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Abstract

The abstracts of scientific papers typically con-

tain both premises (e.g., background and ob-

servations) and conclusions. Although conclu-

sion sentences are highlighted in structured ab-

stracts, in non-structured abstracts the conclud-

ing information is not explicitly marked, which

makes the automatic segmentation of conclu-

sions from scientific abstracts a challenging

task. In this work, we explore Normalized Mu-

tual Information (NMI) as a means for abstract

segmentation. We consider each abstract as

a recurrent cycle of sentences and place two

segmentation boundaries by greedily optimiz-

ing the NMI score between the two segments,

assuming that conclusions are strongly seman-

tically linked with preceding premises. On non-

structured abstracts, our proposed unsupervised

approach GreedyCAS achieves the best perfor-

mance across all evaluation metrics; on struc-

tured abstracts, GreedyCAS outperforms all

baseline methods measured by Pk. The strong

correlation of NMI to our evaluation metrics

reveals the effectiveness of NMI for abstract

segmentation.1

1 Introduction

Abstracts of scientific papers are short texts that

summarize the findings reported in the body text

(Bahadoran et al., 2020). A well-formulated ab-

stract forms a scientific inference that extends from

premises (e.g., shared knowledge, experimental ev-

idence, or observation) to conclusions (e.g., sugges-

tions, claims, Ripple et al. (2012)). A splitting of

an abstract into a conclusion segment and a premise

segment can help readers better comprehend how

conclusions are drawn (Bahadoran et al., 2020) and

is of interest for downstream research tasks such as

argument generation (Schiller et al., 2021), knowl-

edge retrieval (Hua et al., 2019), opinion analysis

(Hulpus et al., 2019), and text summarization (Cho

et al., 2022).

1Code and data available at https://github.com/
CharizardAcademy/GreedyCAS.git
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Figure 1: Left: An abstract that contains premise (blue)

and conclusion (red) sentences. The task is to identify

the start and end segmentation boundaries of the con-

clusions. Right: We regard each abstract as a recurrent

cycle of sentences by stitching its start and end together.

Best view in color printing.

Many abstracts, especially those from the

biomedical domain, are structured to help the

reader extract the conclusions (e.g., abstracts fol-

low the IMRaD format (Nair and Nair, 2014; Der-

noncourt and Lee, 2017) or the CONSORT format

(Hopewell et al., 2008)). In contrast, abstracts from

many other research domains do not explicitly in-

dicate the position of conclusions, which means

that readers must perform the potentially cogni-

tively demanding task of identifying the conclu-

sions themselves. We are therefore interested in

probing approaches for splitting scientific abstracts

into conclusion and premise sentences.

Existing text segmentation approaches (Soma-

sundaran et al., 2020; Lo et al., 2021; Barrow et al.,

2020; Koshorek et al., 2018) can be applied to sci-

entific abstract segmentation. However, fine-tuning

such models typically requires large amounts of la-

belled data that are expensive to collect. In contrast,

unsupervised approaches require no annotated data

and can segment large numbers of texts with mini-

mal human involvement. Thus, we primarily test

6093



unsupervised frameworks for segmenting scientific

abstracts.

Given a set of abstracts, we want to determine

their splits into premise segments and conclusion

segments. Combining the premises from all ab-

stracts gives us a premise set, and similarly, we

obtain a conclusion set from combining all conclu-

sion segments. We hypothesize that the abstracts

are best segmented when the Normalized Mutual

Information (NMI) between the conclusion set and

premise set is maximized. Our intuition is that con-

clusions follow from the remainder of the abstract,

which is a redundancy that is well captured by mu-

tual information. To maximize NMI, we use an

exhaustive greedy approach that iterates over all

abstracts and determines the best segmentation for

each. To test how NMI deals with a known text

boundary, the end of an abstract, we stitch the start

and end of each abstract together to form a cycle,

then select two segmentation boundaries with con-

straints based on prior knowledge (see Figure 1).

We name our approach Greedy Cyclic Abstract

Segmentation (GreedyCAS).

To test our proposed approach, we create two

datasets. One dataset comprises non-structured ab-

stracts with human-annotated conclusion sentences.

The other dataset contains structured abstracts in

which conclusion sentences have been explicitly

marked by the authors of the abstract.

Our main contributions are as follows:

• We propose GreedyCAS, an unsupervised ap-

proach for scientific abstract segmentation

that optimizes NMI.

