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Universal DNA methylation age across 
mammalian tissues

Aging, often considered a result of random cellular damage, can be 

accurately estimated using DNA methylation profiles, the foundation of 

pan-tissue epigenetic clocks. Here, we demonstrate the development of 

universal pan-mammalian clocks, using 11,754 methylation arrays from 

our Mammalian Methylation Consortium, which encompass 59 tissue 

types across 185 mammalian species. These predictive models estimate 

mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate 

with human mortality risk, mouse somatotropic axis mutations and caloric 

restriction. We identified specific cytosines with methylation levels that 

change with age across numerous species. These sites, highly enriched 

in polycomb repressive complex 2-binding locations, are near genes 

implicated in mammalian development, cancer, obesity and longevity. 

Our findings offer new evidence suggesting that aging is evolutionarily 

conserved and intertwined with developmental processes across all 

mammals.

Aging is associated with multiple cellular changes that are often tis-

sue specific1. Cytosine methylation, however, stands out, as it allows 

for the development of pan-tissue aging clocks (multivariate age 

estimators) that are applicable to all human tissues2–4. The subse-

quent development of similar pan-tissue clocks for mice and other 

species suggests a conserved aspect to the aging process5–7, thereby 

challenging the belief that aging is solely driven by random cellular 

damage accumulated over time. To investigate this, we sought to 

(1) develop universal age estimators applicable to all mammalian 

species and tissues (pan-mammalian clocks) and (2) identify and 

characterize cytosines with methylation levels that change with age 

across all mammals. For this purpose, we employed the mammalian 

methylation array, which we recently developed to profile methyla-

tion levels of up to 36,000 CpG sites with flanking DNA sequences 

highly conserved across the mammalian class8. We employed such 

profiles from 11,754 samples from 59 tissue types, originating from 

185 mammalian species across 19 taxonomic orders (Supplementary 

Data 1.1–1.4 and Supplementary Notes 1 and 2) with ages ranging 

from prenatal to 139 years old (bowhead whale, Balaena mysticetus)9. 

These data are a subset from our Mammalian Methylation Consor-

tium, which characterized maximum lifespan9. As we were interested 

in developing pan-mammalian clocks, we restricted the analysis to 

animals with known ages.

Results
Universal pan-mammalian epigenetic clocks
In separate articles, we described the application of the mammalian 

methylation array to individual mammalian species10–19. These studies 

already demonstrate that one can build dual-species epigenetic age 

estimators (for example, human–naked mole rat clocks)10–17, in contrast 

to first- and second-generation clocks that measure human age4,20,21 and 

mortality risk22,23, respectively. However, it is not yet known whether one 

can develop a mathematical formula to estimate age in all mammalian 

species. Here we present three such pan-mammalian age estimators.

The first, basic clock (clock 1), regresses log-transformed chron-

ological age on DNA methylation levels of all available mammals. 

Although such a clock can directly estimate the age of any mammal, 

its usefulness could be further increased if its output were adjusted 

for differences in the maximum lifespan of each species as well, as this 

would allow biologically meaningful comparisons to be made between 

species with very different lifespans. To this end, we developed a sec-

ond universal clock that defines individual age relative to the maxi-

mum lifespan of its species; generating relative age estimates between  

0 and 1. Because the accuracy of this universal relative age clock (clock 2)  

could be compromised in species for which knowledge of maximum 

lifespan is inaccurate, we developed a third universal clock, using age at 

sexual maturity (ASM) and gestation time instead of maximum lifespan, 
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including dogs (n = 742, 93 breeds, r = 0.94, MAE < 2.28 years), African 

elephants (r = 0.96, MAE < 4.0 years) and flying foxes (r = 0.97, MAE < 2.3 

years) (Fig. 1j–l). Such accuracy demonstrates these clocks’ broad rele-

vance, tapping into conserved age-related mechanisms across mammals, 

including species not in the training data (Supplementary Data 5.1–5.2).

The three universal clocks performed well for 114 species with 

fewer than 15 samples each (r ≈ 0.90, MAE ≈ 1.2 years for clocks 1–3; 

Extended Data Fig. 3a–c), exhibiting strong correlation for relative 

age (r = 0.91 for clock 2; Extended Data Fig. 3d).

Pan-mammalian universal clocks across tissues
The significantly distinct epigenomic landscape across tissue types24,25 

prompted an assessment of these clocks’ performance in different tis-

sues. We assessed the tissue-specific accuracy of clock 2 for estimating 

relative age (r = 0.95, Fig. 1d) across 33 distinct tissue types, observing a 

median correlation of 0.91 and a median MAE for relative age of 0.027 

(Supplementary Data 4.3). High age correlation was consistently observed 

in brain regions: whole brain (r = 0.991), cerebellum (r = 0.963), cortex 

(r = 0.957), hippocampus (r = 0.954) and striatum (r = 0.935; Extended 

Data Fig. 5a,d,f,g,i and Supplementary Data 4.3) as well as in organs: 

spleen (r = 0.982), liver (r = 0.963) and kidney (r = 0.963; Extended Data 

Fig. 5b,c,e). Blood and skin also showed high estimates of relative age cor-

relations across different species: blood (r = 0.952, MAE = 0.022, 124 spe-

cies) and skin (r = 0.942, MAE = 0.027, 92 species; Extended Data Fig. 5h,k).

Tissue-specific pan-mammalian clocks
The universal pan-mammalian clocks, derived from multiple tissue 

types, are essentially pan-tissue clocks. We also constructed analogous 

clocks solely based on blood (Universal BloodClock 2 and Universal 

BloodClock 3) and skin (Universal SkinClock 2 and Universal SkinClock 

3), the tissues most readily accessible across all species. These tissue-

specific clocks tend to demonstrate slightly higher accuracy than the 

pan-tissue clocks when analyzing their respective tissues. Both the 

blood and skin clocks exhibit robust age correlations (r ≈ 0.983–0.987 

for blood and r ≈ 0.951–0.968 for skin; Extended Data Fig. 4c,g).

Human mortality risk, clinical biomarkers and lifestyle factors
Retrospective studies indicate that human epigenetic clocks can pre-

dict mortality risk and time to death, even when adjusted for chrono-

logical age and other risk factors23,26,27. We tested whether this applies to 

pan-mammalian methylation clocks, using data from the Framingham 

Heart Study Offspring cohort (FHS, n = 2,544) and the Women’s Health 

Initiative (WHI, n = 2,107). We devised a method to impute mammalian 

methylation array data from human Infinium array data (Supplemen-

tary Note 5). Our meta-analysis demonstrates that both clocks 2 and 

3 can predict human mortality risk after adjusting for age and other 

confounders. The hazard ratio (HR) for 1 year of epigenetic age accel-

eration was significantly associated with all-cause mortality (HR = 1.03 

and P = 6.0 × 10−19 for clock 2 and HR = 1.03, P = 5.3 × 10−11 for clock 3; 

Fig. 3a,b), although less pronounced than specialized human clocks 

designed to estimate human mortality risk22,23,28.

We evaluated the cross-sectional associations of lifestyle fac-

tors and clinical biomarkers with clocks 2 and 3 in the same cohorts. 

Robust correlation analysis (biweight midcorrelation (bicor)29) 

revealed associations of both clocks with inflammation (C-reactive 

protein, bicor = 0.12, P = 9.9 × 10−16) and dyslipidemia (triglyceride 

as these traits are better established and explain over 69% of maximum 

lifespan variation on the log scale (Supplementary Data 2). This third 

clock is referred to as the universal log–linear age clock (clock 3). The 

non-linear mathematical function underlying the age transformation 

of clock 3 reflects the fact that epigenetic clocks tick faster during 

development, an observation that led to the establishment of the first 

pan-tissue clock for humans4 (Extended Data Fig. 1a,b,d,e).

Performance of universal epigenetic clocks across species
To evaluate the clocks’ accuracy, we employed leave-one-fraction-out 

(LOFO) and leave-one-species-out (LOSO) cross-validation analyses. 

Each analysis divides the dataset differently for validation: LOFO into 

ten fractions with similar proportions of species and tissue types; LOSO 

excludes one species per iteration. The final models of the clocks use 

less than 1,000 CpG sites each (Supplementary Data 3.1–3.3), with 401 

common genes proximal to CpG sites in both clock 2 and clock 3 (Sup-

plementary Data 3.5). LOFO cross-validation reveals the universal clocks 

as highly accurate estimators of chronological age (r ≈ 0.96–0.98) with 

a median absolute error (MAE) of <1 year between chronological age 

and DNA methylation (DNAm)-based age estimate (DNAmAge) and a 

relative error of <3.3% (Figs. 1a,c and 2, Extended Data Fig. 2a, Supple-

mentary Table 1 and Supplementary Data 4.1–4.3). Despite the mam-

malian array mapping fewer CpG sites to marsupials8, clocks 2 and 3 

maintain their accuracy when analysis is confined to marsupials (for 

example, r = 0.91, median MAE < 0.80 year for clock 2; Fig. 1b). Moreo-

ver, our monotreme study (n = 15) produced encouraging results (for 

example, r = 0.85 for clock 2; Supplementary Data 4.1).

Using LOSO cross-validation, the clocks displayed age correlations 

as high as r = 0.941 (Supplementary Table 1), suggesting their applica-

bility to species not included in the training set. However, for certain 

species, such as bowhead whales, the basic clock’s predicted epigenetic 

age poorly aligns with chronological age (Extended Data Fig. 2a).

For the basic clock 1, the mean discrepancy between LOSO 

DNAmAge and chronological age (Delta.Age) is negatively correlated 

with species maximum lifespan (r = −0.84, P = 1.0 × 10−19) and ASM 

(r = −0.75, P = 7.9 × 10−14; Extended Data Fig. 2c,d). Here, the strengths 

of clocks 2 and 3 come to fore as they adjust for these species charac-

teristics during their construction (Extended Data Fig. 1).

Universal clocks 2 and 3, arguably more biologically meaningful 

than clock 1, achieve a correlation of r ≥ 0.95 between DNAm trans-

formed age and observed transformed age, respectively (Fig. 1d,f). 

We will focus on them in the following text. They are pan-tissue clocks 

offering comparable accuracy in LOFO estimates across numerous 

tissue types (Fig. 1 and Supplementary Data 4.2). For instance, clock 

2 yielded high age correlations in humans (LOFO estimate of r = 0.959 

across 20 tissue types), mice (r = 0.948, 26 tissues) and bottlenose 

dolphins (r = 0.945, two tissues). Fig. 2 displays circle plots for the age 

correlation estimates in different species sorted by maximum lifespan.

Visual inspection indicates no relationship between age correla-

tion from clocks 2 and 3 and maximum lifespan (dashed line, Fig. 2, 

circle). While accurately predicting age for the humpback whale and 

other mammals, the clocks sometimes underestimated bowhead whale 

reported age (mammalian species index 4.11.1 in Fig. 1a,c), possibly due 

to overestimation of older whales’ ages by aspartic acid racemization.

Clocks 2 and 3 provide similarly accurate LOSO age estimates 

between evolutionarily distant species (Supplementary Data 5.2), 

Fig. 1 | Universal clocks for transformed age across mammals. The figure 

displays relative age estimates of universal clock 2 (clock 2) and log–linear-

transformed age of universal clock 3 (clock 3). Relative age estimates incorporate 

maximum lifespan and assume values between 0 and 1. Log–linear age is 

formulated with ASM and gestational time. a–i, Age estimated by LOFO cross-

validation for clock 2 and clock 3. j–l, Age estimated via LOSO cross-validation for 

clock 2. The DNAm estimates of age (y axes) of a–c are transformations of relative 

age (clock 2) or log–linear age (clock 3) into units of years. b,e, Only marsupials 

(nine species). Each panel reports a Pearson correlation (Cor) coefficient. 

The gray and black dashed lines correspond to the diagonal line (y=x) and the 

regression line, respectively. Median correlation (med.Cor) and median of MAE 

(med.MAE) are calculated across species (a–f) or across species–tissue (g–l). All 

correlation P values are highly significant (P < 1.0 × 10−22). Each sample is labeled 

by mammalian species index and indicated by tissue color (Supplementary  

Data 1.3–1.4). All P values reported are unadjusted and two sided.
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levels, P = 3.2 × 10−7; Supplementary Table 2). Less significant asso-

ciations were for fasting glucose levels (P = 0.0093), body mass index 

(P = 0.011), smoking status (P = 0.027) or physical exercise (P = 0.0064). 

While these are nominally significant, they are far weaker than those 

observed with custom clocks for human mortality risk23,28.

Heritability analysis in humans
To investigate whether genetic control within a species influences the 

epigenetic aging rates measured by pan-mammalian clocks, we used 

human pedigree data from the FHS. Pedigree-based polygenic models 

of epigenetic age, adjusted for age and sex, yielded significant 
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narrow-sense heritability estimates for clock 2 (h2 = 0.44, P = 3.4 × 10−8) 

and clock 3 (h2 = 0.41, P = 4.0 × 10−7). These heritability estimates for 

pan-mammalian clocks are on par with that of Horvath’s human pan-

tissue clock (h2 = 0.39, P = 4.0 × 10−7)4.

