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A B S T R A C T

Pedicle drilling is a complex and critical spinal surgery task. Detecting breach or penetration of the surgical tool
to the cortical wall during pilot-hole drilling is essential to avoid damage to vital anatomical structures adjacent
to the pedicle, such as the spinal cord, blood vessels, and nerves. Currently, the guidance of pedicle drilling
is done using image-guided methods that are radiation intensive and limited to the preoperative information.
This work proposes a new radiation-free breach detection algorithm leveraging a non-visual sensor setup in
combination with deep learning approach. Multiple vibroacoustic sensors, such as a contact microphone, a
free-field microphone, a tri-axial accelerometer, a uni-axial accelerometer, and an optical tracking system
were integrated into the setup. Data were collected on four cadaveric human spines, ranging from L5 to T10.
An experienced spine surgeon drilled the pedicles relying on optical navigation. A new automatic labeling
method based on the tracking data was introduced. Labeled data was subsequently fed to the network in mel-
spectrograms, classifying the data into breach and non-breach. Different sensor types, sensor positioning, and
their combinations were evaluated. The best results in breach recall for individual sensors could be achieved
using contact microphones attached to the dorsal skin (85.8%) and uni-axial accelerometers clamped to the
spinous process of the drilled vertebra (81.0%). The best-performing data fusion model combined the latter
two sensors with a breach recall of 98%. The proposed method shows the great potential of non-visual sensor
fusion for avoiding screw misplacement and accidental bone breaches during pedicle drilling and could be
extended to further surgical applications.

1. Introduction

Pedicle screw placement is a standard procedure in spinal surgeries
performed in cases of scoliosis, trauma, spinal tumors, and degenerative
spinal pathologies. However, due to adjacent vital anatomical struc-
tures, sub-optimal pedicle screw positioning can lead to neurological
and vascular injuries. It was reported that the rate of pedicle screw
malpositioning reaches up to 41% in the lumbar spine and 55% in the
thoracic spine [1]. The optimal screw positioning is achieved when
screws have maximum diameter and length within the pedicle, do
not breach the pedicle’s cortical layer or vertebral body, and follow a
converging trajectory usually parallel to the upper endplate. In conven-
tional freehand techniques, a profound understanding of the anatomical
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landmarks is essential to identify the entry point. After finding the entry

point, a surgical drill or a probe is used to create the pilot hole inside

the pedicle. This technique demands thorough anatomical knowledge

and experience-based judgment from tactile feedback to avoid pedicle

cortical wall perforation. The purpose of present study is to detect

cortical wall perforation using a convolutional neural network (CNN)

trained on vibroacoustic sensor data and to investigate whether data

fusion from different sensors improves the breach detection rate during

pedicle drilling.

With the advances in imaging and robotic technologies, imaging-

based and robot-assisted techniques have been developed to navigate

the surgeon during pedicle screw positioning and prevent pedicle
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breaches. Several reviews show improved outcome for fluoroscopy-
guided and optical marker-based navigation, both for robot-assisted
and freehand operations [2,3]. However, the fluoroscopy-guided
method is characterized by higher radiation exposure [1,4], and non-
negligible patient movement during the operation introduces additional
errors to optical marker-based navigation. These issues were tackled
by a smart commercial surgical instrument called PediGuard Probe
(SpineGuard, Vincennes, France). It enables detection of transition from
one tissue to another by measuring the local electrical conductivity of
the tissue in contact with the probe tip. When tested in combination
with fluoroscopy by Chaput et al. and Bolger et al. the accuracy of the
procedure remained 98% but the number of fluoroscopy shots reduced
by 30% [5,6]. Guillen et al. [7] tested the PediGuard probe without
any fluoroscopic guidance and achieved 90.06% accuracy. These results
will be used as a target or benchmark for our proposed breach detection
method.

Previously, we conducted a systematic study on the existing intra-
operative tissue classification methods in orthopedic and neurological
studies [8], where we reported the potential of sensor fusion and
vibroacoustic sensing with transducers such as microphones and ac-
celerometers in differentiating cortical and cancellous bone layers.
Besides, the non-visual nature of the vibroacoustic sensing alleviates
the limitation to the preoperative planning and exhibits less radiation
exposure than the methods above. The use of microphones has been
extensively investigated for this purpose [9–13].

A mel-spectrogram is a visual representation of the audio signal’s
amplitude over time across different frequency bins in the mel scale.
The latter is a scale proportional to the (by humans) perceived differ-
ence, due to the cochlear anatomy, in magnitude of different frequen-
cies that are factually at the same magnitude [14]. Several studies have
shown how mel-spectrograms can be used for audio event detection and
classification in a variety of applications [15–17]. Purwins et al. [18]
reported in his review that the deep learning methods trained on mel-
spectrograms have a comparable performance on a less amount of
data as a method trained on raw audio data. Whereas, raw waveforms
provide better exploitation of the deep learning methods without hand-
crafted features, but with more data. Furthermore, Seibold et al. [19]
showed that a convolutional neural network, using mel-spectrograms
as input, can detect the breakthrough event during a femur drilling
process with an accuracy of over 90% in a total execution time of
less than 140 ms. Therefore, we propose a novel method of detecting
pedicle breaches during the pedicle drilling step in spine surgery by
leveraging the power of vibroacoustic sensing and CNNs. A breach
event is considered as the penetration of the surgical instrument from
the cancellous layer to the adjacent cortical of the vertebra. This study
aims to analyze the performance of the CNN with different vibroa-
coustic sensors and to investigate whether and to which extent data
fusion of those different sensors improves the breach detection rate
during pedicle drilling. We hypothesize that the performance of the
CNN can be boosted in the case of sensor fusion since they might
provide complementary information. The following contributions can
substantiate the novelty of this study:

1. Our work introduces an automatic labeling approach based on
tracking data from the optical navigation system for non-visual
signal data that greatly accelerates data collection for machine
learning.

