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Abstract

Feedforward neural networks are the dominant approach in current computer vision
research. They typically do not incorporate recurrence, which is a prominent feature
of biological vision brain circuitry. Inspired by biological findings, we introduce
RecSlowFast, a recurrent slow-fast framework aimed at showing how recurrence
can be useful for temporal visual processing. We perform a variable number of
recurrent steps of certain layers in a network receiving input video frames, where
each recurrent step is equivalent to a feedforward layer with weights reuse. By
harnessing the hidden states extracted from the previous input frame, we reduce
the computation cost by executing fewer recurrent steps on temporally correlated
consecutive frames, while keeping good task accuracy. The early termination of the
recurrence can be dynamically determined through newly introduced criteria based
on the distance between hidden states and without using any auxiliary scheduler
network. RecSlowFast reuses a single set of parameters, unlike previous work
which requires one computationally heavy network and one light network, to
achieve the speed versus accuracy trade-off. Using a new Temporal Pathfinder
dataset proposed in this work, we evaluate RecSlowFast on a task to continuously
detect the longest evolving contour in a video. The slow-fast inference mechanism
speeds up the average frame per second by 279% on this dataset with comparable
task accuracy using a desktop GPU. We further demonstrate a similar trend on
CamVid, a video semantic segmentation dataset.

1 Introduction

Current deep learning based computer vision research is largely dominated by feedforward neural
networks [8, 12]. However, various studies on biological visual systems have indicated the importance
of recurrent neural activities in functionalities such as attentive and conscious vision [21], perceptual
grouping [30], pattern completion [37] and object recognition [15, 16, 29]. These neurophysiological
findings have inspired researchers to incorporate recurrence in their networks to achieve better
performances or better biological plausibility. For example, the studies of [19, 20] show that the
output of shallow recurrent CNNs aligns better with measurements from the ventral stream on an
object recognition task, and a higher correlation corresponds to better generalization of the model.
The authors in [17] propose that top-down and horizontal connections between neurons in the cortex
are crucial for supporting incremental perceptual grouping and utilizing high-level object cues. A
related work [24] demonstrates a single-layer recurrent CNN with substantially fewer parameters
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outperforms all feedforward baselines in long-range spatial dependencies modeling. However, the
traditional application of iterative recurrent structures involves imposing a fixed number of recurrent
steps, disregarding the characteristics and demands of both the input data and the task.

It has been observed in [15] that primate visual systems required extended processing time for more
complex object recognition tasks compared to the simpler control group. This phenomenon was
attributed to recurrent activities within the visual ventral stream, suggesting that biological visual
systems can dynamically allocate different amounts of computation depending on the complexity of
the task at hand, all within the same biological network. Inspired by these findings, we developed the
Recurrent Slow-Fast (RecSlowFast) framework that uses varying recurrent steps for different frames
in a video and leverages layer reuse and the similarity between frames for better performance-speed
trade-off and parameter efficiency. The major contributions are as follows1:

• Introduction of a biologically motivated recurrent neural network (RNN) framework named re-
current slow-fast networks (RecSlowFast). RecSlowFast uses within input timestep recurrence
achieved by layer reuse for dynamically adjusting the amount of computation spent on an input
frame and cross-input timestep recurrence by leveraging hidden states from earlier frames to
reduce the number of recurrent steps needed for subsequent frame processing.

• Based on the hidden states similarities obtained across input frames, we introduce a novel recurrence
halting criteria that dynamically allocates computational resources (recurrent steps). Notably, our
approach circumvents the need for an auxiliary neural network to make halting decisions.

• Construction of a Temporal Pathfinder dataset (T-Pathfinder), which extends the widely used static
pathfinder variants [13, 17, 24, 25] to the temporal domain by gradually changing the lengths
of the contours across frames. The dataset has two subsets with different difficulty levels. The
RecSlowFast framework is evaluated and compared against other baselines including recurrent and
feedforward convolutional networks on T-Pathfinder.

