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A B S T R A C T

Established surgical navigation systems for pedicle screw placement have been proven to be accurate, but still
reveal limitations in registration or surgical guidance. Registration of preoperative data to the intraoperative
anatomy remains a time-consuming, error-prone task that includes exposure to harmful radiation. Surgical
guidance through conventional displays has well-known drawbacks, as information cannot be presented in-situ
and from the surgeon’s perspective. Consequently, radiation-free and more automatic registration methods with
subsequent surgeon-centric navigation feedback are desirable. In this work, we present a marker-less approach
that automatically solves the registration problem for lumbar spinal fusion surgery in a radiation-free manner.
A deep neural network was trained to segment the lumbar spine and simultaneously predict its orientation,
yielding an initial pose for preoperative models, which then is refined for each vertebra individually and
updated in real-time with GPU acceleration while handling surgeon occlusions. An intuitive surgical guidance is
provided thanks to the integration into an augmented reality based navigation system. The registration method
was verified on a public dataset with a median of 100% successful registrations, a median target registration
error of 2.7 mm, a median screw trajectory error of 1.6◦ and a median screw entry point error of 2.3 mm.
Additionally, the whole pipeline was validated in an ex-vivo surgery, yielding a 100% screw accuracy and a
median target registration error of 1.0 mm. Our results meet clinical demands and emphasize the potential of
RGB-D data for fully automatic registration approaches in combination with augmented reality guidance.

1. Introduction

Complex orthopedic procedures, such as pedicle screw placement,
can benefit from computer assistance in regards to safety and accu-
racy (Gelalis et al., 2012; Perdomo-Pantoja et al., 2019). Nevertheless,
computer-assisted orthopedic surgery (CAOS) only accounts for an
estimated 5% of all orthopedic surgeries performed in North America,
Europe and Asia (Joskowicz and Hazan, 2016). Many state-of-the-
art navigation systems for pedicle screw placement comprise three
main components: planning, registration and navigation. The latter
two strongly contribute to the low clinical adoption (Härtl et al.,
2013; Nadeau et al., 2015; Joskowicz and Hazan, 2016). Existing
registration approaches tend to be time-consuming, cumbersome and
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often involve radiation. This hinders real-time application for surgical

navigation, which itself suffers from limitations caused by conventional

visualization techniques.

State-of-the-art CAOS systems commonly require intraoperative

imaging or manual anatomy digitization by the surgeon for registration

(Markelj et al., 2012). Both are time-consuming processes. Innovative

approaches, such as the co-calibration of fluoroscopy and RGB or RGB-

D video sources exist, allowing for ‘‘virtual fluoroscopy’’ (Navab et al.,

2009; Lee et al., 2017). In addition, machine learning based methods

have the potential to solve typical challenges in 2D/3D registration (Un-

berath et al., 2021). However, except for ultrasound, intraoperative
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imaging, always comes along with bulky equipment and radiation expo-
sure for the patient as well as the OR personnel. Despite a multitude of
techniques for 2D/3D registration (Sundar et al., 2006; Esfandiari et al.,
2019; Miao et al., 2016), which reduces radiation, registration failures
are an existing problem even when reference markers are used (Zhang
et al., 2019).

Besides the registration issue, most state-of-the-art navigation sys-
tems provide visualizations on 2D monitors in the OR periphery, which
can cause attention shift and may increase the cognitive load for
the surgeons, e.g. hand-eye coordination (Brendle et al., 2020; Qian
et al., 2017; Léger et al., 2017). Given the recent advent of augmented
reality (AR) solutions and their potential in the realm of medicine,
their application in intraoperative settings to provide surgical guid-
ance should be considered in hopes of alleviating the aforementioned
limitations (Eckert et al., 2019; Birlo et al., 2022). The use of AR for
spine surgery, and pedicle screw placement in particular, has been
investigated thoroughly in the past few years, showing the benefits that
the technology could bring to the field (Ma et al., 2017; Elmi-Terander
et al., 2019; Gibby et al., 2019; Liebmann et al., 2019; Molina et al.,
2019; Farshad et al., 2021b,a; Liu et al., 2021; Uddin et al., 2021; von
Atzigen et al., 2022; Chytas et al., 2019; Ma et al., 2018). While there
are mitigation strategies tailored to the visualization challenges of the
existing CAOS solutions (e.g. Wolf et al. (2023)), the question about an
ideal registration remains.

As a potential remedy for the aforementioned registration difficul-
ties, one approach towards a more automatic and radiation-free regis-
tration is the intraoperative 3D reconstruction of the target anatomy
using depth sensing hardware and the associated computer vision
software. Ji et al. (2015) used two co-calibrated RGB cameras mounted
to a surgical microscope for registration of preoperative spine CT
images in a clinical trial. In their work, the authors pursued a semi-
automatic segmentation approach to localize the anatomy of interest in
the 2D RGB images based on manual surgeon annotations and region
growing followed by a 3D reconstruction module. They reached a
registration accuracy of 1.43 mm, but the manual annotations make
real-time use in a surgical setting cumbersome. The path of stereo
feature matching in open spine surgery was further demonstrated to be
promising in recent work by Manni et al. (2020), who achieved a better
than 0.5 mm 3D triangulation error on grayscale images as evaluated
on data from 23 patients. Besides methods that have been reported
and evaluated in academic settings, a commercial navigation system
for surface-reconstructing, radiation-free spine surgery navigation is
available that operates based on a structured light sensor integrated
into OR lamps (7D Surgical Inc., Toronto, ON, Canada, Faraji-Dana
et al. (2020). The authors have reported the registration time to be
less than 20 s, and re-registration (in case of perceived registration
inaccuracies) to be even faster. However, the system’s footprint is big,
as it comes along with an entire OR lamp. Furthermore, registration
starts with manual point sampling and has to be performed for each
vertebral level individually. Motion detection and compensation relies
on markers clamped to the anatomy, which is the standard approach.
While such techniques can diminish some of the concerns related to ra-
diation exposure, time and cost of a common registration pipeline, they
still require a residual registration process between the reconstructed
anatomy and the patient, making them susceptible to issues such as
sub-optimal manual input, poor initialization and small capture range.
More recent algorithms have looked into achieving a higher level of
registration autonomy through the utilization of artificial intelligence
(AI) concepts. In Félix et al. (2021), an RGB-D sensor was used for
automatic registration of preoperative femural and tibial 3D models
to intraoperative cadaveric anatomy. The RGB images were segmented
with a neural network allowing for the corresponding 3D segmenta-
tion of the reconstructed anatomy. The reconstructed 3D models were
then automatically registered to the anatomy using a RANSAC-based
method. Through the analysis of the results, the authors have reported

that a considerable part of the error was attributed to the infrared-
based RGB-D sensor, an observation that was affirmed in other studies
(e.g., Gu et al. (2021b)). Hu et al. (2022) investigated a femur registra-
tion and tracking approach using point cloud data that finds a global
alignment between a peroperative 3D reference model and intraoper-
ative depth camera data based on RANSAC, followed by an iterative
closest point (ICP) refinement. A PointNet-based network was proposed
in this study to restore the surface of the unmodified bone captured by
the depth camera before using it for registration, coping intraoperative
bone surface modification. The employment of the network reduced the
registration RMSE from 2.40 mm to 2.07 mm, but the improvement did
not reflect significantly on the pose error when compared to a ground
truth tracking. An early prototype of a complete AR-based navigation
approach using an optical see-through head-mounted display (HMD)
for total shoulder arthroplasty evaluated on synthetic bone models
was presented in Gu et al. (2021a). The 3D model counterpart of
the synthetic bone model is first aligned manually as a movable AR
rendering, followed by an ICP refinement. Thereby, the intraoperative
data was a point cloud, originating from a co-calibrated external RGB-
D sensor. The point cloud was computed from a disparity map which
was generated by a transformer-based network with the two RGB
images of the depth sensor as input. After registration, an additional
fiducial marker clamped to the anatomy is responsible for motion
compensation. An average pin placement accuracy of 4.66◦ and 3.8 mm
was achieved. These recent research contributions show that AI-based
algorithms using surface data, potentially in combination with RGB,
could advance registration approaches in CAOS. What stands out is that
there remains a dependency on a coarse initial alignment as well as
reference markers for motion detection and/or compensation.