2. Multiple vibroacoustic sensors, including a contact microphone,
a free-field microphone, a tri-axial accelerometer, and a uni-
axial accelerometer, were integrated into the setup such that we
could systematically investigate vibroacoustic sensing technolo-
gies both individually and fused.

3. A breach detection algorithm was developed by leveraging sen-
sor fusion and a squeeze-and-excitation neural network.

4. The data collection was performed by conducting a series of
ex-vivo cadaveric experiments to facilitate close to the actual
clinical application scenario.

5. The concept of transfer learning in the mel-spectrogram domain
was tested for the first time using pre-trained weights from
a previous study and re-training the network on vibroacoustic
sensor data.

2. Methods

The proposed method includes a definition of drilling trajectories,
data collection, data processing, and deep learning, as shown in Fig. 1.
Definition of drilling trajectories was performed first as described in
Section 2.1 to simulate different breaches during pedicle drilling, which
was later visualized in the surgical navigation setup (Section 2.2.2).
Vibroacoustic data from contact microphones (𝑀𝑖𝑐1), a free-field mi-
crophone (𝑀𝑖𝑐2), uni-axial accelerometers (𝑃𝐶𝐵1 and 𝑃𝐶𝐵2) and a
tri-axial accelerometer (𝑃𝐶𝐵3) were collected during pedicle drilling
along with surgical navigation data (Section 2.2). Collected data were
processed (Section 2.3) and used to develop a CNN for breach detection
in Section 2.4.

2.1. Definition of drilling trajectories

Four fresh-frozen human cadaver spines from T12 to coccyx were
acquired from Science Care (Phoenix, USA) and used for data collec-
tion. Ethical approval was obtained from the ethical committee for
conducting this cadaveric study (ID: 2021-01196). The spines were
fixed onto a wooden board using surgical pins with a diameter of 3 mm
to provide stability to the anatomy during experiments. The soft tissue
on top of the sacrum was removed. A marker with four converging
canals was designed, 3D-printed, and attached to the sacrum of each
specimen to track relative motion between anatomy and marker. CT
scans of each specimen with a marker and infrared reflecting spheres
were taken with a slice thickness of 1 mm (SOMATOM Edge Plus,
Siemens Healthcare, Erlangen, Germany). Afterward, all vertebrae,
markers, and spheres were segmented and converted into 3D triangular
surface models using the Materialise Mimics Innovation Suite software
(version 19.0, Materialise NV, Leuven, Belgium). Drilling trajectories
were planned on each spine, from T10 to L5 levels, and on both sides of
each vertebra using the surgery planning tool of our institution. Trajec-
tories were planned by resident surgeons (NC and DS) and confirmed by
an experienced spine surgeon (CL). Along with optimal or breach-free
trajectories, laterally- and medially-breaching trajectories were planned
as shown in Fig. 2. In all cases, the anterior cortical wall of the vertebral
body was deliberately breached.

Cadavers were thawed a day previous to the experiment, and the
surgical approach was performed by a surgeon, providing midline
access to the posterior elements of the thoracolumbar spine.

2.2. Data collection

2.2.1. Sensors
Fig. 3 shows all sensors in contact with the sample, the free-field mi-

crophone above the sample on the left, and the tri-axial accelerometer
attached to the drill on the right. Three custom piezo-electric contact
microphones (𝑀𝑖𝑐1) were attached to the skin directly above bony
structures near the incision site using kinesiology tape and connected
to an analog/digital converter (PreSonus Studio 68, PreSonus Electron-
ics, Inc., Baton Rouge, LA, USA) through a 48 V phantom-powered
impedance matching circuit,2 to tackle the impedance mismatch issue
(Fig. 3a). A PCB free-field condenser microphone (𝑀𝑖𝑐2) of model
378B02 (PCB Piezotronics, Depew, NY, USA) was placed at a distance
of approximately ten to twenty centimeters from the drilling site using
a standard tripod, as shown in Fig. 3c, to capture acoustic variations in

2 Designed by Alex Rice: https://www.zachpoff.com/resources/alex-rice-
piezo-preamplifier/.
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Fig. 1. Overall pipeline of the proposed method for breach detection during pedicle drilling: (a) definition of drilling trajectories in dedicated software, (b) drilling by experienced
surgeon and data collection, (c) processing of the vibroacoustic data and the optical tracking data, (d) training the deep learning model on individual sensor data and fused sensor
combination data.