2 Related work

Recurrence in visual processing Recurrence has been found vital for various functionalities in the
visual ventral stream. [15, 14] show it requires a longer processing duration for the visual ventral
stream to solve difficult object recognition tasks than the easy ones. Several works focus on better
neural recording alignment with recurrent structures for object recognition [19, 20, 16] and natural
movie stimuli [34]. The authors of [28] found that architecture search with evolutionary algorithms
yields layer-local recurrence and long-range feedback which achieve better trade-offs between task
performance and small network size. Our work aims to exploit recurrence with temporal similarities
of hidden states to reduce the amortized computation cost.

Iterative inference The architectural flexibility offered by recurrent structures through the config-
urable number of recurrent steps has long been of research interest. The early work of adaptive
computing time (ACT) [11] introduces a halting unit into the RNN to terminate the recurrence. Simi-
larly, [41] proposed a self-instantiating recurrent structure. In [22] the authors proposed a network
that reuses the weights and concatenates the resulting feature map with the input of each residual
block [12], achieving high parameter and computation efficiency compared with ResNet. Several
other works [32, 4, 40] studied methods of deciding when to halt the recurrence, including the use of
auxiliary gating neural networks [40]. In the two related works [33, 5] the authors discovered that
RNNs are able to extrapolate to larger maze sizes or longer prefix sum length even when trained on
smaller problem scales, by simply running more recurrent steps during inference. Different from these
works, RecSlowFast employs the variable recurrent step inference for temporal visual processing to
exploit the correlation and redundancy in the frames.

Implicit layers Another line of work attempts to model sequential data by directly finding these
equilibrium points with root-finding [3, 7]. Such methods are equivalent to feedforward networks with
infinite depths. Subsequent works [2, 27, 9] studied reusing the states obtained from the equilibrium
point of the previous input timestep in order to accelerate the root-finding of the next timestep.
Our work is different from implicit layer works in the sense that RecSlowFast does not require a
root-finder solver which typically comes with additional computing and memory overhead and puts
constraints on the types of usable layers. We conducted comparisons and the results are in A.3.

1code and dataset: https://github.com/ZuowenWang0000/RecSlowFast_Neurips_Unireps
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Two-path video processing In the domain of video processing with deep neural networks, several
studies have proposed ways of exploiting the temporal correlation nature of videos to accelerate
the networks. One approach involves calculating optical flow between frames with a light network
and wrapping the features extracted by a computationally heavy network [43, 39]. Another line of
work [26, 42, 10] uses both a heavy and a light network to extract features in an interleaved manner
with the heavy network operating less frequently. Unlike the aforementioned methods, our design
utilizes a single network that operates in a two-path-like manner, as the amount of computation can
be dynamically adjusted for an RNN.

3 Recurrent slow-fast networks

We hypothesize that the hidden state information from processing past temporally correlated visual
inputs could accelerate the processing of incoming inputs. Taking two consecutive frames I1 and I2
in Figure 1(a) as an example, in a semantic segmentation task, it is much easier to complete the task
for I2 after I1, despite minor changes on the sidewalk. Meanwhile, modifying the solution of I2 for
processing I3 is slightly more challenging since the difference between I2 and I3 is larger than I1
and I2.

This concept forms the basis of our generic building block. Formally, for a given input sequence
x = (x1, ..., xT ), consisting of either raw frames or feature maps, the corresponding hidden states
hn
t for timestep t ∈ {1, ..., T} and the nth recurrent step is computed by the recurrent function rθ

parameterized with θ as follow:

hn

t
:= rθ(h

n−1
t , xt) (1)

h0
t+1 := h

N(t)
t (2)

where h0
1 is the hidden states initialization hinit for the input, x1, on the 1st timestep. N(t) gives the

number of recurrent steps to be executed for input xt at timestep t, allowing a variable computation
workload across inputs. For consecutive inputs xt and xt+1, we reuse the last hidden state resulting
from xt as the initial state for xt+1, as shown in Equation 2. The hinit state is initialized to zero.
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Figure 1: Illustration of the RecSlowFast framework. The three input frames are from the CamVid
dataset [6]. The major differences between frames are highlighted with yellow circles and arrows.