• On a dataset of non-structured abstracts, we

show that GreedyCAS achieves promising

segmentation results.

• We find a strong correlation between NMI and

other evaluation metrics, in support of NMI

being useful for segmentation.

2 Related Works

Abstract segmentation is a particular case of text

segmentation. The task of text segmentation is to

insert separation markers into the text such that the

segmented fragments are topically coherent and

comprehensive (Hazem et al., 2020). Traditional

methods can be categorized into supervised and

unsupervised methods.

Unsupervised approaches (Alemi and Ginsparg,

2015) usually make use of metrics based on tex-

tual coherence or topic contiguity and take the

following strategies: 1) to greedily seek the best

segmentation based on text similarity at each step

(Choi, 2000; Hearst, 1994); and 2) to iteratively

approach a global optimum of a segmentation ob-

jective (e.g. semantic relatedness) via dynamic

programming (Fragkou et al., 2004; Bayomi and

Lawless, 2018). These methods use similarity mea-

sures or lexical frequencies between segments to

determine segmentation boundaries or convert the

inter-sentence similarities into a semantic graph

and perform graph search (Glavaš et al., 2016) to

find the optimal segmentation.

Supervised methods are usually deployed when

sufficiently many annotated examples are available.

These methods typically use language models to

encode sentences and perform binary classifica-

tion to predict whether a sentence is on the seg-

mentation boundary (Somasundaran et al., 2020;

Banerjee et al., 2020; Aumiller et al., 2021; Bad-

jatiya et al., 2018; Lukasik et al., 2020; Koshorek

et al., 2018). Banerjee et al. (2020) fine-tuned

a hierarchical sentence encoder using structured

abstracts to classify sentences into discourse cat-

egories (BACKGROUND, TECHNIQUE, and OB-

SERVATION). In general, supervised approaches

achieve good performance, but they consume a

large amount of annotated data, which is expensive

to collect. In this work, we set out to test generic

unsupervised approaches that require no training

data.

3 Methodology

We formulate the task of segmenting scientific ab-

stracts as follows. Given an abstract A = (si)
n
i=1

containing n sentences, we define GA = {gAj }
mA

j=1

as the set of all mA possible segmentations of

A. Each segmentation gAj = (PA
j , CA

j ) con-

tains a premise segment PA
j and a conclusion seg-

ment CA
j with boundaries given by two indices

αA
j , ξ

A
j ∈ N1:n (range of integers from 1 to n):

CA
j = {si ∈ A | αA

j ≤ i ≤ ξAj },

PA
j = {si ∈ A | si /∈ CA

j }.

Associated with a corpus A = {Ai}i∈N1:k
of

k abstracts, there is a set of G = {GAi}i∈N1:k

of
∏k

i=1mAi
possible segmentations. Search-

ing for the best ensemble of segmentations of A
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Figure 2: Our proposed GreedyCAS pipeline for segmenting scientific abstracts. Premise sentences are colored in

blue, whereas conclusion sentences are colored in red. Best view in color printing.

within G may involve exhaustive enumeration over
∏k

i=1mAi
segmentations, which is impossible un-

der limited computational costs. Therefore, in this

work, we concentrate on greedily approaching a

reasonably good segmentation that is a tight lower

bound of the actual global optimum.

3.1 Cyclic Abstract Segmentation

To reduce the search space, we make two assump-

tions: firstly, that conclusion sentences are located

at the end of abstracts; and secondly, that each ab-

stract contains at most three conclusion sentences.

This results in m = 6 possible segmentations per

abstract. The segmentations of an example abstract

with n = 7 sentences are depicted in Table 1.

Because scientific abstracts typically end with

conclusion sentences, we expect the stitching point

of our cyclic abstracts to form a boundary. In other

words, we read out the segmentation of interest

from the first segment boundary αA
j ; the second

segment boundary ξAj we expect to coincide with

the abstract end. Thus, by optimizing the second

segment boundary ξAj , we perform a sanity check

that the unsupervised segmentation method is capa-

ble of detecting the abstract end, which is a natural

boundary of the abstract.

3.2 Normalized Mutual Information

Our next step is to choose an optimization objec-

tive for the greedy search. Inspired by work on

text summarization (Padmakumar and He, 2021)

and birdsong analysis (Sainburg et al., 2019), we

explore mutual information as the optimization ob-

jective.

config.

labeling 0001001 1000100 0100010

config.

labeling 0000101 1000010 0000011

Table 1: Labeling of segmentation boundaries for an

example abstract with seven sentences, among which at

most three sentences are conclusion sentences (colored

in red). 1 indicates a sentence on the segment boundary,

whereas 0 indicates a non-boundary sentence. We aim

to reduce the complexity by searching within the six

possible segmentations for each abstract.