bone properties similar to the work of Goossens et al. [20]. One PCB
uni-axial lightweight accelerometer (𝑃𝐶𝐵1) of model 352A24 (PCB
Piezotronics, Depew, NY, USA) was attached to the spinous process
of the vertebra being drilled, utilizing an in-house manufactured 3D-
printed clamp (Fig. 3b). Another uni-axial accelerometer (𝑃𝐶𝐵2) of the
same model was attached to a surgical pin (Fig. 3b), and drilled through
the sacral bone to fix the spine to the wooden board. On the surgical
power drill, a tri-axial accelerometer (𝑃𝐶𝐵3) of model J356A45 (PCB
Piezotronics, Depew, NY, USA) was glued with beeswax and taped
over to prevent accidental detachment (Fig. 3d). All PCB sensors were
connected to a custom signal conditioner via BNC cables, and the signal
was put through to a PicoScope 4824A oscilloscope (Pico Technology,
Cambridgeshire, UK) for data recording.

The recording of all sensors was started, and the surgeon performed
the entire drilling procedure for the selected pedicle at the maximum
drilling speed of 3500 rpm. The surgeon started the drilling process
guided by the surgical navigation system, as described in the next
section. Post-operative CT scans were analogous to the preoperative CT
scans after each experiment to compare the drilled trajectories marked
with k-wires with the planned trajectories.

2.2.2. Navigation setup
An optical tracking system (FusionTrack 500, Atracsys LLC,

Puidoux, Switzerland) was used to precisely navigate the planned screw
trajectories. Similar to the markers designed for the anatomy, markers
for the surgical drill sleeve and for a power drill (Colibri, Depuy
Synthes, Oberdorf, Switzerland) were modeled. The diameter of the
drill bit was 3 mm. The drill sleeve was used to find the entry point and
direction of the planned trajectory because it provides easier targeting

and stable drilling. At the same time, the drill marker allowed for
tracking the progression of the drill in depth. Fig. 4 depicts the designed
markers for the drill, drill sleeve, sacrum, and their frames (𝐹𝑑 , 𝐹𝑑𝑠 and
𝐹𝑐𝑡), respectively. Markers were CT scanned with the infrared reflecting
spheres attached. Each tool, sphere, and marker were segmented from
preoperative CT scans similarly to the anatomy segmentation, and a
3D mesh per each object was generated. The segmented tools with
spheres were used to extract the transformation matrices (𝑇 𝑑𝑡

𝑑
, 𝑇 𝑑𝑠𝑡

𝑑𝑠
)

shown in Fig. 4 from the marker space to the corresponding tooltip
space. Each marker was re-calibrated with FusionTrack 500 software
to generate the new geometry file for the tracking. Geometry files
contain information on the spatial position of each fiducial in the
camera coordinate space, which was used to register 3D meshes of
the anatomy or tool to the camera coordinate space using the iterative
closest point (ICP) registration method for surgical navigation in the
custom-developed software. The software is python-based and allows
visualization of the tool position and orientation in real-time with
planned entry points and trajectories on 3D meshes of the vertebra. A
GUI has been implemented to show the three anatomical views (coro-
nal, axial, and sagittal) of the drilled vertebra (Fig. 1b). In this manner,
the surgeon could meticulously control the drilling procedure such that
the drill is positioned in the correct location (i.e., the entry point at the
pedicle) and orientation that would result in the planned drilling path.
Moreover, the software can record tracking and vibroacoustic data in
a synchronized fashion.

2.3. Data processing

Since all sensor modalities are synchronized, data labeling was
performed based on the timestamps of the events retrieved from the
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Fig. 2. Optimal, laterally-breaching, and medially-breaching trajectories overlaid on
3D meshes of the vertebra in axial and sagittal views.

tracking data. Timestamps were determined for each event to create
two data subsets for each sensor: breach and non-breach. A breach
event has a duration within a range of 100–300 ms. Following this
concept, the closest drill tip positions to the vertebra mesh vertices were
used to identify breach timestamps from the tracking data. First, the
tracking data was mapped as follows to compensate for non-negligible
errors resulting from the navigation setup. A postoperative CT was
registered to the preoperative CT scan using ICP registration. Recorded
tracking data from the anatomy marker was used to transform 3D
meshes from postoperative CT and estimate the distances between the
drill tip position and 3D mesh of the vertebra. Entry (𝐸𝑃𝐶𝑇 ) and exit
(𝑆𝑃𝐶𝑇 ) points in the CT space were extracted by finding the intersec-
tion points between the vertebra and the surgical pin. Afterward, the
entry point (𝐸𝑃 ) and exit point (𝑆𝑃 ) in the tracking data of the drill
tip were estimated by following Eqs. (1)–(2), where 𝑃𝑑𝑡 is a set of drill
tip position in camera space, 𝑇 𝑐𝑎𝑚

𝐶𝑇
is a transformation matrix from CT

space in 𝐹𝐶𝑇 to camera space.

𝐸𝑃 = argmin
𝑃𝑑𝑡

(‖𝑃𝑑𝑡 − 𝐸𝑃𝐶𝑇 𝑇
𝑐𝑎𝑚
𝐶𝑇

‖) (1)

𝑆𝑃 = argmin
𝑃𝑑𝑡

(‖𝑃𝑑𝑡 − 𝑆𝑃𝐶𝑇 𝑇
𝑐𝑎𝑚
𝐶𝑇

‖) (2)

These two points were further used to map the tracked drill tip positions
between entering and exiting timestamps to the straight line connecting
the entry and exit points (Eq. (3)).