Epigenetic reprogramming reverses epigenetic age
Epigenetic clocks, such as the human pan-tissue clock, suggest that 

cellular reprogramming based on the Yamanaka factors (collectively 

termed as OSKM: OCT4, SOX2, KLF4, and c-MYC) induces age reversal4,30. 
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4.13.12 Common dolphin

4.17.1 Harbor porpoise

4.19.1 Beluga whale

5.1.1 Dog

5.1.3 Maned wolf

5.1.5 Red fox

5.2.1 Cheetah

5.2.2 Domestic cat

5.2.4 Lion

5.2.5 Tiger

5.2.6 Florida panther

5.5.1 Spotted hyena

5.6.1 Asian s.c. otter

5.6.2 Southern sea otter

5.6.3 Ferret

5.7.1 Pacific walrus

5.8.1 Steller sea lion

5.8.2 AU sea lion

5.8.3 California sea lion

5.9.1 Harbor seal

5.9.2 Harp seal

5.11.1 Florida black bear

6.1.1 Horse

6.1.2 Grevy's zebra

6.1.3 Zebra

6.1.4 Somali wild ass

6.2.1 White rhino

6.2.2 E. black rhinoceros

6.2.3 Greater o.h.  rhino

8.4.1 Jamaican fruit bat

8.4.2 Seba's s.t. bat

8.4.3 Common vampire bat

8.4.4 Lesser l.n. bat

8.4.5 Pale spear-nosed bat

8.4.6 Greater s.n. bat

8.5.1 Lesser s.n. fruit bat

8.5.2 Straw-colored fruit bat

8.5.3 Indian fruit bat

8.5.4 Variable flying fox

8.5.5 Grey-headed flying fox

8.5.6 Little g.m. flying fox

8.5.7 Rodriguez flying fox

8.5.8 Large flying fox

8.5.9 Egyptian fruit bat

8.6.1 Greater horseshoe bat

8.7.1 Pallid bat

8.7.2 Big brown bat

8.7.3 Noctule

8.7.4 Evening bat

8.7.7 Brandt's bat

8.7.8 Little brown bat

8.7.9 Greater m.e. bat

8.7.10 Fish-eating bat

8.8.2 Pallas's mastiff bat

8.8.3 Mexican f.t. bat

8.17.1 Greater s.w. bat

8.17.2 Proboscis bat

9.1.2 Cape mole rat

9.1.3 Naked mole rat

9.1.4 Cape-dune mole rat

9.1.5 African mole rat

9.3.1 Guinea pig

9.3.2 Capybara

9.4.1 Chinchillah

9.5.5 Prairie vole

9.5.9 California mouse

9.5.10 Cactus mouse

9.5.11 White-footed mouse

9.5.12 E. deer mouse

9.5.13 Oldfield mouse

9.6.1 Lowland paca

9.9.1 Mouse

9.9.3 Brown rat

9.9.5 Spiny mouse

9.9.15 Wood mouse

9.10.1 Crested porcupine

9.12.1 Pouched rat

9.13.1 Yellow-bellied marmot

9.14.1 Blind mole rat

10.1.3 Opossum

11.1.1 Agile wallaby

11.1.3 W. gray kangaroo

11.1.4 E. gray kangaroo

11.1.5 Hill wallaroo

11.1.6 Red-necked wallaby

11.1.7 Red kangaroo

11.4.1 Koala

12.1.1 Four-toed hedgehog

12.3.10 Cinereus shrew

13.1.1 Hottentot golden mole

13.2.1 Lesser hedgehog tenrec

14.1.1 West Indian manatee

16.1.1 Aardvark

17.1.2 Slender treeshrew

17.1.3 Long-footed treeshrew

17.1.4 Large treeshrew

18.1.1 Tasmanian devil

19.1.1 Rock hyrax

20.1.1 L.'s two-toed sloth

20.1.2 Hoff.'s two-toed sloth

21.1.1 Duck-billed platypus

21.2.1 Short-beaked echidna

3 Lagomorpha

13 Afrosoricida

14 Sirenia

19 Hyracoidea

20 Pilosa

21 Monotremata

16 Tubulidentata
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To examine whether the universal clocks show a similar age-reversal 

pattern during reprogramming, we applied clock 2 and clock 3 to a previ-

ously published reprogramming dataset in human dermal fibroblasts31. 

We imputed the mammalian methylation array data on the basis of the 

existing human Infinium array data. Both clocks suggest age reversal 

after OSKM transduction (Fig. 3c,d). Notably, universal clock 2 showed 

a decrease in epigenetic age in partially reprogrammed cells after 11 d 

(Fig. 3c), mirroring observations with human epigenetic clocks4,30,32.

Transgenic mice for studying the somatotropic axis
Growth hormone, generated by somatotropic cells, stimulates body 

tissue growth, including bone. The somatotropic axis (growth hormone 

and insulin-like growth factor 1 (IGF-1) levels and their cognate recep-

tors) is central to aging and longevity studies33. Decreased growth hor-

mone–IGF-1 signaling extends longevity in various species, including 

mice34. A full-body growth hormone receptor-knockout (KO) (GHRKO) 

mouse holds the official record for being the longest-lived representa-

tive of Mus musculus, living 1 week shy of 5 years33.

We examined whether reduced growth hormone–IGF-1 pathway 

activity slows universal pan-mammalian clocks, using three mouse 

models: (1) Snell dwarf mice, lacking growth hormone production 

and hence living longer35,36, (2) full-body GHRKO mice with increased 

lifespan37 and (3) liver-specific GHRKO mice, showing lowered serum 

IGF-1 levels but not lifespan increase.

Clock 2 and 3 analyses revealed that Snell dwarf mice exhibit a 

significantly lower epigenetic age across all considered tissues than 

wild-type mice (cerebral cortex, Student’s t-test, P = 2.0 × 10−8; kidney, 

P = 6.0 × 10−10; liver, P = 1.0 × 10−7; tail, P = 1.0 × 10−6; blood, P = 2.0 × 10−3; 

spleen, P = 0.03; Fig. 3e,f). Similarly, full-body GHRKO mice showed 

lower epigenetic age in several tissues (liver, P = 3.0 × 10−5; kidney, 

P = 2.0 × 10−5; cerebral cortex, P = 0.02; Fig. 3e,f).

Growth hormone receptor signaling stimulates IGF-1 liver syn-

thesis, suggesting that dwarf mice’s epigenetic age reversal may be 

due to lower circulating IGF-1 levels. This hypothesis, however, is 

not supported by our epigenetic age measurements of liver-specific 

GHRKO mice, which exhibit a non-significant difference from the 

wild-type controls (Fig. 3e). Both clocks 2 and 3 show that the liver-spe-

cific GHRKO mice are not epigenetically younger than wild-type mice  

(Fig. 3e). Unlike full-body GHRKO mice, liver-specific GHRKO mice do 

not possess a longevity advantage38,39.

Caloric restriction in mice
Caloric restriction (CR), which also slows the somatotrophic axis 

(growth hormone–IGF-1), is associated with prolonged lifespan in 

several mouse strains40,41. Previous studies using mouse clocks have 

shown that CR reduces the rate of epigenetic aging in liver samples5–7. 

Using existing methylation data from a murine study of CR42, we find 

that clocks 2 and 3 yield a reduced epigenetic age for mouse liver 

samples (P = 6.0 × 10−12 for clock 2, P = 7.0 × 10−15 for clock 3; Fig. 3e,f). 

These results for pan-mammalian clocks align with those obtained 

with mouse-specific clocks5,43,44.

TET enzyme-KO studies in mice
TET enzymes are instrumental in active DNA demethylation. Because 

hydroxymethylation mediated by TET enzymes is prevalent in brain 

tissue, we applied the universal clocks to brain tissue samples from 

Tet1-, Tet2- and Tet3-KO mice. Analysis with our universal clocks 

revealed that Tet3-KO mice exhibit a reduced rate of epigenetic aging 

(cerebral cortex, P = 3.0 × 10−9 and striatum, P = 2.0 × 10−12; Fig. 3e,f). 

By contrast, significant epigenetic age-reversal effects in brain tis-

sue were relatively weak for Tet1 (cerebral cortex, P = 6.0 × 10−3 and 

striatum, P = 2.0 × 10−4; Fig. 3e) and could not be observed for Tet2-KO 

mice (P > 0.6; Fig. 3e).

The differential effect of Tet3 KO versus Tet1 or Tet2 KO in neurons 

echoes the results of an epigenetic reprogramming study in mouse 

retinal ganglion cells (Oct4, Sox2 and Klf4 (ref. 45)).

Fig. 2 | Accuracy of universal clocks are independent of species lifespan. The 

circle plot displays Pearson correlation between age and DNAmAge estimated by 

universal clocks 2 (clock 2) and 3 (clock 3) for various species. Of the 185 species, 

correlation analysis was performed on 69 species (with n ≥ 15 in a single tissue) 

across 12 taxonomic orders. We took log transformation of maximum lifespans of 

species and divided them by log (211), which is the maximum lifespan of bowhead 

whales. Values of the resulting ratios ranged from 0.12 (cinereus shrew) to 1 

(bowhead whales). These ratios are displayed in descending order in the circle 

plot marked by the black dashed line, starting with the bowhead whale (1) and 

human (0.90) and ending with the cinereus shrew (0.12), in counterclockwise 

direction. In the background, circumferences with increasing radii represent 

increasing correlation levels up to 0.9. These correlations between age and 

DNAmAge were estimated by clock 2 (red path line) and clock 3 (purple path 

line) for each species. Colors within the circle represent the taxonomic order of 

the corresponding species, as listed below the circle. The median of correlation 

across species is 0.926 for clock 2 and 0.918 for clock 3. Straw-colored fruit 

bats exhibit the highest correlation (r = 0.985) based on clock 2, and Wisconsin 

miniature pigs have the second highest correlation (r = 0.984) based on clock 

3. A majority of species with their circle lines located outside the background 

indicates that their correlation estimates are greater than 0.9. The text at the 

bottom lists the 185 species under their corresponding taxonomic order. Each 

taxonomic order is marked by the same color matching with the circle plot. The 

numbers after the first and second decimal points enumerate the taxonomic 

family and species, respectively. AU, Australian; Comme., Commerson’s;  

E., eastern; f.t., free-tailed; g.m., golden-mantled; H. (gazelle), Horn gazelle;  

Hoff., Hoffman’s; IP, Indo-Pacific; L.’s, Linne’s; l.n., long-nosed; m.e., mouse-eared; 

mini., miniature; N., northern; o.h., one horned; s.c., small-clawed;  

PAC w.s., Pacific white-sided; R.-toothed, Rough-toothed; Soemm., 

Soemmerring’s; S.finn., Short-finned; s.n., short nosed; s.t., short-tailed;  

s.w., sac-winged; W. western; W.F., White-fronted; WI mini., Wisconsin miniature.

Fig. 3 | Applications of universal pan-mammalian clocks in human cohorts, 

reprogramming experiment and murine anti-aging studies. a,b, Forest 

plots representing the fixed effect (FE) model meta-analysis, combining 

HRs from Cox regression models for time to death, based on epigenetic age 

acceleration measures of clock 2 (AgeAccelClock2) and clock 3 (AgeAccelClock3) 

across different ethnic groups within two epidemiological cohorts. Each 

row indicates an HR for a 1-year increase in the age acceleration (AgeAccel) 

measure, along with a 95% confidence interval (CI). c,d, DNAmAge estimates 

of human dermal fibroblasts during OSKM-induced reprogramming. The 

y axes are DNAmAge estimates of clock 2 and clock 3 at day 0, 3, …, 42 and 

49, respectively, during reprogramming31. e, Evaluations of mouse anti-age 

interventions: (1) age-matched Snell dwarf mutation study: 48 normal and 47 

dwarf mice with ages of approximately 0.52 (mean ± s.d. = 0.52 ± 0.01) years, 

(2) age-matched whole-body GHRKO experiment 1 (Exp.1) with 36 normal and 

35 GHRKO mice (mean ± s.d. = 0.65 ± 0.06 years), (3) age-matched GHRKO 

experiment 2 with GHRKO in livers only with 48 normal and 48 GHRKO genotypes 

(mean ± s.d. = 0.51 ± 0.03 years old), (4) Tet gene-KO study with all samples at 

age 0.5 years (Tet1, 32 controls and 32 Tet1 KO; Tet2, 33 controls and 32 Tet2 KO; 

Tet3, 31 controls and 32 Tet3 KO) and (5) CR study in livers (59 in CR versus 36 

control mice with all ages at 1.57 years old). Comparisons in experiments 2 and 

3 were based on AgeAccel measures. The color gradient is based on the sign of 

t-test for controls versus experimental mice, with a positive sign indicating that 

the mice in the control group exhibit higher age acceleration than the mice in 

the experimental group. f, Bar plots for selective tissue types and clocks across 

Snell dwarf mice (eight normal and eight dwarf mice) GHRKO experiment 1 

(12 normal and 11 GHRKO mice), Tet3-KO mice (15 normal and 16 Tet3-KO mice) 

and the entire CR experiment, respectively. The orange dots in c and d and the 

blue dots in e correspond to individual observations. The y axes of the bar plots 

depict the mean of one standard error. All P values reported are two sided and are 

unadjusted for multiple testing.
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Meta epigenome-wide association study of age across species
Universal clocks, founded on penalized regression models, consist 

solely of CpG sites that are most predictive of age. Consequently, most 

other age-related CpG sites are not included in the final regression 

models.