There exist two types of hidden states transition in the RecSlowFast framework. One is within input
timestep transition (depicted in Equation 1 and marked with solid blue arrows in Figure 1), which

feedback the output hidden state hn−1
t for computing the next hidden state hn

t , on the same input
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xt. Another is across input timestep transition (depicted in Equation 2 and marked with dashed blue
arrows in Figure 1). At the end of the recurrence for an input timestep t, we recycle the extracted

hidden state h
N(t)
t and use it as the initial state h0

t+1 for the processing of the next input timestep
t + 1. For processing consecutive frames, the network does not have to start the processing from
initialization state hinit but instead starts from the hidden state extracted on the previous frame, and
this enables reduced computation while maintaining task accuracy. We verify this in Section 4.2 by
comparing RecSlowFast with networks that do not conduct across input timestep transitions, namely
∀t ∈ {1, ..., T}, h0

t = hinit, which are called Stateless in the rest of the paper.

We also incorporate the findings in [5] of the recall connections, inspired by skip connections [12, 36]
which pass information from an earlier layer to a later layer for more stable training of very deep
networks. We use recall to stabilize the training of the RecSlowFast network. As shown in Figure 1
and Equation 1, the recall connections forward the same input xt to every recurrent step at timestep t.

Instantiating RecSlowFast with horizontal gated recurrent unit and convolutional long short-
term memory In this work, we focus on two versions of simple instantiations of recurrent block
in RecSlowFast in order to rule out other deep network architectural factors and focus on studying
the variable recurrent step mechanism. We use the horizontal gated recurrent unit (hGRU) [17] and
convolutional long short-term memory (cLSTM) [35] in our experiment (complete description is
in Appendix A.1). Both types of recurrent blocks are preceded and followed by two convolutional
layers. Thus the whole network is described as follows:

xt := fconv1(It) (3)

hn

t
:= rθ(h

n−1
t , xt), n = 1, ..., N(t) (4)

ypred
t

:= fconv2(h
N(t)
t ) (5)

where It is the raw input frame, fconv1 and fconv2 are the head and output convolutional layers.

4 The Temporal-Pathfinder dataset and experiment results

I1 I2 I3 I4 I5 I6 y
GT
1 y

GT
6

(a) An example from T-Pathfinder-easy. yGT
1 and yGT

6 show the ground truth of I1 and I6.

I1 I2 I3 I4 I5 I6 I7 I8

(b) An example from T-Pathfinder-Hard where the longest contour is marked in red.

Figure 2: (a) and (b) shows two examples from the T-Pathfinder-Easy and T-Pathfinder-Hard subset
respectively. For the example in (b) the ground truth longest contour is annotated with red color on
top of the original contour, which is grey scale. Notice the changes between frames caused by the
growing of contour segments in the longest contour as well as the distractors. See Appendix A.6 for
the complete sequence and more examples. Zoom-in for better visibility.

4.1 Construction of the Temporal Pathfinder (T-Pathfinder) dataset

For evaluating the recurrent slow-fast framework, we first construct a new T-Pathfinder dataset, which
is a temporally extended variant of several similar synthetic visual tasks [24, 17] inspired by cognitive
science [13]. The T-Pathfinder dataset consists of videos of visually consecutive frames (see Figure 2
for examples). The starting frame of a video contains several contours, where one of them is longer
than the rest. The shorter contours are distractors. In each succeeding frame of the video, every
contour can grow longer by certain segments with a predefined probability. The task for the network
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on this T-Pathfinder dataset is to detect the longest contour in each frame and output a dense binary
segmentation map with two classes, where pixel value 1 indicates this pixel is a member of the longest
contour, otherwise, the pixel value is 0.

We constructed two subsets with different difficulty levels, named T-Pathfinder-Easy and T-Pathfinder-
Hard. In T-Pathfinder-Easy, the distractors are designed to never surpass the initial longest contour
candidate, despite their random growths in each frame. In T-Pathfinder-Hard, there is a probability
that distractors could grow longer than the initial longest contour candidate in the first frame. The
bottom row in Figure 2 shows an example where one of the distractors grew from 9 segments in
frame I3 to 12 segments in frame I4. Thus resulting in a new longest contour candidate for I4. In
T-Pathfinder-Hard, if one or multiple distractors grew to the same length as the longest contour, the
ground truth is still set to the previous longest contour.