𝑃𝑑𝑡 ↦ ⟨𝑃𝑑𝑡[𝑡𝐸𝑃 ∶ 𝑡𝑆𝑃 ], 𝐸𝑃 − 𝑆𝑃 ⟩ (3)

To find the breaching point 𝑃𝑏𝑟𝑒𝑎𝑐ℎ, the mapped data was used to find
the closest points to the mesh vertices of the vertebra (𝑀𝑒𝑠ℎ𝑣) by

Table 1
Data split per subject and per class before augmentation in each sensor dataset.

Subject Train val Test

Breach Non-breach Breach Non-breach Breach Non-breach

S1 16 314 5 78 3 45
S2 54 469 14 117 9 66
S3 32 392 8 98 5 55
S4 20 234 5 58 4 34

transforming it to the camera space using 𝑇 𝑐𝑎𝑚
𝐶𝑇

as in Eq. (4).

𝑃𝑏𝑟𝑒𝑎𝑐ℎ = argmin
𝑃𝑑𝑡

(‖𝑃𝑑𝑡 −𝑀𝑒𝑠ℎ𝑣𝑇
𝑐𝑎𝑚
𝐶𝑇

‖) (4)

The entry, exit, and breaching points are visually illustrated in Fig. 5
along with their corresponding points on the plots of distance from
the drill tip position to the entry point and to mesh vertices in camera
space. This visualization of the tracking data was also used to fine-tune
timestamp labeling. On top of that, recorded tracking data was re-
played, and timestamps of the breaching events were visually inspected
thoroughly. For example, in Fig. 6, labels from Fig. 5 were overlaid
in the same time points on mel-spectrograms from each vibroacoustic
sensor using blue arrows.

Data from all sensors were processed similarly to keep the data
format consistent across vibroacoustic sensors. Each recording per each
sensor was broken down into smaller windows using the sliding win-
dow. The window length of 100 ms and window step size of 25 ms,
leading to overlapping windows with an overlap of 75%, was cho-
sen to facilitate lower latency. The number of mels, hop size, and
maximum frequency included in the spectrogram were set to 128,
32 samples, and 2 kHz, respectively, to generate mel-spectrograms.
Table 1 shows the number of window samples per class. However,
we could note the variability in the number of breach windows of
100 ms per subject. Breach duration is influenced by factors such as
breach type, operator technique, drilling force, and bone quality. For
example, drilling perpendicular to cortical bone results in immediate
penetration, while drilling at an angle leads to gradual penetration until
full breach. Additionally, because a complete breach of one bone layer
can consist of small subsequent breaching events, the drilling force and
bone quality affect breach duration as they can speed up or slow down
such breaching sequences. Thus, these factors directly affected breach
counts per subject.

However, the number of breach samples was considerably smaller,
necessitating the application of data augmentation strategies. Pitch
shifting and loudness changing are the standard audio signal transfor-
mations used for audio augmentation purposes [19,21]. Therefore, the
training set of the breach class was augmented by varying the gain
(−5 dB, −3 dB, 3 dB, 5 dB) and pitch shifting (−2, −1, 1, 2 semitones).
All spectrograms were generated using librosa 0.9.2 and have a size of
128 × 126 × 1. They were further used as input to the deep learning
network.

From visual inspection of CT scans, we noticed differences in bone
mineral density (BMD). Therefore, we estimated BMD from the pre-
operative CT scans to investigate the correlation between BMD and
the performance of the proposed method using the Materialise Mimics
software. No density calibration was done for the CT images, but all
preoperative scans were taken consecutively to minimize deviations.
A constant elliptical area of 450 mm2 was selected, from which the
average Hounsfield unit (HU) was calculated. For each drilled vertebra,
the area was swept through all axial CT slices of the vertebral body.
All calculated HU values were averaged over the number of axial slices
within the vertebral body to estimate the average BMD of the specified
vertebra. In a study of Schreiber et al. [22], HU values calculated
from CT scans with the Mimics software were correlated to T-scores
generated from DEXA scans. Based on the results of that study, the HU
values obtained in the present study were related to a value of the BMD,
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Fig. 3. Sensors positioning. Left: (a) contact microphones, (b) uni-axial accelerometers, and (c) free-field microphones. Right: (d) tri-axial accelerometer.

Fig. 4. Navigation setup overview with frames (F) and transformations (T). 𝐹𝑑 and 𝐹𝑑𝑠 are the frames of markers attached to the drill and drill sleeve. 𝐹𝑐𝑡 is a marker frame
attached to the anatomy representing CT space. 𝐹𝑑𝑡 and 𝐹𝑑𝑠𝑡 are tip frames of each tool, which are defined by applying respective transformation matrices (𝑇

𝑑𝑡
𝑑
, 𝑇 𝑑𝑠𝑡

𝑑𝑠
).