Mutual information I(X;Y ) is a measure of the

absolute reduction in information uncertainty (in

bits) for a random variable X after observing an-

other correlated random variable Y . Our proposed

greedy approach is based on the assumption that

the uncertainty of the conclusion is minimized after

the premise is observed, i.e. that the segmentation

maximizes mutual information.

We denote C = {CAi

ji
}i∈N1:k

as a possible con-

clusion ensemble spanned by all conclusion seg-

ments from the k abstracts, and P = {PAi

ji
}i∈N1:k

as one possible premise ensemble obtained in the

same way. Note that the segmentation ji can be

different for each abstract Ai.
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The task can now be formulated as follows:

given a corpus of abstracts A, determine the

premise P and conclusion C ensembles that maxi-

mize the mutual information I(P;C).
More formally, we compute I(P;C) as follows:

I(P;C) =
∑

Ai∈A

∑

wp∈P
Ai
ji

∑

wc∈C
Ai
ji

p(wp;wc) log
p(wp;wc)

p(wp)p(wc)
,

where wp and wc are unigram tokens in the i-th

premise segment PAi

ji
and the i-th conclusion seg-

ment CAi

ji
, respectively. p(wp;wc) indicates the

joint probability of the premise word wp appear-

ing in the premise segment PAi

ji
and the conclu-

sion word wc appearing in the conclusion segment

CAi

ji
. p(wp) and p(wc) denote marginal probabili-

ties. Making use of language modeling statistics,

we compute the marginal probabilities as follows:

p(wp) =
c(wp,P)

∑

w′
p
c(w′

p,P)

p(wc) =
c(wc,C)

∑

w′
c
c(w′

c,C)
,

where c(w,P) denotes the number of occurrences

of w within the tokenized premise segments in P

and w′
p is a token from the premise segment of any

abstract. The terms c(w,C) and w′
c are defined

analogously.

The joint probability is then computed as

p(wp;wc) =

∑k
i=1 c

(
wp, P

Ai

ji

)
c
(
wc, C

Ai

ji

)

∑

(w′
p,w

′
c)
c(w′

p,P)c(w
′
c,C)

,

Because mutual information is an unbounded

measure that increases with the size of A, it is not

directly comparable across different P and C en-

sembles (Poole et al., 2019). We therefore normal-

ize I(P;C) by mapping it onto the interval [0, 1]
and use Normalized Mutual Information (NMI) as

the final optimization objective.

Taken from Kvålseth (2017), we compute NMI

as follows:

NMI(P;C) =
I(P;C)

Ua

where Ua denotes the non-decreasing theoretical

upper bound of I(P;C) and is parametrized by the

a-order arithmetic mean

Ua =

(
UP + UC

2

)1/a

.

Here, we have

UP = −
∑

wp

p(wp) log p(wp) = H(P)

and

UC = −
∑

wc

p(wc) log p(wc) = H(C)

essentially being the entropy of the premise ensem-

ble and the conclusion ensemble, respectively. For

the least upper bound (a = −∞), we have

U−∞ = lim
a→−∞

Ua = min{UP,UC}

In this work, we use U−∞ to normalize I(P;C) to

ensure that the maximal attainable NMI value is

1. This brings us the benefit of comparable NMI

scores for different corpus sizes k.

3.3 Greedy Cyclic Abstract Segmentation

We now introduce our GreedyCAS approach to

segment abstracts of scientific papers. GreedyCAS

performs a search, where we first explore the best

segmentation of one particular abstract that maxi-

mizes NMI(P;C), then iterate over all abstracts to

perform the same maximization.

Algorithm 1 describes the basic segmentation ap-

proach GreedyCAS-base. Given the input abstract

corpus A, the algorithm greedily searches for the

segmentation that leads to the maximal NMI(P;C).
The output is the optimized segmentation G

∗.

