 

et al., 1979; Cajochen et al., 2002). Instead, theta activity is lowest in the evening (Cajochen et al., 2002), 

corresponding to the wake maintenance zone (WMZ; Strogatz et al., 1987; Zeeuw et al., 2018). The 

WMZ, more dramatically known as the “forbidden sleep zone,” is a circadian window of 2-4 hours just 

prior to melatonin onset in which sleep becomes exceptionally difficult (Lavie, 1997). During the WMZ, 
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sleep onset latencies substantially increase even during extensive sleep deprivation (Dijk & Czeisler, 1995; 

Lavie, 1986), subjective sleepiness decreases, and behavioral performance improves (McMahon et al., 

2018, 2021; Shekleton et al., 2013; Zeeuw et al., 2018). The timing of the WMZ is not reflected in tradi-

tional circadian markers such as melatonin levels or core body temperature, it has not been reported in 

any animal models to our knowledge, and is not represented in the classic two-process model of sleep. 

Therefore, while increasing synaptic strength would have predicted an increase in both theta and alpha 

power with time spent awake, in practice neither oscillation strictly reflects this buildup in homeostatic 

pressure, and they are further synchronized to different circadian phases. However, the fact that wake 

oscillations do not reflect sleep homeostasis may be due to a limitation of spectral power analyses. 

“Power” refers to the amount of energy in a frequency band, and is typically calculated using some variant 

of the Fast Fourier Transform (M. X. Cohen, 2014). Once a time-series signal has been transformed into 

the frequency domain, power values are averaged or summed within a frequency range of interest, and 

this is the power for that band. While this is a simple and generally effective measure for quantifying 

oscillatory activity, it is simultaneously affected by the quantity of oscillations present in the signal and 

their amplitude, as well as broad-band changes in the entire spectrum (Donoghue et al., 2020). 

The synaptic homeostasis hypothesis predicts that an increase in synaptic connectivity results in an in-

crease in oscillatory amplitudes; this does not need to have any bearing on the number of oscillations that 

actually occur. It is therefore possible that non-homeostatic factors such as the WMZ could inde-

pendently affect the quantity of oscillations, whereas time spent awake more specifically affects their 

amplitude. When both oscillation amplitudes and quantities change independently across wake record-

ings, the resulting power values will reflect some undifferentiated mix between the two. By separating 

these contributions, we may have a specific marker of homeostatic sleep pressure during wake. Not only 

would this provide supporting evidence for the hypothesis that sleep homeostasis is linked to synaptic 

plasticity, but also provide a marker for sleep pressure more easily acquired than slow wave activity dur-

ing sleep. 

We therefore wished to determine whether the circadian and homeostatic influences on theta and alpha 

oscillations could be dissociated in resting wake EEG by separately measuring changes in amplitude and 

changes in quantities of oscillations. Eighteen young healthy adults participated in a 4/24 extended wake 

paradigm (Figure 3.1A), in which they slept the first 4 hours of the night and were then kept awake for 

24 hours with repeated resting state recordings (Figure 3.1B), while measuring high-density EEG. We 

conducted cycle-by-cycle analysis (Cole & Voytek, 2019) to identify bursts of oscillations in the theta and 

alpha range, a method which identifies oscillations based on the morphology of the EEG signal rather 

than relying on power and amplitude thresholds (for an in-depth explanation, see STAR Methods: Method 

details: EEG burst detection). We then looked at changes in the mean amplitude of bursts and the average 

number of cycles (i.e., oscillations present in a burst) per minute for each band. Our prediction was that 

both theta and alpha amplitudes would follow an increasing saturating exponential across extended wake 

and show decreases following sleep. At the same time, the decrease in alpha power with time awake 

should be explained by a decrease in the overall number of alpha oscillations. Likewise, circadian changes 

such as the decrease in theta during the WMZ should be reflected in decreases in the number of bursts. 

To independently monitor changes in alertness across the extended wake period, we also recorded pu-

pillometry with infrared cameras. Pupil diameter and pupil responses to salient stimuli have been linked 

to alertness-promoting activity in the locus coeruleus (Aston-Jones & Cohen, 2005; Joshi et al., 2016; P. 

R. Murphy et al., 2014), as well as other interconnected nuclei in the brainstem and forebrain that make 
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up the ascending arousal system (AAS; Lloyd et al., 2022; Reimer et al., 2016). While there are still many 

open questions about the link between pupil size and sleep/wake promoting nuclei, the relationship be-

tween any of these signals and EEG could help better explore the underlying mechanisms driving the 

changes in oscillatory activity across extended wake. In short, while the two-process model and the syn-

aptic homeostasis hypothesis provide specific predictions about wake EEG amplitudes, with pupillometry 

we hoped to provide possible explanations for changes in oscillatory occurrences. 

 

Figure 3.1: Experiment design. A: The two-process model during a 4/24 extended wake schedule. The red line reflects 
the homeostatic process, building sleep pressure monotonically with wake and dissipating during sleep. The blue line 
reflects the circadian process, peaking in the middle of the day and at its lowest in the middle of the night, independ-
ent of actual sleep and wake behavior. The shaded area reflects the resulting sleep pressure from combining these 
two processes. Black filled blocks indicate when participants actually slept, whereas the outline indicates the window 
in which they would have slept according to their circadian rhythm. B: Experiment schedule. Each block indicates an 
EEG recording session. Filled blocks indicate data analyzed in this paper. Color indicates the activity participants en-
gaged in: gray, watching TV; red, the resting state recordings in C; teal, task blocks analyzed in Snipes et al. (2022); 
purple, the MWT; black, sleep. The height of each block indicates the condition in which data was collected: short, 
lying in bed; medium, seated in a comfortable armchair with foot and backrest / standing; tall, seated at a desk. Brief 
empty spaces indicate transition periods allowing for delays. Six longer breaks were included prior to each TV block 
in which participants were provided with meals. Circadian time was normalized across participants to their habitual 
bedtime. Participants at baseline and during the recovery night were free to wake up when they wished, and at the 
beginning of the extended wake period they were woken up after 4 h of sleep. C: Timeline for the resting state 
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recordings. Each condition was 6 minutes, and always done in the depicted order. Between the Oddball and Standing, 
a questionnaire was conducted which took a variable amount of time, followed by moving the participant from the 
armchair to standing. 

3.3 Results  

We recorded EEG, pupillometry, and questionnaire data from participants performing 3 wake resting 

state recordings for 6 minutes each (Figure 3.1C). The first was a standard condition, Fixation, in which 

participants were seated in a comfortable armchair and had to gaze at a fixation point ~3 m away. The 

second was an active auditory Oddball, in which tones were presented randomly and participants had to 

push a button after “oddball” (i.e. deviant) tones. Afterwards, participants filled out a questionnaire and 

then got up for the final recording of Standing with eyes closed. They were asked to stand for this condi-

tion because during sleep deprivation participants quickly fall asleep with eyes closed. These rest record-

ings were conducted 12 times: before and after each of the 3 nights of sleep, and 6 more times throughout 

the extended wake period approximately 3 hours apart, for a total of 8 recordings across extended wake 

(Figure 3.1B). The primary focus of this study was the Fixation condition, used in previous studies. The 

auditory Oddball was included as an exploratory condition to evaluate changes in pupillometry with time 

awake, especially responses to target tones which are thought to reflect activity in the locus coeruleus 

(P. R. Murphy et al., 2014). The EEG of both the Oddball and the Standing with eyes closed conditions 

were investigated in order to establish the sensitivity to homeostatic effects of other conditions. 

For every outcome measure, we conducted paired t-tests on the overnight changes of the baseline night 

(BL Pre vs BL Post), the extended wake changes (S1 vs S8) and the changes during the WMZ (S5/S8 vs 

S6/S7), the timing of which could be independently determined through changes in subjective sleepiness 

(Figure 3.2). All t-values, degrees of freedom, p-values, and Hedge’s g effect sizes are provided together 

in Table 3.1. Throughout the text, only the corresponding t-values will be reported, unless either effect 

sizes or p-values are specifically of interest (e.g. when trending). 

 

Figure 3.2: Subjective sleepiness. Sleepiness was measured on a continuous visual-analog adaptation of the KSS, 
using the original labels as markers (y-axis). The thick black line indicates the group average, and thin colored lines 
are datapoints of individual participants. Solid lines connect sessions during the same-day extended wake period, and 
dashed lines indicate changes across sleep. S1-S8 are spaced out relative to the time they occurred within the 24 h 
wake period (Figure 3.1B). The shaded gray area indicates the WMZ.  
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Condi-

tion Overnight baseline Extended wake WMZ 

Sleepiness − t(15) = −0.21, p = .833, g = −0.06 t(16) = 7.36, p < .001, g = 2.61 t(16) = −3.36, p = .004, g = −1.13 

Theta power 

Fixation t(17) = −4.80, p < .001, g = −0.83 t(16)  = 9.66, p < .001, g = 2.99 t(16) = −5.96, p < .001, g = −1.78 

Oddball t(17) = −3.19, p = .005, g = −0.70 t(16)  = 10.41, p < .001, g = 3.76 t(16) = −6.92, p < .001, g = −2.17 

Standing t(16) = −0.57, p = .574, g = −0.14 t(16) = 5.97, p < .001, g = 2.26 t(16) = −5.19, p < .001, g = −1.21 

Alpha power 

Fixation t(17)  = 1.75, p = .098, g = 0.26 t(16) = 3.03, p = .008, g = 1.07 t(16) = −2.86, p = .011, g = −0.63 

Oddball t(17) = 0.82, p = .421, g = 0.13 t(16) = 3.89, p = .001, g = 1.32 t(16) = −3.61, p = .002, g = −0.89 

Standing t(16) = 2.57, p = .020, g = 0.71 t(16) = −1.44, p = .168, g = −0.49 t(16) = −1.13, p = .276, g = −0.16 

Theta burst 

amplitude  

Fixation t(15) = −2.06, p = .057, g = −0.74 t(16) = 6.71, p < .001, g = 2.40 t(16) = −3.19, p = .006, g = −0.70 

Oddball t(16) = −1.99, p = .064, g = −0.47 t(15) = 6.92, p < .001, g = 2.51 t(16) = −4.78, p < .001, g = −1.50 

Standing t(16) = −2.55, p = .022, g = −0.55 t(16) = 2.15, p = .047, g = 0.80 t(16) = −0.46, p = .655, g = −0.10 

Alpha burst 

amplitude 

Fixation t(17) = −5.55, p < .001, g = −0.75 t(16) = 4.49, p < .001, g = 1.65 t(16) = −3.71, p = .002, g = −0.97 

Oddball t(17) = −2.00, p = .061, g = −0.43 t(16) = 7.52, p < .001, g = 2.18 t(16) = −6.47, p < .001, g = −1.58 

Standing t(16) = 0.14, p = .889, g = 0.04 t(16) = 0.17, p = .870, g = 0.06 t(16) = −2.22, p = .041, g = −0.32 

Theta burst 

cycles/min 

Fixation t(17) = 1.08, p = .295, g = 0.34 t(16) = 5.57, p < .001, g = 2.00 t(16) = −1.77, p = .095, g = −0.58 

Oddball t(17) = 1.25, p = .227, g = 0.30 t(16) = 7.80, p < .001, g = 2.52 t(16) = −4.03, p = .001, g = −1.24 

Standing t(16) = 0.67, p = .513, g = 0.24 t(16) = 4.68, p < .001, g = 1.70 t(16) = −5.02, p < .001, g = −1.66 

Alpha burst 

cycles/min 

Fixation t(17) = 3.32, p = .004, g = 0.96 t(16) = −2.87, p = .011, g = −1.13 t(16) = 1.98, p = .065, g = 0.67 

Oddball t(17) = 2.63, p = .017, g = 0.77 t(16) = −3.31, p = .004, g = −1.37 t(16) = 2.51, p = .023, g = 0.48 

Standing t(16) = 3.63, p = .002, g = 0.89 t(16) = −6.17, p < .001, g = −1.73 t(16) = 2.91, p = .010, g = 0.56 

Pupil diame-

ter (mean) 

Fixation t(13) = 0.39, p = .699, g = 0.13 t(16) = −3.78, p = .002, g = −1.22 t(15) = 4.65, p < .001, g = 1.26 

Oddball t(12) = −1.79, p = .099, g = −0.47 t(12) = −1.39, p = .189, g = −0.59 t(12) = 2.17, p = .051, g = 0.64 

Pupil diame-

ter (STD) 
 

Fixation t(13) = −3.76, p = .002, g = −0.98 t(16) = 3.52, p = .003, g = 1.25 t(15) = −1.69, p = .111, g = −0.65 

Oddball t(12) = −3.66, p = .003, g = −1.22 t(12) = 4.74, p < .001, g = 1.56 t(12) = −2.58, p = .024, g = −0.90 

Pupil oddball 

response 
Oddball t(9) = 0.26, p = .802, g = 0.07 t(11) = −1.58, p = .143, g = -0.55 t(9) = 2.08, p = .067, g = 0.74 

Blink rate 
Fixation t(13) = −1.32, p = .209, g = −0.39 t(16) = 0.62, p = .545, g = 0.22 t(15) = −1.25, p = .229, g = −0.42 

Oddball t(13)  = −0.02, p = .987, g = −0.01 t(13) = 4.37, p = .001, g = 1.44 t(15) = −0.21, p = .839, g = −0.08 

Ocular micro-

sleeps (%) 

Fixation t(13) = −0.97, p = .350, g = −0.32 t(16) = 4.81, p < .001, g = 1.56 t(15) = −4.85, p < .001, g = −1.68 

Oddball t(13) = −1.32, p = .210, g = −0.47 t(13) = 4.18, p = .001, g = 1.41 t(15) = −6.28, p < .001, g = −2.16 

Table 3.1: Statistics results. Paired t-tests were conducted to determine overnight changes at baseline (BL Pre vs BL 
Post), changes across 24 h of extended wake (S1 vs S8), and deviations from the wake trajectories during the WMZ 
(S5&S8 vs S6&S7). All values were z-scored for each participant, pooling sessions, and conditions. Power values were 
z-scored separately for each frequency prior to being averaged into bands, and pupil oddball responses were z-scored 
also across timepoints prior to measuring the average response. Degrees of freedom are specified in the subscript of 
t-values and reflect the sample size for each comparison (N = DF + 1). Effect sizes are provided as Hedge’s g values. 
All statistics are with α = 5%, significant p-values are in bold. There is no correction for multiple comparisons, given 
that the hypothesis being tested only applied to extended wake changes in the Fixation condition, and all other tests 
were either exploratory or confirmatory (see STAR methods). 

3.3.1 Changes in theta power but not alpha power replicate previous results 

Before investigating oscillatory burst activity, we first determined whether our novel experimental para-

digm replicated findings of previous studies showing both circadian and homeostatic changes in theta 

and alpha power. We expected an increase in theta and a decrease in alpha with increasing time awake, 
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as well as a dip in theta during the WMZ, and a peak in alpha in the middle of the day (Cajochen et al., 

2002). Power spectral density was calculated using Welch’s method for every channel during each re-

cording. These values were z-scored separately for each frequency, pooling channels, conditions, and 

sessions. Z-scored power values were then averaged across channels, and then averaged within the theta 

and alpha bands. 

Changes in theta power are plotted in Figure 3.3A. After the baseline night, there was a significant de-

crease in theta power for the Fixation (t(17) = −4.80) and Oddball recordings (t(17) = −3.19), but no change 

during Standing with eyes closed (t(16) = −0.57). Across extended wake there was a substantial increase 

in theta power in all conditions (Fixation, t(16)  = 9.66; Oddball, t(16)  = 10.41; Standing, t(16) = 5.97). During 

the WMZ, all conditions showed very large and significant decreases in theta power (Fixation, t(16) = −5.96; 

Oddball, t(16) = −6.92; Standing, t(16) = −5.19). 

Changes in alpha power are plotted in Figure 3.3B. After the baseline night, alpha power showed a trend 

increase for Fixation (t(17)  = 1.75, p = .098), no change for Oddball (t(17) = 0.82), and a significant increase 

during Standing (t(16) = 2.57). Across extended wake, alpha actually increased for Fixation (t(16) = 3.03) and 

Oddball (t(16) = 3.89) and showed no significant change during Standing, although on average decreased 

(t(16) = −1.44). A significant dip in alpha was present during the WMZ in the Fixation condition (t(16) = 

−2.86) and even more prominent in the Oddball (t(16) = −3.61). 

 

Figure 3.3: Z-scored power band changes. A: Theta power (4-8 Hz) and B: alpha power (8-12 Hz). Thick lines indicate 
group averages for each condition (as different colors) across sessions (x-axis). Solid lines connect sessions during 
the same-day extended wake period, and dashed lines indicate changes across sleep. S1-S8 are spaced out relative to 
the time they occurred within the 24 h wake period (Figure 3.1B). Dots reflect individual participants’ datapoints. The 
shaded gray area indicates the WMZ. Power spectral density values were first z-scored for each frequency pooling 
channels, sessions, and conditions. All channels were included in the average except edge channels: 48, 63, 68, 73, 
81, 88, 94, 99, 119. Finally, z-scored values within each band range were averaged. 

Given the discrepancy with previous results that found decreases in alpha with sleep deprivation (Ca-

jochen et al., 2002; Strijkstra et al., 2003), we inspected the spectrograms of z-scored power to determine 

whether some other factor was contributing to the increase in alpha in our data (Figure 3.11). We found 

broadband increases in power with time awake, as well as increases in theta and beta power extending 

into the alpha range. Furthermore, unlike previous experiments, our 4/24 design is such that S1 and S8 

were during the lowest circadian points for alpha power. The broadband and neighboring band effects 

may have had a stronger influence on final alpha power compared to previous studies, thus explaining 

the discrepancy. 

  

    

 

   

 

   

 
 
 
  
  
 
 
 
  
  
  
  

  
 
 

        

       

        

  

    

 

   

 

   

 
  
 
 
  
 
 
 
  
  
  
  
  
 
 

  



 How and when EEG reflects neuronal changes in connectivity due to time awake  

77 

 

3.3.2 Oscillation amplitudes increase with extended wake independently from 

quantities, but decrease during the WMZ 

Cycle-by-cycle analysis was used to identify bursts between 2 and 14 Hz (a schematic of the algorithm is 

provided in Figure 3.9). Figure 3.4 provides an example of the EEG and burst detection during S8. The 

detected bursts were then split into theta (mean frequency between 4 and 8 Hz), and alpha (8 and 12 

Hz). Oscillation amplitudes were quantified as the average negative-to-positive peak voltage for all the 

cycles involved in a burst. The “number” of oscillations were quantified as the number of cycles per mi-

nute. 

 

Figure 3.4: Example of detected bursts. 10 seconds of data from P15 Fixation (see Figure 3.13A). EEG data traces are 
in gray. Thick colored lines indicate the “reference” burst, the longest among temporally overlapping bursts in the 
same channel. Thin colored lines indicate overlapping bursts across channels considered to be the “same” burst as 
the reference. These were associated with the reference because mean frequencies were within 1 Hz of each other. 
Different colors represent different frequency bands. 

Figure 3.5 plots the change in theta and alpha bursts by average amplitude (Figure 3.5A-B), and cycles 

per minute (Figure 3.5C-D). Amplitudes tended to decrease after baseline sleep for theta (Fixation: t(15) = 

−2.06, p = .057; Oddball: t(16) = −1.99, p = .064; Standing: t(16) = −2.55, p = .022). Amplitudes significantly 

decreased after sleep for alpha Fixation (t(17) = −5.55), were trending for Oddball (t(17) = −2.00, p = .061), 

and showed no change during Standing (t(16) = 0.14). During extended wake, amplitudes increased sub-

stantially for both theta and alpha in the Fixation (theta t(16) = 6.71; alpha t(16) = 4.49) and Oddball condi-

tions (theta t(15) = 6.92; alpha t(16) = 7.52). Theta amplitudes increased during wake in Standing (t(16) = 2.15, 

p = .047) but no change was observed in alpha amplitudes during Standing (t(16) = 0.17). The trajectory of 

the increase in amplitudes for both theta and alpha, and Fixation and Oddball, approximated that of an 

increasing saturating exponential function, with steeper increases at the beginning (S1 to S3 theta Fixa-

tion increased by 19% [interquartile range (IQR): 7, 27], theta Oddball 19% [10, 26]; alpha Fixation 14%  

[5, 19], alpha Oddball 14% [7, 20]) compared to end of the wake period (S1 to S8 theta Fixation 31% [10, 

42], theta Oddball 29% [20, 35]; alpha Fixation 20% [9, 28]; alpha Oddball 27% [13, 34]). Theta Standing 

amplitudes only increased across the first six hours (S1 to S3: Standing 11% [0, 16]; S1 to S8: Standing 

11% [-2, 22]), and alpha increased from S1 to S2, then decreased from S5 to S6. Against our expectations, 
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however, both theta and alpha showed a robust decrease in amplitude during the WMZ for both Fixation 

(theta t(16) = −3.19; alpha t(16) = −3.71) and Oddball (theta t(16) = −4.78; alpha t(16) = −6.47). 

Changes across baseline sleep in cycles per minute went in the opposite direction from amplitudes: theta 

quantities on average increased although this was not significant (Fixation t(17) = 1.08; Oddball t(17) = 1.25; 

Standing t(16) = 0.67) and alpha significantly increased (Fixation t(17) = 3.32; Oddball t(17) = 2.63; Standing 

t(16) = 3.63). During extended wake, theta quantities significantly increased in all conditions along a mostly 

linear trajectory (Fixation t(16) = 5.57; Oddball t(16) = 7.80; Standing t(16) = 4.68), whereas alpha quantities 

decreased (Fixation t(16) = −2.87; Oddball t(16) = −3.31; Standing t(16) = −6.17), primarily during S8. During 

S1, theta occupied on average 8% [IQR: 1, 8] of the Fixation recording (Oddball: 10% [1, 13]; Standing: 

12% [2, 16]) and this more than doubled to 22% [4, 34] during S8 (Oddball: 25% [7, 37]; Standing: 27% 

[8, 33]). Instead, alpha occupied 54% [24, 78] of the Fixation recording during S1 (Oddball: 54% [27, 72]; 

Standing: 80% [59, 96]), which decreased to 42% [26, 58] during S8 (Oddball: 41% [26, 57]; Standing: 56% 

[35, 78]). 

Theta and alpha cycles per minute were significantly affected by the WMZ in opposite directions during 

the Standing (theta t(16) = −5.02; alpha t(16) = 2.51) and Oddball conditions (theta t(16) = −4.03; alpha t(16) = 

2.91) but trending in Fixation (theta t(16) = −1.77, p = .095; alpha t(16) = 1.98, p = .065), such that theta 

quantities decreased relative to the overall trajectory, and alpha increased (or did not decrease along the 

expected trajectory). 

 

Figure 3.5: Z-scored burst changes in amplitude and quantity. A: Average theta burst amplitudes, B: alpha burst 
amplitudes, C: number of theta cycles per minute, D: alpha cycles per minute. Thick lines indicate group averages for 
each condition across sessions (x-axis), with color indicating condition. Solid lines connect sessions during the same-
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day extended wake period, and dashed lines indicate changes across sleep. S1-S8 are spaced out relative to the time 
they occurred within the 24 h wake period (Figure 3.1B). Dots reflect individual participants’ datapoints. The shaded 
gray area indicates the WMZ. All values are z-scored within each figure, such that sessions and conditions were pooled. 

To determine whether oscillation amplitudes and quantities originated from the same areas, we in-

spected the mean distribution of amplitudes and cycles per minute for theta and alpha bursts across the 

123 channels, pooling sessions (Figure 3.6A-B). To determine whether the changes observed in Figure 

3.5 were spatially dependent, we performed paired t-tests between S1 and S8 for each channel, with 

false-discovery rate (FDR) correction (Figure 3.6C-D).  

For all three conditions, theta bursts were located primarily in frontal-midline channels, which also gen-

erated the largest amplitudes (Figure 3.6A). The increases observed with extended wake were wide-

spread although somewhat patchy for both amplitudes and cycles per minute (Figure 3.6C) and were not 

limited to the main frontal-midline sources of theta. Alpha amplitudes and cycles per minute were instead 

spatially dissociated (Figure 3.6B), with high amplitudes originating more occipitally, and high quantities 

originating more centro-parietally. While the increase in alpha amplitudes in the Fixation and Oddball 

were similarly widespread as in theta, during the Standing condition the increase was only frontal (Figure 

3.6D, top row). Instead, the decrease in alpha quantities was localized to the centro-parietal regions in 

Fixation and Oddball, with more widespread decreases in Standing (Figure 3.6D, bottom row).  