Fig. 5. The arrows indicate the correspondence of the start, breach, and stop events
between a drill position in a segmented vertebra from postoperative CT and temporal
tracking data information. 𝐷𝐸𝑃

𝑑𝑡
is the distance between the drill tip position and the

entry point, whereas 𝐷𝑀𝑒𝑠ℎ𝑣

𝑑𝑡
is the distance between the drill tip position and the closest

vertex of the vertebra mesh.

a range of T-scores, and a qualitative description by interpolation on

the trend lines. Afterward, test sets were split into either normal or

Table 2
Test split describing the number of the normal and abnormal samples.

Subject Normal Abnormal

Breach Non-breach Breach Non-breach

S1 2 7 1 38
S2 5 18 4 48
S3 0 5 5 50
S4 1 9 3 25

abnormal in the case of osteopenia or osteoporosis, and the data was
classified as such (see Table 2).

2.4. Deep learning

This work used a residual network integrated with squeeze and
excitation (SE) blocks, particularly SE-ResNet-18 as shown in Fig. 7.
SE blocks enhance the performance of the ResNet networks widely
used for classification tasks owing to their ability to model the inter-
dependencies between the channels of convolutional features. The SE
blocks can be integrated into standard architectures such as ResNet.
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Fig. 6. Mel-spectograms for the whole drilling session from each sensor overlaid with labels from tracking data (Subject S2, vertebra L4, left pedicle). 𝑃𝐶𝐵3𝑥, 𝑃𝐶𝐵3𝑦, and 𝑃𝐶𝐵3𝑧

are separated 𝑥 (axial), y (radial), and 𝑧-directional (tangential) values from the tri-axial accelerometer on the drill (𝑃𝐶𝐵3).

Fig. 7. Mel-spectrogram with a window size (indicated by box) of 100 ms is an input to the SE-ResNet-18, which outputs breach/non-breach. The topology of the squeeze and
excitation block is shown in the bottom center box.

Hu et al. [23] reported that ResNet-50 with SE blocks (SE-ResNet-50)
outperformed ResNet-50 in different classification tasks, e.g., by 0.86%
single-crop top-5 error with ImageNet 2012 dataset. Since we aim to
develop a robust and real-time system, the most compact model of
ResNet with 18 layers was used to achieve the fastest inference time.
Because of the dataset imbalance, we used the Focal Loss function
as a loss function [19]. Further, the Adam optimizer was used with
a learning rate of 1e−6. The training and testing were performed on
an NVIDIA GeForce RTX 6000 GPU machine using Tensorflow 2.4.1.
In this work, we used a nested cross-validation method to overcome
the problem of overfitting the training dataset. We kept 10% of the
dataset for testing, and the remaining 90% was divided into 5-folds.
As mentioned in the previous section, each experiment was run five
times per cross-validation. Thus, results are reported in terms of mean,
standard deviation, and 95% confidence interval (CI) of breach recall
(sensitivity).

We ran three different experiments: training the model from scratch
based on individual sensor data (Experiment I), training the model
using pre-trained weights (Experiment II), and training the model using
fused data from different sensor combinations (Experiment III). The
classification results are computed for each individual window indepen-
dently. This means that the network output is obtained for each window
separately, without averaging over a specific number of windows. By

employing this approach, we can capture temporal dynamics and vari-
ations within shorter time intervals. It allows us to detect and classify
events accurately, enabling real-time monitoring and prompt response.
In Experiment I, we additionally tested with the data from Table 4 to
investigate whether the performance of each network is correlated with
BMD. The flow diagram of the model is shown in Fig. 7. Experiment II
was based on the pre-trained weights using the same model generated
based on the data from Seibold et al. [19], and targeted to test the
concept of transfer learning from the same domain. Experiments I and II
were ablation studies that served as a foundation for finding the optimal
sensor combinations in Experiment III, where the spectrograms from
different varieties of sensors were concatenated or fused and used as an
input to the network (Fig. 1d). The sensor combinations were formed
by combining the two best-performing sensor modalities with the rest
sensor modalities. The free-field microphones (𝑀𝑖𝑐2) were not included
in this evaluation, as they had performed too poorly overall.

Apart from comparing experimental results in terms of mean, stan-
dard deviations, and 95% CI, we conducted statistical analyses. The
performances of individual sensors-and sensor fusion-based models
were first evaluated using the one-way analysis of variance (ANOVA)
to test the hypothesis that there are statistically significant differ-
ences between multiple groups. Afterward, the best-performing model
was compared to other models using a pair-wise t-test to verify if
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Table 3
Performances of the individual sensors- and sensors fusion-based models. P values are from the pair-wise t-test results with respect to
𝑀𝑖𝑐1 & 𝑃𝐶𝐵1.