All frames in the T-Pathfinder dataset have a resolution of 128× 128 pixels. The T-Pathfinder-Easy
and T-Pathfinder-Hard datasets, both begin with the creation of 4 distractors, but they differ in the
length range and contour growth probability. In the T-Pathfinder-Easy dataset, each video consists of
6 consecutive frames. The longest contour in the initial frame is set to be 10 segments. Distractors
have lengths uniformly and randomly chosen from a range of 1 to 3. The extension probability is 0.5
for every contour in each consecutive frame. In contrast, the T-Pathfinder-Hard dataset features 8
consecutive frames per video. The longest contour in the initial frame is set to be 10. The distractors
have lengths uniformly and randomly chosen from a range of 1 to 8. Furthermore, the distractors grow
in each new frame with a probability of 0.8, while the longest contour grows with a probability of
0.2. This makes the contours more likely to surpass the current longest contour. Each time a contour
is allowed to grow, it does so uniformly and randomly with 1 to 3 segments. 10,000 sequences are
generated for each subset and for each 2000 are randomly selected as test split.

4.2 RecSlowFast results on T-Pathfinder

We applied our RecSlowFast framework on the two T-Pathfinder subsets and compare them with
baselines. We start our experiment with a fixed schedule. For both subsets of T-Pathfinder, the model
uses more steps to process the first frame of the sequence, then uses a smaller or equal number of steps
per frame to process the rest of the sequence. We annotate this type of fixed schedule with “s{slow
steps}f{fast steps}”, where s represents the number of recurrent steps executed on the beginning
frame and f represents the number of steps per frame for the rest of the video. For example, “s6f1” in
Table 1 indicates the hGRU model spends 6 recurrent steps on the first frame (N(t = 1) = 6), and
1 recurrent step for each of the rest (N(t ̸= 1) = 1), while “s6f6” represents the model spending 6
recurrent steps on every frame of the video. Unless stated, we use the same schedule for training and
inference. The computation complexity (excluding fconv1 and fconv2) can be estimated by counting
the total recurrent steps for the video. For a 6-frame-sequence, if the schedule is “s6f2”, then in
total 1× 6 + 5× 2 = 21 recurrent steps will be spent for processing this sequence. In comparison
with always spending 6 recurrent steps on every frame, the schedule “s6f2” will be approximately
(36− 21)/36 ≈ 42% cheaper in computation for the recurrent block.

We use backpropagation through time (BPTT) for training the RecSlowFast framework. For each

input frame It a loss Lt(y
GT
t , ypred

t ) is computed for the ground truth yGT
t and prediction ypred

t pair.

The total loss is Ltotal = (
∑T

t=1 Lt)/T . To mitigate the excessive computational graph size and
associated memory requirements during BPTT training, we truncate the gradient flow from later
timesteps to earlier ones. As a result, BPTT is confined within each individual input timestep,
significantly reducing memory demands. We use the focal loss [23] with γ = 2 as the loss function.
It is used to address the class imbalance problem and prevents the model from always outputting
zeros because the majority of pixels are zero in the ground truth frames. The Adam optimizer [18]
with a starting learning rate of 0.001 is used and the learning rate is multiplied by 0.7 after every 25
epochs. Batch size 10 is used for all experiments. The validation split is randomly selected from
10% of the training split. We train in a total of 100 epochs and use the checkpoint with the best
validation loss for testing. The evaluation metric used is the mean intersection of union (mIoU). All
mIoU values presented are averages from three runs. The original mIoU scores and corresponding
standard deviations can be found in the Appendix. All the frame per second (FPS) measurements
were conducted on an Nvidia RTX 3080 GPU with an AMD Ryzen 7 5800X CPU.

Cross-input-timestep hidden state transition boosts temporal visual processing performance We
first compare the RecSlowFast with their Stateless counterparts, which always reset the hidden state
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T-Pathfinder-Easy

hGRU
s6f6 s4f4 s2f2 s1f1 s6f1

mIoU FPS mIoU FPS mIoU FPS mIoU FPS mIoU FPS

RecSlowFast .994
110

.994
164

.966
311

.879
561

.992
342

Stateless .972 .919 .685 .536 .586

Table 1: RecSlowFast-hGRU task accuracy and inference speed on T-Pathfinder-Easy. For compari-
son, a feedforward CNN baseline with 6 convolutional layers and residual connections has mIoU of
0.895 and FPS of 213 with ∼ 3× parameters of RecSlowFast-hGRU (846k vs. 284k). More detailed
results and architecture description of the feedforward CNN baseline are in A.3 and A.2.