Algorithm 2 illustrates the advanced approach

GreedyCAS-NN, where we first split the abstract

corpus A into a series of chunks (denoted as

A
chunk) in size of c; then, for each seed abstract

As
ji

sampled from the current chunk A
chunk, we

perform embedding-based nearest neighbour (NN)

search within the chunk to construct the batch (de-

noted as A
batch
s ) comprising the b most semanti-

cally relevant abstracts for As
ji

, by computing the

cosine similarity using their abstract embeddings:

∀A ∈ A
chunk,

sim(As
ji , A) =

e(As
ji
) · e(A)

||e(As
ji
)|| · ||e(A)||

A
batch
s =

{

A ∈ A
chunk : rank

(
sim(As

ji , A)
)
⩽ b

}

We use a pre-trained Sentence-BERT model2

(Reimers and Gurevych, 2019) to acquire the ab-

2We use the sentence-transformers encoder (pre-trained
model all-MiniLM-L6-v2 with model size 80 MB),
Apache-2.0 License, available at github.com/UKPLab/
sentence-transformers
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Algorithm 1: GreedyCAS-base: unsuper-

vised cyclic abstract segmentation

Input: abstract corpus A = {Ai}i∈N1:k

Output: optimized segmentation G = {GAi}i∈N1:k

1 A
res ← A;

2 while A
res ̸= ∅ do

3 O∗

A ← 0; ▷ optimization objective.
4 G

∗ ← ∅;
5 Ai ← sample(A);
6 A

res ← A
res\Ai;

7 {gAi
j }

6

j=1 ← configure(Ai);

8 GAi ← {gAi
j }

6

j=1;

9 foreach epoch do

10 G
A

res

← ∅;
11 foreach Ar ∈ A

res do

12 {gAr
j }

6

j=1 ← configure(Ar);

13 gAr
j ← sample({gAr

j }
6

j=1);

14 GAr ← {gAr
j };

15 G
A

res

← G
A

res

∪GAr ;

16 end

17 foreach g
Ai
j ∈ GAi do

18 g
Ai
j = (PAi

j , C
Ai
j );

19 foreach GAr ∈ G
A

res

do

20 gAr
j ← GAr ;

21 gAr
j = (PAr

j , CAr
j );

22 end

23 P = P
Ai
j ∪ {PAr

j }Ar∈Ares ;

24 C = C
Ai
j ∪ {C

Ar
j }Ar∈Ares ;

25 OA ← compute-NMI(P;C);
26 if OA > O∗

A then
27 O∗

A ← OA;

28 G
∗ ← G

A
res

∪GAi ;

29 end
30 else
31 continue;
32 end

33 end

34 end

35 end
36 return G

∗;

stract embeddings. Finally, the same greedy strat-

egy as described in GreedyCAS-base is applied

to find the best segmentation for each abstract of

the batch. To fully utilize the power of parallel

computing, we use multi-threading3 to optimize

NMI.

4 Dataset

Since we calculate NMI scores using lexical co-

occurrences of words, we constructed a corpus of

related abstracts based on the COVID-19 Open Re-

search Dataset (CORD-19) released by Wang et al.

(2020). This dataset is a massive collection of sci-

3We use the Python MultiThreading library https://

docs.python.org/3/library/threading.html

Algorithm 2: GreedyCAS-NN: unsuper-

vised cyclic abstract segmentation with

nearest neighbor search

Input: abstract corpus A = {Ai}i∈N1:k , chunk size
c, batch size b

Output: optimized segmentation
G

∗ = {GAi}i∈N1:k

1 G
∗ ← ∅;

2 {Achunk
i }i∈N

1:k/c
← truncate(A, c);

3 A
chunk ← {Achunk

i }i∈N
1:k/c

;

4 while len(G∗) ̸= k do

5 foreach A
chunk
i ∈ A

chunk do

6 G
chunk
∗ ← ∅;

7 {As
ji
}j∈N

1:c/b
← sample(Achunk

i );

8 A
s
i ← {A

s
ji
}j∈N

1:c/b
; ▷ seed abstracts

9 foreach As
ji
∈ A

s
i do

10 {As
jim
}m∈N1:b ← NN-search(As

ji
; b);

11 A
batch
s ← {As

jim
}m∈N1:b ;

12 G
batch
∗ ← GreedyCAS-base(Abatch

s );

13 G
chunk
∗ ← G

chunk
∗ ∪G

batch
∗ ;

14 end

15 G
∗ ← G

∗ ∪G
chunk
∗ ;

16 end

17 end
18 return G

∗;

entific papers on SARS-CoV-2 coronavirus-related

research published since March 2020. These papers

share higher lexical commonality than biomedical

papers in general due to the focused research inter-

est in COVID-19.