Sensor Breach Re. (95% CI) [%] Non-breach Re. [%] P Value

𝑀𝑖𝑐1 85.8 ± 3.19 (83.0–88.6) 91.8 ± 2.60 <.001
𝑀𝑖𝑐2 63.8 ± 5.36 (59.1–68.5) 91.0 ± 3.39 <.001
𝑃𝐶𝐵1 81.0 ± 3.54 (77.9–84.1) 87.6 ± 7.02 <.001
𝑃𝐶𝐵2 79.8 ± 8.65 (72.2–87.4) 92.0 ± 0.71 .002
𝑃𝐶𝐵3𝑥 75.2 ± 6.18 (69.8–80.6) 91.0 ± 1.22 <.001
𝑃𝐶𝐵3𝑦 73.4 ± 7.96 (66.4–80.4) 87.6 ± 2.30 <.001
𝑃𝐶𝐵3𝑧 77.2 ± 7.05 (71.0–83.3) 93.0 ± 1.58 <.001

Sensor combination

𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 98.0 ± 2.74 (95.6–100) 96.2 ± 1.30
𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵3𝑧 97.0 ± 4.47 (93.1–100) 96.0 ± 0.79 .681
𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵2 94.0 ± 4.18 (90.3–97.7) 96.4 ± 0.55 .111
𝑃𝐶𝐵3𝑥 & 𝑃𝐶𝐵3𝑦 & 𝑃𝐶𝐵3𝑧 84.8 ± 3.83 (81.4 −88.2) 84.6 ± 0.55 <.001
𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵2 & 𝑃𝐶𝐵3𝑥 95.2 ± 5.72 (90.2–100) 97.8 ± 0.84 .352
𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵2 & 𝑃𝐶𝐵3𝑦 96.4 ± 0.55 (97.0–100) 96.4 ± 0.55 .545
𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵2 & 𝑃𝐶𝐵3𝑧 96.0 ± 2.24 (94.0–98.0) 96.9 ± 0.89 .242
𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵2 & 𝑃𝐶𝐵3𝑥 & 𝑃𝐶𝐵3𝑦 & 𝑃𝐶𝐵3𝑧 92.0 ± 2.74 (89.6–94.4) 97.4 ± 0.55 .009

Table 4
Performances of individual sensors-based models with respect to the bone density. P values are from the pair-wise t-test between the
results obtained from testing on normal and abnormal sets.

Sensor Normal - Breach Re. (95% CI) [%] Abnormal - Breach Re. (95% CI) [%] P value

𝑀𝑖𝑐1 86.2 ± 6.22 (80.7–91.6) 85.2 ± 10.52 (76.0–94.4) .859
𝑀𝑖𝑐2 58.6 ± 8.8 (50.9–66.3) 72.6 ± 18.5 (56.4–88.8) .165
𝑃𝐶𝐵1 84.8 ± 5.31 (80.1–89.5) 75 ± 0.00 (75.0–75.0) .003
𝑃𝐶𝐵2 72.6 ± 11.7 (62.4–82.8) 92.8 ± 6.57 (87.0–98.6) .009
𝑃𝐶𝐵3𝑥 87.8 ± 3.83 (84.4–91.2) 55.4 ± 11.24 (45.5–65.3) <.001
𝑃𝐶𝐵3𝑦 73.8 ± 11.5 (63.7–83.9) 72.8 ± 10.4 (63.7–81.9) .889
𝑃𝐶𝐵3𝑧 77.0 ± 8.0 (70.0–84.0) 77.8 ± 16.1 (63.6–92.0) .923

the best-performing model was significantly better than the counter-
part. Similarly, a pair-wise t-test was further used to compare each
transfer learning-based model with its corresponding individual sensor-
based model and the performances of individual sensors-based models
with respect to BMD. P values <.05 are considered to be statistically
significant.

3. Results

Experiment I showed that detection using contact microphones
(𝑀𝑖𝑐1) showed the highest mean breach recall (85.8%) compared to
other sensors (Table 3). In each table, the highest-performing sensor is
indicated in bold. It was followed by another contact sensor (𝑃𝐶𝐵1)
connected to the vertebra (81% average breach recall, 77.9–84.1%
95% CI). In contrast, a free-field microphone performed the worst with
63.8% average breach recall (59.1–68.5% 95% CI). Of the tri-axial
accelerometer on the drill (𝑃𝐶𝐵3), the direction along the drilling axis
(Z-axis) showed the highest performance (77.2% average breach recall,
71.0–83.3% 95% CI).

The inference of each model was tested with respect to BMD.
According to Table 4, the results show significant differences in the
models trained with 𝑃𝐶𝐵1, 𝑃𝐶𝐵2, and 𝑃𝐶𝐵3𝑥. 𝑃𝐶𝐵1 and 𝑃𝐶𝐵3𝑥

based models performed significantly better on the normal test set,
whereas 𝑃𝐶𝐵2 performed better on abnormal data (92.8% average
breach recall, 87.0–98.6% 95% CI).

The follow-up experiment II results, investigating the power of
transfer learning in the acoustic spectrogram domain, are presented in
Table 5. 𝑃𝐶𝐵1 showed significantly improved performance with 93.0%
mean breach recall compared to the models trained from scratch. In
contrast, using pre-trained weights on 𝑃𝐶𝐵3𝑦 deteriorated its average
breach recall from 73.4% to 62.8%. Meanwhile, there were no signifi-
cant differences in the case of other sensors, e.g., contact and free-field
microphones.

The main experimental results on sensor fusion were integrated into
Table 3. Eight different combinations were tested in total. We first
combined the best-performing sensors (𝑀𝑖𝑐1 and 𝑃𝐶𝐵1). We achieved

Table 5
Performances of transfer learning-based models. P values are from the pair-wise t-test
with respect to its corresponding model results trained from scratch.