Apart from registration, accurate instrument tracking is a prereq-
uisite for CAOS systems. The aforementioned AR based navigation
solutions rely on a broad variety of approaches: external high-end
infrared tracking systems (Ma et al., 2017), infrared tracking on a
custom-made HMD (Molina et al., 2019; Liu et al., 2021), as well
as stereo or monocular tracking of single fiducial markers on off-the-
shelf HMD (Liebmann et al., 2019; Farshad et al., 2021b,a). Recent
work shows that submillimeter tracking accuracy based on monocular
infrared is also possible on an off-the-shelf HMD (Martin-Gomez et al.,
2023). When external RGB cameras are in place, similar accuracies can
be achieved using stereo based methods (Liu et al., 2013; Ma and Zhao,
2017).

The goal of this study was to tackle the aforementioned drawbacks
of the current navigation systems by developing an efficient, radiation-
free and real-time approach for automatic registration of intraoperative
RGB-D data to the underlying patient with the potential downstream
goal of providing a more accurate and faster pedicle screw placement
alternative under AR guidance. Our method comprises of a registration
module for marker-less, automatic piecewise registration of preopera-
tive lumbar spine 3D models to intraoperative RGB-D data with pose
updates during surgical interaction as well as a navigation module
for AR-guided pedicle screw placement. The registration module was
developed and evaluated on the public SpineDepth dataset (Liebmann
et al., 2021) of pose-annotated cadaveric surgery RGB-D recordings.
Data collected from simulated pedicle screw placement interventions
was used to evaluate the registration success. Finally, the full pipeline
(registration + navigation) was validated in an ex-vivo setup, where a
surgeon placed ten pedicle screws in a cadaveric lumbar spine under
AR guidance.

2. Material and methods

The proposed hardware setup consists of the following components:
an RGB-D sensor, a GPU-enabled workstation and a HMD. In our case,
a ZED Mini (Stereolabs Inc., San Francisco, CA, USA), a HP Z2 (HP
Inc., Palo Alto, CA, USA) with an Nvidia GeForce RTX 2080 SUPER
(Nvidia Corporation, Santa Clara, CA, USA) and a Microsoft HoloLens
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2 (Microsoft Corporation, Redmond, WA, USA) were used (Fig. 1). The
RGB-D sensor has a very small footprint (124.5×30.5×26.5 mm, 60 g) and
is therefore versatile and easy to integrate. It offers stereo RGB-based
depth reconstruction with aligned color and depth frames.

The main contribution of this work lies in the registration and navi-
gation method. It can be subdivided into two modules: the registration
module and the navigation module (Fig. 1). The RGB-D sensor observes
the surgical site from the top and serves as input for both modules.
The registration module (Section 2.1) is responsible for the automatic
segmentation and registration of lumbar vertebrae L1–L5 and outputs
five rigid 3D transformation estimations, one for each vertebra 𝑉𝑖, 𝑖 ∈

{1, 2,… , 5} and incoming RGB-D frame 𝑓 : �̂�𝑉𝑖
(𝑓 ), �̂� denoting that the

transformation is estimated. The navigation module (Section 2.2) is
responsible for tracking a surgical drill sleeve (rigidly attached to the
drill) and finding its 3D transformation in each frame: 𝐓𝐷(𝑓 ). For
each frame, the navigation module streams the aforementioned six
transformations (�̂�𝑉𝑖

(𝑓 ), 𝑖 ∈ {1,… , 5} and 𝐓𝐷(𝑓 )) to the HMD via a
User Datagram Protocol (UDP) connection. Note that no other data
is sent to the HMD and that the HMD is not involved in any part
of the registration module. The second part of the navigation module
consists of AR guidance for pedicle screw placement on the HMD, based
on the received vertebra and drill sleeve poses. Finding the relative
transformation 𝐻𝑀𝐷

𝐓𝑆 between the coordinate frame of the RGB-D
sensor 𝑆 and the HMD device is required upon re-positioning of the
RGB-D sensor and is based on standard chessboard detection (Bradski,
2000).

The registration module and the first part of the navigation mod-
ule were implemented as a real-time capable C++ application with
an OpenGL (Woo et al., 1999) window for live visualization and
controlling purposes, referred to as the server app. Libraries and im-
plementation details are provided throughout the following sections.
The second part of the navigation module, the AR guidance for pedicle
screw placement, was implemented in Unity (2019.4.39f1, Unity Tech-
nologies, San Francisco, CA, USA) and will hereafter be referred to as
the client app. The source code is available upon request.

2.1. Registration module

The registration module has two goals: first, given an unoccluded
RGB-D frame, referred to as the initial frame, it estimates the 3D pose
of each lumbar vertebra L1–L5 with respect to the sensor coordinate
frame. Second, given subsequent frames of the same viewpoint with
surgeon interaction, referred to as the interaction frames, it updates the
poses of L1–L5, if visible. In our workflow, the surgeon positions the
RGB-D sensor above the incision without any occlusion by personnel
or instruments and initiates the process.

The registration method is illustrated in Fig. 2. It is divided into
segmentation/pose initialization and pose refinement. The first stage
relies on a deep neural network that combines the concepts of 2D
U-Net (Ronneberger et al., 2015) and regression-based orientation pre-
diction (Mahendran et al., 2017). For a given initial frame and during
the inference time, the network outputs a 2D binary segmentation mask
for the lumbar spine (segmentation path) and an estimate of the spine’s
rotation in the RGB-D sensor’s coordinate system (orientation path)
represented in form of a quaternion (𝐑 in Fig. 2). The segmentation
output is used to mask the corresponding depth image, leading to
a segmented point cloud of the lumbar spine. The preoperative 3D
models are transformed with the predicted orientation as the rotation
and the center of mass of the segmented point cloud as the translation
(𝐓 in Fig. 2). In the second stage, an en-bloc registration of the com-
bined preoperative 3D models is performed using ICP (Besl and McKay,
1992) registration (general alignment), followed by a piecewise ICP
registration of each vertebra (piecewise refinement). Using the accurate
pose determined from an initial frame, efficient motion compensation
in subsequent interaction frames is achieved by iterative application
of segmentation and piecewise refinement steps, indicated as dotted
arrows in Fig. 2.

Fig. 1. Setup overview. Solid lines denote a wire, dotted lines denote a wireless
connection and dashed lines denote a transformation. The RGB-D sensor observes the
surgical site from the top and serves as input for the registration and navigation module.
The former outputs five poses, one for each vertebra 𝑉𝑖 and frame 𝑓 : �̂�𝑉1

(𝑓 ),… , �̂�𝑉5
(𝑓 ).

The latter tracks the surgical drill sleeve and outputs its pose 𝐓𝐷 for each frame: 𝐓𝐷(𝑓 ).
All poses are streamed to the HMD wirelessly. The second part of the navigation module
comprises AR guidance for pedicle screw placement, based on the received poses.
𝐻𝑀𝐷

𝐓𝑆 denotes the transformation between the RGB-D sensor’s coordinate frame and
the one of the HMD. It is found using standard chessboard detection after the RGB-D
sensor has been positioned.