 

Figure 3.6: Topographic distribution of burst amplitudes and cycles per second. A-B: Amplitudes (top row) and 
cycles per minute (bottom row) for theta (A) and alpha bursts (B) across 123 channels for each condition, z-scored 
and averaged across all sessions. Warmer colors indicate higher amplitudes/quantities. C-D: Change in amplitudes 
and cycles/min from S1 to S8 for theta (C) and alpha bursts (D) represented as t-values, such that red indicates an 
increase with time awake. White dots indicate channels for which the difference was significant (p<.05, N = 17) based 
on paired t-tests, with false discovery rate correction. 
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3.3.3 Pupil diameter means and standard deviations change during the WMZ, 

while pupil responses to oddball tones do not 

To explore further what drives the different trajectories observed in the EEG data across wake, and in 

particular the changes in the WMZ, we analyzed pupillometry data from the Fixation and Oddball condi-

tions. In both, mean pupil diameter after an initial decrease remained largely constant during the ex-

tended wake period (Figure 3.7A), with a specific increase during the two WMZ timepoints (Fixation t(15) 

= 4.65; Oddball t(12) = 2.17, p = .051). There was also a significant drop in pupil diameter from S1 to S8 

during Fixation (t(16) = −3.78, p = .002) but not Oddball (t(12) = −1.39, p = .189). Interestingly, the two base-

line recordings done in the evening an hour before bedtime (BL Pre, Pre) showed larger diameters during 

Oddball than during Fixation (BL Pre: t(12) = 2.18, p = .050, g = 0.62; Pre: t(16) = 3.22, p = .005, g = 0.63), but 

not during the same recording of extended wake (S7 t(14) = -0.77, p = .453, g = -0.16). This indicates an 

interaction, at least within the WMZ, between recording condition, pupil diameter, and prior sleep re-

striction. 

Standard deviations of pupil diameter were also assessed (Figure 3.7B). Across sleep, there was a large 

significant decrease in standard deviations for both conditions (Fixation t(13) = -3.76; Oddball t(12) = -3.66). 

During extended wake, standard deviations increased to maximum values in the afternoon (S4, 15:00). 

Standard deviations then tended to decrease during the WMZ, although the effect was only significant 

in the Oddball (t(12) = −2.58, p = .024) and not Fixation (t(15) = −1.69, p = .111). Across wake there was a 

significant increase in standard deviations from S1 to S8 (Fixation t(16) = 3.52; Oddball t(12) = 4.74), although 

S8 Oddball values returned to those of S3-S5 after the WMZ, whereas S8 Fixation remained lower.  

 

Figure 3.7: Pupil diameter. A: Mean diameter and B: standard deviations. C: Oddball pupil diameter response to target 
tones relative to standard tones from 0.5 to 2 s after tone onset. Colored lines indicate data from individual partici-
pants. Timecourses are provided in Figure 3.12. 

Finally, we investigated the pupil response to target tones during the auditory Oddball condition (Figure 

3.7C, Figure 3.12). Unfortunately, there was substantial data loss due to increased eye-closure with ex-

tended wake (Figure 3.8B) combined with equipment malfunctions during measurements, so power for 

this analysis is reduced. Pupil response to oddball tones was quantified as the area under the curve be-

tween the pupil response to targets relative to standard tones, from 0.5 to 2 s after tone onset. There 

was no change in response to targets from evening to morning around a baseline night of sleep (t (9) = 

0.26), nor was there a significant change from beginning to end of the extended wake period, although 

there was on average a decrease in pupil oddball response (t(11) = -1.58). There was trending effect of the 

WMZ (t(9) = 2.08, p = .067). However, as can be seen from Figure 3.7C, this was almost entirely due to a 

drop in the oddball response for S8 relative to previous sessions (e.g. S5 vs S8: t(10) = 2.77, p = .020, g = -
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1.07). Furthermore, there was never a return to baseline values of pupil oddball response following re-

covery sleep (Pre vs Post: t(13) = 2.43, p = .030, g = -0.62), complicating any potential interpretation. 

3.3.4 Ocular microsleeps are sensitive to the WMZ, blink rates are not 

In addition to actual pupil diameters, the same eye-tracking cameras were sensitive to ocular behavior 

such as blinking and microsleeps, both of which increase with sleepiness (Crevits et al., 2003; Moller et 

al., 2006) and can potentially affect measures of pupillometry. We therefore wished to determine 

whether the changes in pupillometry could be explained by ocular behavior, based on whether they fol-

lowed similar trajectories across time. We measured all eye-closures and split them into blinks when less 

than 1 s (Fatt & Weissman, 2013; Kwon et al., 2013), and as ocular microsleeps when longer than 1 s 

(Hertig-Godeschalk et al., 2020). We specify “ocular” to distinguish from microsleeps properly classified 

with the EEG (Hertig-Godeschalk et al., 2020), and we label them as “microsleeps” rather than merely 

eye-closures because prolonged eye-closures during sleep deprivation are predictive of behavioral lapses 

in auditory tasks (Ong et al., 2013). 

Blink rates (Figure 3.8A) gradually increased across wake in the Oddball (t(13) = 4.37) but not Fixation 

condition (t(16) = 0.62), and there was no change during the WMZ (Fixation t(15) = −1.25; Oddball t(15) = 

−0.21). Therefore, blinking could not explain changes in pupillometry. At the same time, the amount of 

ocular microsleeps was extremely sensitive to the WMZ (Fixation t(15) = −4.85; Oddball t(15) = −6.28), re-

turning almost entirely to baseline levels. However, across extended wake, ocular microsleeps otherwise 

increased linearly, starting from near zero and reaching 10-15% of the recordings by S8 (Fixation t(16) = 

4.81; Oddball t(13) = 4.18). Like with blinking, this trajectory was not reflected in the various measures of 

pupillometry, and therefore cannot explain the results.  

 

Figure 3.8: Eye-closures. A: Number of blinks per minute. A blink is defined as any eye-closure less than 1 s long. B: 
Percent of recording with ocular microsleeps (eyes closed longer than 1 s). N.B. here raw values are provided, although 
the statistics described in the text are with z-scored values. 
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3.4 Discussion 

The two-process model of sleep has been the backbone of sleep research for the past 40 years, and has 

withstood the test of time (Borbély et al., 2016). Not only is sleep homeostasis uncontroversial, it is now 

used to prove whether a given organism sleeps at all (Tobler, 1985, 1995). The synaptic homeostasis hy-

pothesis has been more contentious, especially in the details of the underlying mechanisms behind “syn-

aptic strengthening” (Cary & Turrigiano, 2021; Frank, 2011, 2013), however the general idea is compelling: 

that synaptic changes during the day requires sleep to restore synaptic balance. Both of these models 

were based primarily on observations during sleep, and while they made testable predictions of what 

should occur during wake, measurements of EEG power did not conform to expectations. The two-pro-

cess model of sleep postulated that sleep need accumulates along an increasing saturating exponential 

function with time awake (Figure 1A), and the synaptic homeostasis hypothesis proposed that this pro-

cess is driven by increasing synaptic strength, which results in increased neuronal synchrony (Borbély, 

1982; Tononi & Cirelli, 2003). By separately analyzing oscillation amplitudes and quantities, we were able 

to validate these predictions. 

Our results reveal that indeed both theta and alpha amplitudes follow an increasing saturating exponen-

tial trajectory across extended wake, following the predicted trajectory of sleep homeostasis (Figure 

3.5A-B vs Figure 3.1A). Furthermore, both theta and alpha amplitudes returned to baseline levels follow-

ing recovery sleep, with trending decreases for theta and highly significant decreases for alpha around 

baseline sleep. These results therefore match the predictions of the two-process model and the synaptic 

homeostasis hypothesis. It is still possible that synaptic strength does not drive this increase in ampli-

tudes, but at the very least, changes in wake oscillation amplitudes correspond to the changes observed 

in slow wave activity (Borbély, 1982; Dijk et al., 1987). 

In particular, the fact that the number of alpha oscillations decreased at the same time as amplitudes 

increased, and the former was widespread and the latter was localized (Figure 3.7D), clearly indicates a 

dissociation between these homeostatic changes in amplitude from whatever process causes oscillations 

to occur in the first place. More subtly, while both theta amplitudes and quantities increased during ex-

tended wake, the trajectories were different, suggesting again distinct mechanisms. In both cases, spec-

tral power was insufficient to capture these trends with time, as it cannot differentiate between simul-

taneous and comparably large changes in amplitudes and quantities. 

These results invite re-analysis of many previous findings showing differences in power between condi-

tions and populations. Efforts are already underway to distinguish the effects of periodic and aperiodic 

components of the EEG spectrum (Donoghue et al., 2020). Therefore, in cases in which the effect is 

largely periodic, further investigation should determine whether it is the amplitude or quantities of oscil-

lations that change; this can then provide more interpretable results. In the context of understanding 

synaptic plasticity for example, it would be beneficial to re-analyze data from the studies of Hung et al. 

(2013) and Bernardi et al. (2015). These two landmark studies found that theta power in resting state 

EEG increased locally depending on prior daytime activity. Re-analysis of these datasets may reveal 

whether this effect was specific to oscillation amplitudes, even in the alpha band, which would further 

support the interpretation that such local effects are driven by spatial differences in synaptic strength-

ening. 

Sensitivity of different conditions to sleep homeostasis. Beyond demonstrating whether the standard 

eyes-open resting EEG would be sensitive to sleep and synaptic homeostasis, we were interested in es-

tablishing whether this generalized to other conditions. We indeed found that the EEG of the Oddball 
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followed the same trajectories as Fixation, but the Standing condition did not. Theta Standing amplitudes 

did not increase past S3 during the extended wake period, and alpha Standing amplitudes neither de-

creased following sleep, nor did they increase during extended wake past S2. Given the overall larger 

amplitudes in this condition, this may be at least partially due to a ceiling effect. At the same time, given 

the eyes-closed condition, it’s also possible that participants were closer to “true sleep” during S8 Stand-

ing. This is supported by the complete change in spectrogram in the Standing Back ROI (Figure 3.11). 

Altogether, our results indicate that oscillation amplitudes tend to reflect sleep homeostasis, however 

this is not the only factor contributing to these amplitudes. In practice, this means that different record-

ing conditions will be more or less sensitive to changes in sleep homeostasis. 

Cortical desynchronization during the WMZ. What did not match our predictions at all were oscillatory 

amplitudes during the WMZ. In both Fixation and Oddball, theta and alpha oscillation amplitudes de-

creased during the WMZ, then returned to their previous trajectories during S8. The effect sizes of the 

WMZ were actually larger for amplitudes compared to the number of oscillations (Table 3.1). The fact 

that oscillation amplitudes decreased implies that whatever mechanism drives the WMZ, it results in 

overall desynchronized cortical activity. Supporting this finding of cortical desynchrony, Ly et al. found 

that transcranial-magnetic stimulation (TMS) evoked potentials, reflecting cortical excitability, had lower 

amplitudes during the WMZ compared to earlier in the day (Ly et al., 2016). Except for such circadian 

changes, TMS evoked potentials across the day reflect sleep homeostasis, increasing with time awake 

and decreasing following sleep (Huber et al., 2013). However more generally, increased cortical synchro-

nization reflects decreasing levels of consciousness, with deeper sleep stages and comatose states pro-

ducing the largest evoked potentials (Casali et al., 2013; Massimini et al., 2005; Sarasso et al., 2014). 

Therefore it’s possible that the WMZ may even reflect a qualitatively distinct state of alertness.  

In practice, this means that oscillation amplitudes can usually be used as a marker for homeostatic sleep 

pressure, except during the hours before habitual sleep. We don’t consider this dip in amplitudes during 

the WMZ (and the difference in Standing oscillation amplitudes described above) to indicate that the 

two-process model and synaptic homeostasis hypothesis are inaccurate, just that amplitudes of oscilla-

tions are no longer accurately reflecting the wake-related changes in neuronal connectivity and sleep 

homeostasis.  

Timing and duration of the WMZ. It is noteworthy how the WMZ briefly interrupts both the linear in-

crease in theta quantities and the saturating exponentials of theta and alpha amplitudes. This highlights 

how the WMZ is limited in time, unlike the gradual circadian component of the two-process model (Fig-

ure 3.1A). The model was established based on measures of alertness, core body temperature, and mel-

atonin concentration, all of which changed approximately sinusoidally across 24 h (Åkerstedt et al., 1979). 

While none of our outcome measures were paralleling these sinusoidal fluctuations, almost all of them 

were clearly affected by the brief WMZ. We therefore suspect that a specific pathway is responsible for 

the WMZ, distinct from melatonin concentration and core body temperature, although still synchronized 

to the suprachiasmatic nucleus (SCN), the brain’s timekeeper (Aston-Jones et al., 2001). 

The timing of the WMZ in our study diverges slightly from some previous studies which find the WMZ 

to occur 3-6 h before bedtime (McMahon et al., 2018; Shekleton et al., 2013; Zeeuw et al., 2018), but is in 

agreement with others that find the WMZ 1-4 h before bedtime (Dijk & Czeisler, 1995; Lavie, 1997). 

Studies like ours with later WMZ times were conducted under normal office lighting conditions (~150 

lux, or no manipulation reported), whereas studies with earlier WMZ times were recorded under dim 

lighting conditions (<10 lux). As demonstrated by Gooley et al. (2011), brighter light shifts melatonin 
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onset to around 2 hours later, likely explaining the difference in results. This therefore means that what-

ever light-induced mechanism delays melatonin onset, it also delays WMZ onset. 

Neural pathways of the WMZ. Given that both the mean and standard deviation of pupil diameters were 

also strongly affected by the WMZ (Figure 3.8), it is likely that the ascending arousal system (AAS) is 

involved. The AAS includes the locus coeruleus (LC), the ventral tegmental area and substantia nigra, the 

dorsal and median raphe nuclei, and the basal forebrain (Lloyd et al., 2022). All these areas have been 

linked to changes in pupil diameter (Joshi & Gold, 2020; Lloyd et al., 2022; Reimer et al., 2016), and have 

widespread connections to the rest of the cortex. The LC in particular has been linked to transitory pupil 

responses such as the increases observed during oddball tasks (Aston-Jones & Cohen, 2005; Joshi et al., 

2016; P. R. Murphy et al., 2014). Since we do not find an increase in pupil responses to oddball target 

tones in the WMZ (Figure 3.7), this may suggest that of all the AAS, the LC is actually not involved in the 

WMZ. Alternatively, this may merely indicate that pupil oddball responses are not a reliable indicator of 

LC activity across time. Unfortunately, due to reduced power, these results are suggestive at best, and 

furthermore the link between LC and pupil diameters has not been unambiguously established. Hopefully 

future studies will be able to determine which nuclei are involved in the WMZ. 

The role of the WMZ in humans. The WMZ has, to our knowledge, only been investigated in humans. 

It’s possible the WMZ may even be human-specific, but this can be difficult to validate because it bears 

a close resemblance to crepuscular behavior observed in some animal species, especially rodents (Acker-

mann et al., 2020; García-Allegue et al., 1999). Crepuscular rhythms manifest as increases in activity at 

dawn and dusk, usually accompanied by corresponding increases in core body temperature (Refinetti, 

1996, 2020). By contrast, the WMZ in humans occurs in the absence of either increases in activity (Lieber-

man et al., 1989; Samson et al., 2017) or core body temperature (Dijk & Czeisler, 1995), suggesting differ-

ences in underlying physiological pathways, as well as different functions. 

The fact that the WMZ primarily affects sleepiness and sleep latencies suggests that the main function 

of the WMZ is to resist sleep rather than promote activity. This may be a human-specific adaptation 

because we have long consolidated wake and sleep, unlike most other species who have more fragmented 

and polyphasic sleep (Campbell & Tobler, 1984; Samson & Nunn, 2015). By ensuring that individuals do 

not initiate sleep too early, the WMZ largely guarantees that the subsequent 8 hours of sleep are com-

pleted within the correct circadian window, thus maintaining continued synchronization with the overall 

circadian rhythm and environmental light-dark cycles. During normal wake, the WMZ may not be appar-

ent or even necessary, however when homeostatic sleep pressure is unusually high (for example from 

insufficient sleep the night before), such a mechanism would be critical to maintain wakefulness until the 

onset of the correct sleep window. In polyphasic-sleep species such as mice and rats, the timing of sleep 

onset for any given sleep episode is less critical. An alternative hypothesis is that the WMZ is a vestige 

of primate nest-building, which also occurs in the evening. However, such an activity takes around 7 

minutes (Fruth et al., 2018) so this does not explain why the WMZ would last several hours. 

The WMZ needs to be investigated more. As speculated by Strogatz et al. (1987), such a mechanism may 

be behind sleep disorders such as insomnia; if the WMZ never “shuts off,” this will result in substantially 

delayed sleep onset; if it is not present at all, this could result in circadian desynchrony. Taking this one 

step further, control over the WMZ could improve general wellbeing; being able to selectively shut it off 

could help with jetlag. Alternatively, activating the WMZ during night shifts could improve performance 

in critical industries such as emergency medicine or airline pilots. Our 4/24 extended wake paradigm, 

measuring both EEG and pupillometry, consists of a comparatively easier and equally effective approach 
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to investigating the WMZ relative to the standard >40 h sleep deprivation, and may therefore be better 

suited for large-scale studies also involving patients. 

3.4.1 Limitations of the study 

While we are satisfied with many of the design choices for this experiment, there is room for improve-

ment. Given the unexpected importance of the WMZ, we would have benefitted from a traditional cir-

cadian marker such as melatonin concentration, which would have allowed more precise synchronization 

across participants to circadian phase. Additionally, more frequent recordings (e.g. every hour) would 

have provided a better temporal resolution to delineate the start and end of the WMZ for each partici-

pant. Regarding the wake recordings, given that the Oddball condition produced the largest effect sizes, 

it’s possible more controlled tasks provide better results than Fixation. Regarding the analyses, we im-

plemented a relatively basic cycle-by-cycle burst detection algorithm, and there is ample room for im-

provement following more systematic development of this approach.  

Regarding the interpretation of the EEG results, it is important that they are replicated with datasets 

using much longer bouts of sleep deprivation, spanning more than 24 h and with more than a single re-

cording after the WMZ; it’s possible that slower circadian changes are still present in oscillation ampli-

tudes, which cannot be disentangled within a single period. Likewise, data exists using the forced desyn-

chrony protocol (Cajochen et al., 2002) which can properly dissociate circadian from homeostatic 

changes, as well as a constant routine protocol to control for homeostatic pressure (Cajochen et al., 2001). 

It would be important to see to what further extent amplitudes and number of bursts differently reflect 

circadian and homeostatic changes. Regarding the pupillometry results, it is important that they are rep-

licated with larger sample sizes, and possibly comparing circadian changes with and without sleep re-

striction, as our results suggest an unexpected interaction. 

3.4.2 Conclusions 

In summary, we found that wake EEG oscillations reflect the increase in neuronal connectivity that builds 

up with time awake, through increased amplitudes, which change independently across time from oscil-

lation quantities. We demonstrated that both theta and alpha amplitudes follow the same increasing 

saturating trajectories of sleep homeostasis previously identified with slow waves during sleep. However, 

the wake maintenance zone proved to be such a potent contributor to wakefulness as to temporarily 

counteract these effects, impacting both the amplitudes and number of occurrences of oscillations. In 

addition to the EEG, we have identified mean pupil diameter as specifically sensitive to this window. This 

specificity strongly suggests that the WMZ is caused by a wakefulness driver distinct from the gradual 

sinusoidal 24 h circadian fluctuations in alertness. Finally, we speculate that the ascending arousal system 

may be crucially involved, and that the WMZ may be human-specific. 

3.5 STAR Methods 

3.5.1 Experimental model and study participant details 

18 participants completed the experiment. University student applicants were screened for good health, 

good sleep quality, and at least some sleep deprivation vulnerability. 19 participants were recruited, and 

one participant dropped out midway. Of the 18 participants who completed the experiment, 9 were 
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female and 3 were left-handed, all of European ancestry. Between-sex comparisons were not considered 

due to the small sample size and consequent low power. Participants were required to be between the 

ages of 18 and 26 in order to reduce interindividual age-effects of sleep homeostasis; consequently, mean 

age (± standard deviation) was 23 ± 1 years old. This limits generalizability, but the outcomes for specific 

populations can be anticipated from homeostatic changes in slow wave activity. All participants self-re-

ported no hearing impairments. Data collection and interaction with participants was conducted accord-

ing to Swiss law (Ordinance on Human Research with the Exception of Clinical Trials) and the principles 

of the Declaration of Helsinki, with Zurich cantonal ethics approval BASEC-Nr. 2019-01193. Participants 

signed informed consent before the study.  

3.5.2 Method details 

3.5.2.1 Experiment design 

Participants conducted a 4/24 extended wake paradigm, depicted in Figure 3.1. This involved habituation 

to a regular sleep-wake schedule prior to the experiment (minimum 4 nights), with bedtimes and wakeup 

times selected to match the participant’s preferred window and daily schedule. During the experiment, 

participants went to bed at their habitual bedtime, and were woken up 4 hours later. They were then kept 

awake for 24 h, followed by a recovery night. In addition to the extended wake bout, participants con-

ducted a baseline night in which they slept during their habitual sleep window. The baseline was con-

ducted before the extended wake bout in all but four participants. 

The experiment schedule is in Figure 3.1B. Resting wake EEG recordings were measured before and after 

each night of sleep, and an additional 6 times during the 24 h wake period, for a total of 12 recordings. 

Prior to each recording S2-S7, participants were seated in the same position, watching 2 TV episodes 

around 40 minutes each, from a series of their choice. After each rest recording, participants were free to 

move around, and were provided with a home-cooked meal which they had selected from a list of vege-

tarian options (each meal during each break was the same). 6 of these breaks were included, each around 

40 minutes (adjusting for delays in the schedule).  

During the rest recordings, participants were seated in a comfortable armchair with a footrest (IKEA 

strandmon) in a well-lit room (~150 lux at eye level) and had to maintain fixation on a 20 cm red cross 

placed ~3 m from their head, ~30 cm below eye-level. The timing of the three rest recording conditions 

is depicted in Figure 3.1C. Each session began with a Fixation period, in which their only instructions were 

to maintain fixation on the cross and stay awake. This was immediately followed by an active auditory 

Oddball. As the focus was on pupillometry for this task, the stimuli were tones rather than visual inputs 

in order to avoid any spurious changes in light. Two types of tone were presented: standards (160 tones), 

and targets (40 tones). Participants had to press a button whenever a target tone occurred, while main-

taining fixation and staying awake. Each tone lasted 60 ms, and for each participant the tone was either 

660 Hz or 440 Hz for the targets, and vice versa for the standard tones. The interstimulus interval ranged 

randomly from 1.8 to 2.4 s, with a minimum of 3 standard tones between targets. After the Oddball, 

participants were provided a questionnaire to fill out, including the Karolinska Sleepiness Scale (KSS, 

Figure 3.2) (Åkerstedt & Gillberg, 1990). Finally, participants stood up from the chair and moved to lean 

against the wall and had a Standing period with eyes closed. The purpose of this condition was to have a 

long recording with eyes-closed, the most typical condition for alpha activity (Kirschfeld, 2005), without 

participants falling asleep. Caldwell et al. (2000) previously found that there was no effect on alpha activ-

ity when comparing seated to standing recordings across sleep deprivation during eyes closed. 
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Participants maintained a regular sleep-wake schedule the week prior to each experiment bout, and the 

timing of the experimental nights was adapted to each individual’s preferred circadian time. Therefore 

the 24 h circadian rhythm could be inferred from previous studies (Åkerstedt et al., 1979; Dijk & Czeisler, 

1995; Wyatt et al., 1999). Changes synchronized to melatonin would be high during night recordings (S1, 

S2, S8), and low during day recordings. Vice versa, circadian changes synchronized to core body temper-

ature would peak in the middle of the day (S4, S5), and be low in the middle of the night (S1, S8). Because 

the focus was on homeostatic changes, these comparisons were not statistically analyzed, but can be 

inferred from the outcome measures’ trajectories. 

3.5.2.2 EEG preprocessing & power analysis 

EEG data was recorded at 1000 Hz, with 129 electrodes including the Cz reference, using EGI HydroCel 

Geodesic Sensor nets. Four electrodes were external to the net, and were positioned on the mastoids and 

under the chin for sleep scoring (sleep architecture is available in Snipes et al. [2022]). Two electrodes 

(126, 127) were located on the cheeks and excluded, leaving 123 channels for EEG data analysis after re-

referencing to the average. Preprocessing and data analyses were done using EEGLAB (Delorme & 

Makeig, 2004) and custom MATLAB scripts. Data was downsampled to 250 Hz and filtered between 0.5-

40 Hz. Major artifacts were identified visually, and physiological artifacts (eye movements, heartbeat, 

muscle activity) were removed with independent component analysis (ICA). The process is depicted in 

Figure 2.19. 

Power was calculated as power spectral density using Welch’s method with 8 s windows, Hanning ta-

pered, 75% overlap.  Power values for each participant and each frequency were z-scored pooling across 

sessions, conditions, and channels. Z-scored values were then averaged across all channels excluding the 

outer-edge electrodes (Figure 3.3). When plotting spectrograms, a 1 Hz lowess filter was used to smooth 

the signal (Figure 3.11). 