Sensor Breach Re. (95% CI) [%] Non-breach Re. [%] P value

𝑀𝑖𝑐1 85.6 ± 4.51 (81.7–89.6) 89.6 ± 1.66 .937
𝑀𝑖𝑐2 60.0 ± 5.70 (55.0–65.0) 88.2 ± 1.08 .309
𝑃𝐶𝐵1 93.0 ± 2.74 (90.6–95.4) 87.6 ± 1.32 <.001
𝑃𝐶𝐵2 79.0 ± 2.74 (76.6–81.4) 92.6 ± 0.8 .849
𝑃𝐶𝐵3𝑥 74.0 ± 2.74 (71.6–76.4) 91.2 ± 0.75 .702
𝑃𝐶𝐵3𝑦 62.8 ± 5.07 (58.4–67.2) 87.0 ± 1.05 .036
𝑃𝐶𝐵3𝑧 83.8 ± 2.33 (81.6–86.4) 94.3 ± 1.47 .079

the highest performance, particularly 98.0% and 95.6%–100% 95% CI.

Then, we added consecutive sensor types in the next experiments to test

the combination of three sensor modalities. As a result, adding more

sensor data (e.g., 𝑃𝐶𝐵2) deteriorated the sensitivity (94.0% average

breach recall, 90.3–97.7% 95% CI). We also combined X-, Y-, and Z-

directional data from 𝑃𝐶𝐵3 and increased average breach recall up

to 84.8%. Concatenating 4 sensor data improved the breach recall

by 2% in the case of 𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵2 & 𝑃𝐶𝐵3𝑧 compared to

𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵2. However, combining all sensor data dropped

the average breach recall by 4% compared to𝑀𝑖𝑐1 & 𝑃𝐶𝐵1 & 𝑃𝐶𝐵2 &

𝑃𝐶𝐵3𝑧. Nevertheless, compared to individual sensor-based models, the

performance of data fusion is higher: e.g.,𝑀𝑖𝑐1, 𝑃𝐶𝐵1, and 𝑃𝐶𝐵2 show

85.8%, 81.0%, and 79.8% average breach recall, while their fusion

resulted in 94.0%. Furthermore, we conducted a one-way ANOVA on

all individual sensors and their combinations, which showed significant

differences between the groups (Table 3). Afterward, pairwise t-tests

between the best combination (𝑀𝑖𝑐1 and 𝑃𝐶𝐵1) with all individual

sensors and their combinations were performed. As a result, the fusion

of 𝑀𝑖𝑐1 and 𝑃𝐶𝐵1 was significantly better than all individual sensors-

based models, and the combination of 𝑃𝐶𝐵3𝑥 & 𝑃𝐶𝐵3𝑦 & 𝑃𝐶𝐵3𝑧 and

the combination of all sensors according to Table 3.
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4. Discussion

This study investigated the potential of vibroacoustic sensors in
detecting pedicle breaches. The contact between the drill and bone
produces vibrations that vibroacoustic sensors can capture, and it has
been proved that they can discern between cortical and cancellous lay-
ers of the bone [9–13]. In our work, we physically generated breaches
controlled and accurately by integrating a surgical navigation system to
translate the preoperative planning to the anatomy. Subsequently, we
developed an automatic data labeling pipeline based on the tracking
data obtained from the navigation setup. We explored the prospect of a
contact microphone, a free-field microphone, a uni-axial accelerometer,
and a tri-axial accelerometer enabled by the squeeze-and-excitation
network (SE-ResNet-18) in detecting breaches.

Among all vibroacoustic sensing methods, contact microphones
showed the highest sensitivity of 85.8 ± 3.19%, which was followed
by the uni-axial accelerometer connected to the bone (81.0 ± 3.54%)
(Table 3). This tendency can be understood from Fig. 6. One can notice
that spectrograms from contact microphones and uni-axial accelerom-
eters attached to the bone and surgical pin provide more distinctive
features for significant events. These sensors are the closest to the
actual location of possible breach events. They are less susceptible to
environmental noise than the free-field microphone, which performed
poorly (63.8% mean breach recall). The sound waves generated in the
bone also had to travel ten to twenty centimeters through the air before
reaching the free-field microphone. Regarding the axes of the tri-axial
accelerometer, the signal from the Z-direction (along the direction of
drilling) is the one performing strongest. This fact can be justified by its
being a direction of signal propagation, thus providing stronger signals.

The evaluation revealed the differences in bone quality. Deter-
mining bone quality based on vibroacoustic signals is a promising
topic for future research. In our opinion, state-of-the-art lacks methods
estimating bone density. Therefore, we tested the networks with respect
to BMD, characterized as normal and abnormal. Overall, no statistical
significance could be shown except for uni-axial accelerometers and
the tri-axial accelerometer in the X-direction. Regarding contact mi-
crophones, the average sensitivity was similar for both types, around
85%. It shows that contact microphones are indifferent to bone quality
for breach detection. Sensors showing significant differences between
breach recall for normal and abnormal bone, such as the 𝑍-axis of the
tri-axial accelerometer (𝑃𝐶𝐵3𝑥), could be due to the prevalence of a
lower signal-to-noise ratio in the abnormal test set. However, further
investigations are necessary to define the cause and why some sensor
configurations are more susceptible to the BMD.