2.1.1. Data preparation
The SpineDepth dataset that was created in our preceding publi-

cation (Liebmann et al. (2021), available under: rocs.balgrist.ch/en/
open-access/spinedepth) provides pose-annotated RGB-D recordings of
mockup spine surgeries performed on ten cadaveric human specimens.
The extent of anatomical exposure in Specimen 1 was significantly
less than in the other nine. It was therefore excluded from this study.
Furthermore, we excluded Specimen 10 as its anatomy is extremely
different from the remaining eight, i.e., it is much smaller. When the
dataset was created, in each surgery, ten pedicle screws were placed
bilaterally into vertebrae L1–L5. The placement of each screw was di-
vided into four surgical steps, each captured in a separate recording by
two downward facing RGB-D sensors simultaneously. After each screw
placement, the sensors were repositioned to capture the surgical site
from a new perspective. This resulted in a total of 80 recordings within
the SpineDepth dataset from 20 different viewpoints per specimen.
Within the same dataset and for each specimen, preoperative 3D models
of vertebrae L1–L5, referred to as PreOp models, are available that are
spatially aligned to the actual position of the anatomy. In other words,
the SpineDepth dataset includes the aforementioned transformation �̂�𝑉𝑖

between each vertebra and the RGB-D frame observing it. However, in
the dataset it is the ground truth transformation and therefore referred
to as 𝐓𝑉𝑖

. Applying it on the PreOp 3D models transforms them to their
ground truth location in the camera coordinate system of the respective
RGB-D sensor.

In order to investigate the generalizability of our method to unseen
anatomy, the data was prepared to support a leave-one-out cross-
validation strategy with eight folds, one for each specimen. For each
screw and surgical step three frames were selected, the first frame
(initial frame) and two random frames (interaction frames), resulting in
twelve frames per screw. The sensor viewpoints did not change within
the four recordings. The initial frame never contained surgeon interac-
tion, while the interaction frames had a chance thereof. The resulting

https://rocs.balgrist.ch/en/open-access/spinedepth
https://rocs.balgrist.ch/en/open-access/spinedepth
https://rocs.balgrist.ch/en/open-access/spinedepth
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Fig. 2. For an initial frame, all arrows are executed once: the network outputs result in a segmented point cloud and an initial pose (𝑅, 𝑇 ) for the preoperative 3D models, which
are then registered to the segmented point cloud (general alignment), followed by an individual registration (piecewise refinement). For subsequent interaction frames, only the
dotted arrows are executed, updating the poses of visible vertebrae individually.

240 frames (10 screws × 12 frames × 2 RGB-D sensors) per specimen
were used for training the network. They are referred to as training folds.
For later testing of the entire registration module, only the first two
surgical steps, i.e., recordings, for each screw were considered, as they
represent the relevant steps for navigation, i.e., entry point preparation
and trajectory drilling with a surgical awl. These 40 recordings of a
specimen were used in their full lengths with the first frame as initial
frame and all subsequent frames as interaction frames. They are referred
to as testing folds.

The pose annotations provided by the SpineDepth dataset cannot
be used directly for training our network, as the segmentation and ori-
entation path of our network require a binary segmentation mask and
a quaternion as ground truth, respectively. The former was generated
as follows. A depth image of vertebrae L1–L5, transformed according
to their ground truth poses, was rendered, using the method of Guney
and Geiger (2015) and Geiger and Wang (2015), and subtracted from
the corresponding sensor depth image for all non-zero pixels in Matlab
(R2021a, MathWorks, Portola Valley, CA, USA). The resulting mask
consisted of all pixels with an absolute difference below 10 mm. This
threshold correctly handled clear occlusions, while maintaining con-
tiguous mask regions, despite measurement noise. Further smoothing of
those regions was achieved by applying a 2D convolution with a kernel
size of 15 and uniform weights of 1∕225, followed by a thresholding at
0.5, resulting in a binary mask again. The network orientation path
only predicts the overall lumbar spine orientation (Fig. 2), and not
the one of each vertebra. Therefore, the rotation of vertebra L3 was
stored as a quaternion for each frame, representing the overall spine
orientation. Note that in the experimental setup of the SpineDepth
dataset all specimens had been mounted in a very similar same way
with respect to the ground truth high-end optical tracking system, and
the orientation of vertebra L3 was similar enough such that orientation
normalization was given implicitly.

2.1.2. Network architecture and training
The network architecture is indicated in Fig. 2. The main structure is

inspired by U-Net, taking downsampled RGB images of size 144 × 256
(𝐻 × 𝑊 ) as input. It consists of four downsampling blocks, each of
the form Conv–BN–ReLU–Conv–BN–ReLU–MaxPooling, with 64, 128,
256 and 512 filters of size 3 × 3. The bottleneck block is of the
same form, with 512 filters, but without the MaxPooling layer. The
upsampling blocks mirror the downsampling ones, but with a leading
upconvolution layer instead of a MaxPooling layer at the end. Skip
connections connect the down- and upsampling blocks. The output
Conv layer has 1 filter and sigmoid activation, for which a dice loss 𝐿𝐷 is
minimized. An additional branch is appended to the bottleneck where
the 9 × 16 × 512 feature representation is used for regression-based

orientation prediction. After flattening, two blocks of FC–BN–ReLU,
with 512 and 64 units, follow. Another FC layer with 4 units then
predicts the spine orientation. The quaternion codomain of [−1, 1] is
accounted for with a 𝑡𝑎𝑛ℎ activation. For frame i, the geodesic loss 𝐿𝐺𝑖

is computed between the ground truth quaternion 𝑞𝑡𝑖 and its normalized
predicted counterpart 𝑞𝑝𝑖

, as given in Eq. (1). Quaternions should
have magnitude 1 in order to represent valid rotations. As suggested
in Langlois et al. (2018), a penalization term 𝐿𝑁𝑖

helped the network
predicting such.

𝐿𝐺𝑖
= 2 cos−1 |⟨𝑞𝑡𝑖, 𝑞𝑝𝑖 ⟩| and 𝐿𝑁𝑖

=
(
1 − ||𝑞𝑝𝑖 ||

)2

(1)

Including 𝐿𝐷, the network’s total loss for a batch of size 𝐵 is

 =
1

𝐵

𝐵∑

𝑖=1

𝐿𝐷𝑖
+

1

𝐵

𝐵∑

𝑖=1

(
𝐿𝐺𝑖

+ 𝐿𝑁𝑖

)
. (2)

Augmentations were employed to enrich the SpineDepth dataset that
included a limited number of specimens and viewpoints. 2D image
rotation of 𝛼 radians was applied on the input images and the corre-
sponding ground truth quaternion by multiplication with quaternion
[cos

𝛼

2
, 0, 0, sin

𝛼

2
], which represents a rotation around the camera’s 𝑧-

axis. Each frame was augmented by rotations of 30, 90, 150, 210, 270
and 330 degrees, resulting in 1680 frames (240 + 6 × 240) per training
fold. The 240 frames are: 10 screws × 12 frames × 2 RGB-D sensors
(Section 2.1.1).

The resulting network with ∼58M trainable parameters was imple-
mented in Keras (2.7.0, Chollet et al. (2015)). For each specimen, it
was trained from scratch on the remaining eight training folds during 30
epochs with batch size of 32 using the Adam optimizer (Kingma and Ba,

2014). The learning rate was set to 10
−4−⌊ 𝑒𝑝𝑜𝑐ℎ

10
⌋. Training took roughly

30 min on a NVIDIA Quadro P6000. Three trainings were performed
per specimen, the only difference being the weight initialization. For
each specimen, the best results in terms of 𝐿𝐷 are presented.

2.1.3. Registration and pose update
The registration for an initial frame consists of an initial pose, a gen-

eral alignment and a piecewise refinement (Fig. 2). They are denoted
as �̂�𝑖𝑛𝑖𝑡, �̂�𝑔𝑒𝑛 and �̂�𝑟𝑒𝑓𝑉𝑖

. The following sections elaborate on each part
followed by an explanation of the pose update for the interaction frames.
Note that only the points visible from an orthogonal posterior view
were selected from the PreOp models (3-matic, Materialise NV, Leuven,
Belgium) and used for registration and pose updates (Fig. 3).