3.5.2.3 EEG burst detection 

There were two main reasons for analyzing EEG oscillations as bursts using cycle-by-cycle analysis. First, 

when visually inspecting the EEG during extended wake, the most prominent features are in fact bursts 

rather than single isolated events, as can be seen in the example of Figure 3.4. Second, any method trying 

to investigate independent changes in oscillation amplitude and quantity must ensure that the detection 

method does not rely on either. Previous studies investigating plasticity-dependent effects and local 

sleep in wake identified waves based on either fixed or relative voltage thresholds  (Andrillon et al., 2021; 

Bernardi et al., 2015; Fattinger et al., 2017; Hung et al., 2013; Quercia et al., 2018). The problem with fixed 

thresholds when trying to answer our research question is that when oscillations increase in amplitude 

without changing in quantity, they will still appear to increase in quantity since more waves are now 

above-threshold. The additional problem with relative thresholds, such as taking the top N% of all waves 

recorded for a given participant, is that it constrains the number of detected oscillations independently 

of how prevalent they are in the signal. Therefore, if a given participant has no oscillations, this method 

will identify false positives from the 1/f aperiodic background activity. Vice-versa, if a participant has a 

recording completely dominated by oscillations (such as with eyes-closed), this method will miss most of 

them. The problem of dependency between quantity and amplitude, as well as the problem of both over- 

and underestimating oscillations, persists for all oscillation-detection methods that require amplitude 

cutoffs, including wavelets and Hilbert (M. X. Cohen, 2014). Cycle-by-cycle analysis avoids this by relying 
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entirely on the shape and regularity of the signal; the tradeoff is that it is not suited to detecting single 

isolated waves such as local sleep events (Vyazovskiy et al., 2011). 

For our analysis, burst detection was conducted with custom MATLAB scripts adapted from Cole and 

Voytek’s Python bycycle package (Cole & Voytek, 2019). The pipeline described below is also provided 

schematically in Figure 3.9. First, clean EEG data was filtered into narrow overlapping bands (2-6, 4-8, 6-

10, 8-12, 10-14 Hz) using a minimum order high-pass then low-pass equiripple FIR filter (stopband fre-

quency = passfrequency ± 1 Hz, passband ripple 0.04 dB, stopband attenuation 40 dB). Zero-crossings 

were identified in the narrow-band filtered data. Then between descending zero-crossings and rising 

zero-crossings, negative peaks were identified as the minimum value in the “unfiltered” data (minimally 

filtered during pre-processing between 0.5 and 40 Hz). Positive peaks were also identified as the maxi-

mum values in the unfiltered data between rising and descending zero-crossings, and these were used as 

the start and end of each cycle around the negative peak. 

Once all the peaks were identified, 4 consecutive cycles had to meet the following properties in order to 

qualify as an oscillation burst: A) the cycle’s negative peak had to correspond to a local minimum; B) the 

mean distance to the neighboring peaks had to be within the range of the period of the filter (e.g. between 

0.1 – 0.17 s when filtering between 6-10 Hz); C) the minimum ratio between the distance in time of the 

current peak to its neighbors had to be above 0.6 (i.e. similar consecutive periods); D) the rise amplitude, 

measured as the voltage difference between the prior positive peak to current negative peak, and decay 

amplitude of the cycle had to have a ratio of at least 0.5 (i.e. one flank was not less than half the amplitude 

of the other); E) the minimum ratio between the cycle amplitude (negative peak to positive peak voltage, 

averaging both neighboring positive peaks) and neighboring cycles had to be more than 0.6 (i.e. similar 

consecutive amplitudes); F) the proportion of timepoints decreasing in amplitude between previous pos-

itive peak and current negative peak, and timepoints increasing in amplitude between current peak and 

following positive peak, had to be above 0.6 (i.e. how much time during the cycle the signal went in the 

wrong direction); and G) the proportion of the voltage increasing from positive to negative peak, and 

decreasing from negative to positive peak, had to be above 0.6 (i.e. how much amplitude went in the 

wrong direction). The criteria B, E, and F are from Cole and Voytek, whereas A, C, D, and G are our addi-

tional optimizations. The parameters and burst-detection criteria were chosen through trial-and-error 

on an independent subset of data recorded during this experiment (the Game and PVT conditions of the 

SD task block reported in Snipes et al. [2022]). The procedure involved iteratively adjusting thresholds 

and introducing cycle exclusion criteria until the theta and alpha burst detection was largely consistent 

with visual inspection. 

Bursts were detected for all frequency bands, using both the EEG signal and the inverse of the EEG signal 

(because for mu-shaped rhythms, the sharper peaks resulted in better burst detection). Within each 

channel, overlapping bursts were compared, and the largest was retained intact. Smaller partially over-

lapping bursts were cut, and if the non-overlapping segment still retained 4 cycles, it was considered a 

new burst. Then, bursts were aggregated across channels based on temporal overlap (at least 50%) and 

if the mean frequency was within 1 Hz for the overlapping cycles.  
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Figure 3.9: Burst detection algorithm. Solid outline indicates processes conducted on “unfiltered” data (only filtered 
between 0.5 and 40 Hz), dotted lines indicate processes conducted on filtered data (in 4 Hz bands). Colors indicate 
data processed separately for each band, black indicates processes done on pooled/undifferentiated data. A-G are 
examples of cycles that do or do not meet the criteria (crossed out). A and B depict half-cycles, from zero-crossing to 
zero-crossing. D and F/G indicate a whole cycle, from positive peak to positive peak. C and E indicate 3 consecutive 
cycles. In cycle-examples, red circles indicate the negative peaks, and gray circles positive peaks. 

Burst frequencies were defined as the reciprocal of the mean distances between negative peaks. Burst 

amplitudes were calculated by first averaging the rise and decay amplitudes of each cycle, then the aver-

age of these across all cycles in the aggregated bursts in different channels, then averaging the amplitude 

of all bursts within the band of interest. Burst quantities were calculated as the sum of all the cycles in 
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the reference burst (the longest of all the overlapping bursts), divided by the duration of the recording, 

resulting in cycles per minute. This was chosen instead of the total number of bursts per minute because 

in extreme cases, bursts could become so long that their quantity decreased, and this was no longer rep-

resentative of their occurrence in the data. 

Figure 3.13A-B plots the distribution of the number of bursts by frequency for two example participants. 

Cycle-by-cycle analysis allowed clear differentiation between clusters of bursts by frequency. However, 

many individuals did not have two (theta/alpha), but in fact three or more clusters, and these distributions 

changed with time awake (best example: Figure 3.13A, Fixation). At the same time, other participants 

showed more classical bimodal distributions (Figure 3.13B). Ideally, we would have used individualized 

bands to delineate theta and alpha, however these shifting distributions complicate such an approach. 

Therefore, we limited ourselves to group average results using traditional frequency bands. Furthermore, 

rather than quantifying the occurrence of a given oscillation by the number of bursts as shown in Figure 

3.13A-C, we used instead the number of cycles per minute (Figure 3.13G), as this also captures changes 

in burst duration (Figure 3.13E). 

3.5.2.4 Eye tracking & pupillometry 

Eye tracking was done with Pupil Core “glasses” (Pupil Labs, Berlin, Germany). These were eyeglass 

frames with two rear-facing infra-red cameras. Pupil diameter was estimated from the video recorded 

with a sampling rate of on average 120 Hz. Data was exported using Pupil Player. All analyses were then 

conducted with a sampling rate of 50 Hz. During measurements, the eye tracker failed multiple times, 

resulting in substantial data loss. Sleep loss further resulted in noisier data (more eye-closure, less fixed 

gaze, half-closed eyelids).  

The eye tracking variables blink rate and ocular microsleeps were measured using the confidence values 

of the pupil diameter estimates (from 0 to 1): when model confidence fell below 0.5, this was considered 

an eye-closure. This approach was chosen based on our observation of the video relative to the model 

confidence. Consecutive timepoints with confidence values over 0.5 that lasted less than 50 ms were still 

considered eyes-closed, and consecutive timepoints under 0.5 and less than 50 ms long were considered 

eyes open. The cutoff to split blinks and microsleeps was based on previous research identifying micro-

sleeps as short as 1 s (Hertig-Godeschalk et al., 2020). 

2D pupil diameter was estimated from the eye videos offline with Pupil Player, measured in pixels. Be-

tween the recordings, the eye tracking glasses were removed and readjusted. Therefore, in order to com-

pare mean pupil diameter across sessions, the diameters in pixels had to be re-scaled. For every video, a 

frame was selected (192 x 192 pixels, 4.5 x 4.5 cm), and the eye’s iris diameter was measured in centime-

ters (when viewed at an angle, a disk becomes an ellipse, and the largest diameter of the ellipse is the 

diameter of the disk; Figure 3.10). By using the human mean iris diameter (12 mm), a conversion factor 

was calculated between pixels and millimeters, and this was applied to all 2D pupil diameter measure-

ments: 

𝑝𝑢𝑝𝑖𝑙 (𝑚𝑚) =  
𝑝𝑢𝑝𝑖𝑙 (𝑝𝑥) × 𝑣𝑖𝑑𝑒𝑜 𝑤𝑖𝑑𝑡ℎ (𝑐𝑚) × 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑖𝑟𝑖𝑠 (𝑚𝑚)

𝑖𝑟𝑖𝑠 (𝑐𝑚) × 𝑣𝑖𝑑𝑒𝑜 𝑤𝑖𝑑𝑡ℎ (𝑝𝑥)
  

While this does not preserve individual differences in eye-size, it is sufficient for comparing across-ses-

sion changes in diameter within participants (reasonably assuming irises do not change in size with sleep 

pressure). Furthermore, it allows the exclusion of unphysiological outliers of diameter estimates. 
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Figure 3.10: Collection of videoframes from the eye-tracking for a single participant. Red circles were used to 
measure make a fit of the iris, then identify the maximum radius; done manually with PowerPoint. The upside-down 
eyes are all the right eyes. The diagonal thing in the video is part of the EGI nets. Not included in the iScience publi-
cation. 

Pupil preprocessing was done with the PhysioData toolbox (Kret & Sjak-Shie, 2019). Finally, removed 

datapoints less than 0.5 s were linearly interpolated, and then isolated chunks of datapoints less than 0.5 

s were removed. Only data from one eye was used for each participant. The eye was chosen based on 

which had the most data after preprocessing.  

To measure pupillary response to deviant tones during the Oddball, pupil diameters were epoched be-

tween -0.5 and 2 s relative to tone onset. All 40 targets were used, with 40 standards taken from the trial 

just prior to each target. Trials with less than 2/3 of clean timepoints were excluded. Recordings with less 

than 15 trials for either targets or standards were excluded. Furthermore, if any timepoint for a given tone 

type was derived by averaging fewer than 10 trials, this session was also excluded.  

For each trial, the pupil response to tones was first baseline corrected (the mean between -0.5-0 s was 

subtracted from all datapoints in the trial), then all trials were averaged for each recording, split by target 

and standard tones. Participants with fewer than 6 recordings out of the 12 were excluded. Finally, aver-

age pupil responses for all timepoints, both targets and standards, and all sessions were z-scored within 

each participant. Pupillary response was calculated as the area under the curve between 0.5 and 2 s be-

tween target and standard. 

3.5.3 Quantification and statistical analysis 

To quantify the effects of extended wake, sleep, and the WMZ, for each outcome measure we conducted 

the same three paired t-tests. For wake-dependent changes, we compared values from the start and end 

of the 24 h extended wake period, S1 and S8. These were within 2 h of the same circadian phase, therefore 

any differences should largely be due to sleep homeostasis. To quantify sleep-dependent changes, we 

compared values from the wake recordings before and after the baseline night, BL Pre and BL Post. Unlike 

for wake changes, these were conducted at different circadian times and the difference in sleep homeo-

static pressure was lower, however these are typical recordings during sleep studies. 

To statistically quantify any deviation during the WMZ from the underlying trajectory of a given outcome 

measure, we linearly interpolated values from S5 (17:30) to S8 (2:40) for timepoint 21:30 and compared 

it to the average of S6 (20:00) and S7 (23:00). The timepoints of the WMZ were determined based on the 

converging results of subjective sleepiness (Figure 3.2) and theta power (Figure 3.3A), both of which 

showed a decrease in an otherwise monotonic increase during recordings S6 and S7, corresponding to 1-

4 h before habitual bedtime.  
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All statistics were paired t-tests, such that p < .05 was considered statistically significant. All t-tests were 

conducted on z-scored values (pooling sessions and conditions for each participant) to better account for 

interindividual differences, provide more normally distributed datapoints, and more fair comparison of 

effect sizes across outcome measures. Due to occasional data loss for different outcome measures, the 

degrees of freedom are always provided, from which the sample size can be inferred (N = DF+1). 

Tests were selected a-priori for BL Pre vs BL Post to quantify overnight changes, and S1 vs S8 to quantify 

wake changes. To quantify the WMZ, a single value based on the average of the two recordings system-

atically showing effects (S6 and S7) were used. These were compared to an “expected” value based on 

S5 and S8, linearly interpolated. While previous studies quantified the effect by comparing WMZ values 

with measurements just prior, we considered this an under-estimate of the effect, as it doesn’t take into 

account the overall trajectory of the data, i.e. what values those timepoints would have had without the 

presence of the WMZ. However, our method can also overestimate the WMZ, if either S5 or S8 deviated 

substantially from the rest of the recordings. Therefore, results were interpreted in the context of the 

trajectories observed in the figures. 

Hedge’s g effect sizes were reported for each test in Table 3.1, calculated with the Measures of Effect 

Size Toolbox (Hentschke & Stüttgen, 2011). Effect sizes are typically evaluated with Cohen’s rule-of-

thumb such that g values <.2 are “small,” around 0.5 “medium,” and >.8 “large” (J. Cohen, 1988). To de-

termine what effect sizes we had enough power for, we conducted a post-hoc statistical power analysis 

using standard values of α = .05 and 1-β = .8. For an N = 18, we had power for effect sizes of Hedge’s g ≥ 

0.68, and N = 10 had power for Hedge’s g ≥ 0.95. While this is generally a limitation, both sleep deprivation 

effects and WMZ effects tend to be quite large (Zeeuw et al., 2018). 

No correction for multiple comparisons was done for these statistical tests as the majority were explor-

atory (e.g., Oddball/Standing conditions, pupil measures) or confirmatory (e.g., if amplitudes increase 

across wake, they should also decrease after sleep). Furthermore, there was a mixture of dependent and 

independent comparisons (e.g., power = amplitudes + quantities). All these t-tests were calculated in 

order to quantify the changes across outcome measures and thus compare effect sizes and relative ro-

bustness. The main hypothesis of whether both theta and alpha oscillation amplitudes increased with 

extended wake was a-priori selected for the Fixation condition. False-discovery rate correction (Benja-

mini & Hochberg, 1995) was however conducted for the 123 t-tests in each of the topographies of Figure 

3.6C-D.  

Throughout the text, the changes in average oscillation amplitude across extended wake are provided as 

average percent change from S1, with interquartile range (25% and 75% of the individuals) provided in 

brackets. This was used instead of standard deviation to better represent potentially skewed distribu-

tions. Likewise, the change in quantities of oscillations are described in the text as percentage of the 

entire recording, with corresponding interquartile ranges.  
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3.6 Supplementary material 

3.6.1 Published supplementary figures 

 

Figure 3.11: Z-scored power spectrums across extended wake, related to Figure 3.3. Each row plots an ROI (Front, 
Center, Back), each column a different condition. Color darkness indicates session, from S1 to S8, such that darker 
lines indicate more time awake. Dashed lines are the WMZ recordings (S6, S7). The x-axis indicates frequency on a 
log scale. 

 

Figure 3.12: Pupil response to tones in the Oddball, related to Figure 3.7C. Pupil diameters were locked to tone 
onset, baseline corrected (-.5 to 0 s from tone onset), and then z-scored pooling timepoints, tone type (target and 
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standard), and session. Group average standards are in gray, oddball targets in black. Individuals’ average pupil re-
sponse to standard tones are thin gray lines, and individuals’ target responses are thin colored lines. Timecourses 
were smoothed over 2 s for visualization. Due to data loss and increasing noise, multiple recording sessions were lost, 
and so the sample size for each session is indicated in the figure titles. 

 

Figure 3.13: Burst properties, related to STAR Methods. A-B: Distribution of number of bursts per minute for each 
frequency (top plot) and average amplitudes (bottom plot) for two participants. Gray histogram depicts data from the 
first extended wake recording (S1), and colored histograms the last (S8). Missing values in the amplitude plot corre-
spond to bins for which there were fewer than 10 bursts across the 6 min recording. C: Alpha bursts per minute for 
all participants from S1 (left point of each colored line) to S8 (right point) for each condition. Each participant is a 
different color. D: Average alpha globality, measured as the percentage of channels with an overlapping burst within 
±1 Hz of the reference burst. E: Average alpha burst duration in seconds. F: Average alpha amplitudes, in microvolts. 
G: Average cycles per minute. 

3.6.2 Questionnaire sensitivity 

As part of the EBRS 2022 conference, I presented a poster with preliminary results from this study. I 

included more information about the different questionnaire questions included during the multiple re-

cordings (Figure 3.14). 

Participants were asked in four different ways how tired they felt during the Fixation condition: how 

much they wanted to sleep on a 7 point Likert scale (Figure 3.14A), how alert they felt on a visual-analog 

scale (VAS; Figure 3.14B), the KSS with options to provide intermediate answers (Figure 3.14C), and how 

difficult it was to stay awake on a visual analog scale (Figure 3.14C). 

I found that the Likert scale managed to completely miss the WMZ, indicating it was extremely insensi-

tive, whereas both the KSS and especially the VAS were highly sensitive to the WMZ. Furthermore, the 

VAS also reflected the homeostatic buildup, being steeper at the beginning. Interestingly, the question 

on alertness, despite also being a VAS, was also largely insensitive to the WMZ. 
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Figure 3.14: Subjective sleepiness ratings. Presented at the EBRS conference, 2022. A: Discrete Likert scale on 
sleepiness. Question on top is the text participants were presented with, labels on the y axis were the mutually ex-
clusive options. Stars and bars at the top connect significant pairwise comparisons such that: * p < .05, ** p < .01, *** 
p < .001. B: VAS on alertness. Labels on the y-axis were the labels on the scale (see Figure 2.26). C: KSS. D: VAS on 
difficulty staying awake. 

Therefore, subjective sleepiness measures are highly dependent both on the answer options provided 

(and their format) as well as the question itself. Of all the standardized questionnaires for asking about 

subjective sleepiness, The KSS was best based on first principles; it had a wide range of options that were 

clearly well defined, and all in a single question, making it easy to repeat over and over again. However, 

during sleep deprivation, results hit ceiling. Therefore, I would recommend either adding options to the 

scale (e.g. “this is the most I’ve ever wanted to go to sleep”), or using an open-ended VAS (Figure 3.14D). 

tldr; visual analogue scales with continuous answer options are more sensitive to changes in sleep pressure. 
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3.6.3 The problem with single-theta-peak detection methods 

Previous studies investigating theta and sleep deprivation identified theta as single events, which is what 

local sleep is assumed to be (Andrillon et al., 2021; Bernardi et al., 2015; Fattinger et al., 2017). Why not 

use their theta detection methods? First, these methods rely on amplitude thresholds to define an event, 

and this makes the number of bursts dependent on the amplitudes. Then, from visual inspection of the 

EEG, there were a lot of examples of theta bursts, but few notable single theta events. More importantly, 

these algorithms don’t take into account the 1/f background and they bias the total amount of waves 

that can be detected. 

To prove this point, I implemented the algorithms used in Bernardi et al. and Fattinger et al. and compared 

it with my implementation of cycle by cycle analysis. I took one channel from four different recordings: a 

channel with a lot of theta activity, a channel with low theta activity, a channel with no oscillatory activity, 

and a channel with high alpha activity (Figure 3.15A). I then compared the number of theta peaks per 

minute identified by each algorithm (Figure 3.15B). 

 

Figure 3.15: comparison of theta detection algorithms. A: log-log scale of power spectra for 4 6-minute channels 
from different participants based on visual identification of oscillatory activity. B: Number of peaks per minute iden-
tified by each algorithm. Orange was from Bernardi et al. (2015), purple from Fattinger et al. (2017), and gray from 
Snipes et al. (2023). 

Bernardi et al. used an algorithm that took the 20% of theta peaks with the highest amplitudes. This 

results in comparable number of peaks whether there is a lot of oscillatory activity, or none. Because the 

1/f background activity randomly produces theta events, these will be the majority of captured theta 

when there are no “real” theta waves, and vice-versa, when the entire channel is dominated by theta, 

only 20% of the actual theta oscillations will make the cut. Only with the optimal proportion of oscillatory 

theta in the signal will the algorithm correctly balance between true positives and true negatives. Fat-

tinger et al., based on Massimini et al. (2004), set instead a fixed amplitude threshold based on the stand-

ard deviation of the overall signal amplitude. This found substantially more theta oscillations than the 

Bernardi algorithm, but still identified high amounts of theta in the channels where no oscillatory theta 

activity was present. A different approach is needed to detect single waves that aren’t aperiodic back-

ground activity. For now, I focused on bursts instead. 

tldr; amplitude-based detection methods both over and underestimate the amount of oscillatory activity.  
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4 EEG MARKERS OF SLEEPINESS DO NOT PREDICT LAPSES IN 

ATTENTION DURING SLEEP DEPRIVATION 

Sophia Snipes,1,2* Elias Meier,1 Reto Huber1,3,4 
1 Child Development Center, University Children’s Hospital Zürich, University of Zürich, Switzerland 
2 Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Switzerland 
3 Sleep & Health Zürich, University of Zürich, Switzerland 
4 Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Switzerland 

 

This paper will be submitted to Scientific Reports imminently. Here, I address the issue of whether the 

theta bursts discovered in the previous paper have any behavioral consequences. The Lateralized Atten-

tion Task (LAT) was designed in order to maximize the chances of identifying local sleep in wake; this 

task was the main focus of the whole LSM experiment. It needed to result in a sufficient number of be-

havioral lapses on which proper analyses could be conducted, and these lapses needed to not be at-

tributed to eye-closures or other confounding factors. 

I designed the experiment, collected the data, analyzed the data, and wrote the paper. Elias Meier helped 

collect the data. Reto Huber supervised the project. 

4.1 Abstract 

Sleepiness is associated with bursts of theta oscillations in the wake electroencephalogram (EEG); how-

ever, the behavioral relevance of these bursts has not been established. Given that increased sleepiness 

is associated with increased behavioral impairments, we wished to determine whether theta bursts could 

be the cause. 18 young healthy adults performed the lateralized attention task (LAT) when well rested 

(BL) and after >20 h awake (SD), both times under soporific conditions. High-density EEG and video of 

eye-closures were measured, and the timing of eyes-open EEG bursts were related to trial outcomes: 

fast responses, slow responses, and lapses. We found no relationship between theta bursts at any 

timepoint nor channel around lapses, either during BL or SD. Instead, we found a higher likelihood of 

theta bursts during the stimulus window of fast trials at BL, suggesting a “theta boost” to performance. 

Furthermore, alpha bursts were found to anticipate fast trials rather than slow or lapse trials, contrary to 

previous findings which find the opposite. Because we measured the LAT under soporific conditions, this 

may suggest that the relationship between vigilance and alpha follows an inverted U, with both extremely 

low and extremely high vigilance associated with less alpha activity. Overall, neither theta nor alpha 

bursts were found to predict lapses in behavior during sleep deprivation, and instead predicted better 

performance under soporific but well-rested conditions. These results therefore support the finding that 

theta during sleep deprivation preferentially occurs in task-unrelated areas. 

4.2 Introduction 

Sleepiness can be deadly. Up to 20% of road traffic accidents are attributed to insufficient sleep, with only 

17 h of extended wake being equivalent to mild alcohol intoxication (Dawson & Reid, 1997; Gibbings et 

al., 2022; J. A. Horne & Reyner, 1995). While multiple cognitive systems are likely compromised during 

sleep deprivation, the most affected seems to be sustained attention (Lo et al., 2012). Laboratory tests 

of sustained attention such as the psychomotor vigilance task (PVT) reliably capture increasing behav-

ioral lapses with time spent awake, circadian rhythm, and even cumulative sleep restriction (Basner & 

Dinges, 2011; Dinges & Powell, 1985; Graw et al., 2004; Van Dongen et al., 2003). Given the role sleepiness 
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can have on health and safety, there has been a justifiable interest in trying to identify the neural mech-

anisms leading to these behavioral lapses. 