Furthermore, we implemented the concept of transfer learning by
using the weights trained on the breakthrough detection data in the
same mel-spectrogram by Seibold et al. [19]. It was used as an ini-
tialization for our models. We expected to see an added performance
on the contact microphones since pre-trained weights are also trained
on the data from contact microphones. However, statistical testing
with respective models trained from scratch (Table 5) did not reveal
significant general differences except for the uni-axial accelerometer
on the bone and the 𝑌 -axis of the tri-axial accelerometer. However,
the trend for these two sensors is controversial.

Apart from inputting individual sensor data to the network, their
different combinations were examined to prove the hypothesis that
sensor fusion boosts performance and robustness. Table 3 shows how
much the fusion of several sensor data improves the accuracy of the
network. For most sensor combinations, the accuracy is pushed well
above 90% for both breach and non-breach classification. The high
variability for some sensors in Table 3 is likely because the signal of
breach events largely varies depending on the breach location. Due to
differences in geometry, bone thickness, drill angle, and other param-
eters, a medial breach can cause a different response compared to a
lateral breach. Thus, these variations perplex the network to generalize
from the limited data. Owing to the direct contact of sensors with the

tissue, the best-performing combination is contact microphones with
the uni-axial accelerometer on the bone (98% breach recall), which is
the same as the performance of the PediGuard probe with fluoroscopic
guidance [5]. It shows that using vibroacoustic sensors with a deep
learning algorithm is a reliable alternative to fluoroscopy-supported
interventions to minimize radiation exposure.

We believe the proposed method is a promising approach to nav-
igate either hand-held or robotic surgical drilling to facilitate safe
pedicle screw placement. However, this study still has several limi-
tations before translation to a real clinical scenario. First of all, in
this study, the network is trained for the detection of breach events
with the purpose of stopping the drill before any vital structures are
harmed. According to Li et al. a medial cortical breach is considered
acceptable when the penetration depth is smaller than 2 mm [24]. As
stressed by [19], automatic and fast breach detection approaches lead
to a significantly shorter response time compared to a human operator.
Integration of breach detection in a robotic system can warrant this fast
response time to avoid damage to vital structures. In a clinical setting,
it is most beneficial to predict an impending breach event to stop the
drilling action before perforation of the cortical wall. Qualitative inves-
tigation showed promising features in the spectral content indicating
intrusion of the drill into the cortical wall before breach but appeared
to be dependent on the bone quality. This will be further investigated
in future research where the next step involves training a model to
predict an imminent breach. Further, the results of this study are based
on ex-vivo experiments. Before discerning the clinical feasibility, the
developed technology should be tested on in-vivo animal experiments
for a close-to-real setup. The number of samples was limited due to
the time frame, efforts, and costs of performing cadaver experiments.
It is important to note that the collection of ‘‘breach samples’’ is
hardly possible and unethical, as breaching incidents occur rarely in
real patients and should be avoided at all costs. Thus, ex-vivo data
collection, such as utilizing cadavers, becomes essential to create a
relevant number of breach samples. Previous studies were mainly done
using porcine specimens [25,26] or on an even smaller number of ca-
daveric specimens, namely 2 [7]. The higher costs associated with data
collection and ethical considerations are the major challenge of such
studies. Therefore, the research necessitates a step-wise evaluation. The
performance could be further improved by having more samples and
investigating synthetic data generation techniques for CNN training.
In terms of the direct translation of the sensor technology into the
operating room, the positioning of accelerometers and contact micro-
phones are reproducible. Contact microphones can be easily placed on
the skin of the patient. A uni-axial accelerometer can be attached to
the spinous process of the vertebrae in open spine surgery, whereas a
tri-axial accelerometer can be attached to the surgical drill. However,
sterilizability of these sensors or the use of sterile drapes over the
sensors has to be investigated and validated. In contrast, a free-field
microphone should be positioned further away from the operation site,
which may cause lower sensitivity to event detection. It is essential
to emphasize that further investigation is required to determine the
optimal positioning of individual sensors. We hypothesize that the
detection accuracy will deteriorate if the position or direction of the
sensors will vary from the current setup as the signal quality might
change. Future work will focus on systematically exploring the effects
of different sensor placements on signal quality and detection accuracy.
Finally, we only analyzed the spectrograms over a frequency range
from 0 to 2 kHz. However, some investigated sensors might give
better results in higher frequency ranges. According to Dai et al. [25],
high-frequency components in tactile vibration feedback contain the
most critical information about transient contact events. This study
represents the first effort to translate non-visual sensing technology to
the operating field as a local sensing method for hand-held and robotic
orthopedic surgery applications.
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5. Conclusion

In this paper, we conducted the first ex-vivo study on a deep
learning-driven non-vibroacoustic sensing approach for breach de-
tection during pedicle screw placement in spine surgery. The non-
visual nature of vibroacoustic sensing eliminates errors caused by
non-negligible patient movements during operation and radiation expo-
sure to the patient and medical staff. The results are similar to those of
the PediGuard probe, the only non-visual sensing device on the market.
The proposed method has great potential to increase the autonomy of
robotic surgery by introducing non-visual physical intelligence. We also
proposed a new method of automatic data labeling based on surgical
navigation, which can be beneficial in labeling a large amount of data
in the future.
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