Initial pose estimation. For an initial frame’s RGB image, our network
predicts a resized binary segmentation mask 𝑀𝑝 (1080 × 1920 pixels)
and a normalized quaternion 𝑞𝑝. Using𝑀𝑝, the corresponding full point
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Fig. 3. Points used for registration and pose updates (blue).

cloud 𝑃𝐶𝑓 is masked to produce a segmented point cloud 𝑃𝐶𝑠. The
initial pose for the first frame, which is used as the initial frame, �̂�𝑖𝑛𝑖𝑡

for the PreOp models is constructed from the center of mass of the
largest connected component (Bradski, 2000) of 𝑃𝐶𝑠 of size 𝑁𝐶𝐶 as
the translation and the inferred 𝑞𝑝 as the rotation:

�̂�𝑖𝑛𝑖𝑡 = [𝑅, 𝑇 ] =

[
𝑞𝑝,

1

𝑁𝐶𝐶

𝑁𝐶𝐶∑

𝑛=1

𝑃𝐶𝑠𝑛

]
(3)

The trained network was converted to Open Neural Network Ex-
change (ONNX, Foundation (2022)) format and integrated into the
server app using TensorRT (8.0.3, NVIDIA (2021)). This way, the RGB-
D sensor data, which is available on GPU memory, can be directly
fed to the network. Furthermore, 𝑃𝐶𝑓 is masked by 𝑀𝑝 on the GPU
using CUDA (8.0.3.4, NVIDIA (2022)), resulting in 𝑃𝐶𝑠. Note that
𝑃𝐶𝑠 contains all segmented points, not only the largest connected
component. The latter was only employed for finding the translational
part of the initial pose to mitigate the influence of outliers in 𝑀𝑝.

General alignment. The general alignment consists of point-to-point ICP
between the combined PreOp models of L1–L5, transformed by �̂�𝑖𝑛𝑖𝑡,
and 𝑃𝐶𝑠. It is denoted as 𝐓ICP𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 . The pose after general alignment
is:

�̂�𝑔𝑒𝑛 = �̂�𝑖𝑛𝑖𝑡𝐓ICP𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
(4)

The Point Cloud Library (1.12.0, Rusu and Cousins (2011)) im-
plementation with a maximum correspondence distance of 5 mm and
stopping criteria of 50 iterations or a transformation epsilon of < 10−8

was used.

Piecewise refinement. The piecewise refinement is based on the general
alignment result. In essence, this is another point-to-point ICP align-
ment. However, given the piecewise nature of this alignment, PreOp
models L1–L5 are aligned individually. First, the nearest neighbor
points for each PreOp model are found in the masked point cloud 𝑃𝐶𝑠.
Point correspondences with a Euclidean distance below 2.0 mm were
considered inliers. The Umeyama method (Umeyama, 1991; Guen-
nebaud et al., 2010) method was then used to find the optimal trans-
formation, which was applied to the respective PreOp model. The two
steps are repeated 50 times, or until the root-mean-square error of point
correspondences does not decrease anymore. The ICP result for vertebra
𝑖 is denoted as 𝐓ICP𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒𝑖

. The pose after piecewise refinement is:

�̂�𝑟𝑒𝑓𝑉𝑖
= �̂�𝑖𝑛𝑖𝑡𝐓ICP𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

𝐓ICP𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒𝑖
𝑖 ∈ {1,… , 5} (5)

As the same functionality is employed for real-time pose updates
during interaction frames (see next paragraph), the nearest neigh-
bor search is performed in parallel on the GPU using CUDA. The
EIGEN (Guennebaud et al., 2010) implementation of the Umeyama
method is computationally inexpensive, and was therefore performed
serially for each PreOp model on the CPU.

Pose update. After performing the registration based on the initial
frame, the poses of PreOp models L1–L5 are updated individually once
a new frame is available. After network inference on the new frame, the
same technique as for the piecewise refinement is used. Given that the
extent of change in the vertebra poses is minimal for a single patient
during an intervention and in order to boost performance, only a single
iteration was performed, denoted as �̂�𝑢𝑝𝑑𝑎𝑡𝑒𝑖

(𝑓 ) for vertebra 𝑖 in frame 𝑓 .
Furthermore, due to surgeon interactions, the visibility of the anatomy
during interaction frames may be obscured. Consequently, only PreOp
models that have at least 90% of the number of inliers as after the
last iteration during piecewise refinement are updated. The pose �̂�𝑉𝑖

(𝑓 )

(Fig. 1) in any interaction frame 𝑓 after transformation of each vertebra
by �̂�𝑟𝑒𝑓𝑉𝑖

is:

�̂�𝑉𝑖
(𝑓 ) = �̂�𝑉𝑖

(𝑓 − 1)𝐓𝑢𝑝𝑑𝑖
(𝑓 ) 𝑖 ∈ {1,… , 5}, 𝑓 ∈ {2, 3,…} (6)

2.2. Navigation module

The navigation module comprises two parts: tracking of a surgical
drill sleeve and AR guidance for pedicle screw placement on the HMD.
Both parts are explained in the next sections.

2.2.1. Drill sleeve tracking
Literature findings show that stereo based tracking using RGB cam-

eras can deliver high accuracy (Liu et al., 2013; Ma and Zhao, 2017).
In addition, retrieving tracking results in the same coordinate system
as the one used for registration allows using AR for pure visualization
purposes. Therefore, tracking of the surgical drill sleeve was realized
using the RGB-D sensor. It was based on a custom-made, 3D printed
component attached to the drill sleeve (Fig. 4). Further development
in the scope of an ongoing clinical study based on the publications
of Farshad et al. (2021b,a) showed that multiple non-planar markers
are beneficial in terms of accuracy (non-planar depth information) and
trackability (number of covered viewpoints with at least two markers
visible). Thus, the component was equipped with three nonplanar,
sterile markers (Clear Guide Medical, Baltimore MD, USA) showing
unique AprilTag (Olson, 2011; Wang and Olson, 2016) patterns. The
tracking was integrated into our server app and was performed on a
separate thread, which is initiated upon app startup. Whenever a new
frame was available from the RGB-D sensor, the undistorted left and
right grayscale images were made available to the tracking thread.
In both images, the markers were detected by the ArUco (Muñoz-
Salinas et al., 2018; Garrido-Jurado et al., 2014, 2016) library. If
at least two corresponding markers were found in both images, the
respective 2D corner coordinates are used for triangulation (Bradski,
2000), yielding eight or twelve 3D corner coordinates. The actual pose
is found by applying the Umeyama method between the ground truth
corner coordinates, which are known by design, and their estimated
counterparts resulting from the triangulation. A Kalman filter (Kalman,
1960; Bradski, 2000) with a constant acceleration model is used for
noise reduction on the final drill sleeve pose.

2.2.2. AR guidance
The goal of the AR guidance for pedicle screw placement is the

accurate and fast navigation of the screw entry point and trajectory.
Upon startup of the client app, the HMD establishes a UDP connection
to the server app and continuously receives the poses of PreOp models
L1–L5 as well as the drill sleeve pose. The surgeon positions the RGB-
D sensor such that a reasonable initial pose, which is visualized on a
monitor in the periphery of the OR, is estimated by the server app. A
standard chessboard (Bradski, 2000) is used to co-calibrate, i.e., deter-
mine 𝐻𝑀𝐷

𝐓𝑆 (Fig. 1), the coordinate frame of the RGB-D sensor and
the one of the HMD. The surgeon can trigger the co-calibration in the
client app by speech command and by key press in the server app. In the
client app, the chessboard pose is estimated from a single RGB image
originating from the HoloLens photo/video camera using chessboard
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Fig. 4. Drill sleeve with three nonplanar, sterile markers for tracking.

detection and PnP. In the server app, the chessboard is detected in both
the left and the right RGB image and the 3D chessboard corners are
triangulated, from which the pose can be deducted. The two poses then
serve as a common coordinate system, allowing the server app to send
and the client app to visualize the estimated poses of vertebrae and
drill sleeve relative thereto. Note that this is a one-time process that
is only required upon repositioning of the RGB-D sensor. As soon as
the chessboard is removed, the surgeon initiates the registration on an
initial frame, which is followed by pose updates in subsequent interaction
frames (Section 2.1.3).