to initialization for every new input frame. Table 1 shows that when trained and tested with the same
schedule, RecSlowFast always outperforms the Stateless version of the hGRU network. Meanwhile,
even with only 1 recurrent step per frame, the RecSlowFast-hGRU-s1f1 is able to outperform the
Stateless hGRU with 4 recurrent steps per frame. A similar trend is observed on the more difficult
T-Pathfinder-Hard subset. In Figure 3 both the hGRU and cLSTM instantiations of RecSlowFast
are shown. Although the absolute value of mIoU is lower than on the T-Pathfinder-Easy subset,
RecSlowFast always outperforms the Stateless version by a large margin, when the same recurrent
block and schedule are being used. The RecSlowFast-hGRU-s3f3 beats the Stateless-hGRU-s8f8
in task accuracy while having an average frame per second 2.6× more. For both the RecSlowFast
framework and Stateless networks, increasing recurrent steps up to a certain number improves the
task performance, even though the model does not use more parameters. This finding is similar
to [5, 33, 19, 20], however, we show this improvement in a temporal visual processing task. The
comparison between RecSlowFast and Stateless shows that the network is continuously improving
the prediction based on the cross-input-timestep hidden states.

FF-8

FF-res-8

FF-res-6

Conv3D-S

Conv3D-M

Figure 3: Different RecSlowFast schedules with hGRU and cLSTM instantiations, compared with
their Stateless counterparts and feedforward CNN baselines on T-Pathfinder-Hard. The green shade
shows the trend that we could reduce recurrent steps for non-initial frames to lower computation
costs while maintaining performance. The red arrow indicates by reusing the hidden state from last
timestep, the performance get boosted even with fewer recurrent steps. Circle sizes represent the
number of parameters. Detailed descriptions for feedforward baselines FF-* and Conv3D-* are in
Appendix A.2.
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Reduced recurrence steps for non-initial frames lower computation cost Since the cross-input-
timestep hidden state helps to improve the accuracy, one natural question is whether we need the
same number of recurrent steps for processing the later input frames, even if the hidden states from
the earlier timesteps are reused. We study this question by setting the number of fast steps differently
from the slow steps for both training and testing. In Table 1 we studied the “s6f1” schedule for
RecSlowFast-hGRU, which is 3.1× faster than RecSlowFast-hGRU-s6f6, but is still able to have
the same high mIoU. RecSlowFast-hGRU-s6f1 also outperforms RecSlowFast-hGRU-s1f1 by a
large margin, indicating a better quality starting hidden state helps to solve the later frames more
easily, under the assumption that the frames are temporally highly correlated. Figure 3 shows more
fine-grained scheduling on T-Pathfinder-Hard with hGRU and cLSTM. RecSlowFast-hGRU-s8f2 is
able to run ∼ 3× as fast as “s8f8” with a small drop of the mIoU. For RecSlowFast with cLSTM,
the speed up from “s8f8” to “s8f4” is ∼ 1.8× with ∼ 0.6% of absolute mIoU loss. Feedforward
CNNs, although having the largest number of parameters, are worse than RecSlowFast-hGRUs at
modeling the visual temporal sequence and having lower mIoUs in both T-Pathfinder subsets. In
summary, these results demonstrate that by using cross-input-timestep hidden states, we can decrease
the overall computational cost for temporal visual processing by employing fewer recurrent steps.

Correlation between input features distance and hidden states distance We attempt to heuristically
explain why having fewer recurrent steps for subsequent frames is possible, especially when the
input frame changes are small, by analyzing the relationship of the distances between input features
of two consecutive frames and the distances between their last recurrent step hidden states, namely

d(xt, xt+1) and d(h
N(t)
t , h

N(t+1)
t+1 ) where d(·, ·) denotes the distance metric. In our analysis, we first

flatten the feature maps or hidden states and then calculate the ℓ2 distances. We use the RecSlowFast-
hGRU-s8f8 (one of the top performing checkpoints from Figure 3) to calculate the feature maps
and hidden states. The first feature map x1 and hidden state h8

t=1 are not used to compute their
distance with initialization hinit, since that will create a false strong correlation. The per video

normalized distance correlation is shown in Figure 4(a). ℓ2(xt, xt+1) and ℓ2(h
N(t)
t , h