One of the most notable features of brain activity are bursts of oscillations in the EEG, reflecting different 

states of vigilance (Schomer & Silva, 2011). Since the first EEG recordings, sleepiness has been associated 

with theta oscillations (4-8 Hz) (Smith, 1938), and is typically quantified using spectral power (Aeschbach 

et al., 1997; Cajochen et al., 2002; Finelli et al., 2000; Snipes et al., 2022) or as single theta waves (Andrillon 

et al., 2021; Bernardi et al., 2015; Fattinger et al., 2017; Hung et al., 2013). However, recently we have been 

able to quantify the changes in bursts specifically, which had previously only been described qualitatively 

(Ebersole & Pedley, 2003). In resting wake EEG we found a near-linear increase in theta bursts with time 

awake (Snipes et al., 2023), so we wished to determine whether these theta bursts were predictive of the 

comparable increase in behavioral lapses. 

We collected high-density EEG data from 18 young healthy adults undergoing a 4/24 extended wake 

paradigm (4 h of sleep, 24 h of wake; full schedule in Figure 4.1A). To capture attentional lapses, we used 

an adaptation of the PVT, the Lateralized Attention Task (LAT). Like the PVT, this involved fixating on a 

rectangle in the center of the screen, with stimuli appearing every 2-10 seconds. However, the stimuli 

were faint circles that would shrink within 0.5 s (Figure 4.1B). Participants had to push a button whenever 

they saw the stimulus, and it would flash green if caught in time. A lapse was defined as any trial for 

which no response was given. To further increase the proportion of lapses, the task was performed under 

soporific conditions with lights off and seated in a comfortable armchair with foot and headrest. The LAT 

was performed three times when well-rested (baseline, BL), and three times following 20 h of extended 

wake (sleep deprivation, SD). 

To test the hypothesis of whether theta bursts could contribute to lapses, we investigated both the oc-

currences of bursts in time (pooling channels) and the occurrences in space (averaging time windows) 

around stimulus onset. We expected theta bursts could be associated to lapses in two ways: theta could 

be more likely when the stimulus was present, indicating that theta disrupted processing and responding 

to the stimulus; or theta could be uniformly more common in the seconds around the trial, indicating a 

general marker for a non-vigilant state (Makeig & Jung, 1996) even if the bursts themselves do not di-

rectly cause the lapse. By analyzing the changes in theta with high-temporal resolution, we could deter-

mine the direction of causality. By analyzing changes in topography, we had greater sensitivity to local 

effects. 

To establish the specificity of these results to the theta range, we conducted the same analyses on alpha 

bursts (8-12 Hz), which have previously been shown to anticipate behavioral impairment in well-rested 

conditions, reflecting the above-mentioned within-session fluctuations in vigilance (Huang et al., 2007; 

Makeig & Jung, 1996). To provide a comparison with a reliable lapse-causing event, we also applied the 

same analysis to eye-closures, which during sleep deprivation likely reflects microsleeps (Hertig-

Godeschalk et al., 2020; Ong et al., 2013). To determine whether the relationship between a given event 

and lapses was specific to sleep deprivation, we also conducted the same analyses for BL sessions. 
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Figure 4.1: Study design. A: Experiment schedule. Each block indicates an EEG recording session. Filled blocks indi-
cate data analyzed in this paper. Color indicates the activity participants engaged in: gray, watching TV; teal, the 
resting state recordings (analyzed in Snipes et al. (2023)); peach, baseline task blocks; red, sleep deprivation task 
blocks; purple, the MWT; black, sleep. The height of each block indicates the experimental condition in which data 
was collected: short, lying in bed; medium, seated in a comfortable armchair with foot and backrest; tall, seated at a 
desk, analyzed in Snipes et al. (2022). Brief empty spaces indicate transition periods allowing for delays. Six longer 
breaks were included prior to each TV block in which participants were provided with meals. Circadian time was nor-
malized across participants to their habitual bedtime. Participants at baseline and during the recovery night were free 
to wake up when they wished, and at the beginning of the extended wake period they were woken up after 4 h of 
sleep. B: LAT trial. Participants had to fixate on the red rectangle, and every 2-10 seconds, a gray circle would appear 
somewhere in the white area. If they pressed a button before the stimulus completely shrunk away, it would flash 
green as positive feedback. C: The 12 minute LAT consisted of 6 blocks, alternating between the left and right screen 
being illuminated. Brief pauses separated the switch. 

4.3 Results 

4.3.1 The LAT is sensitive to eyes-open lapses 

We first wished to determine whether the LAT was an appropriate task for measuring lapses following 

extended wake, and whether the adaptations from the PVT effectively increased eyes-open lapses. Par-

ticipants performed one BL PVT session the morning after the baseline night of sleep, and one SD PVT 

session after 20 h of wake, counterbalanced with the first LAT. The PVT defines lapses as trials with 

reaction times (RT) > 0.5 s. This means that lapses include both sluggish responses (Figure 4.2A) and 

“true” lapses in attention, when the participant misses the stimulus onset, then recovers later and even-

tually presses the button. Capturing both is what makes the PVT a sensitive and robust measure of sleep-

iness, however this is suboptimal for investigating whether a given event can cause an attention lapse. 

Shifting the lapse threshold to higher RT values avoids these sluggish responses, but this also increases 

the proportion of lapses with eyes closed (Figure 4.2C). Therefore, for lower RTs the PVT cannot distin-

guish between slow responses and lapses, and for higher RTs lapses mostly reflect microsleeps. 
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The main difference between the LAT and PVT is that LAT stimuli appeared only briefly and were diffi-

cult to detect, minimizing the orienting response (Pavlov, 1927). This meant that even a brief lapse in 

attention would result in missing the stimulus entirely. Therefore, with the LAT it is possible to separate 

slow responses from complete lapses in attention (Figure 4.2D-E). The average percentage of LAT trials 

classified as a lapse was 12% [interquartile range: 5, 19] at BL, and 33% [22, 44] at SD. By comparison, 

PVT lapses were 3% [1, 4] of BL trials, and 10% [2, 14] of SD trials (Figure 4.2B). The proportion of eyes-

open lapses during SD was 58% [32, 83] of PVT lapses and 71% [65, 80] of LAT lapses. More importantly, 

this corresponds to 4% [1, 7] of PVT trials that are eyes-open lapses, and 22% [13, 30] of LAT trials. At 

BL, only 10% [5, 16] of LAT trials were eyes-open lapses, which corresponds to a highly significant in-

crease with time awake (N = 17, t = 6.32, p < .001, g = 1.48). Therefore, the LAT captured substantially 

more eyes-open lapses in attention than the PVT, making it the more appropriate task to evaluate the 

potential detrimental effects of a given biomarker. 

Because stimuli appeared at any distance from the fixation point during the LAT, it could be that most 

lapses occurred at the edge of participants’ visual field. To check if this was the case, trials were divided 

into 6 quantiles based on radial distance from the fixation point (Figure 4.2F). At BL, considering only EO 

trials, the closest quantile had 1.3% [0.0, 1.8] of trials as lapses and the furthest had 26.0% [10.4, 37.3]. 

Therefore, while distance was clearly a major contributor of lapses at BL, there was no distance after 

which stimuli were completely missed and were thus outside of the field of view. In other words, distance 

from fixation increased the chances of a lapse but didn’t determine one. 

 

Figure 4.2: LAT versus PVT behavioral outcome measures. A: Reaction times during the PVT. Each colored “violin” 
represents the distribution of an individual participant (N=18). The dotted horizontal line at 0.5 s marks the threshold 
over which the trial was considered a lapse. B: Average distribution of PVT trials based on response outcome (fast 
responses: RT < 0.5 s; lapses: RT > 0.5 s) with lapses split by whether eyes were open or closed (N=13; due to eye-
tracking data loss. Only includes participants with data in both session blocks). EC fast trials are not included in the 
bar graph (they are the sliver of whitespace at the top). C: Percentage of PVT lapses that are with EC, depending on 

    

   

   

   

   

 

 
 
 
  
 
 
  
  
 
  
  
 
  
  
 

    
 

  

  

  

  

   

 
  
 
 
  
  
 
  

         

         

           

                   

 

  

  

  

  

   

 
 
 
  
 
 
  
  
 
  
 
  
 
  
 
  
 
 
  
  

    

   

   

   

   

 

  
 
  
 
 
  
  
 
  
  
 
  
  
 

    
 

  

  

  

  

   

 
  
 
 
  
  
 
  

         

         

           

           

   

                                

 

  

  

  

  

  

  

  
 
  
 
 
  
  
  

  
  
 
  
 

      

      

      

      

   

   



 EEG markers of sleepiness do not predict lapses in attention during sleep deprivation  

101 

 

the RT threshold used to define lapses. Error bars indicate interquartile range around the average. The higher the RT 
threshold, the more lapses are due to EC. Anderson et al. (2010) performed a similar analysis, although they found 
10% of lapses were with EC at 0.5 s cutoff, which only increased to 90% after ~2 s. This difference may be due to our 
soporific conditions. D: Same as A for LAT (N=18), although the LAT was performed 3 times for each session block 
instead of just once. N.B: BL recordings are pooled from three different days, whereas SD recordings were within the 
same 3-4 h timespan, and therefore also include time-on-task effects (Doran et al., 2001). E: Same as B for LAT (N=17). 
The LAT distinguishes slow trials as 0.5 s < RT < 1 s (yellow) and lapses as trials where no response was given. F: 
Percentage of LAT trials that are lapses, split into 6 quantiles based on the distance from the fixation point, such that 
1 is closest and 6 is furthest (N=17). 100% indicates all trials in that quantile were lapses (either EO or EC). Gray 
indicates BL trials, red SD trials. Darker shades reflect EC, lighter shades EO. Error bars indicate the interquartile 
range. 

4.3.2 At no timepoint were theta bursts more likely to occur during lapse trials 

To determine whether there was a temporal relationship between theta bursts and lapses, we looked at 

the proportion of trials containing a theta burst at every timepoint from 2 seconds before to 4 seconds 

after stimulus onset, split by trial outcome. We conducted paired t-tests for each timepoint relative to 

the average amount of theta present in the session block (BL, SD), with false-discovery rate (FDR) cor-

rection for multiple comparisons. Therefore, significant positive values indicate that theta was more likely 

to occur than average at that time point for that trial outcome during that session. 

To validate this analysis, we first applied it to the relationship between eye-closures (EC) and trial out-

comes during SD (Figure 4.3A). EC occupied on average 17% [14, 21] of SD. Occurrences of EC were 

significantly higher than average during lapse trials, peaking 0.1 s after stimulus onset (N = 17, t = 5.87, 

pfdr < .001, g = 1.95), when the stimulus was largest and before participants could respond (Figure 4.2D). 

Additionally, occurrences of ECs were significantly higher than average in the seconds before (max t: -

1.9 s; N = 17, t = 3.12, pfdr = .011, g = 1.04) and after lapse trials (max t: N = 17, t = 3.65, pfdr = .005, g = 1.21). 

Vice versa, EC were significantly below average for both fast and slow trials before and during stimulus 

presentation. Notably, the proportion of EC was briefly higher at stimulus onset for slow responses rela-

tive to fast ones (slow vs fast 0 s: N = 17, t = 5.74, p < .001, g = 0.85), suggesting this contributed to the 

delay. After slow and fast trials, there was a brief rebound of EC. When time-locking trials to the response 

(Figure 4.3D), the rebound onset for both slow and fast responses overlapped, suggesting that this was 

a response-locked reflex to blink after the trial was over. This analysis illustrates how EC are both a direct 

cause of lapses (peaking during stimulus window), as well as an indicator of an overall non-responsive 

state (higher EC in surrounding timepoints likely reflecting microsleeps). 

In Figure 4.3B and E, we used the same analysis for theta bursts during SD, locked to the stimulus and 

the response respectively. Theta bursts occupied 43% [19, 62] of SD recordings. At no point in time were 

theta bursts more common during lapse trials relative to the recording average, either before (max t: -1.2 

s; N = 17, t = 1.53, pfdr = .702, g = 0.51), during (max t: 0.0 s; N = 17, t = 1.67, pfdr = .698, g = 0.55) or after the 

stimulus (max t: 1.3 s; N = 17, t = 1.83, pfdr = .698, g = 0.61). No timepoint was significant for fast or slow 

trials either, although there were decreases in theta bursts just after the stimulus window ended (fast 

max t: 1.4 s, N = 17, t = -4.38, pfdr = .055, g = -1.46; slow max t: 1.0 s, N = 17, t = -2.23, pfdr = .698, g = -0.74), 

with a few timepoints significant when trials were locked to the response (Figure 4.3E). 

The same analyses were done for alpha bursts (Figure 4.3C,F), which occupied 75% [65, 88] of SD. There 

was still no difference in proportion of alpha bursts either before (max t: -1.2 s, N = 17, t = 1.25, pfdr = .484, 

g = 0.41) or during the stimulus of lapse trials (max t: 0.2 s, N = 17, t = -1.62, pfdr = .319, g = -0.54), although 

there was a trending decrease in alpha after the trial (max t: 2.0 s, N = 17, t = -2.59, pfdr = .088, g = -0.86). 

For fast and slow trials, contrary to previous findings (Huang et al., 2007), we found more alpha just before 
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fast responses (max t: -1.6 s; N = 17, t = 4.21, pfdr = .013, g = 1.40) and to a lesser extent before slow 

responses (max t: -1.6 s; N = 17, t = 3.34, pfdr = .033, g = 1.11). The effect was also more sustained for fast 

compared to slow trials (Figure 4.3C). However, in agreement with previous results (Nir et al., 2017), we 

also found a decrease in alpha peaking immediately after the stimulus ended for fast trials (max t: 0.6 s, 

N = 17, t = -4.95, pfdr = .007, g = -1.64), which was more attenuated and delayed during slow trials (max t: 

1.1 s, N = 17, t = -3.80, pfdr = .021, g = -1.26). Figure 4.3F reveals this effect to be response-locked rather 

than stimulus locked. This dip was followed by a rebound increase during fast trials (max t: 2.0 s, N = 17, 

t = 6.70, pfdr < .001, g = 2.22), delayed during slow trials (max t: 2.9 s, N = 17, t = 4.79, pfdr = .007, g = 1.59). 

 

Figure 4.3: Distribution in time of eyes-closed and bursts relative to trial outcomes during sleep deprivation. A: 
Difference in proportion of trials with EC for each outcome type relative to the recording average amount of EC, such 
that values at 0 (dotted horizontal line) represents no difference from the average. The thick vertical line represents 
stimulus onset, and the gray patch the time in which the stimulus was visible. Light thin colored lines represent 
individual averages, medium lines indicate the group average, and thick segments reflect timepoints in which the 
difference was statistically significant, with p< .05, FDR corrected for multiple comparisons. Sample sizes are indi-
cated in the top left. B: Same as A, but for theta bursts. Trials during which eyes were closed during the stimulus 
window were excluded. C: Same as B for alpha bursts. D-F: Same as A-C, with trials locked to the response instead of 
stimulus onset. Acronyms: FDR, false discovery rate. EC, eyes closed. 

We conducted the same analyses for the BL session block (Figure 4.4). For EC (Figure 4.4A,D), which 

occupied 6% [4, 8] of BL, the only major difference from SD was that there was no significant increase in 

EC during lapses in the seconds before or after the trial (max t: -1.5 s, N = 17, t = -1.59, pfdr = .257, g = -

0.53). This reflects the fact that microsleeps were not present at BL. 

For theta bursts (Figure 4.4B,E), occupying 29% [12, 37] of BL, again no window showed significant dif-

ferences for lapses (max t: 0.0 s, N = 11, t = -1.57, pfdr = .398, g = -0.64), although fewer participants had 

sufficient lapse trials for this analysis. However, fast trials had a higher proportion of theta during the 

stimulus (max t: 0.1 s, N = 18, t = 5.49, pfdr = .002, g = 1.78), followed by a negative deflection after the 

response (max t: 1.4 s, N = 18, t = -6.20, pfdr = .001, g = -2.01). This was not present for slow trials (max t: 

1.0 s, N = 14, t = -2.66, pfdr = .146, g = -0.96), although there was a significant post-response decrease (max 

t: 2.0 s, N = 14, t = -3.68, pfdr = .033, g = -1.34). 
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For alpha, occupying 80% [73, 90] of BL, the effects observed during SD were either the same or more 

pronounced (Figure 4.4C,F). There was no significant timepoint for lapse trials (max t: 0.5 s, N = 11, t = -

2.35, pfdr = .127, g = -0.95), although again the sample size was limited. Instead, alpha was higher than 

average before fast trials (max t: -1.0 s, N = 18, t = 5.23, pfdr = .001, g = 1.69), but not slow trials (max t: -

1.0 s, N = 14, t = 1.01, pfdr = .590, g = 0.37). Then, the negative deflection around the response was even 

larger than during SD for both slow trials (max t: 0.8 s, N = 14, t = -4.54, pfdr = .005, g = -1.65) and fast trials 

(max t: 0.4 s, N = 18, t = -6.04, pfdr < .001, g = -1.95), both of which were more time-locked to the response 

than the stimulus (Figure 4.4F). As with SD, there was a positive rebound in alpha after fast trials (max t: 

2.7 s, N = 18, t = 6.05, pfdr < .001, g = 1.96), but not slow trials (max t: 1.5 s, N = 14, t = -2.11, pfdr = .161, g = 

-0.76). 

 

Figure 4.4: Distribution in time of bursts and eyes-closed relative to trial outcomes during baseline recordings. 
Same as Figure 4.3. A,D: eyes closed. B,E: theta bursts. C,F: alpha bursts. N.B. for lapses and slow trials, the N is lower 
(indicated in top left) because some participants did not have enough of such trials to be included in this analysis. 
The N is different between A and B,C because the burst analyses excluded trials with EC. 

4.3.3 At no channel were theta bursts more likely to occur for lapses 

The previous results were conducted pooling bursts from all channels and may have masked local effects. 

We therefore conducted the same analysis for bursts detected in each channel, collapsing time into four 

windows: Pre, -2 to 0 s from stimulus onset; Stimulus, 0 to 0.3 s from onset; Response, 0.3 to 1 s from 

stimulus onset; and Post, 2 to 4 s from stimulus onset. Figure 4.5 shows the topographies during SD 

comparing the proportion of theta or alpha bursts relative to the recording averages of each channel, split 

by trial outcome for the different time windows. FDR correction was applied for each topography to cor-

rect for multiple comparisons across channels. 

For theta bursts during SD (Figure 4.5A), no channel showed a significant difference from the average 

during any window for any trial outcome. The largest effect observed for lapse trials was more theta in 

channel 19 in the Pre stimulus window (N = 17, t = 3.74, pfdr = .112, g = 0.15), although the effect size was 

so small it would require over 200 participants for sufficient statistical power (see Methods and Figure 



 EEG markers of sleepiness do not predict lapses in attention during sleep deprivation  

104 

 

4.7). Both fast and slow trials showed a broad decrease in the Response window, which is in agreement 

with the trends observed in Figure 4.3B, however these were non-significant and the effect sizes small 

(fast max channel 50; N = 17, t = -2.66, pfdr = .232, g = -0.10; slow max channel 110; N = 17, t = -3.62, pfdr = 

.148, g = -0.10).  

For alpha during SD lapse trials (Figure 4.5B), there were two channels showing a significant decrease 

during the Post window, although the effect size was small (max channel 92; N = 17, t = -5.56, p < .001, g 

= -0.27). This matches the trending decrease observed in Figure 4.3C, which may reflect an overall decline 

in alpha across the recording. The previously reported increase in alpha Pre for fast trials did not survive 

correction for multiple comparisons across channels, although the effect was trending (max channel 53; 

N = 17, t = 4.04, pfdr = .059, g = 0.19). There were widespread decreases of alpha in the Response window 

for fast trials, significant in 63% of channels, peaking in occipital-parietal areas (max channel 59; N = 17, 

t = -6.46, pfdr < .001, g = -0.90). The positive rebound during the Post window of fast trials was occipital 

(N = 17, t = 4.66, pfdr = .017, g = 0.32). For slow trials in the Response window, 15% channels in a left 

occipital-parietal cluster showed significant decreases (max channel 52; N = 17, t = -4.86, pfdr = .008, g = -

0.75).  

 

Figure 4.5: Difference in burst proportion by trial window and outcome during sleep deprivation. A: Difference in 
theta burst proportion from session average for different trial outcomes (rows) and time windows (columns), with 
the seconds ranges indicated in square brackets. Color indicates t-values comparing the proportion of theta for a 
given outcome in a given time window to the recording average for a given channel, such that red indicates more 
theta relative to the recording average. White dots indicate statistically significant differences, p < .05. FDR correction 
was applied for each topography. Sample size is indicated for each trial outcome. B: Same for alpha. 

During BL, the overall effects for theta bursts were not substantially different from sleep deprivation, 

with no electrode showing significant effects (Figure 4.6A; pfdr > .184). The “theta boost” observed during 

the stimulus window of fast trials did not result in any significant changes in any channel.  

Instead for alpha, all the effects previously described during SD were stronger and more widespread dur-

ing BL. Alpha was significantly higher during the Pre window for fast trials in 38% of channels, with a 

central-occipital focus and separate frontal cluster (max channel 71; N = 18, t = 5.07, pfdr = .003, g = 0.15). 

While significant, the effect size is much smaller here, indicating that this relationship between alpha and 

trial outcome is more robust in time than in space. The stimulus window for fast trials also showed sig-

nificantly less occipital alpha than average in 34% of channels (max channel 96; N = 18, t = -5.74, pfdr = 

.003, g = -0.31), anticipating the even stronger effect during the response window in 95% of channels 
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(max channel 67; N = 18, t = -6.90, pfdr < .001, g = -0.61), followed by the positive rebound in 90% of chan-

nels in the Post window (max channel 59; N = 18, t = 6.03, pfdr = .001, g = 0.23). Late trials only showed 

significant decreases in the Response window in 62% of channels (max channel 67; N = 14, t = -8.04, pfdr 

< .001, g = -0.65).  

 

Figure 4.6: Topography of burst proportions per trial type during baseline. Same as Figure 4.5. A: Theta bursts. B: 
Alpha bursts. 

4.4 Discussion 

With this study, we wished to determine whether theta bursts contribute to eyes-open behavioral lapses 

during sleep deprivation, given that both bursts and lapses increase with time awake (C. Anderson et al., 

2010; Basner & Dinges, 2011; Snipes et al., 2023). Our results showed if anything the opposite of what we 

expected. We did not find any significant relationship between lapses and theta bursts at any point in 

time (Figure 4.3B) nor at any channel (Figure 4.5A) either at baseline or during sleep deprivation. Instead, 

at baseline theta bursts were significantly more likely to occur during the stimulus window of fast trials 

(Figure 4.4B). The timing of this effect, peaking 0.1 s after and significant already before stimulus onset, 

indicates that the presence of a theta burst when a target stimulus appears actually boosts performance. 

How could theta bursts characterize sleep deprivation, a time when behavioral performance is impaired, 

if theta is instead predictive of better performance at baseline? A possible explanation is that theta is a 

marker of cortical inactivity in task-irrelevant areas. The fact that the BL theta boost is visible in time 

(Figure 4.4B) but not any specific channel (Figure 4.6A) could be because it’s not the presence of theta in 

specific task areas that helps, but rather the presence of theta in non-specific task-irrelevant areas that 

incidentally suppresses (or marks the absence of) conflicting neuronal activity. Supporting this associa-

tion between theta and local deactivation, functional magnetic resonance imaging (fMRI) studies have 

found frontal-midline theta during rest and task recordings to be anticorrelated to brain oxygen metab-

olism from its source, the anterior cingulate cortex of the default mode network (Scheeringa et al., 2008, 

2009).  

In our previous paper, we also found that sleep deprivation theta originates primarily from cortical areas 

not required for the ongoing task (Snipes et al., 2022). However, sleep deprivation theta especially in the 

LAT was quite widespread. It’s possible that the theta boost can only happen with more limited distribu-

tions of theta, and the theta during SD may not be “precise” enough to confer a behavioral benefit. 
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Therefore, small doses of theta at BL may be beneficial, but there’s too much theta during SD for the 

same effect. Alternatively, the general impairment of the brain during sleep deprivation may be so severe 

that the little boost that theta from task-irrelevant areas provides doesn’t make a difference. It’s still 

possible that theta occurs in task-relevant areas during SD, but this might be rare enough not to be visible 

in our analyses. 

This interpretation is highly speculative. A more traditional hypothesis would be that the presence of BL 

theta could reflect a moment of higher synchrony across task areas, thus facilitating transmission when 

the stimulus appears, producing faster reaction times (Polanía et al., 2012). Instead the theta bursts dur-

ing sleep deprivation may reflect a different “type” of theta, masking the presence of cognition-theta that 

created the BL theta boost. To determine whether the BL theta boost is related to theta in task-relevant 

or task-irrelevant areas would require higher spatial resolution of the bursts, either through source local-

ization or better yet, intracortical recordings. All the same, the fact that sleep deprivation theta does not 

have a link to performance outcome supports our previous finding that it primarily originates from task-

irrelevant areas. 