In the client app, the surgeon is provided with three different
visualization components. The most important component is the virtual
twin presented in the work of Wolf et al. (2023), who investigated
different user interfaces for AR-guided pedicle screw placement. Their
virtual twin approach, where PreOp models and navigation information
are not directly overlaid onto the anatomy, but rendered in an axis-
aligned fashion with only a translational offset from the anatomy
(Fig. 5), was integrated into the client app. Wolf et al. (2023) showed
that this approach allows for accurate screw placement, while both
ease of use and cognitive load were well rated by surgeons. On the
virtual twin, the current drill sleeve pose was visualized with respect
to the preoperatively planned screw entry point and trajectory. In
addition, the angular 3D deviation between the drill sleeve and the
screw trajectory was shown. Besides the virtual twin, a direct overlay
of the entry point in form of an aiming cross could be shown/hidden
by the surgeon. Lastly, the PreOp models could also be visualized on
the anatomy upon request. This was particularly useful to qualitatively
check the overall registration accuracy. For a more detailed verification
of the registration, the surgeon was asked to touch certain anatomical
landmarks using the drill sleeve on the anatomy and confirm their
correspondence on the virtual twin before starting the actual navigation
of a screw. If the registration was unsatisfactory, the RGB-D sensor
was repositioned and the process was repeated from the co-calibration
on. After successful navigation of a level, the surgeon selects the next
level in the client app menu. Note that the frame rate of a HoloLens 2
application is 60 frames per second. The client app only receives poses
and does arguably lightweight rendering, therefore the frame rate was
not influenced in a significant way.

2.3. Evaluation

The method was evaluated in two stages. First, the registration
module was evaluated separately on the SpineDepth dataset, referred
to as the verification. The entire prototype (registration and navigation
module) was then evaluated in a cadaveric experiment on an unseen
lumbar spine anatomy, where ten real pedicle screws were placed
under AR guidance, referred to as ex-vivo validation. The two evalu-
ation stages and the respective outcome measures are described in the
following sections.

Fig. 5. Surgeon’s view of AR navigation. The PreOp model is rendered as an axis-
aligned virtual twin (top) and the current drill sleeve pose is visualized with respect to
the preoperatively planned screw entry point and trajectory. In addition, the angular
3D deviation between the drill sleeve and the screw trajectory is shown. The direct
overlay of the entry point (green cross) can be shown/hidden by the surgeon. The blue
square denotes the origin of the navigation device. Note that white push-pins are only
used for postoperative evaluation of target registration error.

2.3.1. Verification
For verification, the eight trained networks (Section 2.1.2) were em-

ployed. For each specimen, each of the 40 recordings (Section 2.1.1) in
the respective testing fold was evaluated using the server app, with the
first frame as the initial frame and all subsequent frames as interaction
frames.

The recordings in the SpineDepth dataset were made from a broad
variety of viewpoints, some of which providing a strongly inclined lat-
eral view of the anatomy, thus potentially influencing the registration
quality. Preliminary analysis had shown that the 3D angle between
the RGB-D sensor’s forward axis and the axis pointing in posterior
direction correlate positively with the target registration error (TRE)
after applying our proposed method. The correlations (Pearson corre-
lation coefficient: PCC) are reported for each specimen in the testing fold
(viewpoint-error correlation, VEC). It was defined that only recordings
with a 3D angle below 30◦ are considered, which was assumed to
be the range of angles allowing OR lamps to illuminate the surgical
site without surgeon-induced occlusions. The number of recordings
fulfilling this criterion is also part of the results (acceptable viewpoints,
AcVp). Note that for generalization purposes, the viewpoints above 30◦

were not excluded from network training.
A single threshold for the accuracy of pedicle screw placement with

respect to the optimally planned screw could not be defined, as the
required accuracy is generally dependent on different anatomical and
surgical factors such as the anatomical morphology and pathology of
the patient, the underlying bone quality, or the utilized surgical ap-
proach. Furthermore, with an automated evaluation based on the given
dataset, tapping landmarks on the anatomy to confirm the registration
accuracy, as done during AR guidance (Section 2.2.2), is not possible.
Therefore, a successful registration was measured by the established
clinical criteria according to Modi et al. (2008), who define a screw
perforation of less than 2 mm as safe. To this end, optimal pedicle
screws (⌀: 5 mm) were planned bilaterally using an in-house developed
preoperative planning software (CASPA, University Hospital Balgrist,
Zurich, Switzerland).
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Fig. 6. Assessment of pedicle perforation. Left: calculation of intersection between
screw axis (gray) and pedicle middle plane (violet). If the intersection point was outside
the pedicle 3D model (green), the registration was not successful. Otherwise, it was
verified whether any point of the pedicle 3D model was inside the cylinder (right,
yellow, attached is the pedicle screw head in gray). If so, for any point within the
cylinder, the distance to the cylinder mesh was calculated. The point having the largest
distance to the was used to quantify the amount of perforation in mm.

The assessment of pedicle perforation is illustrated in Fig. 6. A 3D
model of the pedicle was extracted from the PreOp model and imported
into MATLAB. The screws were represented as cylinders (⌀ 5mm). For
each frame of a recording, the screws were transformed according
to the corresponding vertebra pose found by our method, while the
pedicle 3D model was transformed according to the respective ground
truth pose. The intersection between the screw axis and the pedicle
middle plane was calculated. If the intersection point was outside of
the pedicle 3D model, the screw, and therewith the registration, was
considered as not successful. If the intersection point was inside the
pedicle 3D model, it was verified whether any point of the pedicle 3D
model was inside the cylinder. If so, the screw was said to perforate the
pedicle. For any point within the cylinder, the distance to the cylinder
mesh was calculated. The point having the largest distance was used to
quantify the amount of perforation in mm.

Note that the registration success was defined on a per frame basis
and for the target screw only (the screw that the surgeon works on in
the respective recording), e.g. if the surgeon prepares the entry point
of L2 left in the recording, the registration for a frame was considered
successful when the previously described perforation assessment using
the estimated pose for L2 (�̂�𝑉2

) revealed that the perforation would
have been below 2 mm. The success rate of a single recording was
defined as the number of successful frames divided by the total number
of frames. The success rate of an entire specimen equals the median
success rate over all recordings in the testing fold. In the same way, the
median 3D angular deviation between the optimal and estimated screw
trajectory (trajectory error: 𝐸𝐸𝑇𝑅

) as well as the median 3D distance
between the optimal and estimated screw entry point (entry point error:
𝐸𝐸𝐸𝑃

) are reported. As the TRE considers the registration for an entire
vertebra, it can only be computed on a per vertebra level. The TRE for
a recording of 𝐹 frames, where L2 was targeted, with 𝐾 = 3 landmarks
(𝐿1: spinous process, 𝐿2 and 𝐿3: left and right transverse processes) and
d(𝑝1, 𝑝2) as the 3D Euclidean distance between two points 𝑝1 and 𝑝2, is
defined in Eq. (7). The median over all 40 recordings is reported.

TRE =
1

𝐹𝐾

𝐹∑

𝑓=1

𝐾∑

𝑘=1

d(�̂�𝑉2
(𝑓 )𝐿𝑘,𝐓𝑉2

(𝑓 )𝐿𝑘). (7)

Preliminary analysis showed that the alignment of each PreOp
model can stabilize during the first few interaction frames, presumably
due to the slightly varying 3D reconstructions provided by the RGB-
D sensor in the absence of surgeon interaction. Therefore, the TRE is
reported as of frame 61 (∼2 s).

As described in Section 2.1.3, the 3D points used for registration
are a subset of the ground truth 3D model geometries in the dataset
(Fig. 3). Consequently, a direct comparison between all 3D model

points transformed according to our method and the corresponding
ground truth 3D points is possible. This metric for pose estimation
problems was defined in Hinterstoisser et al. (2013) and is referred to
as average distance (ADD). The ADD for exemplary vertebra L2 in a
recording of 𝐹 frames is computed in the same way as the TRE (Eq. (7)),
except 𝐿 denoting 3D points instead of landmarks and 𝐾 denoting the
number of points in the 3D model. Analogously to the TRE, the ADD is
computed on a per vertebra level and the median over all 40 recordings
considering the respective target screws (the screw that the surgeon
works on in the respective recording) is reported.