To identify all age-related CpG sites, we carried out two-stage meta-

analysis across species and tissues in eutherians (98% of the samples). 

Our epigenome-wide association study (EWAS) of age indicated that 

CpG sites becoming increasingly methylated with age (positively cor-

related with age) are conserved across tissues and species (Fig. 4a).
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Imposing a stringent unadjusted significance threshold of 

α = 10−200 limited our analysis to fewer than 1,000 CpG sites across 

all eutherian species and tissues (Fig. 4a and Supplementary  

Data 6.1). Of the 832 resulting age-related CpG sites, those most sig-

nificantly associate with age were cg12841266 (P = 1.4 × 10−1,001) and 

cg11084334 (P = 2.6 × 10−891), both located in exon 2 of LHFPL4 (hg38). 

Notably, cg12841266 exhibited a correlation ≥0.8 in 28 species (Sup-

plementary Data 7; three examples are shown in Fig. 4b–d). Another 

CpG, cg09710440, resides in exon 1 of LHFPL3 (P = 5.0 × 10−787), a 

paralog of LHFPL4 (Fig. 4a, Extended Data Fig. 6 and Supplementary  

Data 6.1–6.7). As LHFPL4 and LHFPL3 are in human chromosomes 3 and 

7, respectively, their consistent age-related gain of methylation is not 

due to physical proximity.

Beyond LHFPL4 and LHFPL3, other significant gene pairs among 

the top 30 age-related CpG sites include ZIC1 (chromosome 3) and ZIC2 

(chromosome 13), PAX2 (chromosome 10) and PAX5 (chromosome 9)  

and CELF6 (chromosome 15) and CELF4 (chromosome 18; Supple-

mentary Data 6.1). Located on separate chromosomes, their shared 

age-related methylation changes cannot be due to physical proximity, 

indicating a likely functional role in aging. Intriguingly, each gene pair 

encodes proteins with activities in development.

We observed that numerous cytosines change during the ini-

tial 6 weeks of murine postnatal development. In particular, LHFPL4 

cg12841266 displayed a positive correlation (r > 0.6) with age across 

murine tissues, especially in the brain and muscle (Fig. 5a–g). High age 

correlations were also evident in older mice (ranging from 0.2 years to 

2.5 years; Fig. 5h–o).

We obtained a broad overview of age association across different 

temporal domains by repeating our two-stage meta-EWAS for young, 

middle and old-age groups (Fig. 6a–c). Importantly, methylation 

changes related to age in young animals strongly align with those seen 

in middle-aged or old animals, refuting the idea that these changes are 

purely tied to organismal development (Fig. 6a–c). This observation is 

further reinforced by visualizing the mean methylation levels (β values) 

of age-related CpG sites relative to their distances from transcriptional 

start sites (TSS; Fig. 6d).

EWAS of age in marsupials and monotremes
We extended the age-related EWAS analysis to marsupials and mono-

tremes. The top age-related CpG sites for marsupials were found near 

genes involved in development, including GRIK2 (P = 8.8 × 10−21; Supple-

mentary Data 6.8), encoding a neurotransmitter-associated glutamate 

receptor, and ZIC4 (P = 2.7 × 10−19), encoding a zinc finger protein. The 

age-related EWAS in monotremes implicated cg22777952 in FOXB1 

(P = 8.1 × 10−10; Supplementary Data 6.9), encoding a forkhead box pro-

tein. Moderate positive correlation with eutherian age-related methyla-

tion changes was observed (r = 0.295 in marsupials, Fig. 4e; r = 0.227 

in monotremes, Fig. 4f), in part due to the lower sample numbers in 

these groups. However, the age effect on methylation of cg11084334 

(not cg12841266) in LHFPL4 is preserved in marsupials (P = 4.8 × 10−7;  

Fig. 4e) and monotremes (P = 2.4 × 10−5; Fig. 4f), despite these limitations.

Meta-analysis of age-related CpG sites across specific tissues
To understand age-related CpG sites across species and tissues, we 

focused on six tissues with many available species: brain (whole and 

cortex), blood, liver, muscle and skin. We performed an EWAS meta-

analysis on 935 whole brains (18 species–brain tissue categories, eight 

species), 391 cortices (six species), 4,513 blood samples (56 species), 

1,063 livers (ten species), 354 muscle samples (five species) and 2,363 

skin samples (65 species; Supplementary Data 1.6–1.11).

Consistently across all tissues, CpG sites with positive age cor-

relations outnumbered those with negative correlations (Extended 

Data Fig. 6). While many age-related cytosines were either specific to 

individual organs (Supplementary Data 6.2–6.7) or shared between 

several organs, 51 CpG sites (48 positively and three negatively age 

related) were common to all five organs (Fig. 4g and Supplementary 

Table 3). In total, 35 genes were proximal to the 48 positive CpG sites, 

and three genes were proximal to the three negative CpG sites. Interest-

ingly, 20 of these 35 genes encode transcription factors (TFs), includ-

ing 11 homeobox proteins, seven zinc finger TFs and two paired box 

proteins, involved in developmental processes including embryonic 

development (Supplementary Table 3). The relevance of this becomes 

evident below, where the chromatin state, function and tissue-specific 

accessibility associated with the location of age-related CpG sites are 

described.

Analyses of chromatin states of DNA bearing age-related 
cytosines
We observed that 57% of the top 1,000 positively age-related CpG sites 

were situated in a CpG island (human genome), while only 2% of the 

top 1,000 negatively age-related CpG sites resided there (EWAS of age 

across all tissues; Supplementary Data 6.1).

To understand the epigenetic context of age-related CpG sites, we 

accessed a detailed universal chromatin state annotation of the human 

genome. This resource, derived from 1,032 experiments mapping 32 

chromatin marks across 100+ human cell and tissue types46 (Fig. 4h, 

Extended Data Fig. 7 and Supplementary Data 8.2–8.9), allowed us to 

overlay the positions of the top 1,000 age-related CpG sites. We found 

that positively age-related CpG sites were significantly enriched in 

states associated with polycomb repressive complex 2 (PRC2)-binding 

sites (states BivProm1, BivProm2, ReprPC1). These CpG sites localized 

to PRC2-binding sites, as defined by embryonic ectoderm development 

(EED), enhancer of zeste 2 PRC2 subunit (EZH2) and PRC2 subunit 

(SUZ12) binding (the first row of Fig. 4h). This PRC2 enrichment could 

be observed for all tissue types collectively (odds ratio (OR) = 22.8, 

hypergeometric P = 1.9 × 10−449) and when analyzed individually: 

blood (OR = 29.8, P = 2.9 × 10−510), liver (OR = 14.3, P = 7.3 × 10−338), skin 

(OR = 14.3, P = 9.9 × 10−337), cortex (OR = 6.5, P = 3.7 × 10−163) and brain 

Fig. 4 | Meta-analysis of methylation change in function of chronological 

age across species and tissues. a–d,g,h, Eutherian EWAS of age. a, Meta-

analysis −log10 (P values) for age-related CpG sites (annotated by proximal 

genes) on chromosomes (x axis in hg38). Top and bottom, CpG sites that gain 

or lose methylation with age, respectively. CpG sites in red and blue denote 

highly significant positive and negative age correlation (P < 10−200), respectively. 

The most significant CpG (cg12841266, P = 1.41 × 10−1,001) resides in exon 2 on 

the LHFPL4 gene in humans and most mammals, followed by cg11084334 

(P = 2.59 × 10−891). These two CpG sites and cg097720 (P = 4.97 × 10−787) located in 

the paralog gene LHFPL3 are marked with purple diamonds. b–d, Scatterplots of 

cg12841266 versus chronological age (years) in mini pigs (Sus scrofa minusculus) 

(b), Oldfield mice (Peromyscus polionotus) (c) and horses (Equus caballus) (d). 

Tissue samples are labeled by the mammalian species index and colored by 

tissue type as detailed in Supplementary Data 1.1–1.4. e,f, Correlation analysis 

between Z scores of EWAS of age in eutherians versus marsupials (e) and 

eutherians versus monotremes (f). g,h, Annotations of the top 1,000 CpG sites 

with increased or decreased methylation with age that were identified in EWAS 

meta-analysis across all species and tissues (results in a) (brain, cortex, blood, 

liver, muscle and skin tissues). g, The overlap of age-associated CpG sites across 

various organs, based on the top 1,000 CpG sites showing positive or negative 

age correlation in EWAS. The Venn diagram includes 51 age-associated CpG sites 

shared across all organs, adjacent to 38 genes (35 with positive and three with 

negative age correlation) categorized by protein family. The 35 positive genes are 

color coded based on their protein family: two in LHFPL, 12 in homeobox, three 

in paired box or T-box, three in bHLH, seven in zinc finger and eight in others. 

h, Selected universal chromatin state and polycomb group protein enrichment 

results. ORs (P values) are presented in each cell. The color gradient is based 

on −log10 (hypergeometric P value) times sign of OR > 1. The complete results are 

listed in Extended Data Fig. 7. State annotation can be found in Supplementary 

Data 8.2. HET denotes heterochromatin. Except for the hypergeometric analysis 

in h, all figure P values are unadjusted and two sided.
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(OR = 3.2, P = 9.7 × 10−57). Indeed, the majority of the top 1,000 positively 

age-related CpG sites were significantly enriched in PRC2-binding 

sites: 80.8% (808 CpG sites) in blood, 67.5% in liver and 67.2% in skin 

(Supplementary Data 8.1).

PRC2, a transcriptional repressor complex, is a key contributor to 

H3K27 methylation, a chromatin modification linked to transcriptional 

repression47. Importantly, PRC2-mediated histone 3 lysine 27 (H3K27) 

methylation is crucial for establishing bivalent promoters, which house 
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histones with both H3K27 trimethylation (H3K27me3) and histone 3 

lysine 4 trimethylation (H3K4me3). As such, it is consistent that positively 

age-related CpG sites are also found to be enriched in bivalent promoter 

states (rows 3 and 4 of Fig. 4h). They show even greater presence in a biva-

lent state associated with more H3K27me3 than H3K4me3 (BivProm2) 

than in BivProm1, associated with more balanced levels of these histone 

modifications46. The top EWAS hit, LHFPL4 cg12841266, in a bivalent state 

(BivProm2) and PRC2-binding region (EED-, EZH2-, SUZ12-binding sites), 

exemplifies this (Supplementary Data 8.1). These mammalian results echo 

those from human studies48,49, in which tissue-independent age-related 

gain of methylation is characterized by cytosines that are located in PRC2-

binding sites and bivalent chromatin domains.
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Fig. 5 | Methylation levels of cg12841266 (LHFPL4) versus chronological age 

in mouse tissues. Results are reported for different tissues and age groups. 

a–g, Postnatal development (dev.) (from 1 week to 6 weeks). h–o, Age effects 

in adult mice. Mean ± s.d.96 of chronological age is 3.5 ± 1.7 (1.0–6.0) weeks 

in the developmental age group and 1.12 ± 0.72 (0.15–2.78) years in the post-

developmental group. a,h, All tissues combined. Each dot (sample) is colored 

by the tissue type. o, Pearson correlations between the CpG site and age in 

additional mouse tissues and cell types from the Mammalian Methylation 

Consortium. Hemato.prog.LSK, hematopoietic progenitor cells with  

lineage−Sca-1+c-Kit+ phenotype; max, maximum; min, minimum; n, sample 

size; SVZ, subventricular zone. Pearson correlation coefficients and nominal 

(unadjusted) two-sided correlation test P values are shown.
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We found that ORs for the overlap between positively age-related 

CpG sites and PRC2-binding sites were markedly higher in proliferative 

tissues (blood, skin, liver) than in non-proliferative tissues (skeletal 

muscle, brain, cerebral cortex; Fig. 4h). The distinction between prolif-

erative and non-proliferative tissues also manifested when considering 

negatively age-related CpG sites (those that lose methylation levels 

with age). In highly proliferative tissues (blood, skin), age-related loss 

of methylation was seen in CpG sites located in select heterochromatin 

(HET1, HET7), which are marked by histone 3 lysine 9 trimethylation, or 

inactive chromatin states (Quies1, Quies2), as listed in Supplementary 

Data 8.2 and Vu & Ernst46. Conversely, in non-proliferative tissues, age-

related methylation loss could be seen in the exon- and high-expres-

sion-associated transcription state TxEx4 (OR = 12.9, P = 1.6 × 10−52 in the 

cerebral cortex and OR = 6.7, P = 3.7 × 10−22 in skeletal muscle). TxEx4 

is far less enriched with age-related cytosines that lose methylation 

in proliferative tissues such as blood (OR = 2.6, P = 1.7 × 10−4) or skin 

(OR = 0.7, P = 0.25).