4.4.1 Alpha as a non-monotonic marker of vigilance 

While the relationship between theta and vigilance in the literature was ambiguous, alpha activity has 

been traditionally associated with inattention, reflecting within-session fluctuations in vigilance  

(Hanslmayr et al., 2011; Makeig & Jung, 1996; Sauseng et al., 2005). For example, in a study by Huang et 

al. (2007), well-rested participants performed a sustained attention driving task with similar “game me-

chanics” to the PVT and LAT (occasional driving adjustment required every 3 to 7 s). When sorting trials 

into low and high performance, the authors found that low performance “drowsy” trials were anticipated 

by higher alpha power, followed by a negative and then positive deflection, neither of which was present 

for alert trials. Instead, we found the opposite: prior alpha is higher for fast trials rather than slow or lapse 

trials, and the post-response deflections are more pronounced. The effect is present during SD (Figure 

4.3C) but is even stronger during BL sessions (Figure 4.4C, Figure 4.6B). 

A possible explanation for these opposing results is that alpha and vigilance follow a non-linear relation-

ship. Recent work by Pfeffer et al. (2022) found that alpha activity and pupil diameter follow an inverted 

U pattern, such that both small pupils (indicating low vigilance) and large pupils (indicating high vigilance) 

are associated with lower alpha compared to intermediate values. Given the generally slow reaction times 

of the LAT (Figure 4.2B), the higher subjective sleepiness ratings during this task even when performed 

under normal baseline conditions (Figure 2.3A, page 41 of Snipes et al. [2022]), and the deliberately sop-

orific conditions during these recordings (dark room, armchair), it’s likely that already our baseline task 

was more comparable to Huang’s “drowsy” state. Therefore, well-rested and extremely alert conditions 

as seen in Huang’s study will result in low alpha, from which drops in alertness (and performance) will 

result in increased alpha. Instead in our study, participants were already quite drowsy at baseline such 

that further drops in alertness resulted in decreased alpha. Therefore, the pre-stimulus alpha across these 

two studies follows the same inverted U relationship described in Pfeffer et al. and can explain our seem-

ingly contradictory results. The fact that alpha has a non-linear relationship with vigilance also makes 

sense given that alpha actually decreases with sleep deprivation (Cajochen et al., 2002; Snipes et al., 

2023), so it cannot be a monotonic marker of alertness.  
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4.4.2 Limitations 

The biggest limitation of this study is the small sample size. While we had more than enough power to 

detect both the increase in theta bursts as well as the increase in lapses with sleep deprivation, it is still 

possible that there is an effect of theta bursts on lapses, but it is relatively small and would require more 

participants to detect. Therefore, we cannot definitively conclude that theta bursts do not predict lapses 

at all, just that if the effect is there, it is not particularly strong.  

It is also important to note that the method we used for burst detection differs from prior studies that 

relied on spectral power; it discounts differences in amplitude, and gives the same weight to small and 

large oscillations. Therefore, differences from previous results are to be expected and require careful in-

terpretation. The alpha dynamics we observe are remarkably similar to those reported from power anal-

yses (Huang et al., 2007; Nir et al., 2017), however the increase in theta during fast trials at BL has not 

previously been reported to our knowledge, and was not visible in the topography (Figure 4.6A). There-

fore, this effect may not emerge when measuring spectral power with lower spatial resolution, or it may 

even be spurious; either way, it will be important to replicate this finding with a similar analysis on an 

independent dataset before drawing too many conclusions on the “theta boost.” Additionally, there is 

room for improvement in the burst detection, and it may eventually be possible to sort between “sleepi-

ness bursts” and baseline “cognition bursts,” if they are ever proven to be qualitatively distinct. 

4.4.3 Conclusion 

In conclusion, while theta bursts robustly characterize the EEG during sleep deprivation, and behavioral 

lapses are substantially higher, there is no temporal link between the two that would suggest any causal 

relationship. We did find that alpha bursts during both sleep deprivation and baseline reflected variations 

in vigilance, however unlike in previous studies, alpha predicted better performance, likely because par-

ticipants were at higher levels of sleepiness already at baseline. Therefore, neither oscillation directly 

causes lapses, nor reflects reduced vigilant states during sleep deprivation. It remains an open question 

what theta bursts during sleep deprivation are, but they may be primarily generated from unused cortical 

areas, and therefore have no behavioral correlates. 

4.5 Methods 

Different data from this experiment has previously been reported in Snipes et al. (2022) where the overall 

study design, participant selection, and EEG preprocessing was established, and in Snipes et al. (2023) 

where the burst detection method was developed and reported. These previous publications were ex-

ploratory analyses conducted in order to refine the analysis pipeline and better understand the increase 

in theta power observed during sleep deprivation. The data analyzed in this paper was deliberately set 

aside for this manuscript to test the hypothesis of whether a given EEG signal could explain behavioral 

lapses. 

4.5.1 Participants 

18 participants completed the experiment. University student applicants were screened for good health, 

good sleep quality, and at least some sleep deprivation vulnerability. 19 participants were recruited, and 

one participant dropped out midway. Mean age was 23 ± 1 years old, 3 were left-handed, all had normal 

or corrected-to-normal vision, and self-reported no hearing impairments. Data collection and interaction 



 EEG markers of sleepiness do not predict lapses in attention during sleep deprivation  

108 

 

with participants was conducted according to Swiss law (Ordinance on Human Research with the Excep-

tion of Clinical Trials) and the principles of the Declaration of Helsinki, with Zurich cantonal ethics ap-

proval BASEC-Nr. 2019-01193. 

4.5.2 Experiment design 

The full experimental schedule is depicted in Figure 4.1A. Participants came to the laboratory for two 

experimental bouts: baseline, and extended wake. During the baseline, participants went to bed at their 

habitual bedtime, and were free to wake up whenever they chose. On average they slept 8.0 ± 0.5 h. In 

the morning, they were provided breakfast and had at least 40 minutes from when they woke up to when 

they began task recordings. During the extended wake bout, participants slept only 4 hours, were kept 

awake 24 h, alternating between watching TV, rest recordings (Snipes et al., 2023), and breaks. We refer 

to this as a 4/24 extended wake paradigm.  

The main experiment task block consisted of 6 counterbalanced tasks performed at a computer desk at 

three timepoints (tallest blocks in Figure 4.1A): the morning after the baseline night, the same time dur-

ing extended wake, and after 20 h of extended wake (Snipes et al., 2022). These task blocks included the 

LAT and PVT. However, these two tasks were also performed under soporific conditions: seated in an 

armchair with footrest and headrest, lights turned off, with the task projected onto a wall. These soporific 

recordings are the ones analyzed in this manuscript. The soporific LAT and PVT were performed in coun-

terbalanced order with the desk task blocks, and then additionally the evening before and the morning 

after the extended wake bout. The soporific LAT was then performed two more times after the last task 

recording of SD. PVT data reported in Figure 4.2 comes from the one baseline and one sleep deprivation 

soporific recordings. The LAT BL session block was composed of the recordings from baseline, evening 

before, and morning after the extended wake bout, marked in peach in Figure 4.1A. N.B. these were at 

three different circadian times: mid morning, evening, and midday.  The LAT SD session block was com-

posed of the first counterbalanced recording after 20 h of wake, and the final two repetitions, marked in 

red in Figure 4.1A. Therefore, for half the participants, the three SD LAT tasks were performed after 

more than 22 h awake, back to back, whereas for the other half, the first SD LAT (and SD PVT) was 

performed around 20 h awake, before the 2 h computer task block. 

The Lateralized Attention Task: The LAT is a 12 min visual-spatial reaction time task, modelled after 

the PVT (Basner & Dinges, 2011). 6 blocks (2 min each) alternated between having the left or right visual 

hemifield in white, and the other in black (Figure 4.1B). Participants had to maintain fixation on a red 

rectangle in the center of the screen, and covertly attend to the white half of the screen. Every 2-10 s a 

feint grey circle (1 cm radius, #F7F7F7) would appear randomly in any location of the illuminated hemi-

field and shrink away completely within 0.5 s. While faint, the stimuli were still above detection threshold 

levels for all participants when presented near the fixation point. Participants were instructed to press a 

button (on a MilliKey button box) before the circle disappeared, in which case the circle would freeze and 

flash green. Responses earlier than 0.1 s were considered false alarms. Responses from 0.5 to 1 s after 

the circle completely disappeared were considered late. If 5 stimuli were missed consecutively, an alarm 

would sound to wake up the participant (this occurred at least once for almost every participant during 

SD, but not BL). During the delay periods, 50 ms pink noise tones were presented every 1.5-5 s at ~50dB. 

Participants were instructed to ignore these tones. Overall, participants had between 100-130 trials per 

recording. One participant completed only 1 SD LAT, another participant completed only 2 SD LAT. All 

others had 3 BL and 3 SD EEG recordings. 
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The 0.1 s and 1 s cutoffs for considering trial responses was decided a-priori, based on typical adult reac-

tion times in the PVT, in order to exclude false-alarms. While there may have been a few RTs slower than 

1 s, during sleep deprivation 99% of RTs were within 830 ms. Compared with the ~33% of trials resulting 

in a lapse, this clearly indicates that the vast majority of lapses would have happened regardless of the 1 

s cutoff. 

4.5.3 EEG analysis 

EEG data was recorded at 1000 Hz with Cz reference. Preprocessing and data analysis were done using 

EEGLAB (Delorme & Makeig, 2004) and custom MATLAB scripts (R2019b, R2022b, R2023a). Data was 

downsampled to 250 Hz and filtered between 0.5-40 Hz. Major artifacts were identified visually, and 

physiological artifacts (eye movements, heartbeat, muscle activity) were removed with independent 

component analysis (ICA). Further details are provided in Snipes et al. (2022). 

Bursts were detected using cycle-by-cycle analysis (Cole & Voytek, 2019), with adaptations previously 

published (Snipes et al., 2023). The reason for using cycle-by-cycle analysis over other methods was to 

dissociate changes in the amplitude of oscillations from their actual occurrence, both of which increase 

for theta bursts with time awake, and increase and decrease for alpha bursts, respectively. 

To identify bursts, first clean EEG data was filtered in narrow overlapping bands 4 Hz wide, from 2 to 14 

Hz, and for each band, zero-crossings were identified. Then, negative oscillation peaks were detected in 

the unfiltered data as minimum values between each downward and upward zero-crossing timepoints. If 

a sufficient number of consecutive peaks met the criteria for an oscillation cycle, these were classified as 

a burst. This procedure was run both on the signal and its inverse. Overlapping bursts were removed, 

keeping only the longest burst. Bursts were then sorted as theta and alpha based on the mean peak-to-

peak period. In our previous publication, cycles had to meet a single set of criteria to be considered a 

burst. Here, we chose three sets of criteria which together captured a larger fraction of oscillatory activ-

ity. These were identified through trial-and-error on the PVT soporific data, with the goal of capturing as 

much of the oscillatory signal that could be visually identified. 

First, we used the same criteria as the previous publication. 4 consecutive cycles had to have similar con-

secutive periods (minimum ratio of .6), similar consecutive amplitudes (.6), similar rising and descending 

amplitudes (flank consistency; .5), a minimum proportion of timepoints that changed amplitude in the 

correct direction of the cycle (monotonicity in time; .6), and a minimum proportion of the amplitude that 

changed in the correct direction of the cycle (monotonicity in amplitude; .6). These criteria identified 

fairly regular oscillations. 

Then, we identified short bursts that relaxed the above criteria but introduced an additional minimum 

amplitude threshold. Only 3 consecutive cycles needed to have: consecutive period ratios of .3, the peaks 

had to be prominent relative to the surrounding signal (there couldn’t be any values between the previous 

peak’s ascending midpoint and the current peak’s descending midpoint, or the current peak’s ascending 

midpoint and the next peak’s descending midpoint), and the positive to negative peak amplitude had to 

be above 25 μV. This identified both short and longer bursts that had an irregular form but were undeni-

ably oscillations emerging from the background signal. 

Lastly, we identified long bursts that had at least 6 peaks with slightly more relaxed criteria from the 

clean set. Consecutive periods had to have a minimum ratio of .5, amplitude consistency of .5, flank con-

sistency of .5, time monotonicity of .5, and amplitude monotonicity of .6. These criteria were selected to 
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capture bursts that were just below the thresholds previously set but were readily distinguishable from 

noise by their length. As with overlapping frequencies, when there were overlapping bursts detected with 

these three different sets of criteria, only the longest was kept. For this reason, no further distinction was 

made between bursts captured with the different criteria. 

To quantify whether a burst was more likely to occur at a given timepoint for a given trial outcome (Figure 

4.3, Figure 4.4), we calculated the proportion of trials which contained a burst, for each trial type at every 

timepoint. First, a vector of ones and zeros is created for every sample of the recording, indicating 

whether a burst was present or not in any channel. This vector was then epoched for every trial, centered 

on either the stimulus or response triggers recorded in the EEG, as is typically done for event related 

potentials (ERPs). Timepoints containing noise were not considered, nor were timepoints with eyes-

closed. Trials were excluded if more than 50% of the data was missing, for either reason. Furthermore, 

trials during which eyes were closed at least 50% of the time during the stimulus window were also ex-

cluded (because the lapse would have been due to the eye-closure). Separately for every trial type at 

every timepoint, the number of trials containing a burst was divided by the total number of trials for that 

type, thus obtaining the proportion of bursts as a value between 0 and 1 across time. Participants were 

excluded if any trial type had fewer than 15 trials in total; for this reason, the sample size is always pro-

vided in the figure. The values for each participant were additionally smoothed over 0.3 s using a lowess 

filter for visualization purposes, and did not affect the results; the significantly higher theta at t = 0 s for 

BL fast trials remained significant without the filter. These proportions split by trial type were then com-

pared statistically to the overall proportion of timepoints containing a burst during that session block, 

FDR corrected for multiple comparisons within each figure. 

To determine the proportion of bursts across channels (Figure 4.5, Figure 4.6), the same procedure was 

done, except separately for each channel. The burst proportions were then averaged within the four win-

dows (Pre: −2-0 s; Stimulus: 0-0.3 s; Response .3-1 s; Post: 2-4 s). The Pre window was chosen a-priori. 

The stimulus/response windows were split based on reaction times, such that only 1% of RTs were < 0.3 

s and thus in the stimulus window. The Post window was chosen a-posteriori to explore further the re-

bound observed in Figure 4.3C. 

4.5.4 Eye tracking 

Eye tracking was done with Pupil Core “glasses” from Pupil Labs. These were eyeglass frames with two 

rear-facing infra-red cameras. Pupil Player software estimates pupil diameter from the video and provides 

a confidence value for that estimate; these confidence values were used to determine when participants 

had their eyes open or closed, with values <.5 considered eyes closed. Consecutive timepoints with con-

fidence values over 0.5 that lasted less than 50 ms were still considered eyes-closed, and consecutive 

timepoints under 0.5 and less than 50 ms long were considered eyes open. Multiple technical failures 

resulted in data loss such that 6 participants had only 2 BL eye-tracking recordings, one participant had 

only 1 SD eye tracking, and one participant had no SD eye-tracking. 

4.5.5 Statistics 

For the data in Figure 4.3 to Figure 4.6, paired t-tests were performed comparing the proportion of trials 

with bursts (or eye-closure) to the general recording’s proportion of timepoints with bursts. All p-values 

within each plot (all timepoints for each trial type or all channels) were adjusted for false-discovery rate 
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(FDR) using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995). The largest t-values are 

reported in the text. 

Hedge’s g effect sizes were calculated to quantify the “meaningfulness” of the t-test results. Using Co-

hen’s rule of thumb, Hedge’s g around 0.2 is considered small, 0.5 considered medium, and 0.8 large 

(Becker, 2000; J. Cohen, 1988). However, given our small sample size it is important to consider what 

effect sizes we actually had power for. We therefore conducted post-hoc statistical power analysis 

(MATLAB function sampsizepwr) to identify the sample size required for a given effect size, with α = .05 

and 1-β=.8, plotted in Figure 4.7. For the full 18 participants, we had statistical power for effect sizes over 

0.68, and with 10 participants we had power for effect sizes over 0.94. 

When reporting mean values in the text, instead of also providing standard deviations, we indicate the 

interquartile range (25% and 75% of participants’ values). This can be more informative when results are 

close to floor or ceiling (e.g. Figure 4.2B). 

 

Figure 4.7: Required sample size for a given effect size, based on statistical power analysis, with α = .05 and 1-β=.8.  
Y axis is on a logarithmic scale. Colored dots indicate the lowest and highest sample sizes included in this paper. N.B. 
small effects of 0.2 would require around 200 participants to detect. 

4.6 Supplementary material 

4.6.1 Theta bursts contribute to at least half of the increase in theta power 

Cycle-by-cycle analysis was used to identify theta (4-8 Hz) and alpha bursts (8-12 Hz). To evaluate the 

success of the algorithm in capturing these bursts, we visually inspected the power spectra of regions of 

interest (ROI) known to contain substantial oscillatory activity: the Front ROI during sleep deprivation 

for theta, and the Back ROI at baseline for alpha. The EEG power spectrum consists of the combination 

of a periodic component caused by oscillatory activity, and an aperiodic component reflecting the “back-

ground noise” of the EEG. When represented on a log-log scale, the 1/f aperiodic component appears as 

a downward-sloping straight line, from which periodic quasi-gaussian bumps emerge. The more this 

bump is reduced after removing timepoints containing bursts, the more successful the burst detection.  

Figure 4.8A illustrates the degree of theta burst removal, and Figure 4.8B illustrates the same for alpha, 

in the EEG spectrum with eyes-open. For alpha, almost the entire periodic component is removed. For 

theta, a good portion of the periodic component is removed, although the remaining spectrum is still 

elevated compared to the aperiodic trend. This suggests that some frontal theta activity may not be as 
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regular as occipital alpha, and therefore not captured by the burst detection. When calculating the burst-

related increase in theta power during sleep deprivation, we estimate that 53% [18, 82] of sleep-depriva-

tion theta was captured. Visual inspection revealed that there were still bursts with more irregular wave-

forms that were not captured with cycle-by-cycle analysis; therefore this is an underestimate of the con-

tribution of theta bursts to sdTheta. 

 

Figure 4.8: Oscillation burst detection. From the LAT burst detection. A: Power spectrums during SD with and with-
out theta bursts for the Front ROI for eyes-open data. Each colored patch reflects a participant (N=17), such that the 
thin bottom line is the spectrum without bursts, and the filled in area reflects the spectrum with bursts. The black 
line and patch reflect the group average. The gray dotted line is the average Front ROI power spectrum during BL 
recordings, without theta bursts. The data was log-transformed, and the x axis is on a log scale. To improve visual 
comparison by increasing the overlap of individual participants, each spectrum was centered using mean delta power. 
This did not affect the group averages. B: Same as A, but comparing EEG power with and without alpha bursts in the 
back ROI during BL recordings (N=18). N.B. the right-most green participant for which not much alpha was removed 
was because the spectrum peak was ~14 Hz, outside the pre-selected range for alpha. C: Proportion of recordings 
during which a theta (red) or alpha burst (yellow) occurs (N=17). Orange represents time in which theta and alpha 
co-occurred. Whitespace reflects time in which neither burst was detected. 

tldr; a little more than half of sdTheta is captured as bursts. 
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5 DISCUSSION 

In the introduction, I covered what the literature had to say about theta and provided a list of possible 

explanations for the increase in theta power with sleep deprivation (section 1.7, page 30). Then through-

out the three publications I tried to narrow down the correct answer. The easiest option to test was 

fmTheta: I conducted a short-term memory task to determine whether sdTheta also originated from the 

same medial prefrontal areas (section 2.4.2, page 42). I found that in fact sdTheta originated both within 

and well-outside the ACC (Figure 2.4, page 42), and so was not a strict subset of fmTheta. Interestingly, 

the sources of sdTheta were rather task-unrelated areas (Figure 2.9, page 49), which is still something in 

common with fmTheta. Furthermore, fmTheta bursts seemed to get larger with time awake (Figure 2.11, 

page 51). Therefore, the distinction between sdTheta and fmTheta was muddled. 

To resolve the contradictory evidence, I switched from power analyses to cycle-by-cycle analysis (section 

3). Like this, I could separately determine whether the increase in theta power was driven by changes in 

the quantities of oscillations or increases in their amplitude. I found in fact that both were true: pre-

existing oscillations like fmTheta would increase in amplitude, and new oscillations became more com-

mon across the scalp with time awake (Figure 3.5, page 78). This increase in amplitudes supports the 

synaptic homeostasis hypothesis; increasing wake means increased neuronal connectivity. The increase 

in theta bursts was independent of this effect. Therefore, fmTheta was still found during sleep depriva-

tion, with larger waves than ever, but additional theta bursts were popping up all over the place. But what 

were these sdTheta bursts, and what did they do? The results from the final paper seems to suggest that 

these bursts don’t do anything at all. 

5.1 Theta bursts during sleep deprivation as local rest 

A key finding used to demonstrate that theta activity was local sleep in wake was its association with 

behavioral lapses in rats (Vyazovskiy et al., 2011). Because off-periods anticipated lapses and off-periods 

created theta events, and higher theta power characterized sleep deprivation in both rats and humans, 

the assumption was that sdTheta reflected local sleep. However, this assumption no longer holds given 

that sdTheta in humans is substantially more affected by bursts of theta rather than single theta events. 

Since these theta bursts had not previously been studied, it was an open question what they were; they 

could have been a compensation mechanism to maintain wake and stable performance, or some other 

manifestation of local sleep. In either case, there should have been a temporal relationship between theta 

bursts and behavioral outcomes. The LAT was the most likely task to see an effect, given it had both 

substantial increases in theta and behavioral lapses with time awake. However, I found no relationship 

between lapses and bursts, nor fast trials and bursts during sleep deprivation. So, neither local sleep nor 

compensation. 

A possible explanation for why sdTheta does not affect behavior is because it could primarily originate 

from task-unrelated cortical areas. In general, the more engaging a task, the less widespread sdTheta; the 

most active task, the speech fluency task, produced the least sdTheta. Furthermore, speaking produced 

even less theta than silent practicing (section 2.6.3, page 67). More specifically, during a spatial game the 

areas responsible for object recognition were generating large amounts of theta, and during passive music 

listening the areas involved in high-order motor control generated the most theta (section 2.4.4, page 

44). Instead, sdTheta was low in motor areas for the game, and low in object recognition areas for music. 

This could have meant that there was something wrong with the source localization, or that there wasn’t 

sufficient spatial resolution, or maybe I hadn’t read enough literature to grasp the importance of those 
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areas. But the fact that fmTheta has also been associated with task-unrelated areas, supported by a larger 

pool of evidence (section 1.5.1, page 24), makes for a compelling case that sdTheta could also come from 

unused cortical areas. 

In the LAT, there was a relationship between fast trials and theta bursts at baseline, but it was unusual. 

Theta bursts were more likely to occur exactly when the stimulus was present and leading to a fast re-

sponse, with peak timing just after the stimulus appeared and already significant just before stimulus 

onset. Therefore, given that the stimuli occurred at random, this means there was a causal relationship 

between spontaneous theta bursts and faster responses. Even more unusual was that this effect did not 

originate from any specific topographical source, as one would expect for an oscillation boosting perfor-

mance (Figure 4.6, page 105). Again, under normal circumstances I would dismiss the timecourse result 

as spurious, but theta from unused cortical areas offers a possible explanation. Theta in task-unrelated 

areas (of which fmTheta is just one prominent example) could indicate inactivity of these areas, which 

means less competition with task-areas. Since task-unrelated areas will outnumber task-related ones, 

this didn’t appear as coming from a specific collection of sources. Therefore, the effect was significant in 

time but not in space. The fact that sdTheta becomes increasingly widespread with time awake could 

then mean that theta overwhelms the brain and no longer offers a benefit because theta starts to be as 

likely in task-unrelated as task-related networks, or the brain is just too tired to derive a benefit from a 

reduction of competing networks. 

As it happens, this relationship with unused areas may not even be specific to theta. The association with 

fMRI inactivity also exists for alpha oscillations (Goldman et al., 2002; Scheeringa et al., 2012), although 

it is already intuitive by the fact that alpha from visual areas increases in amplitude whenever eyes are 

closed (Kirschfeld, 2005). Likewise, alpha acts as an inverted attention spotlight: it is higher in cortical 

areas responsible for the visual region that is not being attended (Rihs et al., 2007; Sauseng, Klimesch, 

Stadler, et al., 2005).1 This has led to the interpretation of alpha as a default resting state for primary 

sensory areas (Schomer & Silva, 2011). A slightly fancier interpretation is that alpha reflects a reduced 

“refresh rate” with which these areas receive and process sensory inputs (Mathewson et al., 2009; 

VanRullen, 2016). 