As an additional result, the percentage of updated poses (UpPo) for
the vertebra of interest in interaction frames. For each recording, the
number of frames where a pose update according to our method was
performed (Section 2.1.3) divided by the number of possible frames
was assessed. For each specimen, the median over all 40 recordings is
reported.

The median runtimes of the registration step (initial pose estimation
+ general alignment + piecewise refinement) and the pose update step
are reported over 40 recordings of an exemplary specimen. For the pose
update step, the average over all frames in a recording was calculated,
after which the median over all recordings was formed.

Besides the outcome measures related to registration and pose
updates, the performance of the eight trained networks are reported.
Segmentation accuracy was evaluated with the Dice similarity coeffi-
cient (DSC). As in Tulsiani and Malik (2015) and Mahendran et al.
(2017), the orientation prediction was evaluated with the median
geodesic angle error (MGAE), which equals the median loss defined
in Eq. (1) over an entire fold, expressed in degrees. Note that these
outcome measures are based on number of frames defined for the
training folds, i.e., not full recordings but 240 frames per fold/specimen.

2.3.2. Ex-vivo validation
The goal of the ex-vivo validation was to place ten pedicle screws

(L1–L5, left and right) under AR guidance using the herein presented
method (registration and navigation module) on an unseen human
lumbar spine. A fresh frozen specimen was used. Ethical approval was
obtained from the ethical committee of Canton Zurich (Basec-Nr. 2017-
00874). The specimen was CT scanned using a NAEOTOM Alpha©
device (Siemens Healthineers, Erlangen, Germany) with a 0.8 mm slice
thickness and a 0.41 × 0.41 mm in-plane resolution (x–y). 3D models
of L1–L5 were extracted using the global thresholding, region growing
and wrapping functionalities of the Mimics software (Materialise NV,
Leuven, Belgium). Again, the points visible from an orthogonal poste-
rior view were selected as described in Section 2.1.3 (Fig. 3). Optimal
pedicle screws (⌀: 5 mm) were planned in CASPA. In preparation of
the experiment, the specimen was thawed and dissected to have no soft
tissues, e.g. paravertebral muscles, without damaging the intraspinous
ligament, the ligamentum flavum as well as the facet joint capsule. The
specimen was fixated to a wooden board with surgical pins through
spinal levels T6/7 and S1.

The network was trained in the same way as described in Sec-
tion 2.1.2, but using the training folds of all eight specimens in the
SpineDepth dataset. As there was no ground truth available for the
unseen specimen, the number of epochs was reduced to ten to mitigate
overfitting to the experimental setup, e.g. the spine orientation w.r.t.
the table, of the SpineDepth dataset. Due to the fact that the preop-
erative CT was taken from the frozen specimen, the inter-vertebral
deformation between the pre- and intraoperative states was higher than
in the SpineDepth dataset, where the CT was conducted in a fully
thawed state. Therefore, the piecewise refinement (Section 2.1.3) was
performed for 50 iterations, without a stopping criterion, to overcome
local minima due to the 2 mm inlier threshold.

During the experiment, the RGB-D sensor was placed above the
surgical site (Fig. 7) and the server and client apps were started.
After that, the workflow was as described in Section 2.2.2: the sensor
viewpoint was adjusted, such that the initial pose was reasonable,
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Fig. 7. Setup during the ex-vivo validation. After inserting the five pedicle screws on
the right side, the specimen was rotated by 180◦. After re-registration, the surgeon
could insert the five screws on the left side.

followed by the co-calibration of sensor and HMD. The registration and
pose updates were initiated. For each vertebra, the surgeon checked the
registration accuracy and inserted the respective pedicle screw (right
side) according to the AR guidance. For screw insertion on the left
side, the specimen was rotated 180◦ (the other side of the table was
not optimal to stand for the surgeon), followed by a re-registration.

For the ex-vivo validation, TrEr, EpEr, TRE and ADD are reported.
TrEr and EpEr were quantified following the same procedure as de-
scribed in Liebmann et al. (2019). A postoperative CT of the specimen
was acquired with the same imaging device and protocol as for the pre-
operative scans. 3D models of the bone anatomy and the screws were
extracted. In the CASPA software, the PreOp models along with the
planned screw trajectories were registered to the postoperative bone
anatomy using point-to-plane ICP (Rusinkiewicz and Levoy, 2001).
In the same fashion, generic cylindrical 3D models were aligned to
the postoperative screw 3D models. The cylinders’ main axes were
compared to the planned screw trajectories, yielding the 3D angular
deviation TrEr. The 3D Euclidean distance EpEr was determined by
comparing the planned entry points to the intersection point of the
cylinders’ main axes with the registered preoperative 3D model.

In contrast to the SpineDepth verification where the ground truth
vertebral poses were available, the data collected in the ex-vivo vali-
dation experiment lacked the registration ground truth; therefore, the

experiment was captured as an RGB-D recording and the TRE was quan-
tified retrospectively in a static manner. Six push-pins were inserted
into the spinal levels T12 and S1 (three each) before the experiment
(Fig. 5). The 3D positions of the push-pin head centers were determined
in the postoperative CT using the Mimics software as well as in the left
and right RGB images of the RGB-D initial frame using blob detection
and triangulation techniques (Bradski, 2000). The best fit in a least-
squares sense between the two point sets was found in the CASPA
software and allowed for transforming the preoperative 3D models into
the coordinate frame of the RGB-D sensor. The TRE is based on the
same three landmarks per vertebra as for the verification and is also
reported for the 61st frame (∼2 s) after the initial frame. The ADD were
computed analogously to the TRE.

As an additional outcome measure, the navigation time, defined
according to Farshad et al. (2021b) as the time from picking up the
drill sleeve until the drilling process was started, is reported.

Note that the reported median values for TrEr, EpEr, and navigation
time were calculated based on all ten screws placed. TRE and ADD
are based on the five vertebrae and all three registrations that were
performed during the experiment.

2.3.3. Ablation study
To further understand the capabilities of the proposed registration

method and the mechanisms leading to our results, an ablation study
was conducted. For both verification stages, the server app was run
three times with the following modifications (italic font denotes the
name of the modification used hereinafter):

• General: Registration only included general alignment, no piece-
wise refinement, no pose updates
• Refinement: Registration included general alignment and piece-
wise refinement, but no pose updates
• First-60: Registration included general alignment, piecewise re-
finement and pose updates during the first 60 interaction frames
of a recording

For the ablation study, only TRE and ADD are considered. Note that,
for the ex-vivo validation, First-60 is equal to our primary results by
definition and is therefore not reported.

3. Results

Table 1 summarizes the results. It comprises the verification and the
ex-vivo validation. In the following, the five-number summary is given
in the following format: median (minimum, first quartile, third quartile,
maximum).

For the verification, the viewpoints and TRE correlated by 0.41
(0.12, 0.36, 0.69, 0.78). The number of acceptable viewpoints was 27
(22, 24, 32, 36), with 100% (0, 100, 100, 100) registrations being
successful. The trajectory error was 1.6◦ (0.0, 1.0, 2.6, 37.8) and the
entry point error was 2.3 mm (0.4, 1.6, 3.6, 39.3). The TRE was 2.7 mm
(0.5, 1.7, 3.9, 41.1) and the ADD was 2.6 mm (0.5, 1.9, 3.8, 49.7). 9%
(0, 0, 24, 100) of the poses were updated during interaction frames. The
DSC was 0.74 (0.67, 0.72, 0.74, 0.76) and the MGAE was 14◦ (13, 13,
17, 21).

The runtimes were assessed on specimen 6. The registration step
(initial pose estimation + general alignment + piecewise refinement)
took 1475 ms (1344, 1428, 1595, 1755) and the pose update step took
20 ms (16, 18, 21, 27).