Overlap with late-replicating domains
Our chromatin state analysis of age-related loss of methylation demon-

strated that it is important to distinguish proliferating tissues (blood, 

skin) from non-proliferative tissues (brain, muscle). Consequently, 

we examined the correlation between DNA replication and methyla-

tion. Late-replicating genome domains, prone to partial methylation, 

show pronounced methylation loss in solo WCGW cytosines (CpG 

sites flanked by A or T on either side50). We overlaid the top 1,000 age-

related CpG sites (positive or negative) on the reported late-replicat-

ing domains, which are enriched with partially methylated domains 

(PMDs)50. As previously reported for human tissues50, we observed 

age-related loss of methylation in PMDs and solo WCGW sites in mam-

malian tissues that proliferate, such as blood and skin (Extended Data 

Fig. 8 and Supplementary Data 9). Notably, the top 1,000 negatively age-

related CpG sites overlap significantly with CpG sites that are both com-

mon PMDs and solo WCGW sites (hg19): skin (OR = 7.9, P = 1.6 × 10−90), 

blood (OR = 5.3, P = 1.5 × 10−50) and all tissues (OR = 7.3, P = 4.4 × 10−81; 

LHFPL4 cg12841266

LHFPL4 cg11084334

LHFPL3 cg09710440

LOC440982 TLX3

POU3F3

NEUROD2

EVX2

ANK1

NR2E1

EN1

CLINT1
MBNL1

PURA

TNRC6A

LRFN5

TNRC6A

RAD50

ZFPM2

ERCC1

SOX5

−8

−4

0

4

8

12

−15 −10 −5 0 5 10 15 20

Young age

M
id

d
le

 a
g

e

Cor = 0.741, P = 3.46 × 10−6,474a

LHFPL4 cg12841266LHFPL4 cg11084334

LHFPL3 cg09710440

LOC440982

POU3F3

UNC79
ANK1BDNF

HCN1

FOXD3-AS1

CLINT1 SON

MBNL1 RIMS1

RIMS1

TNRC6A

ADGRB3 LINC00469

LINC01414

GRIA1

−15

−10

−5

0

5

10

15

20

25

−8 −4 0 4 8 12

Middle age

O
ld

 a
g

e

Cor 0.799, P = 1.66 × 10−8,277b

LHFPL4 cg12841266LHFPL4 cg11084334

LHFPL3 cg09710440

LOC440982

TLX3

POU3F3

ZIC2
NEUROD2

UNC79

TLX3

CLINT1

LARP1

SON

MBNL1

RNF220

SNX1

PURA

WDR26

TNRC6A

RNF220

−15

−10

−5

0

5

10

15

20

25

−15 −10 −5 0 5 10 15 20

Old age

Y
o

u
n

g
 a

g
e

Cor = 0.781, P = 3.2 × 10−7,657c

Distal upstream

Promoter
(−2,000 to 2,000 of TSS)

Gene bodies
or downstream regions

0.12

0.14

0.16

0.18

−4 0 4 8

Signed log10 of the distance to TSS (bp)

E
u

th
e

ri
a

n
 m

e
a

n
 m

e
th

y
la

ti
o

n
 l

e
v

e
ls

Age group 1. Young 2. Middle 3. Old

Top 1,000 CpG sites positively correlated with aged

Fig. 6 | EWAS of age in three different age groups. For each species, the age 

groups were defined with respect to the average ASM obtained from the Animal 

Aging and Longevity Database (AnAge) (de Magalhaes et al.86). We defined 

the three age groups using intervals defined by multiples of ASM: young age 

is defined as age <1.5 × ASM, middle age is defined as age between 1.5ASM and 

3.5ASM, and old age is defined by age ≥3.5ASM. Each axis reports a Z score from 

the meta-analysis EWAS of age across all mammalian species and tissues. Each dot 

corresponds to a CpG site. Labels are provided for the top ten hypermethylated 

or hypomethylated CpG sites according to the product of Z scores in x and y 

axes. CpG sites that are located in LHFPL4 and LHFPL3 are colored in purple. The 

Pearson correlation coefficient and corresponding nominal (unadjusted) two-

sided correlation test P value can be found in the title. a, EWAS of age in young 

animals versus EWAS in middle-aged animals. b, EWAS of age in middle-aged 

animals versus EWAS in old animals. c, EWAS of age in young animals versus EWAS 

of age in old animals. The high pairwise correlations indicate that conserved 

aging effects in mammals are largely preserved in different age groups. Many of 

the top CpG sites for conserved aging effects in young mammals remain the top 

CpG sites for conserved aging effects in old mammals. Specifically, we analyzed 

the mean methylation levels in eutherians across the three age groups. d, Mean 

methylation (y axis) across the top 1,000 CpG sites positively correlated  

with age according to the EWAS across all mammalian tissue types (Fig. 4a).  

The x axis denotes the distance to the closest TSS in a log10 scale of bp. The 

positive TSS indicates the direction from 5′ to 3′, and the negative TSS indicates 

from the direction from 3′ to 5′. The horizontal phase is categorized into three 

regions: distal upstream → promoter → gene bodies. The mean methylation 

levels are bounded by 0.2, reflecting that fact that CpG sites beginning with lower 

methylation levels have higher propensity to increase with age.
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Extended Data Fig. 8). Contrastingly, non-proliferative tissues, such 

as the brain, show a different pattern: CpG sites losing methylation 

with age are enriched in highly methylated domains (HMDs, OR = 3.3, 

P = 1.9 × 10−74) over PMDs (OR = 0.2, P = 4.9 × 10−64). CpG sites gaining 

methylation with age show weaker overlap with both PMDs and highly 

methylated domains. Similar findings were observed in late-replicating 

mouse genome domains (mm10; Extended Data Fig. 8). In summary, 

pan-mammalian CpG sites losing methylation with age are enriched in 

late-replicating regions of highly proliferative tissues.

Functional enrichment analysis of age-related CpG sites
We used the Genomic Regions Enrichment of Annotations Tool 

(GREAT) to annotate the potential function of cis regulatory regions 

of age-related CpG sites51. We sought to identify biological processes 

and pathways potentially associated with the top 1,000 positively 

and negatively age-related CpG sites (Fig. 7 and Supplementary Data 

10.1–10.17). To avoid array-design bias, we used mammalian array CpG 

sites as a background set in our hypergeometric enrichment test.

Analysis of CpG sites positively correlated across all tissues 

revealed ‘nervous system development’ as a highly significant gene 

ontology (GO) term (P = 1.3 × 10−203). This term was consistent across 

blood (P = 1.9 × 10−224), liver (P = 2.6 × 10−137), muscle (P = 3.4 × 10−14), skin 

(P = 1.7 × 10−145), brain (P = 6.4 × 10−35) and cortex (P = 1.0 × 10−78). Other 

significant GO terms included ‘developmental process’, ‘regulation 

of RNA metabolic process‘, ‘nucleic acid-binding TF activity‘, ‘pattern 

specification’ and ‘anatomical structure development’ (Fig. 7). The 
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Fig. 7 | Biological pathways and functional gene sets enriched in age-related 

CpG sites. Selected results from (1) genomic region-based GREAT functional 

enrichment (top), (2) gene-based EWAS–TWAS enrichment analysis (middle) 

and (3) genomic region-based EWAS–GWAS enrichment analysis (bottom). All 

enrichment analyses were based on hypergeometric tests with background 

based on the mammalian array. The bar plots in the first column report the total 

number of genes at each studied gene set adjusted based on the background. 

The left and right parts of the x axis list the top 1,000 CpG sites that increased or 

decreased with age from meta-EWAS of age across all blood, skin, liver, muscle, 

brain and cerebral cortex tissues, respectively. On the right side, the first column 

color band depicts the three types of enrichment analyses. The second column 

color band depicts (1) six ontologies in the GREAT analysis, (2) four species in our 

TWAS collections and (3) seven categories of human complex traits in the GWAS 

as described in the legend. The heatmap color codes −log10 (hypergeometric 

P values). Unadjusted hypergeometric P values (number of overlapped genes) 

are reported in the heatmap provided (1) false discovery rate < 0.05, P < 0.001 

and the number of overlapped genes ≥3 for GREAT analysis, (2) P < 0.05 for 

EWAS–TWAS and (3) P < 0.05 for EWAS–GWAS. Comprehensive results can be 

found in Supplementary Data 10, 12 and 13. Abbreviations: act., activity; deg., 

degeneration; AgeAccelGrim, epigenetic age acceleration derived from the 

mortality clock: GrimAge23; DNAmGran, DNAm granulocyte (Supplementary 

Note 5); GIANT, Genetic Investigation of ANthropometric Traits; GTEx, 

Genotype–Tissue Expression; HD, Huntington’s disease; hipp., hippocampal; 

LTL, leukocyte telomere length; MSigDB, Molecular Signatures Database; 

mus., muscle; OPCs, oligodendrocyte precursor cells; reg., regulation; TACs, 

transiently amplifying progenitor cells; WHR, waist-to-hip ratio.
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GREAT analysis also indicated that a significant proportion of the top 

1,000 positively age-related CpG sites are located in PRC2 target sites 

(P = 8.3 × 10−212), which was also true for individual core PRC2 subunits 

(SUZ12, EED or EZH2; Fig. 7). It follows that these CpG sites were also 

enriched in promoters with the H3K27me3 modification in embryonic 

stem cells for all tissues (P = 1.9 × 10−269), blood (P = 2.8 × 10−285), liver 

(P = 3.4 × 10−182), muscle (P = 9.0 × 10−17), skin (P = 7.8 × 10−202), brain 

(P = 1.4 × 10−54) and cortex (P = 2.7 × 10−115; Fig. 7). As PRC2 plays a critical 

role in development, these results reinforce the epigenetic link between 

development and aging. This connection is supported by observations 

that developmentally compromised mice, due to growth hormone 

receptor (GHRKO) ablation or anterior pituitary gland removal (Snell 

mice), show reduced rates of epigenetic aging in multiple tissues, as 

measured by universal epigenetic age clocks (Fig. 3e).

While positively age-related CpG sites (across all tissues) were 

enriched in 2,961 GO or Molecular Signatures Database terms at a 

false discovery rate of 0.05 (Supplementary Data 10.1), negatively age-

related CpG sites were enriched in only three. Negatively age-related 

CpG sites in brain and muscle were enriched in genes associated with 

circadian rhythm (brain, P = 3.3 × 10−15; cerebral cortex, P = 4.0 × 10−19; 

muscle, P = 2.3 × 10−8; Fig. 7) and Alzheimer’s disease-related gene sets 

(for example, P = 1.8 × 10−29 in brain and P = 2.4 × 10−22 in the cerebral 

cortex in Fig. 7). These CpG sites also overlapped with gene sets related 

to mitochondrial function in brain, cerebral cortex and muscle (for 

example, P = 3.6 × 10−7; Supplementary Data 10.2).

The GREAT analysis showed enrichment of both positively and 

negatively age-related CpG sites in mortality or aging gene sets, can-

cer (Fig. 7) and targets of three Yamanaka factors: SOX2, MYC and 

OCT4 (Supplementary Data 10.3). Of the 341 genes proximal to posi-

tively age-related CpG sites, 162 were implicated in mortality or aging 

(P = 6.3 × 10−138; Fig. 7). Similar enrichments were seen in specific tissues: 

blood (P = 3.8 × 10−184), liver (P = 2.7 × 10−112), muscle (P = 6.2 × 10−5), skin 

(P = 9.1 × 10−84), combined brain tissues (P = 1.2 × 10−21) and the cerebral 

cortex (P = 5.0 × 10−50).

As inflammation increases with aging, we assessed the overlap with 

inflammation-related gene sets (Supplementary Data 10.4). Positively 

age-related CpG sites are enriched in the gene set associated with 

inflammation in the murine pancreas (all tissues, P = 8.4 × 10−21 and skin, 

P = 9.4 × 10−20). Negatively age-related CpG sites are enriched in Toll-like 

signaling (GO:0034121) genes (muscle, P = 9.2 × 10−8).

Both positively and negatively age-related CpG sites are enriched 

in immunologic signature gene sets associated with interleukin (IL; for 

example, IL-6, IL-23) and transforming growth factor (TGF)-β1 exposure 

in type 17 helper T cells (Supplementary Data 10.4) for notably brain 

(P
negative

 = 6.1 × 10−11) and cerebral cortex (P
negative

 = 9.1 × 10−8) and, to 

a lesser extent, skin (P
positive

 = 4.0 × 10−4) tissues.

Concerns that these highly significant enrichments may be a result 

of potential biases in the mammalian methylation array platform could 

be discounted after sensitivity analysis, as reported in Supplementary 

Note 3.

TF binding
We used the CellBase52 and ENCODE databases53 to annotate CpG sites 

with binding sites for 68 TFs identified through chromatin immuno-

precipitation followed by sequencing (ChIP–seq) in 17 cell types. If a 

CpG site overlapped with the binding site of a TF (hg19) in at least one 

cell type, it was assigned to that TF. Analysis of the most significant 

age-related CpG sites across mammals showed that the REST TF was 

the most significant TF for the top 1,000 positively age-related CpG 

sites across all tissues (OR = 8.4, P = 3.1 × 10−54), especially in prolif-

erative tissues such as blood (OR = 5.8, P = 2.7 × 10−32), skin (OR = 8.7, 

P = 6.8 × 10−59) and liver (OR = 5.4, P = 1.5 × 10−28). REST TF enrichment 

was less significant in non-proliferative tissues such as muscle (OR = 1.8, 

P = 2.2 × 10−3), cerebral cortex (OR = 1.6, P = 0.01) and brain (OR = 1.4, 

P = 0.09; Extended Data Fig. 9 and Supplementary Data 11).