Given that theta activity likewise originates from unused areas, maybe it’s the same phenomenon as al-

pha activity. Zhang et al. (2018) find that theta and alpha form a gradient across the brain, with faster 

frequencies originate from the back, and slower frequencies from the front. Therefore, different frequen-

cies would reflect location-specific preferences, not different neural processes. I find this gradient a note-

worthy observation, however I don’t think that theta and alpha are strictly the same oscillation. They 

show opposite changes across time, with theta increasing and alpha decreasing with sleep deprivation 

(Figure 3.5, page 78), and they have different circadian phases, with alpha lowest at night, and theta low-

est in the WMZ (Cajochen et al., 2002). All the same, they may similarly reflect inactivity. 

For both theta and alpha, the question then becomes whether this inactivity is just a passive form of 

neuronal idling, or whether these oscillations reflect an active component in focusing attentional re-

sources. For alpha, the debate has been going on a lot longer, and the answer that emerged seems to be 

that it’s a bit of both. Depending on the task, alpha power will decrease in attended visual areas in 

 

1 The primary visual cortex is a large occipital area that fairly neatly maps the visual field (Sereno et al., 1995), with the 
left hemisphere responsible for the right visual hemifield, and vice versa. Rihs therefore found that alpha is higher in left 
visual areas when attending the left visual field, and vice versa. 
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anticipation of incoming stimuli, and it will increase in contralateral visual areas, suggesting inhibition 

(Rihs et al., 2009). Likewise, rhythmic TMS at 10 Hz worsened visual detection when visual inputs were 

supposed to arrive at the stimulated visual cortex, and improved detection when inputs were in the con-

tralateral hemifield (Romei et al., 2010).1 Such experiments don’t exist yet for sdTheta, but they may 

provide similar answers. 

As mentioned, theta at baseline could conceivably reflect functional inhibition, explaining the theta boost 

in the LAT. There’s even more evidence of this for fmTheta; as discussed in the introduction, fmTheta 

has been systematically associated with externally focused attention, resisting distractions, and reduced 

mind wandering. Likewise, I found the highest fmTheta to occur during the tablet game. Gaming in gen-

eral is characterized by strong focused attention and imperviousness to distractions, which is something 

in common with (successful) meditation; the difference between the two is an external vs internal locus 

of control. fmTheta might reflect the inhibition of the DMN, resulting in more focused attention, and the 

theta boost observed in the baseline LAT may be a similar manifestation for other brain areas. Functional 

inhibition could be behind sdTheta as well, but the evidence is more thin. 

Supporting the idea of inhibition, sdTheta did not come from just anywhere during the different tasks; it 

seemed to originate primarily from frontal and higher-order association areas. Given that the source lo-

calization was done with theta power, this could just reflect higher homeostatic sleep pressure in these 

regions and not an increase in the amount of bursts. However, it could also reflect the increased need to 

inhibit unspecific but highly interconnected areas to maintain performance during sleep deprivation, like 

fmTheta inhibiting the ACC during focused attention. Further supporting inhibition, the areas showing 

the most sdTheta originated rather from competitive instead of completely unrelated cortical areas. The 

game’s largest sdTheta source was the object recognition pathway, areas not functionally relevant to the 

task but conceivably in direct competition with spatial cognition (the actual requirement of the game). 

Supporting more the idea of sdTheta as a passive marker of disengagement was that the theta boost at 

baseline was no longer present during sleep deprivation. If sdTheta inhibiting task-unrelated areas was a 

form of compensation against sleep deprivation, it should have resulted in an even stronger association 

with fast trials, and if it was inhibition unintentionally entering task-networks it would have been asso-

ciated with lapses or slow trials. The fact that the baseline effect disappears instead suggests that the 

increase in theta with sleep deprivation is not functional, and masks whatever beneficial theta effect 

might have already been present. However, again, this is one type of analysis in one task, a task specifi-

cally designed to not allow for compensation mechanisms. Future evidence could tip the scales. 

If sdTheta bursts are not a form of inhibition but rather a reflection of disengagement, the question then 

becomes: does this correspond to a passive lack of activity, or could they be genuinely restorative? A 

distinction is usually made between rest which counteracts fatigue, and sleep which counteracts every-

thing else. Both are restorative, but the understanding is that sleep involves sacrificing responsiveness 

for restorative processes that can’t otherwise happen while the brain is awake. If task-unrelated areas 

are disengaged, this would already be sufficient for some degree of restoration. Theta as a form of local 

rest could explain also why theta power characterizes the EEG with increasing time on task and mental 

fatigue, assuming this form of theta exists independently from sdTheta with time awake (section 1.2.2, 

 

1 TMS is transcranial magnetic stimulation, and unlike tACS, it is usually applied in very short pulses, perceived as auditory 
clicks. The sham condition in this case were rhythmic pulses at 5 Hz and 20 Hz, indicating that the effect wasn’t just 
because participants were getting their brains zapped. 
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page 13). The original hypothesis of theta reflecting local sleep however would take this one step further 

and assume a short-term loss in responsiveness for the sake of recovery. 

Therefore, there are actually three possibilities for what happens in task-unrelated areas. Theta could 

reflect inhibition for the sake of reducing distractors and improving performance. Theta could reflect 

disengagement and therefore rest. Or theta could reflect genuine sleep. From my data, I lean more to-

wards the second option, that theta reflects rest; theta as inhibition should have been behaviorally rele-

vant, and theta as sleep is unlike any form of sleep currently observed. However, many more experiments 

during sleep deprivation are needed to find the answer. 

tldr; sdTheta may not have any behavioral correlates because it originates from unused cortical areas; either 

because it is inhibiting conflicting networks, or just reflects rest. 

Box 5.1: Redundancy and compensatory recruitment hypotheses 

The biggest difference from Vyazovskiy’s 2011 study in rats was that in humans, theta during sleep depriva-

tion was driven largely by bursts and not little slow waves. However, the fact that these bursts don’t affect 

behavior is an equally noteworthy difference. It is still possible that theta events in rats are the same as theta 

bursts in humans, but the reason sdTheta bursts do not cause any behavioral outcomes may be because we 

have substantially larger brains (Herculano-Houzel, 2009).  

The “redundancy hypothesis” posits that humans have larger brains than is strictly necessary for short-term 

survival, and such large brains are instead meant to compensate for accumulating brain trauma with age, al-

lowing for longer lifespans (Glassman, 1987; Humphrey, 1999). During acute sleep deprivation, such neural 

redundancies would also allow greater resistance to local sleep events, maintaining behavior at nominal levels 

for longer. Vyazovskiy observed behavioral lapses in rats during a sugar pellet reaching task with only 6 hours 

of sleep deprivation; we can only reliably see behavioral impairments after over 16 h of extended wake. 

Therefore, the sdTheta bursts in humans may have substantially less behavioral relevance than the theta 

events in rats, maybe only slightly delaying reaction times in humans (Hudson et al., 2020), imperceptible with 

how I analyzed the data. 

This brain redundancy may occur in two ways: more neurons can be dedicated to the same function (e.g. left 

and right hemisphere redundancies), or additional unspecialized areas can be recruited under higher task 

demands. The latter is known as the “compensatory recruitment hypothesis” (Drummond & Brown, 2001) 

based on the fMRI finding that additional brain areas show increased activity during sleep deprivation com-

pared to baseline when performing the same task, and this increase is positively correlated with improved 

performance (Chee & Choo, 2004; Drummond et al., 2005). In both cases, reserve areas help maintain task 

performance, differing only in how specialized the reserves are. This argument applies to any form of local 

detriment; the more redundant networks a species has, the longer it can remain unaffected by an adverse 

event or cortical impairment.  

tldr; sleep deprivation may not have an impact on humans as it has in rats, because we have larger brains 

that can compensate for local sleep better. 
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5.2 How to reconcile sdTheta, fmTheta, and cogTheta 

Given that both fmTheta and sdTheta seem to originate from unused cortical areas, this would resolve 

the theta paradox for two major manifestations of theta in humans. However, this does not explain the 

discrepancy with the ample literature linking theta to actual cognitive functions like memory encoding 

and long distance coherence which does occur in task areas. The initial reconciliatory hypothesis I had 

was that sdTheta might reflect some form of executive control compensation mechanism, although as 

described in the previous section, the evidence I’ve collected doesn’t really seem to support this. 

A different solution could instead be that there are at least two types of theta oscillations happening in 

different places: one reflecting cortical inactivity in task-unrelated areas; and the other, less prominent, 

reflecting cortical computation in task-related areas. Supporting this, I found that not only did theta have 

different sources, but also extremely heterogeneous waveforms, suggesting different oscillators (Figure 

5.1). These differences were most noticeable across individuals, but even within the same participant, 

theta oscillations could look quite different. It may eventually be possible to categorize theta oscillations 

not just by source or frequency, but also by morphology; in which case there may be a more systematic 

dissociation between cogTheta and fmTheta / sdTheta. More advanced analyses are likely necessary, 

since it seems that rest-related theta like fmTheta and sdTheta are more prominent on the surface EEG, 

and cogTheta only really emerges with intracortical data or careful trial averaging.1  

 

Figure 5.1: Examples of sdTheta. Taken from the last measured LAT from 8 different participants. 123 channels, each 
segment is about 1.25 s. 

Alternatively, it may be possible to create a “general theory of theta.” Buzsáki in 1996 suggested that 

maybe oscillations act as a low-energy inhibitory mechanism: only neuronal spikes at the correct phase 

will successfully transmit to downstream neurons. Therefore, an oscillation is as much about facilitating 

neuronal communication of the relevant network, as suppressing that of an interfering network. When 

 

1 This dissociation between intracortical and surface results is a similar story to that of gamma. Both intracortical record-
ings and surface EEG showed increased gamma power related to visual perceptual binding (Tallon-Baudry & Bertrand, 
1999), but it was later revealed that the effects on the surface were due to ocular microsaccades (Yuval-Greenberg et al., 
2008), and the surface EEG gamma was not present when muscles were paralyzed (Whitham et al., 2007). Moral of the 
story: just because you see the same thing both intracortically and on the scalp, doesn’t mean that it is the same. 
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theta oscillations occur in hub areas such as the ACC, it could therefore reflect not overall disengagement 

as much as an increase in specificity of what information get transmitted from one brain area to the next. 

Essentially, theta oscillations filter messages from areas outside of the specifically engaged task network, 

and this corresponds to the cognitive phenomenon of focused attention. Therefore, it’s not necessarily 

that theta reflects a blanket inhibition, but rather a more selective inhibition allowing for more stream-

lined communication between task-relevant networks. The fact that theta from (mostly) task-irrelevant 

areas is of higher amplitude than cogTheta might not be a coincidence. If a given area has more task-

unrelated rather than task-related networks, then theta across these areas might be of comparable phase 

and therefore appear larger on the cortex. 

This explanation would have been easier to accept if the results from section 4.3.2 had been inverted, and 

theta was more related to fast responses during sleep deprivation; if theta was higher for fast trials during 

SD, more so than BL, then the greater amount of sdTheta during the LAT was acting as compensation 

to maintain the same level of performance. Still, I would argue that this one result is not enough to dismiss 

this interpretation of a unified theory of theta altogether. More evidence is needed, either way. Until 

then, I think a lot of fruitful research can move forward relying on theta oscillations as biomarkers, with-

out being overly concerned about what they are actually doing.1 

tldr; theta oscillations could filter information by inhibiting task-irrelevant areas. 

Box 5.2: Frontal midline theta reflects an optional compensation mechanism 

Frontal-midline theta is not measured in all individuals (Mitchell et al., 2008), which begs the question: why 

not? Sometimes, oscillations aren’t visible on the surface EEG just because of structural brain differences, 

however the proportion of participants with fmTheta depends a lot on the task, so individuals differ on which 

conditions they produce it. A possible explanation is that fmTheta reflects a special compensation mechanism 

that some individuals employ to maintain performance on a task they would otherwise struggle with. It may 

even be the case that it’s a mechanism some individuals have, and others simply have not.  

Ferreira et al. (2019) found that in a task requiring suppressing distractor information, frontal-midline theta 

was high at the beginning of the task, and decreased with practice in young adults, but not older adults. This 

may suggest that as the task becomes more familiar, the extra boost provided by fmTheta is no longer 

needed. Likewise, fmTheta may be a mechanism more often relied on in younger individuals, whereas older 

individuals are sufficiently experienced not to need it (or unfortunate to have lost it). 

A similar interpretation is that fmTheta reflects cognitive control, i.e. a goal-directed bias over habitual re-

sponses (Cavanagh & Frank, 2014). While this could also explain the sporadic nature of fmTheta, it does not 

explain why a pleasant game would have higher theta than a traditional cognitive task (Figure 2.6, page 45); 

after all, it requires more conscious control to stay on a boring task than an enjoyable one. For this reason, I 

lean towards fmTheta reflecting the consequence of a special brand of focused attention, above and beyond 

what would be strictly needed to perform the task. 

tldr; since fmTheta doesn’t exist in all participants, it is likely optional. 

 

1 For more on what it means for an oscillation to be “doing” something, see Box 7.1 in section 7.2.2, page 136. 
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5.3 Amplitudes as markers of sleep and synaptic homeostasis 

While theta bursts remain a mystery for now, an important step forward with this thesis was clarifying 

the association between oscillation amplitudes and sleep homeostasis (section 3, page 70). This involved 

a bit of a paradigm shift in how the relationship between oscillations and homeostasis is conceived. By 

moving beyond specific oscillations (theta in wake and delta in sleep), I instead focus more generally on 

the effect that the microscopic synaptic changes will have on the macroscopic EEG. 

The synaptic homeostasis hypothesis (SHY) is still under debate regarding what synaptic plasticity really 

is, what physical/chemical changes it corresponds to, and to what extent upscaling and downscaling of 

synapses is specific to wake and sleep (personal communication with detractors). Non-invasive research 

in healthy humans is usually ill-suited to resolving these questions, but SHY provided testable predictions 

on what we should observe in the EEG: increased oscillations with time awake (Figure 5.2). The idea is 

that we accumulate memories throughout the day by progressively strengthening synaptic connections, 

but this can’t go on forever. Therefore, sleep is needed to selectively “downscale” synapses that are not 

important and consolidate the ones that are. The fact that slow wave activity decreases across sleep and 

increases according to prior wake was considered a consequence of this process: the stronger the con-

nections between neurons, the larger the oscillations (Tononi & Cirelli, 2003).  

 

Figure 5.2: The synaptic homeostasis hypothesis (Tononi & Cirelli, 2014). During wake, synapses increase in 
strength, resulting in higher amplitude oscillations. During sleep, synapses are “downscaled” so the overall synaptic 
balance is restored, but with new weights reflecting new memories (and forgotten old memories). This process is 
reflected in decreases in slow wave amplitudes during sleep, and increasing theta amplitudes during wake. 

The relationship between SWA and homeostasis is evident already as just changes in delta power. As it 

happens, periods in which slow waves are present are pre-selected, in essence controlling for “quantities” 

of slow waves, but wake oscillations do not similarly get staged. Periods with oscillations are pooled with 

periods without, so quantity is no longer controlled for. To find the same effect in wake as in sleep, ana-

lytical measures like cycle-by-cycle analysis were needed, that did not rely on amplitudes to define the 

existence of the oscillation. 

The fact that oscillation amplitudes increase with time awake is likely driven by an increase in the 

strength of connectivity between neurons. Of course, many other factors will also affect oscillation am-

plitudes, as I saw with the wake maintenance zone and different tasks, but SHY does provide a very good 

explanation for why amplitudes increase across wake and decrease after sleep. I find that it makes much 

more sense that synaptic homeostasis would affect all oscillations in the same way, rather than it being 
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a property specific to just theta and delta.1 I only quantified theta and alpha, but I strongly suspect it holds 

for beta oscillations, since beta power also increases with time awake (Figure 2.10, page 50). Furthermore, 

even sleep spindle amplitudes increase following sleep deprivation, despite overall quantities decreasing 

(Knoblauch et al., 2003). To reiterate then, theta is not a marker of homeostasis; amplitudes are. 

However, a lot more replication work needs to be done before shouting this fact from the rooftops. It 

needs to be seen whether these changes in amplitude follow all the same effects as SWA, across age, 

naps, longer bouts of sleep deprivation, local effects, species differences, etc. No matter what, oscillation 

amplitudes are unlikely to ever be as robust a marker of sleep homeostasis as SWA itself, but it has the 

advantage of being an independent marker, as well as substantially easier to record than sleep. Once such 

work is done, I think there are a lot of applications for using amplitudes to quantify sleep and synaptic 

homeostasis. 

An underappreciated aspect of the two-process model that I think these results highlight really well, is 

the profile of accumulating sleep pressure during the first hours of wake. Subjectively, we only start to 

notice the lack of sleep once we stay awake into our habitual sleep window, but what the two-process 

model predicts, and oscillation amplitudes show, is that the fastest accumulation of sleep need happens 

from the very beginning. This means that our brains will be differently receptive to new material in the 

morning compared to afternoon and evening. Obviously, night classes would not exist if it weren’t still 

possible to learn in the second half of the day, but there’s at least in theory an inherent advantage to 

classes in the morning. Most research regarding learning and sleep and time of day focuses on memory 

consolidation, but it would be especially interesting to test other aspects like fatigability, cognitive flexi-

bility, etc., ideally while keeping constant circadian effects. Along the same lines, people with a morning 

chronotype are generally considered advantaged because their preferred window coincides with the so-

cietally chosen window for school and work, but it may also be that they are lucky to have their circadian 

peak overlapping with their homeostatic peak (of performance). 

The fact that the brain changes so dramatically also means that neuroscience and psychology experi-

ments should take special care in choosing the timing of their recordings. It’s not that morning or after-

noon measurements are intrinsically better or worse, but one or the other may be more beneficial for a 

given experiment. For example, TMS produces stronger motor evoked potentials (MEPs) with higher 

sleep pressure (Huber et al., 2013; Ly et al., 2016) so would be more visible in the late afternoon, but if 

the desired effect is to produce plastic changes, maybe early morning stimulation will have more of a 

lasting impact. Certainly, it would be inadvisable to collect recordings too spread out across the day, as 

this introduces unnecessary variability in the data. 

All of this is to say, wake research should start paying more attention to sleep homeostasis. The fact that 

oscillation amplitudes are so affected by time awake is a good reminder of this. Furthermore, they provide 

an accessible objective marker that could be used to keep track of such changes. 

tldr; oscillation amplitudes could be an easy measure of homeostatic sleep pressure independent from slow 

wave activity in sleep. It’s also a reminder of how quickly the brain changes throughout the day. 

 

1 Occam’s razor. 
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5.3.1 Magnifying oscillations with sleep deprivation 

For most experiments, being sleep deprived falls under the category of “extremely bad confound.” How-

ever, the fact that time awake amplifies oscillations could make sleep deprivation a unique opportunity 

to investigate more subtle waves. In some respects, this is what is already done for patients with epilepsy; 

they get sleep deprived so their seizures get worse which improves source localization. The results of 

fading short-term memory fmTheta during sleep deprivation (section 2.4.3) and reduced pre-trial alpha 

during sleep deprivation (section 4) might advise against using sleep deprivation to study oscillations. 

However, investigations more interested in the electrophysiological system itself, for example source 

localization or travelling wave analyses, might benefit from the clearer signal.  

Gamma activity is notoriously difficult to measure on the surface EEG (Whitham et al., 2007), and most 

reliable research on this oscillation comes from intracortical data (Yuval-Greenberg et al., 2008). How-

ever, when visually inspecting the sleep deprived EEG, in one participant, I noticed these high-frequency 

gamma spindles (Figure 5.3). At first, I thought this might be a muscle artefact, but their peak comes 

from the channels furthest from any muscles. The fact that they were exactly at 30 Hz also made me 

think they might be an electrical artefact, but no other participant had them, they came in bursts like 

spindles, and again, the topography was very physiological. These were barely visible during baseline re-

cordings; they didn’t stand out from the 1/f background activity and they were even more indistinguish-

able from muscle artefacts. In general, the sleep deprived EEG appeared substantially more heterogene-

ous across individuals, but upon closer inspection, many of these differences could already be spotted at 

baseline, once you knew what to look for. Therefore, sleep deprivation acts as a magnifying glass for 

oscillations. 

 

Figure 5.3: Gamma burst visible during sleep deprivation. Top: 3 second section of EEG with a prominent gamma 
burst during the LAT task in P07. Bottom left: topographies of delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and 
gamma (25-35 Hz) power during the above burst. Color scale is spectral power in μV2/Hz. Bottom right: power spec-
trum, untransformed, of the burst. The gray dot in the topographies indicates the channel highlighted in red in the 
other plots. The gray lines of those plots indicate the other channels. 

tldr; sleep deprivation makes oscillations bigger, so if you have trouble seeing them, sleep-deprive your par-

ticipants first. 



 Discussion  

122 

 

Box 5.3: Diagnosing and treating rumination in depression with fmTheta 

One of the most pernicious symptoms of depression is rumination, a vicious cycle of negative thoughts. Ru-

mination has been linked to fMRI activity and structural abnormalities in the ACC and the DMN (Burkhouse et 

al., 2017; Drevets et al., 2008; Kaiser et al., 2019; Kühn et al., 2012). During resting-state EEG, rumination 

should be visible as a reduced occurrence of fmTheta in patients compared to healthy controls, with more 

time spent ruminating being anti-correlated with the duration of fmTheta.1 However, on the flip side more 

time spent ruminating across a day should result in a larger increase in the amplitudes of fmTheta. This effect 

may disappear the longer the individual experiences rumination and depression, as there could be fewer 

plastic changes, and negative thought patterns consolidate with time. Pizzagalli et al. (2002) found that 

fmTheta power was predictive of depression treatment success, which may reflect either a still-plastic ACC, 

or less severe rumination (Korb et al., 2009). 

A better understanding of the link between rumination, plasticity, and fmTheta may help with diagnosis, mon-

itoring, and even treatment of depression. When at rest, the overall quantity of fmTheta bursts may reflect 

(the lack of) rumination, which could be a useful diagnostic indicator of depression for children and adoles-

cents, who have different depressive symptoms from adults and are therefore more difficult to diagnose 

(Battle, 2013). Supporting this, Murphey et al. found lower fmTheta during a short term memory task in pa-

tients with depression (O. W. Murphy et al., 2019). From there, fmTheta can be used to monitor the degree 

of rumination, and the extent to which plastic changes are still possible for this area.  

From my data, the most reliable way to elicit fmTheta was when playing the tablet game; this would make 

playing games a well-controlled condition, suitable for children, which suppresses the ACC and therefore 

rumination. This may even explain why gaming, depression, and rumination often go hand-in-hand (Kökönyei 

et al., 2019): playing videogames may be a way for children and adolescents to self-medicate rumination, 

which they subjectively experience as “escapism.” If gaming manages to control rumination and induce 

fmTheta, and fmTheta amplitudes reflect plastic changes in this area, then repeated frontal EEG recordings in 

children and adolescents with depression playing games may help monitor the progression of the disorder 

and the extent to which plastic changes can still occur. Specifically, fmTheta amplitudes increasing substan-

tially across a day would indicate a still-plastic but overworked ACC. Instead, if fmTheta amplitudes don’t 

change as much, this may indicate a loss of plasticity due to entrenched rumination. 

Even better, fmTheta can be used to train young individuals to better control rumination, using neurofeed-

back. Neurofeedback works by providing a real-time visual or auditory stimulus indicating the presence of a 

desirable or undesirable brain signal. Individuals first practice regulating this brain signal using an overt stim-

ulus, preferably learning to both increase and decrease its occurrence, and then they learn to do so without 

the cue. Given that fmTheta can easily be recorded with a single electrode on the forehead, this may be one 

of the most accessible and easy to implement forms of neurofeedback. Furthermore, by conducting feedback 

training in the late afternoon, fmTheta may be particularly visible and improve signal quality. Then, feedback-

less practice in the morning may help actually consolidate learning. 

tldr; fmTheta reflects an area that is compromised in depression, so it could be used as a diagnostic and 

treatment tool. 

 

1 Andersen et al. (2009) contradicts this prediction in healthy participants; they found that theta power was higher during 
rumination than a neutral counting control. However, this effect was driven by lateral occipital theta instead of fmTheta. 
Generally, all the conditions they investigate would have low fmTheta, and the fact that occipital areas showed more theta 
than frontal areas is a good indication of that. Furthermore, counting is often used as a control for arithmetic fmTheta 
experiments, which show that more intense math results in more theta. Therefore, I do not find these results discouraging. 
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5.4 The wake maintenance zone 

An unanticipated perk of the 4/24 extended wake paradigm is that it highlights the WMZ, something 

that usually requires as much as 40 h of sleep deprivation to observe (McMahon et al., 2018; Shekleton 

et al., 2013; Zeeuw et al., 2018). By shortening sleep to only four hours, sleep pressure from the previous 

day hasn’t fully dissipated. More importantly, this also adds an extra four hours of wakefulness, resulting 

in higher sleep pressure around the WMZ (Figure 5.4). Even this relatively minor difference in experiment 

design was sufficient to clearly observe effects of the WMZ on subjective sleepiness, pupillometry, mi-

crosleeps, and both theta and alpha oscillation amplitudes (section 3). Needless to say, a 4/24 paradigm 

is substantially easier to conduct than an 8/40 paradigm (section 2.6.4.2, page 69). The only real limitation 

is not being able to observe more than a single 24 h period. 