An exemplary case from the verification is illustrated and explained
in Fig. 8. It shows segmentation and occlusion handling, initial pose,
general alignment, piecewise refinement and pose updates as well as
comparison of ground truth models and screws to their counterparts
estimated by the proposed registration module.

During the ex-vivo validation, three registrations were necessary.
After placing the first screw (L1, right), the client app crashed un-
expectedly. Therefore a second registration became necessary. After
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Table 1
Results overview. Specimen numbering is according to the SpineDepth dataset. Spec.: Specimen. perf.: performance. Med.: Median. Min.: Minimum. Q1: first quartile. Q3: third
quartile. Max.: Maximum. VEC: viewpoint-error correlation. AcVp: acceptable viewpoints (out of 40). SuRe: successful registrations. TrEr: trajectory error. EpEr: entry point error.
TRE: target registration error. UpPo: updated poses. DSC: Dice similarity coefficient. MGAE: median geodesic angle error. N/A: not applicable. * denotes that the five-number
summary (median, minimum, first quartile, third quartile and maximum) was calculated from the 320 recordings (40 recordings per specimen) and not based on the median value
per specimen given in this table. For the ex-vivo validation, TrEr and EpEr were calculated based on all ten screws placed, and TRE and ADD based on the five vertebrae and all
three registrations that were performed during the experiment.

Spec. Registration and pose updates Network perf.

VEC AcVp SuRe* [%] TrEr* [◦] EpEr* [mm] TRE* [mm] ADD* [mm] UpPo* [%] DSC MGAE [◦]

2 0.43 28 100 2.1 3.5 4.1 3.9 1 0.67 13
3 0.40 22 100 2.2 2.7 3.1 2.8 15 0.74 14
4 0.78 22 100 1.7 1.9 2.5 2.3 15 0.75 18
5 0.67 24 100 1.3 1.4 1.5 1.7 12 0.76 14
6 0.27 30 100 1.1 1.1 1.3 1.3 3 0.74 13
7 0.12 36 100 1.6 1.7 1.8 2.1 9 0.74 16
8 0.39 36 100 1.9 3.2 3.4 3.4 13 0.74 13
9 0.73 26 100 2.4 4.0 4.1 4.0 11 0.67 21

Med. 0.41 27 100 1.6 2.3 2.7 2.6 9 0.74 14
Min. 0.12 22 0 0.0 0.4 0.5 0.5 0 0.67 13
Q1 0.36 24 100 1.0 1.6 1.7 1.9 0 0.72 13
Q3 0.69 32 100 2.6 3.6 3.9 3.8 24 0.74 17
Max. 0.78 36 100 37.8 39.3 41.1 49.7 100 0.76 21

Ex-vivo validation
Med. N/A N/A N/A 2.4 2.2 1.0 1.0 N/A N/A N/A
Min. N/A N/A N/A 0.7 0.5 0.5 0.5 N/A N/A N/A
Q1 N/A N/A N/A 1.7 0.9 0.9 0.8 N/A N/A N/A
Q3 N/A N/A N/A 2.6 2.6 1.3 1.5 N/A N/A N/A
Max. N/A N/A N/A 6.8 3.7 2.6 2.8 N/A N/A N/A

Fig. 8. Exemplary recording from verification. (a) Point cloud (b) Segmentation with screw occlusion handling (L4 left & right, L5 left). (c) Segmentation with surgeon occlusion
handling. (d) Initial pose in initial frame. (e) General alignment in initial frame. (f) After piecewise refinement and 60 pose updates. (g) Estimated (blue) and ground truth (green)
vertebra poses. (h) Estimated (blue) and ground truth (green) simulated screws. (i) Estimated simulated screws on point cloud.

placement of the remaining four screws on the right side, the specimen

was rotated by 180◦, followed by the third registration, such that the

surgeon could operate on the left side. The trajectory error was 2.4◦

(0.7, 1.7, 2.6, 6.8), while the entry point error was 2.2 mm (0.5, 0.9,

2.6, 3.7). All screws were of grade 0, i.e., fully contained within the

pedicle (Modi et al., 2008). The TRE was 1.0 mm (0.5, 0.6, 1.1, 1.1)
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for the first, 0.9 mm (0.7, 0.9, 1.0, 1.2) for the second, and 1.8 mm (1.0,
1.4, 2.1, 2.6) for the third registration, respectively. The corresponding
ADD were 0.9 mm (0.5, 0.8, 1.0, 1.2), 0.8 mm (0.7, 0.7, 1.2, 1.2), and
1.9 mm (0.9, 1.7, 2.1, 2.8). The navigation time per screw was 28 s
(16, 22, 31, 49).

For the verification, the ablation study showed a TRE of 2.58 mm
(0.4, 1.6, 4.0, 40.5) for Refinement, 2.64 mm (0.4, 1.7, 3.8, 40.5) for
First-60, 2.672 mm (0.5, 1.7, 3.9, 41.1) for our primary results, and
2.674 mm (0.6, 1.9, 4.2, 40.2) for General, respectively. For the ADD,
the order was the same with 2.47 mm (0.4, 1.8, 3.9, 49.1), 2.61 mm
(0.5, 1.9, 3.8, 49.1), 2.62 mm (0.5, 1.9, 3.8, 49.7), and 2.67 mm (0.5,
1.8, 4.1, 48.5), respectively.

For the ex-vivo validation, our primary results were the most ac-
curate in terms of TRE with 1.0 mm (0.5, 0.9, 1.3, 2.6), followed by
Refinement with 1.1 mm (0.5, 0.7, 1.8, 3.7), and General with 1.7 mm
(1.3, 1.6, 3.9, 5.3), respectively. For the ADD, Refinement was slightly
more accurate than our primary results with 0.9 mm (0.4, 0.8, 1.6, 4.1),
as opposed to 1.0 mm (0.5, 0.8, 1.5, 2.8). The least accurate was General
with 1.6 mm (1.2, 1.5, 3.4, 4.9).

4. Discussion

Despite the fact that CAOS can increase accuracy as well as safety
in complex orthopedic procedures, such as pedicle screw placement
(Gelalis et al., 2012; Perdomo-Pantoja et al., 2019), the clinical adop-
tion of such methods is arguably low (Joskowicz and Hazan, 2016;
Härtl et al., 2013; Nadeau et al., 2015). Besides economic reasons,
one major barrier along ubiquitous adaptation of the existing CAOS
solutions is their interference with the standard surgical workflow.
More specifically, main limiting factors associated with the current
CAOS systems for surgical navigation can be noted as: cumbersome and
time-consuming, ionizing radiation exposure, lengthy registration pro-
cedures and unintuitive visualization of spatial navigation information
on 2D monitors in the OR periphery. In this work, we intended to tackle
these drawbacks and presented a simplistic and radiation-free approach
for automatic, accurate and fast pedicle screw placement in cadaveric
lumbar spines under AR guidance.