We worked with abstracts whose sentences have

been categorized into BACKGROUND, METHODS,

RESULTS, and CONCLUSION discourse categories.

We trusted the categories of these structured ab-

stracts from the CORD-19 corpus since scientific

papers are peer-reviewed and multi-round revised.

We automatically aggregated the dataset CAS-

auto from 697 structured scientific abstracts whose

paper titles contained the keyword vaccine. In-

spired by Shieh et al. (2019), we took sentences in

BACKGROUND, METHODS, RESULTS categories

as premises, and sentences in the CONCLUSION

category as conclusions.

In addition, we manually constructed a dataset

CAS-human of 196 non-structured abstracts from

CORD-19, using the keyword antigen to find target

abstracts. We then asked four human annotators

to label the conclusion sentences within those ab-

stracts. All human annotators were not instructed

about the potential positions of conclusion sen-

tences in scientific abstracts. By doing this, we

avoided biasing them. To facilitate the annotation

process and reduce the annotators’ workload, we
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used the interactive data labeling platform Doc-

cano4 (Nakayama et al., 2018) for constructing the

CAS-human dataset.

Table 2 shows the overall statistics of our pro-

posed datasets for scientific abstract segmentation.

During data preprocessing, we intentionally re-

moved stop words, numbers, and punctuations (ex-

cept “.”, which is essential for the sentence tok-

enizer5 we used) in the abstracts. We also low-

ercased all tokens in both datasets for increased

computational efficiency.

Dataset # abs. # con. # pre. avg. |abs.|

CAS-auto 697 1,267 4,755 8.64

CAS-human 196 263 1,220 7.57

Table 2: Statistics of the two datasets. # abs. denotes

the number of abstracts, # con. and # pre. indicate the

number of conclusion and premise sentences, respec-

tively. avg. |abs.| the average number of sentences of

the abstracts.

Figure 3 shows the positions of the conclusion

sentences within the abstracts in the CAS-human

dataset as labelled by the human annotators. Simi-

larly, as shown in previous works (Fergadis et al.,

2021; Achakulvisut et al., 2019), in 95% of our

annotated non-structured abstracts, the positions of

conclusion sentences were consistent with our prior

assumption (they were among the last 3 sentences

of the abstract).

5 Evaluation

5.1 Metrics

To evaluate the segmentation results, we use both

set similarity and textual relevance as metrics. We

test the performance of our approaches on both

automatically (CAS-auto) and manually (CAS-

human) aggregated data. To evaluate the segmenta-

tion boundaries, we use text segmentation metrics

Pk (Beeferman et al., 1999) and WindowDiff (WD,

Pevzner and Hearst (2002)). Then, we use ROUGE

score (Lin, 2004) to measure the textual relevance

between the segmented and ground-truth conclu-

sion sentences. We compute the arithmetic mean

of ROUGE-1, ROUGE-2, and ROUGE-Lsum f-

4MIT License, available at https://github.com/
doccano/doccano

5We used the sentence-splitter by Philipp Koehn and
Josh Schroeder, GNU Lesser General Public License,
available at https://github.com/mediacloud/

sentence-splitter

Figure 3: Statistics of the positions of the conclusion

sentences within the abstracts in the CAS-human dataset.

The minus sign denotes the positions counting from the

end of the abstract (-1 denotes the last sentence of the

abstract, -2 the second last sentence, and so on).

measures. Finally, we use Jaccard index to mea-

sure the similarity between the set of segmented

conclusion sentences and the set of ground-truth

conclusion sentences. Lower Pk and WD scores in-

dicate better segmentation results, whereas higher

ROUGE and Jaccard indexes represent better seg-

mentation results.

5.2 Baselines

We present three unsupervised baseline methods

for abstract segmentation as baselines. To ensure

the comparability of the results, we manually added

an additional segmentation boundary at the end of

the abstract for any approach that provides only

one boundary.

Random To test our prior knowledge of the po-

sition of conclusions sentences, we set up two ran-

dom baselines: a) Random-base: following the idea

initially proposed by Beeferman et al. (1999), we

place segmentation boundaries after two randomly

selected sentences; b) Random-plus: we segment

an abstract by randomly selecting one from the six

possible segmentations described in chapter 3.1.