 

Figure 5.4: Difference in sleep pressure between a 4/24 and a classic 8/40 sleep deprivation paradigm. These 
curves were created based on the equations in Achermann & Borbély (2003). A: 4/24 extended wake paradigm in 
which the second half of the sleep window is eliminated, and the lucky individual has to stay awake for 24 h. B: A 
classic 8/40 sleep deprivation paradigm, in which an extremely unfortunate participant skips an entire night of sleep, 
and only gets to sleep in the sleep window of the next night. Sleep pressure is much higher, but this design “wastes” 
the first WMZ, and also doesn’t measure effects after the second one to determine the underlying sleep pressure 
trajectory. C: Comparison of sleep pressure amplitudes of the three WMZ from the two paradigms (8/16, 4/24, 8/40). 

I suspect that the WMZ may be a human-specific circadian mechanism to maintain synchrony between 

the 24 h light/dark cycle and the “homeostatic cycle” of alternating wake and sleep. Essentially, because 

we have uniquely long continuous periods of both sleep and wake, it’s easier for the sleep/wake pattern 

to become desynchronized from circadian rhythms than it would be if we spontaneously took naps all the 

time. More than at any other time of the day, the hours just before habitual sleep are the ones in which 
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it is worst to go to sleep, as anyone who has tried to recover from jetlag will know. If you go to sleep too 

early, inevitably, you will wake up in the middle of the night and the misery never ends. Therefore, the 

WMZ (when correctly synchronized to your time zone) will give that little push needed to reach the 

proper sleep window, if for whatever reason sleep pressure is unusually high that evening. 

While the WMZ bears a close resemblance to crepuscular rhythms in some species (Ackermann et al., 

2020; García-Allegue et al., 1999; Refinetti, 2020), it differs in that it doesn’t affect overt behavior (Lieber-

man et al., 1989; Samson et al., 2017), and instead mostly influences ability to go to sleep (Dijk & Czeisler, 

1995). This may seem like an inconsequential distinction, but if the WMZ has a different function from 

activity-promoting circadian rhythms, this would suggest different evolutionary pressures and therefore 

potentially different mechanisms driving the effect. As suggested by Strogatz (1987), an overactive WMZ 

could be behind sleep-onset insomnia, although sometimes what people identify as insomnia is just at-

tempting to fall asleep within this window, expecting it to be as easy as delaying sleep (Macedo, 2021). 

Solutions to disorders of the WMZ may not necessarily overlap with those that would be identified for 

classic circadian rhythms. For this reason, more research is needed into the WMZ, and if it doesn’t exist 

in other animals, more work will be needed in humans. The 4/24 extended wake paradigm can help.  

tldr; the WMZ makes sure that you don’t go to sleep too early and mess up your circadian clock, but since 

this may be human specific, we need to figure out creative ways to study it. 

5.4.1 The neural pathways behind the WMZ 

If the WMZ is human specific, this makes it substantially more difficult to investigate the underlying 

mechanisms. As it is, there are very few publications about the WMZ, which is why hopefully the 4/24 

paradigm can speed up discovery. In the meantime, I have pieced together some hypotheses on the path-

ways involved.  

In our data, we show effects of the WMZ on pupillometry; this means that somehow, the circadian signal 

of the suprachiasmatic nucleus (SCN) must make it to the pupil, as well as the rest of the cortex which 

desynchronizes during the WMZ. The SCN generally displays 24 h periodic rhythms, firing either during 

the day or at night, depending on the species (Aston-Jones et al., 2001; Hastings et al., 2007), although 

exceptions have been found. In mice, despite SCN neurons mostly firing during the day when the animal 

sleeps, a subset of “siesta neurons” fire during the night, and optogenetic stimulation of these neurons 

induces nighttime but not normal daytime sleep (Collins et al., 2020). Of course, this pattern reflects the 

inverse of the WMZ, however a similar mechanism could be responsible. 

After the SCN, another likely critical structure linked to the WMZ is the lateral hypothalamus (LH), con-

taining wake-promoting orexin neurons (Sakurai, 2007).1 Studies in mice show that stimulation of orexin 

neurons results in pupil dilations (Grujic et al., 2022). Patients with narcolepsy, who are orexin-deficient, 

don’t show any change in sleep onset latency during the WMZ (Dantz et al., 1994),2 indicating that the 

 

1 Orexin neurons, also called hypocretin neurons, are localized almost exclusively in the lateral hypothalamus, and they 
are involved in other important things like feeding behavior. They in turn activate other wake-promoting cholinergic, 
dopaminergic, and noradrenergic neurons. 

2 Results by the Esther Werth group replicate this finding but haven’t been published yet. 



 Discussion  

125 

 

WMZ alerting signal has to pass through the LH. Since narcoleptic patients have a mostly intact melato-

nin production (Blazejova et al., 2008) the circadian system just before the LH must otherwise be intact. 

Curiously, Blazejova et al. report that a subset of patients have a slightly altered melatonin profile, peak-

ing just before habitual sleep onset then decreasing across the night. This may mean that the WMZ nor-

mally suppresses melatonin release, acting as a sleep gate as suggested by Lavie (1986), but maybe more 

of a “flood gate,” holding off the sleep-promoting effects of melatonin until exactly sleep onset. 

After the LH, it is more difficult to pin down where the WMZ signal continues, because the LH projects 

to basically all the wake-promoting nuclei (Sakurai, 2007; Saper et al., 2010), which all affect pupil diam-

eters (Lloyd et al., 2022; Reimer et al., 2016). Originally, I focused on the LC, a nucleus involved in gating 

sleep stage transitions (Osorio-Forero et al., 2022), whose activity is linked to alertness and responsive-

ness to novel stimuli (P. R. Murphy et al., 2014). Instead, since we did not see any changes in pupillary 

responses to oddball tones (Figure 3.7C, page 80), this may not be the primary pathway of the WMZ. 

Another projection of the LH is to dopaminergic areas of the ventral tegmental areas (VTA), but maybe 

this can be ruled out as well. Spontaneous blink rates have previously been found to be an indirect meas-

ure of dopamine activity (Jongkees & Colzato, 2016), and was hypothesized to reflect a compensation 

mechanism to counteract sleep deprivation (Barbato et al., 2007). As it happens, we did not see any 

change to blink rates during the WMZ (Figure 3.8A, page 81). 

Another option could be the cholinergic neurons of the basal forebrain (BF), also linked to pupil diameters 

(Reimer et al., 2016). Cholinergic wake-promoting neurons in the BF are progressively inhibited by aden-

osine (Rainnie et al., 1994), which builds up in the BF following an increasing saturating exponential func-

tion (Porkka-Heiskanen et al., 2000). Adenosine inhibits cholinergic activity in the BF, which therefore 

decreases the wake drive. Caffeine is an adenosine antagonist, and therefore counteracts this effect, 

which is how coffee keeps us alert (Boonstra et al., 2007). The hypothalamus activity during the WMZ 

may therefore be an endogenous “caffeine boost,” inhibiting the inhibition of the accumulated adenosine, 

and allowing the BF to exert a wake-promoting signal to the rest of the cortex. This could explain the 

decrease in theta during sleep deprivation following caffeine consumption (Landolt et al., 2004). Inter-

estingly, in pupil diameter standard deviations, rather than means, we see both this saturating curve as 

well as a dip in the WMZ (Figure 3.7). Therefore, part of the alerting mechanism of the WMZ may be via 

the BF, but not exclusively. Finally, it’s also possible there may be a more direct connection between the 

LH and pupil diameters. 

All of this is speculation, of course. It may be possible to obtain proof by using simultaneous pupillometry 

and fMRI as was done in Lloyd et al. (2022). The 4/24 paradigm can be repeated, although with the fixa-

tion recordings conducted in the scanner. Then, the exact timing of individuals’ WMZ can be correlated 

to increases in activity in the various nuclei of the AAS, thus identifying the networks involved. In a sec-

ond step, pharmacological studies may be able to selectively inhibit activity in these nuclei and could 

theoretically stop the WMZ, again detected with a 4/24 paradigm. Changes to the WMZ can be observed 

both in EEG theta power and ocular microsleeps, the two most sensitive outcome measures to the WMZ 

(Table 3.1, page 75), as well as subjective sleepiness. Quantifying all three independent effects is ideal, as 

it could always be that pharmacological interventions affect the outcome measure but not the actual 

WMZ effector.  

Once the mechanisms behind the WMZ are identified in healthy individuals, the next step would be to 

diagnose patients who have a compromised WMZ. A simple adaptation of the 4/24 paradigm would make 

for a very feasible diagnostic test: have participants restrict their sleep at home, then begin in the mid-
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afternoon, maybe with a 5 minute auditory oddball EEG recording every 30 minutes, until well past their 

habitual sleep onset. This could also be done by adapting the multiple sleep latency test (MSLT) or the 

maintenance of wakefulness test (MWT) already used in the clinic (Doghramji et al., 1997); instead of 

starting in the morning as is usually done, the recordings could start in the afternoon. If there are phar-

macological agents that can suppress or enhance the WMZ, and the WMZ is deemed compromised for 

that patient, then they can also be appropriately treated. 

tldr; the WMZ alerting signal is likely relayed though the same area that is compromised during narcolepsy, 

the lateral hypothalamus. The 4/24 paradigm and theta can be used to better study this window. 

5.4.2 Avoiding the WMZ in sleep studies 

Many sleep studies either aim to improve sleep or evaluate how sleep improves performance. More often 

than not, this means recording subjective and objective measures before and after sleep. For the morning 

recordings, the current practice is to wait at least half an hour, although ideally more than an hour, after 

wake onset before conducting any tests to avoid the sleep inertia window (Trotti, 2017). I would suggest 

that the same should be done for the WMZ (Figure 5.5). 

 

Figure 5.5: Possible wake recordings for sleep studies. Typically, evening wake recordings are conducted in the 
middle of the WMZ and may therefore not accurately reflect the build-up in sleep pressure that occurred during the 
day. Likewise, sleep inertia will reduce performance and alter the EEG immediately following wake onset. For this 
reason, wake recordings should avoid both the WMZ and the sleep inertia window. 

Sleep inertia is quite evident every morning for almost everyone, therefore it is arguably the more im-

portant aspect to control for. The WMZ instead seems to only appear under elevated levels of sleep 

pressure, and in some outcome measures more than others. However, there’s no reason to believe it isn’t 

present every evening. Theta power for example seems to already be affected by the WMZ under normal 

evening conditions (Finelli et al., 2000; Zeeuw et al., 2018). It is also likely that the WMZ will affect some 

systems more than others, and until we’ve identified which ones, the best experiment designs should aim 

to avoid the WMZ entirely.  

An option could be to briefly delay sleep onset and conduct the tests/measurements instead, then allow 

participants to start sleep maybe up to an hour after their habitual bedtime. This would mean of course 

slightly elevated sleep pressure, but not outside the norm of night to night variability. It may even help 

participants fall asleep more easily, as is done for fMRI sleep studies. The second best approach may be 

to conduct the tests before the WMZ. This can be a bit tricky, as the WMZ onset may be more variable, 
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and it would then mean waiting for several hours before actual sleep onset. However, if the test block is 

quite long, then this would be preferable.  

tldr; don’t perform pre-sleep tasks in the WMZ. 

5.5 Local seep in wake 

My original hypothesis was that sdTheta would correspond to local sleep events, like in rats. It turned 

out however that the bulk of sdTheta power in humans seems to come from bursts of oscillations rather 

than single isolated events. In the Vyazovskiy 2011 paper, they do not explicitly specify whether the EEG 

theta occurred primarily in isolation or in bursts, but the “representative example” they provide is of an 

isolated wave. Therefore, it appears that the increase in sdTheta bursts in humans is different from these 

local sleep events. When visually inspecting the EEG, there were occasionally single theta waves that 

stood out from the background signal (Figure 5.1), but these were infrequent and therefore did not affect 

the overall recording power, and likewise couldn’t have contributed to the bulk of behavioral lapses. How-

ever, it may still be possible for local sleep to be behind such lapses, just not visible as high-amplitude 

theta waves. 

5.5.1 A better marker 

Slow waves make for the most obvious marker of sleep, but they are not the only change in the EEG, and 

certainly not the first. In humans especially, the transition from wake to sleep is extremely slow, going 

through several minutes of NREM 1. In my own experiment, even after 24 h of sleep deprivation, partic-

ipants still took on average 5 minutes to reach NREM 2 (Table 2.1, page 41). This transition stage is de-

fined mostly by the lack of anything notable (alpha, spindles, etc.), and sometimes the only reliable marker 

for scoring is slow rolling eye movements (Berry et al., 2012; Santamaria & Chiappa, 1987). Furthermore, 

the onset of sleep is gradual in space, progressing from front to back (Ferrara & De Gennaro, 2011; Mar-

zano et al., 2013). Altogether, this would suggest that if there is local sleep during sleep deprivation, it 

should take the form of NREM 1. 

But how to quantify local NREM 1? As mentioned, sleep is systematically characterized by steeper slopes 

in the background EEG, already beginning with NREM 1 (Figure 7.7, page 141). Therefore, it may be pos-

sible to identify brief periods of sleep in individual EEG channels based on changes in the 1/f aperiodic 

spectrum. With the current tools, this would mean using a shifting window around 1 s, and perhaps fo-

cusing on the slope of the higher frequencies (>15 Hz) as these are better resolved in short windows. A 

local sleep event could therefore take the form of a briefly steeper slope in the aperiodic signal. This 

would not necessarily be visible as a change in power, which is why its relationship to lapses may have 

gone unnoticed up to this point. This may even explain why previous studies (Andrillon et al., 2021; Ber-

nardi et al., 2015; Fattinger et al., 2017) were able to find associations between behavioral deficits and 

theta events, by specifically not discriminating periodic from aperiodic activity (section 3.6.3, page 96); an 

increased spectral tilt would result in more “theta waves,” so they indirectly mark periods of local NREM 

1. Generally, their effect sizes are small, which may be due to the fact that theta would be an imperfect 

proxy for the change in slope. 
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It is generally understood that even if sleep stages are scored using specific markers such as spindles, k-

complexes, etc., there is some fundamental state that persists between these events, such that a plain 

segment of NREM 2 is different from a plain segment of wake, even if there are no spindles or alpha 

waves. Unlike these sporadic events, the aperiodic activity should persist in these plain periods, making 

it a much more fundamental marker of underlying stage. For this reason, I think local sleep might be 

better defined by changes in aperiodic activity than by more obvious microarchitecture events. Explicitly 

quantifying the local changes in aperiodic activity may be the key to explaining behavioral lapses observed 

during sleep deprivation. 

tldr; the change in background EEG activity might be a better marker for local sleep in wake than theta os-

cillations. 

5.5.2 A slower marker 

I mentioned how occasionally during sleep deprivation there were isolated theta waves that might re-

semble the one in Vyazovskiy et al., but it’s also possible that a true equivalent with rats is also present 

in humans, but at a slower frequency. Slow waves tend to be slower in humans than in rodents (Acher-

mann & Borbély, 1997; Hubbard et al., 2020), hippocampal theta in rodents might correspond instead to 

~3 Hz activity in humans (section 1.4, page 19). Therefore, we may have been looking at the wrong band. 

Some studies have found links between delta waves in wake with fatigue and task lapses (Quercia et al., 

2018). Other experiments found links between delta waves, mind blanking and mind wandering (Andril-

lon et al., 2021). More recently, a study in patients with epilepsy found a direct link between off-periods 

in spike rates and wake cortical slow waves (Walker et al., 2023), present to a lesser extent also in Par-

kinson’s patients. 

Altogether, these results would point to slow waves appearing in wake in humans, but individually there’s 

reason for reservation. Most analysis methods used to identify single waves suffer from the limitations 

described in section 3.6.3, and patients with epilepsy have disease-linked “off-periods” which may not 

truly translate to the general population. Furthermore, these studies rarely use data during sleep depri-

vation, despite this being the time most likely to show intrusions of sleep. It’s not impossible that slow 

waves occur already a couple hours after waking up, and maybe more so in a boring task or after a long 

task. But I would first expect such sleep events to be present during sleep deprivation, and to a greater 

extent, before presuming that a signal during low sleep pressure is actually a form of sleep. After all, it’s 

possible that delta waves are a legitimate part of the wake EEG, and they are disruptive to behavior, 

without being homologous to slow waves. 

However, in my data I did see real slow waves during sleep deprived wake, such as the one in Figure 5.6, 

which were not present (or not obvious) when participants were well rested. Unfortunately, like the sin-

gle theta events (Figure 5.1), these were quite rare, present in only a couple individuals. Most often, they 

were simultaneous with eye-closure, indicating whole-brain sleep. However, a few of these were unam-

biguously slow waves during eyes-open wake, with amplitudes that are never seen in healthy well-rested 

adults, and with negative deflections that could be explained by off-periods (Nir et al., 2011). They closely 

resembled the initial slow waves observed at sleep onset. There might have also been smaller sleep slow 

waves, but whether these were the same as in sleep is harder to prove. The fact that the background 
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activity of the EEG is not white noise, but rather colored noise, makes it very easy to identify patterns 

when there are none. 

 

Figure 5.6: slow oscillation during eyes-open sleep deprivation. Observed during the LAT. This was a clear example 
of an oscillation that resembles a slow wave, with a large amplitude and primarily a negative deflection, peaking over 
the left ear while a stimulus was shown. The participant was still able to respond, although quite delayed. These events 
were rare, and generally the EEG from these channels during sleep deprivation was quite peculiar for this participant.  

So, from my anecdotal evidence, I would say there are intrusions of slow waves in wake during sleep 

deprivation, but at least with a 4/24 paradigm there were not enough of them to reliably study. To further 

investigate these slow waves in wake, I would recommend even longer sleep deprivation, more partici-

pants, and either multiple sessions of the LAT with more frequent stimuli, or a task involving continuous 

inputs. I would also recommend more conservative wave-detection methods, eliminating spurious events 

from the 1/f aperiodic activity. One day, it may even be possible to confirm whether these are driven by 

neuronal spiking off-periods. 

tldr; slow waves actually happen during sleep deprivation, but they are rare. 
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Box 5.4: Are delta waves in sleep actually oscillations? 

The existence of slow oscillations in sleep is undeniable. Look, it’s like a massive spindle: 

 

Figure 5.7: Periodic slow waves in NREM 3. Screenshot from sleep scoring program. Space between vertical dotted 
lines is 1 s. Horizontal dotted lines indicate ±37 μV. Data is filtered between 0.5 and 40 Hz, downsampled to 128 Hz. 

However, as discussed in section 7.2 (page 135) not all EEG signals that go up and down can be considered 

strictly oscillations. As anyone who has ever scored EEG knows, most of NREM sleep is not characterized by 

beautiful massive sinusoids, but rather something like this: 

 

Figure 5.8: Aperiodic slow waves in NREM 3. 

The problem is that this last signal is not made of oscillations per se. In fact, when simulating just the 1/f ape-

riodic EEG activity, by sufficiently increasing the steepness of the slope, you get an extremely similar signal: 

 

Figure 5.9: Simulated colored noise resembling NREM 3. Same as in Figure 1.2, page 15. 

Therefore, at least some if not most of NREM slow waves are actually just how the tilt in the spectrum of the 

aperiodic EEG manifests itself. The fractal nature of the 1/f means that the increase in slower frequencies is 

strictly related to the decrease in high frequencies, and no specific “band” is more important. However, be-

cause the pivot point of the changing slope is somewhere in the spindle range (Bódizs et al., 2021), the effect 

appears largest in the delta range (Figure 5.10). Additionally, because sleep scoring is done visually by identi-

fying slow waves using a minimum amplitude threshold, the slower (<4 Hz) waves are the only ones that go 

over the threshold, even if technically the changes in the theta range across the night are almost as pro-

nounced and equally related to dissipating sleep pressure. 
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Figure 5.10: NREM sleep stages spectra, log-log scale. From 18 participants, baseline night. This finding was first 
published in a larger dataset in Schneider et al. (2022). 

However, slow oscillations independent of the aperiodic background really do happen, both as bursts and 

isolated events. K-complexes are large negative deflections that characterize NREM 2 (Figure 7.2, page 137), 

and it’s also possible to identify smaller, more local single-slow-wave negative deflections, like in Figure 5.6. 

An FFT around such events clearly create “bumps” that emerge from the 1/f even though there is only one 

wave (Perrenoud & Cardin, 2023), however across long time windows, if there aren’t many and they are ex-

tremely variable, they get lost in the spectrum average.1 Additionally, there are genuine periodic bursts like in 

Figure 5.7 during NREM 3. However, the 1/f background activity during NREM 3 has the same amplitude as 

K-complexes and single slow waves, so they are no longer distinguishable from each other. All this to say, 

NREM has both single isolated slow waves and slow oscillation bursts, distinct from the background activity, 

but specifically during NREM 3 you cannot easily tell them apart because of how steep the 1/f slope is, espe-

cially when not occurring in bursts like in Figure 5.7. 

Achermann & Borbély (1997) actually find a periodic spectral bump emerging from the 1/f between 0.75 and 

1.5 Hz, specific to the first two NREM cycles and specific to NREM 3 and not NREM 2, which they call slow 

oscillations. Most current analyses of aperiodic spectrums stop at 1 Hz (like mine), because they’re based on 

data that is high-pass filtered at 0.5 Hz, and power is calculated over 4 s windows, tapered, so not suited for 

oscillations < 1 Hz. Instead, Achermann & Borbély used very clean data and 20 s epochs. They showed that 

these slow oscillations were not strictly homeostatic because they did not decrease from the first to the sec-

ond cycle. But if slow oscillations show a different timecourse across sleep, and they end at around 1.5 Hz, 

then what is the 1-4 Hz “slow wave activity” (SWA) with which we quantify sleep homeostasis across NREM 

sleep? 

If spectra are a reliable indicator of whether a signal in time is periodic or aperiodic, then the evidence indi-

cates that almost everything between 1.5-4 Hz is actually aperiodic: there is no bump in the spectrum in this 

range for any NREM stage (Figure 5.10). In fact, when looking at the change in spectra across the night on a 

log-log scale, it’s obvious that the main change is the tilt in the aperiodic slope, rather than a change in periodic 

amplitude (Figure 5.11), which I had instead observed in wake for theta power during sleep deprivation (Fig-

ure 2.22, page 65). This can be masked when looking at the full spectrum from 0 Hz with only the y axis log-

transformed, because sleep data is filtered under 0.5 Hz, giving the illusion of a bump. 

 

1 The periodic bump in the spectrum becomes narrower the more similar cycles are present in the signal. 
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Figure 5.11: Overnight changes in NREM sleep, log-log scale. 18 participants. Each participant’s baseline night was 
divided into 6 parts, and NREM 2 and NREM 3 were averaged. The lighter the spectrum, the later the sleep cycle. This 
finding has been published with a larger dataset in G. Horváth et al. (2022). 

What this means is that homeostatic findings regarding 1-4 Hz 

delta power are not about oscillations at all, but rather the slope of 

the background EEG activity. For example, the change in SWA fol-

lowing sleep deprivation is also just a tilt in the spectrum (Figure 

5.12). Instead, results that specifically focused on single waves 

around 1 Hz are likely to have captured more of the periodic slow 

oscillations and single slow wave events (Jaramillo et al., 2020; 

Krugliakova et al., 2022; Ngo et al., 2013; Sousouri et al., 2022), 

although not exclusively. 

What about all the animal literature linking slow waves to off-pe-

riods? There are two possible explanations. First, as mentioned al-

ready for theta (section 1.4, page 19), oscillations in rodents tend 

to be faster than in humans, and therefore “slow oscillations” that 

are around 1 Hz in humans could easily be around 2-3 Hz in ro-

dents (Hubbard et al., 2020). Therefore, findings related to off-pe-

riods and 1-4 Hz waves in rodents could correspond to off-peri-

ods and 0.75-1.5 Hz waves in humans. Second, it may well be that 

“background activity” is also composed of on- and off-periods of 

spike rates; the main difference from “real” slow waves would be in the synchronization of these off-periods, 

and how predictable their durations are. For oscillations, the end of the off-period would be predictable with 

the first quarter of the LFP oscillation (i.e., 4x later), whereas for aperiodic waves it would be indeterminable. 

Events like K-complexes may be somewhere in-between. Moving forward, I would recommend separating 

analyses on slow oscillations, and the aperiodic background activity. 

tldr; slow wave activity is often just aperiodic background activity, not oscillations. 
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Figure 5.12: Change in slope following 
sleep deprivation. This is comparing the 
first hour of NREM during the Pre night of 
the extended wake period, to the first hour 
of the Post night after 24 h of wake. Each 
colored patch represents the increase in 
power for each participant.  
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6 CONCLUSION 

With this thesis I set out to understand the increase in theta power observed during sleep deprivation. 