The verification on the SpineDepth dataset showed a median reg-
istration success rate of 100%, meaning that the target screw would
have been placed successfully within the clinical safe zone. In the study
of Félix et al. (2021), who pursued a similar approach for femur and
tibia, the success of a registration was defined based on the percentage
of inliers, which had to be at least 80. They reached a success rate of
37.7% for the femur and 35.2% for tibia, respectively. The required
registration accuracy, defined as 3◦ rotational error and 3–4 mm trans-
lational error, was only met in terms of translation. The surface-based
femur registration and tracking approach of Hu et al. (2022) achieved
a root-mean-square error of 2.40 mm on real-time captures of a bone
phantom, which reduced to 2.07 mm when the bone phantom data was
processed with the suggested PointNet-based restoration network. For
spine surgery, a wide range of acceptable registration errors can be
found in the literature, which depend on various factors. Rampersaud
et al. (2001) defined that the maximum rotational and translational
deviation for the lumbar spine reach from 2.1◦/0.65 mm (L1) to
12◦/3.8 mm (L5) for screws with a diameter of 6.5 mm. As the TRE re-
ported in this work comprises the rotational and translational aspect, a
comparison to TrEr and EpEr is more meaningful. While the TrEr (1.6◦)
is within the aforementioned limits in our case, the EpEr (2.3 mm)
exceeds the limit for L1. Besides the targeted spine level, different
methods for error calculation can affect the reported values (Holly
and Foley, 2007). The TRE is a well-known measure to characterize
the accuracy of navigation approaches (Ershad et al., 2014). Guha
et al. (2019) investigated the error propagation of clinical-grade nav-
igation systems w.r.t. a dynamic reference frame (DRF) attached to
the anatomy, which is a common motion compensation technique, on
four human cadavers. They compared intraoperative tip positions of a

tracked awl (mimicking a bone screw) to typical pedicle screw entry
points in a postoperative CT. An average 3D navigation (note that this
error may differ from the registration error) error of 2.71 mm at DRF
level was found. This error increased with a larger distance to the DRF
level. Although the respective registration error must have been lower,
the fact that the use of a DRF is the gold standard makes it eligible
for comparison to our registration error, assuming tracking errors in
current navigation systems are minimal: the EpEr (2.3 mm) of our
verification was superior and the TRE (2.7) equal. When comparing
to the TRE of 1.43 ± 0.35 mm in the semi-automatic microscopic RGB
stereo method of Ji et al. (2015), three out of eight specimens in
the verification can be considered within the range of their standard
deviation. The required 2 mm maximum acceptable registration error
for cranial and spine procedures (Faraji-Dana et al., 2020) is reached
for three of our specimens. However, it should be considered that the
dataset already comes with certain inaccuracies (ground truth TRE of
1.5 mm). The second (0.9 mm) registration in our ex-vivo validation
showed sub-millimetric accuracy, which is equal or close to studies
using navigation systems with manual point sampling for pedicle screw
navigation (0.9 mm in Papadopoulos et al. (2005), 0.7 mm in Nottmeier
and Crosby (2007)) or cutting-edge intraoperative CT device for cranial
procedures (0.93 mm in Carl et al. (2018)). The screw accuracies with
a TrEr of 2.4◦ and EpEr of 2.2 mm in the ex-vivo validation are in line
with other studies investigating surgical navigation for pedicle screw
placement. The AR system used in Felix et al. (2022) achieved a 3D
accuracy of 2.5◦ and 1.9 mm for open surgery in cadavers. In van
Dijk et al. (2015), the accuracy of 178 minimally invasive screws using
a robotic system was assessed, resulting in a mean 2D in-plane error
of 2.55◦ and a 3D entry point deviation of 2.0 mm. An even lower
mean angular deviation of 1.53◦ can be found in the cadaveric study
of Lamartina et al. (2015). However, again, the values originate from
2D in-plane measurements.

Besides showing similar accuracy, our registration method has two
advantages over clinically established navigation systems. First, the
registration is fully automated and is performed for all targeted levels
simultaneously, while computation time required by our method was
only approximately 1.5 s (and after that real-time with a median of
20 ms per frame) and therewith considerably lower compared to other
clinical-grade systems based on surface data (less than 20 s in Faraji-
Dana et al. (2020)) or manual point sampling (117 s in Nottmeier
and Crosby (2007), 125 s in Farshad et al. (2021b)). Our ablation
study shows that the piecewise refinement improves accuracy espe-
cially when the preoperative images were acquired in a different pa-
tient positioning. Second, anatomy displacement induced by surgical
manipulation or respiration can be as high as 1.85±1.48 mm and 1.09±

0.44 mm, respectively (Guha et al., 2019). Our ablation study could
not show superior accuracy when applying real-time pose updates
in interaction frames throughout entire recordings (primary results) as
opposed to a registration based on an initial frame only (Refinement) or
applying updates for the first 60 interaction frames (First-60). One of the
main reasons could be the frame rate of the RGB-D sensor as well as
motion blur in the images, leading to a insufficient 3D reconstruction.
The surgical interactions in the SpineDepth dataset are of fast nature.
However, slower motions, such as breathing, could be compensated
with the method at hand (upon proper investigations in the future).
For faster motion, different sensor types, not based on RGB or grayscale
images, could further improve the performance of our method in this
regard. Finally, the anatomical part that is moved the most is (partly)
hidden by the surgeon, and therefore challenging to track. Neverthe-
less, we see our approach being a foundation for developing automatic
level-wise motion compensation in real-time without needing a DRF
clamped to the anatomy.

The median time for pre-drilling a screw trajectory with our method
was 28 s per screw which can be considered as very fast. This is superior
to navigation using C- or O-arm (248 s for C-arm and 134 s for O-arm
in Liu et al. (2017)), as well as other studies using AR guidance in
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cadaveric specimens (57.5 s in Müller et al. (2020), 67 s in Farshad
et al. (2021b)) or a first in-human study (312 s in Elmi-Terander et al.
(2019)).

In terms of network performance, the DSC of the segmentation path
with a median of 0.74 on the SpineDepth dataset was comparable
to Félix et al. (2021) (DSC for tibia: 0.73), although segmentation of the
spinal anatomy might be considered more challenging. The accuracy of
the orientation prediction (14◦) is comparable to the ones reported in
the two publications inspiring our method (16.63◦ in Mahendran et al.
(2017), 13.59◦ in Tulsiani and Malik (2015)).

Further analysis revealed a PCC of −0.78 between TRE and DSC,
suggesting that the segmentation quality plays a key role in find-
ing an accurate registration. The TRE also correlates (PCC of 0.74)
with the visible bone surface error (VBSE) reported in the SpineDepth
publication (Liebmann et al., 2021), which essentially describes the
reconstruction quality of the RGB-D sensor in use. While the dataset
was recorded based on stereo calibrations created with a manufacturer-
provided application, for our ex-vivo validation, standard OpenCV
stereo calibration functionality (Bradski, 2000) was employed, leading
to a much lower median TRE (1.0 mm). This potential of accurate spine
3D reconstruction was confirmed in the study of Manni et al. (2020),
where features in stereo grayscale images were matched with a 3D
triangulation error below 0.5 mm. Stereo calibration and reconstruction
quality may not be the only factors influencing the accuracy of the
proposed registration approach, but they can be seen as a key factor.
Other such factors could be the presence of soft tissue and the missing
facet joints/mammillary processes in the dataset specimens, not only
regarding accuracy, but also for convergence during general alignment,
as more soft tissue flattens important bony surfaces, as well as the
presence of previously inserted screws. The latter is suspected to be the
reason for the increase in error from the first and second registration
in the ex-vivo validation to the third, for which the specimen was
rotated by 180◦ and all screws on the right side had already been
inserted. This imbalance is not accounted for, which is a limitation
of our method. More importantly, the full anatomical exposure in the
cadaveric specimens is unrealistic within a clinical setting, and the
high visibility facilitates the registration as well as the navigation.
Furthermore, our method did not generalize to all specimens in the
verification: specimen 10 had to be excluded due to its much smaller
size compared to the other eight considered specimens. Besides that,
only a potential approach to real-time motion compensation could be
shown. It needs to be found out whether the method would work
as is for compensating slow movements, such as breathing, or fast
movements when a different type of sensor is used.

For future work, the method needs to be evaluated on speci-
mens with surgical approaches of varying sizes, i.e., less visibility
of anatomical structures. Most importantly, the requirements for suc-
cessful pose updates during surgeon interaction, i.e., sensor type,
viewpoint and number of iterations needed should be investigated. Fur-
thermore, transformer-based depth reconstruction, as proposed in Gu
et al. (2021a), could be a promising way to increase registration
accuracy, while feature-based tracking (Manni et al., 2020) should be
investigated as a motion compensation strategy.

5. Conclusions

Our results suggest that fast, radiation-free, and fully automatic
level-wise registration with real-time pose updates from RGB-D data for
pedicle screw navigation under augmented reality guidance is feasible
and meets clinical accuracy demands.
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