REST TF ChIP–seq analysis was performed on five cell lines, includ-

ing a human embryonic stem cell line (Supplementary Data 11.1). REST 

is known for repressing neuronal genes in non-neuronal tissues, which 

could explain the weak enrichments in brain regions. Notably, CpG 

cg12841266 near LHFPL4 is within the REST-binding region.

Substantial binding enrichments were observed for transcription 

factor 12 (TCF12) and histone deacetylase 2 (HDAC2). TCF12 is part of 

the basic helix–loop–helix (bHLH) E-protein family, associated with 

neuronal differentiation, and top positively age-related CpG sites are 

proximal to another bHLH gene, NEUROD1 (Supplementary Table 3 and 

Supplementary Data 11). Lower enrichments were noted for CCCTC-

binding factor (CTCF) and Nanog homeobox (NANOG). For the top 

1,000 negatively age-related CpG sites, fewer significant TF binding 

enrichments emerged, with JUN (c-Jun) in blood (OR = 2.8, P = 2.6 × 10−9) 

and brain (OR = 1.5, P = 0.024; Extended Data Fig. 9) being exceptions.

Age-related CpG sites and age-related transcriptomic changes
We studied whether the top 1,000 positively and negatively age-

related CpG sites neighbor genes with age-correlated mRNA levels. 

Using GenAge54 and Enrichr55,56 databases, we scrutinized age-specific 

transcriptome-wide association studies (TWAS) in four mammalian 

species. The EWAS–TWAS overlap analysis (Fig. 7, Extended Data  

Fig. 10a and Supplementary Data 12) indicates significant overlaps 

between age-related CpG sites and transcriptomic age changes in sev-

eral species, including Genotype–Tissue Expression (GTEx) human tib-

ial nerve samples, normal monkey hippocampal samples (P = 9 × 10−15) 

and various rat and mouse tissues. However, the age-related EWAS and 

TWAS overlap is generally weak and tissue specific.

Age-related CpG sites and genome-wide association studies of 
human traits
We compared proximal genes of the top 1,000 positively and negatively 

age-related CpG sites with the top 2.5% of genes implicated in various 

human genome-wide association studies (GWAS). Notable enrichments 

were seen in genes associated with waist-to-hip ratio for positively 

age-related CpG sites in livers (P
positive

 = 1.0 × 10−16), and with human 

Fig. 8 | scATAC-seq analysis in human bone marrow and mouse HSCs. 

 a–i, Results using human BMNCs. j, Murine HSCs. a, scATAC-seq results for 17 

of the 35 genes (listed in Supplementary Table 3) that show a called ATAC peak 

in the region overlapping with our top CpG sites with positive age correlation. 

The y axis lists the gene symbol. The x axis reports the Pearson correlation 

between chronological age and the percentage of cells with an scATAC-seq 

signal overlapping the respective CpG site (labeled by the adjacent gene). The 

genes are ordered by correlation estimate (from the most negative). A negative 

correlation estimate indicates that the accessibility of the CpG site decreases 

with chronological age. Each dot presents a gene. Seven genes with P < 0.05 are 

marked with a solid shape. b, scATAC-seq analysis results for LHFPL4. The y axis 

depicts chronological age, and the x axis shows the percentage of cells with an 

scATAC-seq signal. c, Percentage of cells identified containing scATAC-seq signal 

in one of the seven significantly associated genes averaged across all samples. 

Cells are split into the called identities using the scRNA-seq measurement 

including HSCs, the various progenitors and differentiated cells. DC, dendritic 

cell; mono, monocyte; MK/E prog, megakaryocyte-erythroid progenitor; G/M 

prog, granulocyte-monocyte progenitor; NK, natural killer; prog, progenitor; 

RBC, red blood cell. d–f, The percentage of these three cell populations (HSC 

(d), progenitor (e) and differentiated cell type (f)) that contain at least one 

ATAC-seq signal in any of the seven significant genes, plotted against the age 

of each individual (y axis). g–i, The percentage of these three cell populations 

per individual (HSC (g), progenitor (h) and differentiated cell type (i)), plotted 

against the age of each individual. j, The percentage of cells with called ATAC 

peaks overlapping with our mammalian CpG sites in young mouse (10-week) 

versus old mouse (20-month) HSCs. The red dots denote 33 of the top 35 

positively age-related CpG sites (listed in Supplementary Table 3) that map to the 

mouse genome. The red dashed line corresponds to the diagonal line (y=x).  

All P values reported are unadjusted and two sided.
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length at birth for positively age-related CpG sites in the cortex 

(P
positive

 = 1.0 × 10−12) and liver (P
positive

 = 2.0 × 10−10; Fig. 7). Significant 

enrichments (defined here as nominal P < 5.0 × 10−4) were also seen 

with genes linked to mother’s longevity (mother attained age; 

P

positive

 = 2.0 × 10−4; Fig. 7, Extended Data Fig. 10b and Supplementary 

Data 13.1–13.7), human longevity for negatively age-related CpG sites 

in muscle (P
negative

 = 8.0 × 10−6), epigenetic age acceleration on the 

mortality clock (GrimAge P
positive

 = 7.0 × 10−7 in muscle), age-related 
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macular degeneration (P
positive

 = 2.0 × 10−8 in all tissues), Alzheimer’s 

disease (P
negative

 = 1.0 × 10−4 in brain), leukocyte telomere length 

(P
negative

 = 3.0 × 10−13 in muscle and P
negative

 = 2 × 10−11 in brain) and age 

at menarche (P
positive

 = 4.0 × 10−5 in all tissues). Overall, our GWAS over-

lap analysis indicates that pan-mammalian age-related CpG sites are 

proximal to genes influencing human development (birth length, 

menarche), obesity and longevity.

Single-cell ATAC-seq analysis in human bone marrow
Low-methylated regions distant from TSS correlate with open chroma-

tin, TF binding and enhancers57. Hence, our top positively age-related 

pan-mammalian CpG sites (initially low in methylation, gaining meth-

ylation with age) could imply a gradual loss of these open chromatin 

regions. To validate this, we examined the association between the 

top 35 positively age-related CpG sites (Supplementary Table 3) and 

chromatin accessibility in single cells from human bone marrow mono-

nuclear cells (BMNCs). Single-cell assay for transposase-accessible 

chromatin with sequencing (scATAC-seq) data from a recent study58 

employed 10x Multiome technology to profile both ATAC and gene 

expression within the same cell across ten donors of varying age. Over-

laying the genomic regions of the top 35 CpG sites (Supplementary 

Table 3) with the called ATAC peaks within the BMNC dataset identified 

17 genes, including LHFPL4 (Supplementary Data 14.1 and Fig. 8a).

We calculated the percentage of cells per individual with the 

respective peak. A strong, statistically significant negative correla-

tion (Fig. 8b) was found between age and the number of cells with 

the ATAC peak overlapping cg12841266 in LHFPL4. This shows that, 

with age (as methylation increases), open chromatin cell number 

decreases. Of 17 gene regions, 16 correlated negatively with age, with 

seven being statistically significant (P < 0.05; Fig. 8a). The hyper-

methylated sites were highly enriched for this age-associated acces-

sibility loss (P < 0.001; Fig. 8b). The significant genes (LHFPL4, TLX3, 

ZIC2, PAX2, NR2E1, NEUROD1, DLX6-AS1) are related to developmental 

processes (Supplementary Table 3). ZIC5, another Zic family gene, 

also showed a nearly significant negative age correlation (r = −0.54, 

P = 0.07; Supplementary Data 14.1). No scATAC-seq signal was detected 

in the cg09710440 region of LHFPL3, possibly due to proximity to a 

bivalent gene’s TSS (232 bp).

We examined whether the seven significant ATAC peaks identified 

a particular cell type subset. Due to the sparsity of scATAC-seq data, we 

determined the fraction of each cell group containing at least one of these 

regions. We found that stem cell–progenitor populations had a higher 

proportion of open chromatin at these sites than differentiated cells (mean 

of 14.9% versus mean of 2.9%; Fig. 8c). This suggests that the observed 

age-related reduction of open chromatin states could be due to the loss 

(for example, death or differentiation) of progenitor cells in the tissue.

We studied three cell groups: hematopoietic stem cells (HSCs), 

progenitor cells and differentiated cells. Age showed a negative correla-

tion with the percentage of HSCs (r = −0.69, P = 0.01) but no significant 

correlation with progenitor or differentiated cells (Fig. 8g–i). Next, we 

analyzed the correlation between age and the proportion of cells con-

taining an ATAC peak in at least one of the seven significant CpG regions 

(Fig. 8d–f). Differentiated cells demonstrated a significant loss of ATAC 

signal in these regions with age (r = −0.68, P = 0.01; Fig. 8f), whereas 

no change was seen in HSCs or progenitor cells (Fig. 8d,e). This sug-

gests that these regions, gaining methylation and losing accessibility 

with age, belong to a differentiated cell population. Lastly, analyzing 

increasing lists of positively age-related CpG sites, we noted that the 

percentage of cells with an ATAC peak at these locations decreasing 

with age in human BMNCs (median correlation < −0.2 across the top 

500 or 1,000 positively age-related CpG sites).

scATAC-seq analysis in murine HSCs
We tested whether our human HSC findings extended to murine HSCs 

by analyzing another public scATAC-seq dataset from murine HSCs with 

four replicates each in young (10-week) and old (20-month) mice59. This 

dataset provided access to our age-related CpG sites in 4,492 young 

and 3,300 old HSCs. Of the top 35 positively age-related CpG sites, 

33 overlapped with ATAC peaks (Supplementary Data 14.2). We then 

calculated the proportion of HSCs in each age group with the respec-

tive peak. The proportion of old HSCs with a peak near Lhfpl4 was not 

significantly different from that of young HSCs (OR = 0.94, P = 0.7), 

implying no observable age-related chromatin compactification in 

murine HSCs. This was also true for the other 32 CpG sites and their 

associated peaks. Contrarily, the proportion of old HSCs with an ATAC 

peak was significantly higher than that of young HSCs for five CpG 

sites (near Bdnf, Isl1, Twist1, Nr2e1, Sall1; Fisher exact P value < 0.05; 

Supplementary Data 14.2), indicating age-related chromatin opening 

(Fig. 8j), aligning with Itokawa et al.’s report59.

Discussion
The consistent age-related alterations in DNA methylation profiles 

across mammalian species challenges the view that aging is simply 

due to the random accumulation of cellular damage. Our Mammalian 

Methylation Consortium investigated this question with an extensive 

set of DNA methylation profiles from 348 species9, using 174 eutherian, 

nine marsupial and two monotreme species in this study.

We found a set of CpG sites in DNA sequences conserved across 

mammals consistently changing with age, predominantly gaining 

methylation. These CpG sites are often in PRC2-binding sites and the 

bivalent chromatin states BivProm1 and BivProm2, regulating the 

expression of genes involved in the process of development47,60,61, which 

is one of the most conserved biological processes that threads through 

all mammalian species. Examples of age-related CpG sites include those 

near LHFPL4 and LHFPL3. The known function of LHFPL4 in synaptic 

clustering of γ-aminobutyric acid (GABA) receptors does not provide 

a clear connection to aging across tissues. Nevertheless, the specificity 

of their methylation change with age is clear, considering their distinct 

chromosomal locations, as observed with gene pairs such as LHFPL3–

LHFPL4, ZIC2–ZIC5, PAX2–PAX5 and CELF4–CELF6.

The scATAC-seq analysis of BMNCs revealed that age-correlated 

CpG sites are located in regions that lose chromatin accessibility with 

age in differentiated cells but not in progenitor cells. This suggests that 

methylation likely instigates such chromatin compaction62, hindering 

PRC2 access to its target sites. We observed this phenomenon in human 

bone marrow, where (1) top age-related PRC2 targets are open in sub-

stantially more progenitor cells than differentiated cells and (2) the 

percentage of progenitor cells with open age-related PRC2 targets did 

not diminish with age. Similarly, the percentage of murine HSCs with 

open age-related PRC2 targets did not diminish with age. By contrast, 

the percentage of differentiated human bone marrow cells with open 

PRC2 targets diminished with age, underscoring the need for further 

research into other differentiated cell types.

When it comes to age-related gain of methylation, it is important to 

distinguish proliferative tissues from non-proliferative tissues such as 

the brain and muscle. The overlap between PRC2-binding sites and posi-

tively age-related changes is far more pronounced in proliferative tis-

sues than in non-proliferative tissues (Fig. 4h). The dichotomy between 

proliferative and non-proliferative tissues is even more pronounced 

when it comes to characterizing age-related loss of methylation.

In proliferative tissues, negatively age-related CpG sites are often 

located in quiescent chromatin states, heterochromatin and PMDs. 