Some answers emerged, but “conclusions” may be premature. So instead, I leave you with the following 

list of the most important takeaways from this work: 

1) Theta activity is extremely heterogeneous; within an individual, across individuals, and across 

species. Careful consideration is needed to disentangle these differences, because it is highly un-

likely that all manifestations of theta are the same. 

2) The more time spent awake, the more theta bursts occupy the EEG. 

a. These bursts do not affect behavior during sleep deprivation, leaving an open question 

as to what does. 

b. Instead, they often occupy brain regions that aren’t in use. 

3) The more time spent awake, the larger all EEG oscillations get, likely reflecting strengthening 

synapses when forming new memories. 

a. While amplitudes increase, quantities of bursts can decrease, which is why traditional 

analyses like spectral power are insufficient to detect this effect. 

4) If there are intrusions of sleep slow waves during wake, these are not a substantial contributor 

to the overall increase in theta power with time awake, which is instead mostly driven by bursts. 

5) The wake maintenance zone is driven by a circadian signal so powerful that it desynchronizes 

the cortex, and may be behind some forms of insomnia. 

6) The next steps forward should involve better understanding the extreme differences in theta 

oscillations, and taking more advantage of the spectral slope of the background EEG when de-

fining sleep and wake. 

The “theta paradox” remains alive and well. I don’t have sufficient information to explain why theta could 

characterize both sleep deprivation and cognition, but the hypotheses that best explain the data are: 

1) There exist at least two different manifestations of theta, one involved in synchronizing neuronal 

activity to facilitate cognition; and the other, stronger theta, appearing in unused or inhibited 

cortical areas. 

2) Theta oscillations during sleep deprivation and cognition are one and the same, and reflect two 

sides of the same coin; inhibition of task-irrelevant networks, and synchronization of task-rele-

vant ones.  

At the moment, I feel the scales tip more towards the first option. If theta had a functional role, I would 

have expected it to manifest itself in the LAT, especially given how much theta is present during this 

task. However, this is just one analysis, in one task, and absence of evidence isn’t evidence of absence. 

More experiments and more analyses are needed to find the right answer. For now, it is enough to have 

raised awareness about this very paradoxical EEG oscillation. 
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7 GLOSSARY 

7.1 Acronyms 

AAL: automated anatomical labeling (atlas) 

AAS: ascending arousal system 

AASM: American association of sleep medicine (scoring manual) 

ACC: anterior cingulate cortex 

ADHD: attention deficit hyperactivity disorder 

ANOVA: analysis of variance 

BF: basal forebrain 

BL: baseline; task block condition after 1 h awake after a baseline night of sleep. 

BOLD: blood oxygen level dependent (activity) 

ch: channel 

cps: cycles per second 

DICS: dynamic imaging of coherent sources 

DMN: default mode network 

DOI: digital object identifier 

EBRS: European biological rhythms society 

EC: eyes closed / eye closures 

EEG: electroencephalography / electroencephalogram; see Figure 7.1 

EGI: Electrical Geodesics, Inc. 

EMG: electromyography / electromyogram 

EO: eyes open 

EOG: electrooculography / electrooculogram 

ERPs: Event-related potentials 

EWOQ: experiment web organizer for questionnaires 

FDR: false discovery rate (correction) 

FFT: fast Fourier Transform 

FIR: finite impulse response (filter) 

fMRI: functional magnetic resonance imaging 

FOOOF: fitting oscillations, one over f. 

ICA: independent component analysis 

KSS: Karolinska Sleepiness Scale 

PSD: power spectral density 

PVT: psychomotor vigilance task 

LAT: lateralized attention task 

LC: locus coeruleus  

LFP: local field potential 

LH: lateral hypothalamus 

MEP: motor evoked potential 

MNI: Montreal National Institute 

MRI: magnetic resonance imaging 

MSLT: multiple sleep latency test 

MTL: medial temporal lobe 

MWT: maintenance of wakefulness test 

N: number (of participants) 

N.B.: nota bene (“take note”) 

NREM: non-rapid eye movement (sleep) 

REM: rapid eye movement (sleep) 

ROI: region of interest 

RT: reaction times 

SCN: suprachiasmatic nucleus 

Figure 7.1: High-density EGI EEG net used 
for this study.  



 Glossary  

135 

 

SD: sleep deprivation; task block condition after 22 h awake 

SHY: synaptic homeostasis hypothesis 

STD: standard deviation 

STM: short term memory (task) 

SWA: slow wave activity (0.5-4 Hz) 

tACS: transcranial alternating current stimulation 

tldr: too long, didn’t read 

TMS: transcranial magnetic stimulation 

TV: television :P 

WMZ: wake maintenance zone 

VAS: visual analogue scale 

VTA: ventral tegmental area 

7.2 Key EEG concepts 

I’m going to assume that the reader has a fairly solid understanding of what EEG is, mostly because this 

thesis is not of interest otherwise. For the basics of human EEG, see Luck (2014). For slightly more ad-

vanced EEG analyses, see Cohen (2014). Instead, the following sections are meant to provide clear defi-

nitions to concepts that are not completely agreed upon in the literature, as well as some lesser-known 

aspects of EEG signals. 

7.2.1 Frequency bands 

The EEG signal is characterized by oscillations, which makes power spectral analysis an ideal tool to quan-

tify these effects. This is done with an FFT, which converts a signal in time into the frequency domain, 

basically fitting all the possible sine waves needed to recreate the signal, and identifying the amplitude of 

each sine wave to determine power at that frequency. Since any signal, even without oscillations, can be 

represented in this way, not all changes in power for a given frequency means that there is actually an 

oscillation at that frequency, but it is a simple and often reliable proxy. 

EEG oscillations, while quite variable across individuals, are still more likely to occur in the same fre-

quency ranges under the same conditions. Therefore, for convenience, a lot of analyses refer to a fairly 

standard set of spectral bands, although with some variability in how the exact edges are defined. The 

following is how this thesis divides the spectrum, from slowest to fastest. 

Slow oscillations: the slowest slow waves, between 0.75 and 1.5 Hz, from Achermann & Borbély (1997). 

These are notable in that they are not strictly homeostatic, remaining constant for the first two NREM 3 

cycles, then disappearing. Unlike the higher frequencies of the delta band, these are evidently periodic. 

Delta: 0.5-4 Hz spectral power band. 

Slow wave activity: technically delta, but here refers specifically to delta activity during sleep. During 

wake, delta activity is much less prominent. 

Theta: 4-8 Hz spectral power band.  

Alpha: 8-12 Hz spectral power band, during wake. Highest in occipital regions, with eyes closed. 

Sigma: 12-16 Hz spectral power band, during NREM sleep. It is a proxy for spindle activity. 

Beta: 15-25 Hz spectral power band. 
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Gamma: 15-35 Hz spectral power band. Often ranges higher, but in keeping with sleep research, I filter 

my data at 40 Hz, just under the 50 Hz line noise.  

7.2.2 Oscillations vs events 

“Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value 

(often a point of equilibrium).”  – Wikipedia 

A curious and defining feature of the mammalian EEG is the presence of oscillations. In humans, the 

clearest most uncontroversial oscillations are alpha bursts in wake originating in occipital areas and 

thalamocortical spindles in NREM sleep, both of which are nearly perfect sinusoids (Figure 7.2). These 

are clearly periodic repeating signals, regularly “oscillating” around 0, with waxing and waning amplitudes. 

There are also non-sinusoidal but clearly periodic rhythms like mu-rhythms in which consecutive “m”s 

repeat (Figure 7.2),1 or sawtooth waves which are more triangular.2 While sometimes oscillations come 

in continuous trains like hippocampal theta in rodents or eyes-closed alpha in humans, more often than 

not they appear in bursts, anywhere from a couple of cycles to several seconds long. 

The brain also produces events. The classic example is a K-complex during NREM 2 sleep, a massive 

negative deflection in voltage followed by a brief rebound (Figure 7.2). They are called such because a K-

complex can be produced by knocking on a hard surface near the sleeping individual. It is in many respects 

a single-trial event related potential (ERP), orders of magnitude larger than typically observed during 

wake. ERPs are a stereotyped pattern of positive and negative deflections, locked to an event like a stim-

ulus or a behavioral response, which only really emerge from the noise when averaging the EEG of many 

trials evoking the same pattern. K-complexes most often occur spontaneously, they are asymmetric, can 

be phase-coupled to spindles, and only appear one at a time. Both K-complexes and ERPs therefore differ 

from oscillations in that they are neither repetitive nor fluctuate around a central value. 

Other terms used to describe specific features of the EEG throughout this thesis include: 

Activity: an umbrella term for any EEG signal of note, without specifying what form it takes.  

 Background activity: the 1/f aperiodic EEG signal (see next section). 

Microarchitecture: also an umbrella term for both oscillations and events; anything clearly emerging 

from the background EEG. 

Waves: a prominent positive or negative deflection in the EEG signal. Like “activity,” this does not specify 

whether it’s a single event, a periodic oscillation, or even just a notable part of the 1/f background activity. 

“Waves” is used instead of “activity” when they have been identified visually. 

 

1 Although apparently, its “m” for motor, because it appears over motor areas. 

2 See Ebersole & Pedley ( 2003) or Schomer & Silva (2011) for a complete compendium. 
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Figure 7.2: Examples of oscillations and events. This is not a comprehensive list. Mu and alpha were taken from 
wake EEG. The spindle and K-complex were from NREM 2. The ERP was from the LAT, following the appearance of a 
stimulus. The deflection is likely a P300 wave. Earlier components of an ERP require averaging many trials to sift away 
the noise. 

Box 7.1: Are oscillations epiphenomena or crucial elements of neuronal computation? 

It is important to mention that there’s the possibility that oscillations don’t actually “do” anything, and are just 

an emergent property of how a collection of neurons’ electrical signals accumulate, like the hum of a computer 

fan. This argument goes that neurons would continue to exchange information regardless of whether there 

is an oscillation, and the local field potential changes we observe are just the consequence of rhythmic firing 

patterns across otherwise synchronized neurons. 

The opposite view is that oscillations are a necessary form of entrainment; the local field potential creates 

windows in which a neuronal spike is more or less likely to be transmitted downstream, and this then facili-

tates synchronized information and inhibits everything else. The most extreme interpretation is that without 

oscillations, there would be no coherent neuronal activity holding thoughts together. A similar view is that 

different phases reflect windows of greater or lesser plasticity for memory encoding. Other views are some-

where in the middle. 

I am at the moment agnostic as to whether the oscillation itself “does” something, because regardless of the 

answer,1 it clearly reflects that something different is happening in the brain in that moment. There are pre-

cious few neural signals we can capture non-invasively, and we need to milk them for all their worth if we 

have any hope of learning how the brain works. Throughout this thesis, when I mention theta “doing” anything, 

I am rather referring generally to the underlying state it reflects, rather than the oscillation itself. 

 

1 The non-invasive-stimulation-savvy readers might heartily disagree on the unimportance of this question. 
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7.2.3 Aperiodic vs periodic activity 

When there are no notable microarchitecture features, the EEG is characterized by approximately 1/f 

“noise” (Figure 7.3A). This means that, like noise, the changes in voltage are largely unpredictable from 

the preceding signal, but unlike noise, the spectral profile has a peculiar 1/f relationship, such that lower 

frequencies have exponentially more power than higher frequencies. In signal analysis, this distinction is 

often referred to as “white noise” if the power spectrum is flat, and “colored noise” if it is tilted. This 

property of the EEG has been known for a while (Buzsáki, 2006; Shen et al., 2003), but has recently gained 

center-stage with the work by Donoghue et al. (2020) and the open-access fitting oscillations and one-

over f (FOOOF) Python toolbox.  

When plotting power on a log-log scale, this exponential relationship becomes linear, and therefore fit-

ting a line (Figure 7.3B) allows for a simple quantification of the overall amplitude of the signal (the in-

tercept, Figure 7.3C), and how much it tilts (the slope, Figure 7.3D). This is referred to as the aperiodic 

component of the EEG. In practice, EEG is not a perfectly “aperiodic” signal, with “knees” bending the 

spectrum at different points, and various other imperfections. Nonetheless, a linear fit on a log-log scale 

is a useful approximation. 

Instead, any periodic signal from oscillations will emerge from this 1/f as a positive bump in the spectrum, 

from which the relative amplitude can be calculated (Figure 7.3E), as well as the peak frequency (Figure 

7.3F). Mounting evidence shows that many changes in EEG power aren’t related to oscillations at all, but 

rather changes in the slope of this background activity, which is why there’s a need to reanalyze classic 

results to determine whether changes in power were driven by periodic or aperiodic changes. It's im-

portant to specify that sufficiently regular and frequent events will also create a “periodic” signal in the 

EEG, although with a wider bell-curve.  

 

Figure 7.3: Schematic of fitting one-over-f. A: Typical untransformed EEG power spectrum; x axis represents fre-
quency, y axis is power. The spectrum follows a 1/f distribution, with slower frequencies having exponentially more 
power than faster frequencies. On top of this aperiodic curve, “bumps” emerge reflecting periodic activity at that 
frequency. B: The spectrum can be plotted on a log-log scale (apply logarithm to both power values and frequencies), 
and the aperiodic signal can be fitted with a line. This line can be quantified with an intercept (C), and a slope (D), 
respectively how much the whole spectrum shifts in power amplitude, and the degree of difference between lower 
and higher frequencies. The periodic component can then be characterized by its amplitude (E) correcting for the 
amplitude of the intercept, and the peak frequency (F). 

The creators of FOOOF argue against referring to the aperiodic signal as “background activity” because 

there’s no reason yet to believe that it is secondary to actual periodic activity. While I agree from an 
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ontological standpoint, I think it still is appropriate to call it “background” because the aperiodic compo-

nent is fairly consistent in time, like a background, changing substantially only with changes in vigilant 

state. Also, in the context of this thesis, it makes sense to refer to the aperiodic signal as “background” 

because the focus is precisely on the oscillatory activity, regardless of which is more important for the 

brain. “Noise” is considered even less appropriate, because it implies that it is not reflecting neuronal 

computation, which is very likely not the case; it’s just that when measured macroscopically on the sur-

face, the specific local signals generating the EEG become indistinguishable. 

In practice, just because there’s no obvious periodic signal in the average spectrum, doesn’t mean oscil-

lations don’t occur, just that they are either too irregular and/or too infrequent to emerge from the aver-

age. Therefore, methods that look at EEG in time are more reliable at measuring events and oscillations 

than FOOOF. However, when analyses only involve average power, if there is no obvious bump in the 

spectrum, then inevitably this quantifies the aperiodic component and not a periodic component. 

 

Box 7.2: Increasing slopes can appear as increased theta power 

Attention deficit hyperactivity disorder (ADHD) is probably the most well-studied clinical condition associated 

with theta activity. Many studies find an increase in theta power in children and adults with ADHD compared 

to neurotypical controls (Markovska-Simoska & Pop-Jordanova, 2017). More specifically, this difference was 

best quantified with the theta-beta ratio (Arns et al., 2013). The FDA even approved using it as a diagnostic 

aid. Recent analysis of ADHD data found instead that the effect was driven by steeper aperiodic slopes in 

ADHD (Robertson et al., 2019). I was able to replicate this in our own data from the Children’s Hospital of 

Zurich (Figure 7.4). The fact that it is the aperiodic component that changes, rather than theta oscillations, 

makes a substantial difference when trying to understand what neural mechanisms drive ADHD. For exactly 

this reason, aperiodic and periodic signals should be quantified independently as much as possible. 

 

Figure 7.4: Increasing slopes can explain the theta-beta ratio in ADHD. A: Log-log power spectrum of wake EEG 
data from children with ADHD and sex and age matched controls (HC), the evening (dark) and morning (light) after a 
night of sleep. At both timepoints, the spectra of ADHD children are steeper than for controls. B: The change in slopes 
and intercepts across sleep. Thin lines represent individual participants, thick lines group average. N.B. “intercept” is 
literally where the spectrum crosses 1 Hz, so in this case it reflects the same information as the slope. The little 
recurring bumps are an artefact I haven’t yet been able to track down. 



 Glossary  

140 

 

Another case in which differences in power are driven independently by aperiodic and periodic signals is age. 

Tröndle et al. (2022) found that the decrease in alpha power with age was actually driven by just a decrease 

in the intercept of the aperiodic activity, while the periodic alpha component actually increased in amplitude. 

Therefore also for theta, decreases with age (Cummins & Finnigan, 2007) may actually reflect this change in 

aperiodic slope and intercept. In fact, given that frontal-midline theta is not always present in all individuals 

and usually has lower amplitudes than alpha, this effect will be even more pronounced for theta power than 

alpha power. Efforts are currently underway to re-evaluate previous findings and determine when they are 

driven by periodic or aperiodic changes (Herweg et al., 2020), but it will take some time. Until then, my rule 

of thumb has been to evaluate the likelihood that an effect could be due to spectral tilt based on whether the 

changes were shown to be narrow-band or not.  

7.2.4 Saddle theta 

One highly cited paper on theta activity that I have largely ignored 

is the Klimesch (1999) review. This is one of the main papers arguing 

for theta reflecting cognition, while surprisingly also citing literature 

of theta reflecting sleep deprivation (Cajochen et al., 1995). The 

theta related to cognition that Klimesch refers to comes from spec-

trograms like in Figure 7.5, where there is not a bump in the theta 

range, but rather a slight increase in the “saddle” between delta and 

alpha. Likewise, the Cajochen paper does not show an increase in a 

theta peak, but rather a slow alpha peak. Therefore, by assuming 

that sdTheta is actually alpha, Klimesch maintains that the increase 

of theta and decrease of alpha reflects cognition. I don’t think 

Klimesch had all the facts when creating his hypotheses, so I have 

only lightly cited his work. 

7.3 Key sleep concepts 

The following sections define the key concepts related to sleep in this thesis.  

7.3.1 Sleep stages 

Since the early days of EEG, sleep has been divided into discrete stages. While there’s always debate 

about the validity of such an approach, it is invariably useful, and reflects some of the most dramatic 

changes in the EEG that we know of, short of epilepsy and traumatic brain injury. The stages are manually 

scored based on the specific microarchitecture of the EEG and EOG, assigning a score to every 20 or 30 

s of data. Here are the main sleep stages, as defined by the AASM guidelines (Berry et al., 2012): 

Wake 

• Alpha rhythms 

• Eye blinks, rapid eye movements 

NREM 1 

• Mostly found at the transition from wake to sleep 

• Slow rolling eye movements 

• Low-amplitude, mixed-frequency EEG activity, predominantly 4-7 Hz 

• Vertex sharp waves (sharp single waves seen in Cz) 

Figure 7.5: theta power saddle. This di-
agram spectrogram shows an increase 
in theta power (shaded area) which is 
not an oscillatory peak, nor a tilt in 
slope. 



 Glossary  

141 

 

NREM 2 

• Spindles 

• K-complexes 

NREM 3 

• Slow wave activity, waves from -0.5 to 2 Hz, with peak-to-peak amplitude > 75 μV in more than 

20% of the epoch 

REM 

• Rapid eye movements 

• Low chin EMG (muscle tension) 

• Sawtooth waves, triangular waves between 2 and 6 Hz 

Figure 7.6 is an example of a typical hypnogram, the graph showing the switch in sleep stages across the 

night. Sleep is made of consecutive cycles passing through each stage, with REM sleep appearing last in 

the cycle. NREM 3 dominates the first cycle, and progressively decreases with each cycle, and vice-versa 

REM sleep gets progressively longer. 

 

Figure 7.6: Sleep hypnogram for a night. Each black vertical line marks a 20 s epoch to which a sleep stage is as-
signed. 

As can be seen in the power spectra of Figure 7.7, each sleep stage is defined by progressively steeper 

aperiodic slopes, and occasionally characteristic periodic activity in the theta, alpha, and sigma ranges. 

However, theta is only periodic in the Front ROI during the Game (fmTheta), despite REM and NREM 1 

supposedly being characterized by theta activity.  

 

Figure 7.7: power spectrums by sleep stage, log-log scale. From 18 participants. Wake EC was from Fixation Baseline 
Post. Game was from the Baseline task block. Sleep from baseline night. ROIs are defined as in Figure 2.18. 

        

               

  

  

 

 

 

 

 
 
 
 
  
  
 
 
 

 ront

         

    

      

      

      

   

        

               

  

  

 

 

 

 

 enter

        

               

  

  

 

 

 

 

 ack
   



 Glossary  

142 

 

7.3.2 The two-process model of sleep 

The two process model of sleep (Figure 7.8), established by Alexander Borbély (1982) and mathematically 

developed with Peter Achermann (2003), is a model meant to predict when and for how long an individual 

will sleep. The homeostatic process describes the monotonic increase in sleep need with time awake, 

which dissipates during sleep as reflected in the exponential decrease in slow wave activity. The circadian 

process describes the 24 h rhythm of the body and brain, which fluctuates independently of whether 

sleep occurs or not. It is meant to group metabolic and behavioral activity according to when sleep is 

most or least likely. It can be measured as changes in core body temperature, melatonin concentration, 

and even subjective sleepiness, when adjusting for time-awake effects (Åkerstedt et al., 1979). 

 

Figure 7.8: two-process model of sleep. The red and yellow lines indicate the homeostatic process, which increases 
along a saturating exponential during wake, and decreases exponentially during sleep. This red line indicates what 
happens when sleep does not occur. The blue line indicates the circadian process, which is lowest in the midpoint of 
sleep and highest during the middle of the day, but does not change depending on when sleep actually occurs. 

7.3.3 Sleep deprivation vs extended wake 

We have decided to make the distinction between “sleep deprivation” and “extended wake” experiment 

paradigms. A sleep deprivation paradigm is one in which the recordings of interest occur beyond the 

time window in which an individual should have slept, so from 24 h onwards. An extended wake paradigm 

is one in which the recordings of interest happen between 16 h and 24 h of wake, as in our case. Hans-

Peter Landolt helped us arrive to this distinction when working on the second paper, which is why the 

term does not appear in the first paper, and for consistency we refer to the night-time task block of the 

extended wake still as sleep deprivation. 

7.3.4 Local sleep vs microsleeps 

Microsleeps are sleep episodes from 1-15 s long, defined by the traditional markers of sleep onset: loss 

of alpha, low-amplitude high-frequency activity, eye-closures and rolling eye movements (Hertig-

Godeschalk et al., 2020). Instead, local sleep often refers to the local presence of a sleep microarchitec-

ture event during wake, mostly slow waves, or theta waves thought to be slow waves (Bernardi & Siclari, 
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2019). Sometimes, local sleep refers to local differences in slow wave activity but still within NREM sleep 

(Huber et al., 2004); this is essentially short-hand for “local differences in sleep” but not co-existing sleep 

stages. However, I only use the term “local sleep” to mean sleep in less than half of the brain. 

Effectively, the line is a bit blurry between local sleep and microsleeps. If local sleep can occur as sug-

gested in section 5.5.1, this would make it indistinguishable from microsleeps except for the lack of con-

current changes in ocular behavior, which microsleep researchers don’t think is necessary to define a 

microsleep (private communications with David Schreier). Instead, it may be possible to make a distinc-

tion between “whole brain” sleep, in which the brainstem nuclei are consistently suppressing wake and 

promoting sleep (Saper et al., 2010), and “cortical sleep” which can happen locally, and would give rise to 

local slow waves and possibly local NREM 1 (Krone et al., 2021). In practice, I would distinguish the two 

based on whether the individual had their eyes closed or not during the presence of EEG sleep features. 

7.3.5  Sleepiness 

There are a lot of words in English to describe “sleepiness,” and I assign precise meaning to each. Many 

of these distinctions were inspired by David Schreier. 

Sleepiness: the propensity and desire to go to sleep. Objectively quantifiable with sleep onset latencies. 

Drowsiness: a low vigilance state, defined by reduced responsiveness to the environment and unfocused 

thoughts. Often used as a synonym to sleepiness, although I make the distinction that drowsiness can be 

independent of actual sleep propensity or sleep need. So “soporific conditions” induce drowsiness, but 

not necessarily sleepiness. 

Fatigue: mental fatigue is analogous to muscle fatigue, it 

is a form of tiredness following intense mental activity but 

can be mostly reversed with just rest from that activity. 

Tiredness: an umbrella term for sleepiness, drowsiness, 

and fatigue. When people say they are tired, it doesn't 

matter why, just that they don’t want to continue doing 

what they are doing.  

 

Alertness: a state of attentiveness maintained over minutes in which sensitivity to external stimuli is 

high. Part of the scale of vigilance. 

Vigilance: a scale ranging from alert to asleep, describing how attentive the individual is to the environ-

ment.  

  

Figure 7.9: Venn diagram of synonyms of tired-
ness. 
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year wondering in which awesome place I get to have my next paid vacation conference!  

Figure 8.1: Photograph of my mother, by Sam 
Ogden. She is 8 months pregnant with me. Pub-
lished in Science (Flam, 1994), in an article about 
Mediterranean women in STEM.  
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