TextTiling6 As proposed in Hearst (1997) and

serving as the classic text segmentation approach,

TextTiling utilizes lexical information to detect

topic changes within a given text. In our case, Text-

6We use the HarvestText implementation for the English
language, MIT License, available at https://github.
com/blmoistawinde/HarvestText
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Tiling places a segmentation boundary between

sentences.

SBERT-sim Inspired by Solbiati et al. (2021),

we use the same Sentence-BERT encoder as

GreedyCAS-NN to segment abstracts using sen-

tence semantics. Each abstract is split into two

segments such that the cosine similarity of their

Sentence-BERT embeddings is maximized.

6 Results and Discussion

6.1 Non-structured Abstracts

First, we test our supervised GreedyCAS ap-

proaches against the baselines on the CAS-human

dataset of non-structured abstracts. We list the ex-

periment results in Table 3. For the GreedyCAS

approaches, we report the empirical performance

with the best batch size. The best batch size hints

at how many closely related abstracts together can

bring benefits to the estimation of word probabili-

ties, and essentially, the final segmentation results.

Intuitively, as the batch size grows, the relatedness

among the abstracts drops because it is not possible

to get a large number of abstracts that study pre-

cisely the same research question. For the Random

baselines, we report the best segmentation results

from 11 random trials.

CAS-human Pk ↓ WD ↓ Jaccard ↑ ROUGE ↑

Random-base .4293 .5236 .0642 .1925

Random-plus .2594 .3678 .4724 .6115

TextTiling .2555 .3444 .4971 .6153

SBERT-sim .3009 .4199 .4491 .5935

GreedyCAS-base10 .1937 .3089 .5670 .6631

GreedyCAS-NN12 .1605 .2543 .6020 .6668

Table 3: Segmentation results on the CAS-human

dataset. ↓ indicates that the lower the value is, the better

the performance, whereas ↑ means the opposite. The

superscripts of GreedyCAS approaches indicate the best

empirical batch size. The best results are statistically

significantly better than the closest baseline (Wilcoxon

signed-ranked test).

We see that the GreedyCAS-NN achieves the

best performance. The results suggest that this

approach works well on non-structured abstracts.

Thus, NMI is able to capture the conclusion-

relevant information at both the abstracts’ begin-

ning and end.

6.2 Structured Abstracts

Next, we test GreedyCAS approaches against the

baselines on the CAS-auto dataset of structured

abstracts. The results are shown in Table 4.

CAS-auto Pk ↓ WD ↓ Jaccard ↑ ROUGE ↑

Random-base .3958 .4090 .1169 .2578

Random-plus .2002 .2251 .5171 .6569

TextTiling .2742 .3131 .4009 .5271

SBERT-sim .1930 .2101 .6013 .7274

GreedyCAS-base8 .1656 .2341 .4878 .5836

GreedyCAS-NN12 .1652 .2317 .4830 .5717

Table 4: Segmentation results on the CAS-auto dataset.

The best results are statistically significantly better than

the closest approach.

First, we found that compared to the Random-

base baseline, Random-plus improves the results

across different measures by large margins.

We then observe that the SBERT-sim baseline,

which segments abstracts based on the cosine sim-

ilarity between the premise and conclusion seg-

ments, achieves the best performance on three out

of four metrics by a large margin. Our best model

GreedyCAS-NN only achieves the leading perfor-

mance measured by Pk, while achieving lower per-

formance measured by other metrics. In Table 5

and 6 in appendix B, we show two abstracts that

were wrongly segmented by GreedyCAS-NN: the

first abstract has one additional sentence from the

BACKGROUND category, whereas the second ab-

stract has one additional sentence from the RE-

SULTS category. These sentences were misat-

tributed by GreedyCAS to the conclusion segment

because they increase the NMI score; however, due

to the complexity of NMI, understanding the exact

reasons why NMI increases is non-trivial.

6.3 Analysis

In Figure 4, we compute the correlation coefficients

between NMI scores and each evaluation metric.

We plot the NMI scores and the evaluation metrics

w.r.t the batch size (ranging from 2 to 12).

Figure 4 shows that NMI scores are strongly neg-

atively correlated with the text segmentation met-

rics Pk and WindowDiff, but are strongly positively

correlated with the set similarity metric Jaccard in-

dex and the lexical metric ROUGE.