N(t+1)
t+1 ) are

highly correlated with correlation coefficient 0.8. This shows that if the input feature xt+1 changed a

lot from xt, reflected by the large distance, then the distance between the end hidden states h
N(t+1)
t+1

and h
N(t)
t will also likely to be large. Conversely, two similar or same feature maps will induce

small hidden states distance in the RecSlowFast framework. Figure 4(b) shows an exemplary PCA
visualization of hidden states. Four input frames with ground truth annotated with red are overlaid
on top of the hidden state trajectory. From I5 to I6, lots of segments were added and the ground
truth longest contour candidate also changed. This causes a long traverse of the hidden states when
processing I6.

(a) (b)

longest contour candidate changed!

Figure 4: (a) There exists a strong correlation (correlation coefficient=0.8) for d(h
N(t)
t , h

N(t+1)
t+1 )

and d(xt, xt+1). The model used is RecSlowFast with hGRU-s8f8 and the dataset is the test split of
T-Pathfinder-Hard. (b) A visualization for an exemplary hidden states trajectory of the model used for
(a). Symbols with the same shape represent hidden states extracted from the same frame. A lighter
color indicates a further recurrent step in that frame. The PCA reduction details are in Section A.4
and the full example is shown in Section A.6 Figure 8.

The limit of recurrence with the same weights When we increased the number of recurrent steps
for RecSlowFast with hGRU on T-Pathfinder-Hard from s8f8 (mIoU: 0.79), we observed that model
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performance did not continue to improve with s10f10 (mIoU: 0.77) or s12f12 (mIoU: 0.77). A
potential solution to enhance expressiveness could involve incorporating multiple recurrent blocks,
each equipped with a different set of parameters and its own variable recurrent step schedule.

5 Distance-based recurrence halting criteria

Algorithm 1: RecSlowFast inference with distance-based
early halting of recurrence

Input :Video frames I1, I2, . . . , IT , initial state hinit

Output :Predictions ypred
1 , ypred

2 , . . . , ypred
T

h0
1 ← hinit; %initialize hidden state

for t← 1 to T do
n← 0, dprev ← 0, xt ← fconv1(It);
while n ≤ Nmax do

n← n+ 1;

hn
t ← rθ(h

n−1
t , xt); %one recurrent step

dcurr ← d(hn
t , h

n−1
t );

if dcurr/(dprev + ϵ) < ∆ then
break; %early halting

else
dprev ← dcurr; %update distance

ypred
t ← fconv2(h

n
t );

Inspired by the empirical findings in
Figure 4, we design distance-based
recurrence halting criteria that do not
impose a fixed inference schedule
and can dynamically choose the ex-
ecuted recurrent steps without any
auxiliary neural network for schedul-
ing. In Algorithm 1 the pseudo code
is given. In each recurrent step,
we calculate the distance dcurr =
d(hn

t , h
n−1
t ) between the current and

previous hidden states, and compare
it with the previous distance dprev =

d(hn−1
t , hn−2

t ) (proper initial value
and indices are assumed here). The
comparison is conducted by calculat-
ing the distance ratio dcurr/(dprev+ϵ),
where ϵ is a small value used for pre-
venting zero division. A thresholding
hyperparameter ∆ is selected, so that
if the distance ratio is below this threshold, we regard the recurrence as already converged, thus
exiting it. Conversely, if the distance ratio surpasses ∆, the model is likely adapting to new input
so another recurrent step will be carried out until reaching the preset maximum number of steps
Nmax. We set Nmax to 12 which is 1.5× of the original training steps, meaning we allow the model
to extrapolate outside of its training regime if it is not converging within the training steps. This is
similar to [5, 33].