Interestingly, PMDs are in late DNA-replication regions. As methyla-

tion of replicated DNA is slow and only completed very late in S and 

G2 phases, late-replicated regions of the DNA are particularly disad-

vantaged in this regard. Indeed, progressive methylation loss in PMDs 

is exploited as a mitotic clock, which also correlates very well with 

chronological age50. As such, their identification as pan-mammalian 

negatively age-related CpG sites is entirely consistent with studies 

observed in human cells. Interestingly, this late-replication effect on 
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DNA methylation can be prevented by the binding of histone 3 lysine 

36 trimethylation (H3K36me3) to these regions50. This appears to 

be mediated by H3K36me3 recruitment of DNA methyltransferase 

3 (DNMT3) to unmethylated and newly replicated DNA. Conversely, 

functional loss of NSD1, the enzyme that generates H3K36me3, leads 

to hypomethylation of DNA and accelerated epigenetic aging63,64. 

Age-related loss of methylation in non-proliferative tissues (brain 

and muscle), on the other hand, is observed at CpG sites located in an 

exon-associated transcription state (TxEx4), which is the most highly 

enriched state for transcription termination sites and is associated with 

the highest gene expression levels across many cell and tissue types46.

Unlike CpG sites that gain methylation with age, CpG sites that 

lose methylation are typically not related to developmental genes. 

Instead, they are related to genes of circadian rhythm and mitochon-

dria, the functions of which are progressively eroded with age. Finally, 

the LARP1 gene, which is proximal to the highest-ranked hypomethyl-

ated cytosine in the liver and second across all tissues, encodes an 

RNA-binding protein that is involved in several processes, including 

post-transcriptional regulation of gene expression and translation 

of downstream targets of mammalian target of rapamycin (mTOR)65. 

mTOR has very well-documented links with aging and longevity66 and 

is also linked to epigenetic aging67,68. Overall, we provide collective 

evidence that the methylated mammalian age-related CpG sites that 

we identified are not merely stochastic marks accrued with age. They 

are instead methylation changes that capture multiple facets of mam-

malian aging.

The deterministic features of these age-related changes on the 

mammalian epigenome make a compelling case that aging is not solely 

a consequence of random cellular damage accrued in time. It is instead 

a pseudo-programmed process that is also intimately associated with 

mammalian development that begins to unfold from conception. This 

is supported by and is consistent with the finding that genes proximal 

to age-related CpG sites were also identified by GWAS of human devel-

opment features such as length at birth and age at menarche. A large 

body of literature including those by Williams in 1957 (refs. 69,70) has 

suggested a connection between growth and development and aging. 

More recently, several authors have suggested epigenetics to be the link 

between these two processes69,71–80. This notion is further supported 

by the recent demonstration of age reversal through the expression of 

Yamanaka factors45,81–84, which can also be observed for our universal 

pan-mammalian clocks (Fig. 3c,d).

According to the pseudo-programmatic theory of aging, the 

process of aging is very much a consequence of the process of develop-

ment, and the ticking of the epigenetic clock reflects the continuation 

of developmental processes69,80. As predicted by the epigenetic clock 

theory of aging, universal epigenetic clocks provide a continuous 

readout of age from early development to old age in all mammals, 

as this feature underlies the continuous and largely deterministic 

process of aging from conception to tissue homeostasis74. Consistent 

with this theory, pan-mammalian methylation clocks are slowed by 

conditions that delay growth and/or development including Snell mice 

and full-body GHRKO mice. The successful construction of universal 

clocks is a compelling mathematical demonstration of the determin-

istic element in the process of aging that transcends species barriers 

within the mammalian class. Indeed, the centrality of PRC2, which is 

also present in non-mammalian classes, implies that the process of 

aging that is uncovered here is likely to be shared by vertebrates in 

general. Our human epidemiological studies and mouse interven-

tional studies show that pan-mammalian clocks relate to human and 

mouse mortality risk, respectively. Cross-sectional epidemiological 

studies in humans reveal that the pan-mammalian clocks correlate 

with markers of inflammation (C-reactive protein) and dyslipidemia 

(triglyceride levels).

Our study has certain limitations. The study primarily focuses 

on highly conserved DNA sequences, thus limiting our examination 

to approximately 36,000 CpG sites of the tens of millions that exist in 

most mammalian genomes. Additionally, our array platform exhibits 

a slight bias, featuring more probes that align with eutherian genomes 

than with marsupial genomes8.

Overall, our results demonstrate that select epigenetic aging 

effects are universal across all mammalian species and capture multiple 

processes and manifestations of age that have thus far been thought 

to be unrelated to each other. We expect that the availability of pan-

mammalian epigenetic clocks will open the path to uncovering inter-

ventions that modulate conserved aging processes in mammals.

Methods
Ethics
All local ethical guidelines were followed, and necessary approvals 

from respective human ethical review boards and animal ethical com-

mittees were duly obtained. Details can be found in Supplementary 

Notes 1, 2 and 4.

Statistics and reproducibility
Data collection and analysis were not performed blind to the condi-

tions of the experiments. In the ensuing sections, we delineate the 

quality-control measures for our samples and the statistical methods 

employed in each analysis, with additional details provided in Sup-

plementary Notes 1 and 5.

Tissue samples
We used a subset of the data from the Mammalian Methylation Con-

sortium for which age information was available9. The tissue samples 

are described in Supplementary Data 1.1–1.4, and related citations are 

listed in Supplementary Notes 1 and 2. We used the SeSAMe normaliza-

tion method85.

Quality controls for establishing universal clocks
Our epigenetic clocks were trained and evaluated on samples with 

highly confident age assessments (less than 10% error). We focused 

on typical aging patterns, hence excluding tissues from preclinical 

anti-aging or pro-aging intervention studies.

Species characteristics
Species characteristics such as maximum lifespan (maximum observed 

age) and ASM were obtained from an updated version of AnAge86 

(https://genomics.senescence.info/species/index.html). To facilitate 

reproducibility, we have posted this modified and updated version of 

AnAge in Supplementary Data 1.13.

Three universal pan-mammalian clocks
We applied elastic net regression models to establish three universal 

mammalian clocks for estimating chronological age across all tissues 

(n = 11,754 from 185 species) in eutherians (n = 11,439 from 174 species), 

marsupials (n = 210 from nine species) and monotremes (n = 15 from 

two species). The three elastic net regression models, implemented 

using the glmnet 4.1-7 package in R, corresponded to different outcome 

measures described in the following:

 1. log-transformed chronological age: log(Age + 2), where an offset 

of 2 years was added to avoid negative numbers in case of 

prenatal samples,

 2. −log(−log(RelativeAge)) and

 3. log–linear transformed age.

DNAmAge estimates of each clock were computed via the respec-

tive inverse transformation. Age transformations used for building 

universal clocks 2 and 3 incorporated a selection of three species char-

acteristics: gestational time (GestationT) , age at sexual maturity  

(ASM) and maximum lifespan (MaxLifespan) . All of these species  

variables surrounding time are measured in units of years.

http://www.nature.com/nataging
https://genomics.senescence.info/species/index.html


Nature Aging | Volume 3 | September 2023 | 1144–1166 1159

Resource https://doi.org/10.1038/s43587-023-00462-6

loglog transformation of relative age for clock 2. Our measure of 

relative age leverages gestation time and maximum lifespan. We define 

relative age (RelativeAge)  and apply the double logarithmic loglog  

transformation:

RelativeAge =

Age + GestationT

MaxLifespan + GestationT

(1)

loglogAge = − log (− log (RelativeAge) ) . (2)

By definition, RelativeAge is between 0 and 1, and loglogAge is posi-

tively correlated with age. The incorporation of gestation time is not 

essential. We simply include it to ensure that RelativeAge takes on posi-

tive values. We used the double logarithmic transformation to link 

relative age to the covariates (cytosines) for the following reasons. 

First, the transformation maps the unit interval to the real line. Second, 

this transformation ascribes more influence on exceptionally high and 

low age values (Extended Data Fig. 1a–c). Third, this transformation is 

widely used in the context of survival analysis. Fourth, this non-linear 

transformation worked better than the identity transformation in 

terms of age correlation and calibration.

The regression model underlying universal clock 2 predicts 

loglogAge. To arrive at the DNAmAge, one needs to apply the inverse 

transformation to loglogAge  based on the double exponential 

transformation:

DNAmAge = exp (− exp (−loglogAge))

× (MaxLifespan + GestationT) − GestationT.

(3)

All species characteristics (for example, maximum lifespan, ges-

tational time) come from our updated version of AnAge. We were 

concerned that the uneven evidence surrounding the maximum age of 

different species could bias our analysis. While billions of people and 

many mice have been evaluated for estimating the maximum age of 

humans (122.5 years) or mice (4 years), the same cannot be said for any 

other species. To address this concern, we made the following assump-

tion: the true maximum age is 30% higher than that reported in AnAge 

for all species except for humans and mice. Therefore, we multiplied 

the reported maximum lifespan of non-human or non-mouse species 

by 1.3. Our predictive models turn out to be highly robust with respect 

to this assumption.

Transformation based on log–linear age for clock 3. Our measure 

of log–linear age leverages ASM. The transformation has the following 

properties: it takes the logarithmic form when the chronological age 

is young, and it takes the linear form otherwise. It is continuously dif-

ferentiable at the change.

First, we define a ratio of the age relative to ASM, termed 

RelativeAdultAge, as the following:

RelativeAdultAge =

Age + GestationT

ASM + GestationT

, (4)

where the addition of GestationT ensures that the RelativeAdultAge is 

always positive. To model a faster rate of change during development, 

we used a log–linear transformation on RelativeAdultAge  based on a 

function that generalizes the original transformation proposed for the 

human pan-tissue clock4:

y = f (x;m) = {

x

m

− 1,

x

m

≥ 1

log

x

m

,

x

m

< 1

(5)

f

−1

(y;m) = {

m (y + 1) , y ≥ 0

me

y

, y < 0

. (6)

In the function f(x;m), x denotes RelativeAdultAge, m represents a param-

eter and f represents the log-linear transformation. The output, y, is 

the results of applying the function f to x and m. This transformation 

is designed to reflect a higher rate of change for younger RelativeAdult-

Ages when x ≤ m. This transformation ensures continuity and smooth-

ness at the change point at x = m.

In the following, we describe the estimation of the parameter m. 

To ensure that the maximum value of y is the same across all species, 

the parameter m should be proportional to the maximum of x  for each 

species, that is, the best value for m would be the oracle value

m

∗

= c

1

(

MaxLifespan+GestationT

ASM+GestationT

)

 (Extended Data Fig. 1d).

The proportionality constant c
1

 controls the distribution of y. We 

chose the value of c
1

 so that y follows approximately a normal distribu-

tion with mean zero. Because we wanted to define clock 3 without using 

MaxLifespan, we opted to use the ratio 
GestationT

ASM

 as a surrogate for the 

oracle value m∗. We achieved this approximation by fitting the following 

regression model with all mammalian species available in our AnAge 

database,

log

MaxLifespan + GestationT

ASM + GestationT

≈ 2.92 + 0.38 × log

GestationT

ASM

. (7)

The two log variables in equation (7) have moderate correlation 

(r = 0.5). Subsequently, we defined ̂

m as follows:

̂

m = c

2

(

GestationT

ASM

)

0.38

, (8)

where c
2

= c

1

e

2.92

. We chose c
2

= 5.0 so that log–linear age termed y in 

equation (5) follows approximately a normal distribution with mean 

zero (median = 9.0 × 10−4, skewness = −0.02; Extended Data Fig. 1f). 

Setting x=RelativeAdultAge in equation (5) results in 

f(RelativeAdultAge;

̂

m) =

⎧

⎨

⎩

RelativeAdultAge

̂

m

− 1, RelativeAdultAge ≥

̂

m

log

RelativeAdultAge

̂

m

, RelativeAdultAge <

̂

m

.

(9)

Universal clock 3 predicts loglinearAge (denoted as y). To arrive at 

an age estimate, we employ both equations (4) and (6):

DNAmAge = {

̂

m × (ASM + GestationT) × (y + 1) − GestationT , y ≥ 0

̂

m× (ASM + GestationT) × e

y

− GestationT , y < 0

.

(10)

Statistics for performance of model prediction. To validate our model, 

we used DNAmAge estimates from LOFO and LOSO analyses, respectively. 

At each type of estimate, we computed Pearson correlation coefficients 

and MAE between DNAm-based and observed variables across all sam-

ples. Correlation and MAE were also computed at the species level, lim-

ited to the subgroup with n ≥ 15 samples (within a species). We reported 

the medians for the correlation estimates (median correlation) and the 

medians for the MAE estimates (med.MAE) across species. Analogously, 

we repeated the same analysis at the species–tissue level, limited to the 

subgroup with at least 15 samples (within a species–tissue category).

For Extended Data Fig. 2, we evaluated the difference Delta.Age 

(ΔAge) between the LOSO estimate of DNAmAge and chronological 

age at half the maximum lifespan (0.5 × MaxLifespan). As expected, 

ΔAge = LOSO DNAmAge − (0.5 ×MaxLifespan)  is negatively correlated 

with species maximum lifespan.

Epigenetic age acceleration
To adjust for age, we defined epigenetic age acceleration (AgeAccel) as 

the raw residual resulting from regressing DNAmAge (from universal 
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clocks 2 and 3) on chronological age. By definition, the resulting AgeAc-

cel measure is not correlated with chronological age.

Human epidemiological cohort studies
We applied our universal clocks 2 and 3 to 4,651 individuals from (1) the 

FHS Offspring cohort (n = 2,544 Caucasians, 54% women)87 and (2) the 

WHI cohort88,89 (n = 2,107, 100% women; Supplementary Note 4). Methyla-

tion levels were profiled in blood samples using the Illumina 450k arrays. 

The FHS cohort had a mean (s.d.) age of 66.3 (8.9) years at blood draw, 

with 330 deaths during an average follow-up of 7.8 years. The WHI cohort, 

which enrolled postmenopausal women 50–79 years in age, consisted 

of three ethnic groups: 47% of European ancestry, 32% African Ameri-

cans and 20% of Hispanic ancestry. These groups exhibited similar age 

distributions, with a mean (s.d.) age of 65.4 (7.1) years, and a mean (s.d.) 

follow-up time of 16.9 (4.6) years. During the follow-up, 765 women died.

Mortality analysis for time to death. Our mortality analysis was per-

formed as follows. First, we applied our Array Converter algorithm 

(Supplementary Note 5) to yield the imputed mammalian arrays and to 

estimate DNAmAge values based on our universal clocks. Second, we 

computed AgeAccel for each cohort. Third, we applied Cox regression 

analysis for time to death (as a dependent variable) to assess the predic-

tive ability of our universal clocks for all-cause mortality. The analysis was 

adjusted for age at blood draw and for sex in the FHS. We stratified the 

WHI cohort by ethnic or racial groups and combined a total of four results 

across FHS and WHI cohorts by fixed-effect models weighted by inverse 

variance. The meta-analysis was performed with the R ‘metafor’ function.

Human epidemiological cohort studies for lifestyle factors. We per-

formed a robust correlation analysis (bicor29) between (1) our AgeAc-

cel measures from clocks 2 and 3 and (2) 59 variables spanning diet, 

clinically relevant measurements and lifestyle factors. Comprehensive 

details of these variables and our analytical approaches, inclusive of 

meta-analysis, are elucidated in Supplementary Note 5.

Polygenic models for heritability analysis. We calculated the narrow-

sense heritability of our clocks by employing polygenic models as 

defined in SOLAR90 and its R interface solarius91 as detailed in Sup-

plementary Note 5.

OSKM reprogramming cells in human dermal fibroblasts. We 

applied our universal clock 2 and clock 3 to a previously published 

dataset (GSE54848)31 in which the authors had transfected human 

dermal fibroblasts with the Yamanaka factors (OSKM) over a 49-d 

period. The successfully transformed cells were collected and profiled 

on the human Illumina 450k arrays. Similar to the applications for 

the FHS and WHI cohorts, we applied our Array Converter algorithm 

(Supplementary Note 5) to yield the imputed mammalian arrays and 

to estimate DNAmAge based on our universal clocks. The clocks were 

applied to a total of n = 27 samples across experiment days 0, 3, 7, 11, 

15, 20, 28, 35, 42 and 49, respectively.

Murine anti-aging studies
None of the samples from the murine anti-aging studies were used 

in the training set of the universal clocks, that is, these are truly inde-

pendent test data. Clocks 2 and 3 were evaluated in five mouse experi-

ments (independent test data): (1) Snell dwarf mice (n = 95), (2) GHRKO 

experiment 1 (GHRKO, n = 71 samples), (3) GHRKO experiment 2 (n = 96 

samples), (4) three Tet experiments: Tet1 KO (n = 64), Tet2 KO (n = 65) 

and Tet3 KO (n = 63) and (5) CR (n = 95). Details can be found in Sup-

plementary Note 6.

Meta-analysis for EWAS of age
In our primary EWAS of age, we focused on samples from eutherians 

(n = 65 species) for which each species has at least 15 samples from the 

same tissue type. In secondary analyses, we also studied aging effects 

in marsupials (n = 4 marsupial species that had at least ten same-tissue 

type samples) and monotremes (only n = 2 species). Data distribution 

was assumed to be normal, but this was not formally tested.

Our meta-analysis for EWAS of age in eutherian species combined 

Pearson correlation test statistics across species–tissue strata that 

contained at least 15 samples each. The minimum sample size require-

ment resulted in 143 species–tissue strata from 65 eutherian species 

(Supplementary Data 1.5). To counter the dependency patterns result-

ing from multiple tissues from the same species, the meta-analysis 

was carried out in two steps. First, we meta-analyzed the EWAS of 

different tissues for each species separately. These tissue-specific 

summary statistics were combined within the same species to repre-

sent the EWAS results at species level. Second, we meta-analyzed the 

resulting 65-species EWAS results across species to arrive at the final 

meta-EWAS of age. In each meta-analysis step, we used the unweighted 

Stouffer’s method as implemented in R. In more detail, we gathered 

68 blood samples from 27 distinct lemur species and 23 skin samples 

from 23 distinct lemur species, each species–tissue stratum with at 

most three samples. We therefore combined those 68 blood samples 

to perform blood EWAS in lemurs. Similarly, we combined the 23 skin 

samples for skin EWAS in lemurs. As listed in Supplementary Data 1.5, 

the combined species in lemurs was denoted by Strepsirrhine in the 

column ‘Species Latin Name’.

EWAS of age in marsupials was based on a two-step meta-analysis 

in which we relaxed the threshold of sample size in the species–tissue 

category to n ≥ 10 (Supplementary Data 1.12). Due to a small sample 

size in monotremes (n = 15), we combined all monotreme samples 

into a single dataset.

Brain EWAS. We applied the two-step meta-analysis approach to the 

brain EWAS results based on more than 900 brain tissues (cerebellum, 

cortex, hippocampus, hypothalamus, striatum, subventricular zone 

and whole brain) from eight species including human, vervet monkey, 

mice, olive baboon, brown rat and pig species (Supplementary Data 1.6).

EWAS of a single tissue. For the cerebral cortex brain region, we simply 

combined tissue-specific EWAS results across different species using 

the unweighted Stouffer’s method (Supplementary Data 1.7). Similarly, 

we carried out the one-step meta-analysis EWAS of blood, liver, muscle 

and skin (Supplementary Data 1.8–1.11). Details can be found in Sup-

plementary Note 5.

All the Manhattan plots were generated based on a modified ver-

sion of the gmirror function in R.

Stratification by age groups. To assess whether the age-related CpG 

sites in young animals relate to those in old animals, we split the data 

into three age groups: young-age (age < 1.5ASM), middle-age (age 

between 1.5ASM and 3.5ASM) and old-age (age ≥ 3.5ASM) groups. 

The threshold of sample size in species–tissue was relaxed to n ≥ 10. 

The age correlations in each age group were meta-analyzed using the 

above-mentioned two-step meta-analysis approach.

Polycomb repressive complex
Polycomb repressive complex annotations were defined based on the 

binding of at least two transcriptional factor members of polycomb 

repressor complex 1 (PRC1 with subgroups RING1, RNF2, BMI1) or 

PRC2 (with subgroups EED, SUZ12 and EZH2) in 49 available ChIP–seq 

datasets from ENCODE53.

We identified 640 and 5,287 CpG sites in the array that were located 

in regions bound by PRC1 and PRC2, respectively. We performed a one-

sided hypergeometric analysis to study both enrichment (OR > 1) and 

depletion (OR < 1) patterns for our age-related markers based on the 

top 1,000 CpG sites increased with age and the top 1,000 CpG sites 

decreased with age from the EWAS of age.
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Universal chromatin state analysis
To annotate our age-related CpG sites based on chromatin states, we 

assigned a state for all our mammalian CpG sites based on a recently 

published universal ChromHMM chromatin state annotation of the 

human genome46. The underlying hidden Markov model was trained 

with over 1,000 datasets of 32 chromatin marks in more than 100 cell 

and tissue types. This model then produced a single chromatin state 

annotation per genomic position that is applicable across cell and 

tissue types, as opposed to producing an annotation that is specific 

to one cell or tissue type. A total of 100 distinct states were generated 

and categorized into 16 major groups according to the parameters 

of the model and external genome annotations46 (described in Sup-

plementary Data 8.2).

We performed a one-sided hypergeometric analysis to study both 

enrichment (OR > 1) and depletion (OR < 1) patterns for our age-related 

markers based on the top 1,000 CpG sites with a positive correlation 

with age and the top 1,000 CpG sites with a negative correlation with 

age across different eutherian species.

Analysis of late-replicating domains
The annotation of late-replicating domains (hg19 and mm10) was 

obtained from Zhou et al.50, as described in Supplementary Note 5.

GREAT enrichment analysis
We applied the GREAT analysis software tool51 to the top 1,000 posi-

tively age-related and the top 1,000 negatively age-related CpG sites 

from the EWAS of age. GREAT implemented foreground–background 

hypergeometric tests over genomic regions where we input all CpG 

sites of the mammalian array as background and the genomic regions 

of the 1,000 CpG sites as foreground. This approach yielded hypergeo-

metric P values that were not confounded by the number of CpG sites 

within a gene (Supplementary Note 5).

EWAS–TWAS overlap analysis
Our EWAS–TWAS-based overlap analysis related the gene sets found by 

our EWAS of age with the gene sets from our in-house TWAS database. 

The TWAS database, along with our analytical approaches, is described 

in Supplementary Note 5.

EWAS–GWAS overlap analysis
Our EWAS–GWAS overlap analysis linked the gene sets discovered in 

our EWAS of age with those identified in published large-scale GWAS 

studies of various phenotypes (Supplementary Note 5).

Transcription factor binding analysis
We used the CellBase database52, incorporating ENCODE53 TF binding 

sites for our analysis (Supplementary Note 5).

Single-cell ATAC-seq of human bone marrow
Recent advances have enabled the sequencing of ATAC profiles within 

single cells, enabling assessment of the proportion of cells containing 

an open chromatin region58. We cross-referenced the top 35 CpG sites 

with positive age correlation across mammalian tissues with publicly 

available scATAC-seq data (Supplementary Table 3). We downloaded 

10x Multiome count data in AnnData format as H5AD from the Gene 

Expression Omnibus (accession number GSE194122). The ATAC array 

data were managed using the Python package anndata92. hg38 ATAC 

peak locations were extracted from the metadata ‘.var’ section using 

anndata. Peak locations were overlapped with probe locations using 

GenomicRanges93 for the top 35 CpG sites. The overlapping peaks were 

then used to extract the processed counts for each cell. The propor-

tion of cells containing an ATAC peak for each individual sample was 

calculated. A correlation was calculated by comparing this value against 

the age of each individual sample. The cell type for each barcode was 

extracted from the observable object. We subsequently computed 

the proportion of each cell type containing an ATAC peak in one of 

the seven significantly correlated regions (LHFPL4, TLX3, ZIC2, PAX2, 

NR2E1, NEUROD1 and DLX6-AS1). Progenitor cells were grouped as 

MK/E progenitors, G/M progenitors, lymph progenitors and proeryth-

roblasts, and differentiated cells were grouped as CD14+ monocytes, 

CD16+ monocytes, CD8+ T naive, CD8+ T, CD4+ T naive, CD4+ T activated, 

naive CD20+ B, B1 B, transitional B and NK. The percentage of each of 

the three populations (HSC, progenitor and differentiated cells) was 

calculated, and the proportion of cells containing an ATAC peak in 

one of the seven significantly correlated regions was calculated. To 

confirm enrichment for the hypermethylated sites showing decrease 

in chromatin accessibility with age, we randomly selected 1,000 sets 

of 17 ATAC peaks and compared the mean correlation with age of the 

selected regions to the 1,000 sampled sets of regions.

Mouse single-cell ATAC-seq in hematopoietic stem cells. We down-

loaded the publicly available data (H5, meta and fragment files of 

Illumina HiSeq 1500 array data) from Itokawa et al.59 (GSE162662).

scATAC-seq data were profiled in four biological replicates in 

young (10-week) and old (20-month) mice. The ATAC-seq data were 

managed and analyzed with R Signac94. We applied Fisher’s exact test 

to ascertain whether locations with differential accessibility between 

young and old animals were enriched with the 33 top positively age-

related CpG sites (OR > 1 indicates a higher proportion in the old group). 

Further analytical details, including ATAC-seq data quality controls, are 

presented in Supplementary Note 5.

URLs
The following URLs are available: AnAge (https://genomics.senescence.

info/species/index.html), GREAT (http://great.stanford.edu/public/

html/), late-replicating domains (https://zwdzwd.github.io/pmd), 

UCSC Genome Browser (http://genome.ucsc.edu/index.html).

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
The individual-level data from the Mammalian Methylation Consor-

tium can be accessed from several online locations. All data from the 

Mammalian Methylation Consortium are posted on Gene Expression 

Omnibus (complete dataset, GSE223748). Subsets of the datasets can 

also be downloaded from accession numbers GSE174758, GSE184211, 

GSE184213, GSE184215, GSE184216, GSE184218, GSE184220, GSE184221, 

GSE184224, GSE190660, GSE190661, GSE190662, GSE190663, 

GSE190664, GSE174544, GSE190665, GSE174767, GSE184222, 

GSE184223, GSE174777, GSE174778, GSE173330, GSE164127, GSE147002, 

GSE147003, GSE147004, GSE223943 and GSE223944. Additional details 

can be found in Supplementary Note 2. The mammalian data can also 

be downloaded from the Clock Foundation webpage: https://clock-

foundation.org/MammalianMethylationConsortium. The mammalian 

methylation array is available through the non-profit Epigenetic Clock 

Development Foundation (https://clockfoundation.org/). The manifest 

file of the mammalian array and genome annotations of CpG sites can 

be found on Zenodo (https://doi.org/10.5281/zenodo.7574747). All 

other data supporting the findings of this study are available from the 

corresponding author upon reasonable request.