inference
strategy

∆ mIoU
averaged

steps

d
is

ta
n

ce
b

as
ed

h
al

ti
n

g

ℓ2

0.8 .78 6.7
0.9 .77 5.7
1.0 .76 4.3
1.1 .74 3.3

ℓ1

0.8 .79 9.5
0.9 .78 6.3
1.0 .76 3.6
1.1 .73 2.8

b
as

el
in

e s8f8 .79 8.0
s6f6 .73 6.0
s4f4 .71 4.0
s3f3 .67 3.0

Table 2: Distance based halting with
different thresholds

Experiment results For the results in Table 2, the model
being studied for different inference strategies is the
RecSlowFast-hGRU-s8f8 trained on T-Pathfinder-Hard.
We studied two distance metrics, ℓ2 and ℓ1. Threshold
values from 0.8 to 1.1 with step 0.1 are being examined,
and the average number of recurrent steps spent on the
videos is recorded. Notice that no finetuning was con-
ducted. For both distance metrics ℓ2 and ℓ1, the average
number of steps is effectively reduced, when ∆ is increas-
ing. Our distance based halting method enables controlling
the performance-speed trade-off with one single threshold
hyparameter, which is a desired property. If we compare
distance based hallting whose averaged steps is similar to
naively running same number of recurrent steps on every
frames, it provides a better task accuracy. This indicates
that distance based halting works better in allocating the
total computing budget.

6 Video semantic segmentation

To verify the RecSlowFast framework on larger-scale task,
we carried out preliminary experiments with the semantic segmentation task on the CamVid dataset [6].
We use the commonly studied CamVid version first processed in the SegNet work [1]. Each frame is
of resolution 360× 480 pixels. There are 11 semantic classes and one unlabeled class. 367, 101 and
233 frames are included in the train, validation, and test split respectively. The dataset is collected by
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a camera on a driving car and the frame rate 1 Hz, thus two consecutive frames can be quite different
with a driving speed and a low camera frame rate. We train and test on consecutive frame pairs
instead of entire video sequences.

We use a dual-gated recurrent unit (DRU) from [38] with U-Net [31] type of skip connections, to
implement the RecSlowFast framework. The DRU network consists of an encoder with 4 downsam-
pling convolutional layers and a decoder with 4 upsampling convolutional layers. The DRU recurrent
unit is placed in the middle as a recurrent structure with memory. The output of the entire pipeline is
also fed back as the input. Details on the DRU network, training, and dataset are in Section A.5.

3rd recurrent step

3rd recurrent step

3rd recurrent step

Stateless RecSlowFast

 recurrent step1st

 I1

I2 y
2

GT

y
1

GT

Figure 5: Results of the RecSlowFast-DRU on CamVid semantic segmentation. The leftmost column
is the input image pair and the second column contains their ground truths. The 3rd and 4th columns
are predictions from Stateless-DRU-s3f3 and RecSlowFast-DRU-s3f1 respectively.

When comparing RecSlowFast-DRU with 3 recurrent steps, the test mIoU is better than with 1
recurrent step (0.63 vs. 0.6). When we further finetune the 3-step checkpoint with s3f1 schedule, the
averaged mIoU became 0.62 while saving 33% computation cost compare to s3f3 on the test pair.
We also show qualitatively in Figure 5, that RecSlowFast-DRU is able to out perform the Stateless
version with just 1 additional recurrent step on the second input frame I2 and successfully solved
ambiguous area in I2 (marked with green circle) while Stateless DRU failed with 3 recurrent steps
(marked with red circle).

7 Conclusion

In this work, we propose the RecSlowFast framework to show the usefulness of exploiting hidden
representation similarities from temporally correlated input frames with recurrence for accelerating
temporal visual processing. We constructed a new dataset T-Pathfinder, which requires tracking of
the longest contour in a sequence of frames. The number of recurrent steps could be reduced for
later frames in the sequence, thus cutting down the computation cost, with the help of representation
similarities between two consecutive frames. Moreover, such cross-input hidden states reuse enables
the model to continuously improve the prediction and boost task accuracy by a large margin on the
T-Pathfinder dataset. We also analyze the correlation between input feature distances and hidden
states distances, providing empirical support for the feasibility of saving computation on temporally
correlated inputs. Based on this correlation, we propose early halting criteria based on the hidden
state distance ratio, which enables dynamic scheduling without presetting a fixed inference schedule
or sophisticated auxiliary scheduling networks. RecSlowFast also maintains high parameter efficiency
via the layer reuse property of recurrence. We perceive the potential for implementing RecSlowFast
on hardware with constrained resources. In such contexts, the reuse of parameters through a recurrent
structure becomes particularly advantageous.
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