Code availability
The chip manifest files, genome annotations of CpG sites and the 

software code for universal pan-mammalian clocks can be found on 

GitHub95 at https://github.com/shorvath/MammalianMethylation-

Consortium/tree/v2.0.0. The individual R code for the universal pan-

mammalian clocks, EWAS analysis and functional enrichment studies 

can be also found in the Supplementary Code.
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Extended Data Fig. 1 | Transformed age in universal clocks. The plot displays 

transformed age in universal Clock 2 (a–c) and universal Clock 3 (d–f). (a, b) 

Loglog transformation of Relative Age (y-axis) versus age in universal Clock 2 and 

(d, e) log-linear age (y-axis) versus age in our universal Clock 3. Of the 969 

mammalian species with available gestation time, age at sexual maturity and 

maximum lifespan in AnAge database, 339 species are available in our collection. 

We multiplied the reported maximum lifespan of non-human or non-mouse 

species by 1.3. Transformed ages were calculated for all the 969 species with 

simulated age ranging from gestation time through the modified maximum 

lifespan. The columns (a, d) display all the 969 species with the simulated ages.  

In panel d, we proposed the log-linear age with the parameter mmm formulated  

with maximum lifespan as the information is available for all species 
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 in Methods). Of the 339 species, 185 species with age 

information of high confidence and known tissue types were used in training 

universal clocks. The columns (b, e) empirically display these 185 species with the 

age variable (x-axis) based on the observed ages from all the samples in our 

collection (N = 11,754). In panel e, we applied the log-linear age formulated 

without knowing maximum lifespan to train Clock 3 (formula (5) in Methods). 

Each line represents a species marked by gray for non-profiled and marked by 

black or pink for profiled species in our collection, as listed in the legend. Some 

species such as lemurs with relatively short gestation time in regressing mmm∗

∗

∗ 

(formula (7) in Methods) exhibiting high log-linear ages in (e) are marked in pink. 

Each panel reports the Pearson correlation coefficient. (c, f) display the 

histograms of transformed ages based on all samples from the 185 species with 

vertical lines presenting at means.
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Extended Data Fig. 2 | Basic universal clock for log-transformed age.  

a, b, Chronological age (x-axis) versus DNAmAge estimated using a, leave-one-

fraction-out (LOFO) and b, leave-one-species-out (LOSO) analysis. The gray and 

black dashed lines correspond to the diagonal line (y = x) and the regression line, 

respectively. Each sample is labeled by the mammalian species index (legend). 

The species index corresponds to the taxonomic order, for example 1 = primates, 

2 = elephants (Proboscidea) etc. (legend). The numbers after the first and second 

decimal points enumerate the taxonomic family and species, respectively. Points 

are colored by tissue type (Supplementary Data 1.4). The heading of each panel 

reports the Pearson correlation (cor) across all samples. Here med. 

Cor denotes the median value across species that contain at least 15 samples. 

c–f, The y-axis reports the mean difference between the LOSO estimate of DNAm 

age and chronological age evaluated at a fixed age defined as half the maximum 

lifespan (denoted as Mean Delta.Age). The scatter plots depict mean delta half 

lifespan per species (y-axis) versus c, maximum lifespan observed in the species, 

d, average age at sexual maturity e, gestational time (in units of years), and f,  

(log-transformed) average adult body mass in units of grams. All P-values 

reported are unadjusted and are based on two-sided tests.
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Extended Data Fig. 3 | Universal clocks applied to species with fewer than 

15 samples. The title of each panel lists the type of universal clock: a, Clock 

1 = basic universal clock based on log(Age + 2), b, d, Clock 2 = universal clock for 

relative age, c, Clock 3 =universal clock for log-linear age. Leave-one-fraction-out 

(LOFO) methylation estimates versus a–c, chronological age or d, relative age 

for clock 2. The respective inverse transformations were applied to arrive at DNA 

methylation-based estimates of chronological age in years or relative age (y-axis).
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Extended Data Fig. 4 | Universal clocks for specific tissues (blood, skin). These 

tissue-specific universal clocks were constructed in an analogous fashion to the 

pan-tissue clocks described in the main text. The panels show leave-one-fraction-

out (LOFO) estimates (y-axis) of four clocks: universal blood clock 2 (Universal 

BloodClock 2) which estimates relative age, universal blood clock 3 (Universal 

BloodClock 3) which estimates log-linear transformation of age. Analogously, we 

defined Universal SkinClock2 and Universal SkinClock3. Relative age estimation 

incorporates maximum lifespan and gestational age and assumes values between 

0 and 1. Log-linear age is formulated with age at sexual maturity and gestational 

time. a, c, e, g, LOFO estimates of DNAm age (y-axis, in units of years)  

based on transforming relative age (Clock 2) or log-linear age (Clock 3).  

b, f, d, h, transformed age (x-axis) versus corresponding DNAm estimates 

(y-axis). The title of each panel reports the Pearson correlation coefficient 

across all data points and the median correlation (med.Cor) and median of 

median absolute error (med.MAE) across all species. Each sample is labeled by 

mammalian species index (explained in Fig. 2) and colored by taxonomic order. 

The legend reports the taxonomic order and the mammalian order index  

as a prefix.
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Extended Data Fig. 5 | Universal clock for relative age applied to specific 

tissues. a–p, DNA methylation-based estimates of relative age (y-axis) versus 

actual relative age (x-axis). The specific tissue or cell type is reported in the title 

of each panel. Each sample is labeled by mammalian species index and colored 

by tissue type (Supplementary Data 1.3–1.4). The analysis is restricted to tissues 

that have at least 15 samples available. Leave-one-fraction-out cross-validation 

(LOFO) was used to arrive at unbiased estimates of predictive accuracy measures: 

median absolute error (MAE) and age correlation based on relative age. ‘Cor’ 

denotes the Pearson correlation coefficient based on all available samples. ‘med.

Cor’ denotes the median values across all species for which at least 15 samples 

were available. Title is marked in blue if a tissue type was collected from a single 

species.
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Extended Data Fig. 6 | Meta-analysis of chronological age in mammalian 

samples across specific tissue types. Meta-analysis p-value (-log base 10 

transformed) versus chromosomal location (x-axis) according to human 

genome assembly 38 (hg38) in (a), brain tissues (across multiple brain regions), 

(b) cerebral cortex, (c) blood, (d) liver, (e) muscle and (f) skin tissues. The 

upper and lower panels of the Manhattan plot depict the CpG sites that gain/

lose methylation with age. In panel a, P values were calculated via two-stage 

meta-analysis that combined EWAS results across strata formed by species/

brain-tissue (with n ≥ 15 samples, Methods). CpGs are colored in red and blue if 

they exhibit highly significant positive and negative age correlations according 

to a meta analysis P < 1.0 × 10−40, 1.0 × 10−30, 1.0 × 10−250, 1.0 × 10−50, 1.0 × 10−20 and 

1.0 × 10−150 for a–f, respectively. Red dashed horizontal lines denote Bonferroni 

correction. Gene names are annotated for the top 20 CpGs with positive and 

negative associations, respectively. CpGs are labeled by adjacent genes. Purple 

color and diamond shapes mark CpGs of particular interest: cg12841266 and 

cg11084334 in LHFPL4 and cg09710440 in LHFPL3. All P-values presented in this 

figure are unadjusted and computed using two-sided tests.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Chromatin state analysis of age-related CpGs. The 

heatmap color-codes the hypergeometric overlap analysis between age-related 

CpGs (columns) and two groupings of CpGs (1) universal chromatin states 

analysis1 and (2) binding by polycomb repressive complex 1 and 2 (PRC1, PRC2) 

defined based on ChIP-Seq datasets in ENCODE53, see the last two rows. The first 

column shows a bar plot that reports the proportion of CpGs that are known to 

be bounded by PRC2 that ranges from zero to one (PRC2). Note that chromatin 

states that contain a high proportion of PRC2 bound CpGs overlap significantly 

with the top 1,000 CpGs that increased with age across tissues and mammal 

species. For each row (chromatin state or PRC annotation), the table reports 

odds ratios (OR) from hypergeometric test results for the top 1,000 CpGs 

that increased/decreased with age from meta-EWAS of age across all, blood, 

skin, liver, muscle, brain and cerebral cortex tissues, respectively. Unadjusted 

hypergeometric P values based on one-sided are listed in Supplementary 

Data 8.3–8.9. The heatmap color gradient is based on −log10 (unadjusted 

hypergeometric P value) multiplied by the sign of OR greater than one. Red colors 

denote OR greater than one in contrast with blue colors for OR less than one. 

Legend lists states based on their group category and PRC group. The y-axis lists 

state or PRC name and number of mammalian array CpGs inside parentheses. 

The left/right panel lists the results based on the top 1,000 CpGs with positive/

negative age correlation. We displayed 63 universal chromatin states that 

show significant enrichment/depletion at P < 0.001 in any of the tissues. HET, 

heterochromatin; exon, transcription and exons; weak promoters, bivalent 

promoters; promoters, promoter flanking.
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Extended Data Fig. 8 | Overlap with late-replicating domains. The heatmap 

color-codes the hypergeometric overlap analysis between age-related CpGs 

(columns) and CpGs related to late-replicating domains in hg19 and mm10 

assembly50, respectively. Two groups of late-replicating domains were analyzed 

(1) common PMD/HMD structures: highly methylated domains (commonHMD), 

partially methylated domains (commonPMD), and neither (Neither), and (2) 

solo-WCGW structures: genome-wide (solo-WCGW) and those in the common 

PMD regions (solo-WCGW commonPMDs). The y-axis lists categories of late-

replicating domains and number of mammalian array CpGs inside parentheses 

for Hg19 and mm10 genome, respectively. For each row, the table reports 

odds ratios (OR) from hypergeometric test results for the top 1,000 CpGs that 

increased/decreased with age from meta-EWAS of age across all, blood, skin, 

liver, muscle, brain, and cerebral cortex tissues, respectively. The heatmap color 

gradient is based on -log10 (unadjusted hypergeometric P value) multiplied 

by the sign of OR greater than one. Red colors denote OR greater than one in 

contrast with blue colors for OR less than one. The left/right panel lists the results 

based on the top 1,000 CpGs with positive/negative age correlation. Unadjusted 

P values are reported and derived from one-sided hypergeometric tests.
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Extended Data Fig. 9 | Enrichment with Transcription factor binding 

regions. We studied the overlapping genomic regions between (1) the CpG sites 

located in the binding regions of 68 transcription factors (TF) in hg19 and (2) 

the top 1000 CpGs that increased/decreased with age from EWAS of age across 

mammalian tissues. TF results (y-axis, rows) versus mammalian EWAS of age 

are stratified by tissue type (x-axis, columns). The left/right panels of the x-axis 

list the top 1000 CpGs that increased/decreased with age from meta-EWAS of 

age across all tissues, blood only, skin only, liver, muscle, brain and cerebral 

cortex, respectively. The y-axis lists the names of transcription factors and 

number of mammalian array CpGs located in the binding sites. Background in 

hypergeometric tests was based on the genes present in our mammalian array. 

The bar plots in the first column report the total number of genes at each TF 

according to the background. The heatmap color codes -log10 (unadjusted 

hypergeometric P value). Unadjusted, one-sided hypergeometric P values (odds 

ratio) are listed on the heatmap provided P < 0.05.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | EWAS-TWAS and EWAS-GWAS enrichment. Panel 

(a) illustrates the overlap between genes identified in transcriptome-wide 

association studies (TWAS) across various cell types or species, and the top 

1,000 CpGs that have increased/decreased with age in EWAS across mammalian 

tissues. TWAS results are stratified by tissue type, including all tissues, blood, 

skin, liver, muscle, brain, and cerebral cortex. Overlapping genes with P < 0.05 

are reported. Similarly, Panel (b) demonstrates the overlaps between the top 

2.5% genes implicated in genome-wide association studies (GWAS) of human 

complex traits, and the top 1,000 CpGs that have increased/decreased with 

age in EWAS across mammalian tissues. GWAS results are also stratified by 

tissue type, with significant overlaps reported where P < 0.05. Both panels 

utilize unadjusted, one-sided hypergeometric P values, with a background for 

hypergeometric tests derived from genes (panel a) or genomic regions (panel 

b) in our mammalian array. The heatmap color encodes -log10 P values. The 

right-side annotation indicates (a) the species categories for TWAS collections 

and (b) phenotype categories for GWAS collections. Further details for TWAS 

and GWAS indices are available in Supplementary Data 12 & 13. Abbreviations: 

(a) hipp.=hippocampus, MPNST = malignant peripheral nerve sheath tumor, 

mus.=muscle, TACs = transiently amplifying progenitor cells. (b) All = All 

ancestries, EUR = European ancestry, AFR = African American ancestry, 

FTD = frontotemporal dementia, WHR = waist to hip ratio.
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