In Figure 5, rather than studying the complex sce-

nario where an entire sentence gets re-attributed,

we showcase the impact on NMI when just one

word is moved from the premise segment to the

conclusion segment. We studied whether placing

segmentation boundaries between words can pro-

vide similar NMI(P;C) scores compared to placing
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Figure 4: Correlation coefficients between NMI and

other metrics. We fit linear regression models to the data

points. *** indicates the significance level p < 10−3

and ** p < 10−2 (Pearson correlation test).

them within sentences. To do this, we randomly

pick one abstract from the CAS-human dataset and

calculate the changes in NMI(P;C) due to the re-

location of the segmentation boundary caused by

one word at a time moved to the right.
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Figure 5: Change in NMI(P;C) when moving one word

from the premise to the conclusion segment for a fixed

abstract. Dashed lines denote the end positions of sen-

tences in the abstract. We smooth the data with a Gaus-

sian filter with σ = 3.

We see in Figure 5 that the slope at word posi-

tions near sentence boundary is not always steeper

than at word positions within the sentences, which

indicates that segmenting abstracts by putting seg-

mentation boundaries after complete sentences

might not be the optimal choice when optimizing

with NMI.

7 Conclusion

In this explorative work, we propose an unsuper-

vised approach, GreedyCAS, for automatically seg-

menting scientific abstracts into conclusions and

premises. We introduce the cyclic abstract segmen-

tation pipeline, which can be applied to structured

and non-structured abstracts. Our approach lever-

ages the lexical information between words that

co-occur in the conclusion and premise segments

and finds the best segmentation of a set of abstracts

using NMI as an optimization objective. Our empir-

ical results show that NMI is an effective indicator

for the segmentation results of scientific abstracts.

8 Limitations

In this work, we explored the use of normalized

mutual information as an optimization objective

for scientific abstract segmentation. The main limi-

tations of our work are listed below:

• The input abstracts of GreedyCAS need to be

on similar research topics; otherwise, their

shared vocabulary is limited and the word

probabilities in the computation of NMI can-

not be estimated well.

• GreedyCAS has a high time and space com-

plexity because it involves searching for the

best segmentation and enumeration over all

possible word pairs at each iteration. As a

result, GreedyCAS takes a long time to exe-

cute and using larger batch sizes is a challenge

with limited computational resources.

• We did not try to assess the reliability of word-

pair probability estimation. Presumably, the

more abstracts are considered, the better the

probability estimates of frequent word pairs,

but the more infrequent outlier pairs creep

in with biased probability estimates. Thus,

it seems not obvious that more abstracts will

necessarily yield better probability and mutual

information estimates.

In the future, we will analytically study how

to increase the efficiency and the applicability of

GreedyCAS by considering other ways of estimat-

ing the word probabilities.
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A Exhaustive Search

We tested GreedyCAS on five well-structured abstracts (in total 7,776 configurations) from the CAS-auto

dataset, where we use different a-orders to normalize the MI. To do this, we brute-forcely calculated NMI

values for all configurations. Figure 6 shows the progressive change of the running maximum NMI in

the exhaustive search, where the global maximum was reached at around 5,100.th configuration. For all

three cases, GreedyCAS managed to reach the same global maximum. However, due to the exponential

increase of exhaustive search cost w.r.t number of abstracts, testing GreedyCAS over a larger amount of

abstracts was difficult.

Figure 6: Progressive development of NMI on enumerating 7,776 configurations constructed from k = 5 abstracts.

We further tested GreedyCAS on five abstracts with different numbers of trials. Each trial involved

different random segmentation initializations. Figure 7 shows the distributions of the number of itera-

tions under different numbers of trials that GreedyCAS required to achieve maximal NMI. We see that

GreedyCAS is able to find the maximal NMI within 60 iterations during all trials.

Figure 7: Distribution of number of iterations GreedyCAS performed on five abstracts when reaching the maximal

NMI, with different number of random trials. Every trial begins with random initial segmentations of the five

abstracts.
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B Dataset Example

In the following tables, sentences in the premise segment are highlighted in blue, whereas sentences in the

conclusion segment are highlighted in red.

Title: Additional evidence on the efficacy of different Akirin vaccines assessed on Anopheles arabiensis

(Diptera: Culicidae) (Letinić et al., 2021)

BACKGROUND Anopheles arabiensis is an opportunistic malaria vector that rests and feeds outdoors,

circumventing current indoor vector control methods. Furthermore, this vector will readily feed on both

animals and humans. Targeting this vector while feeding on animals can provide an additional inter-

vention for the current vector control activities. Previous results have displayed the efficacy of using

Subolesin/Akirin ortholog vaccines for the control of multiple ectoparasite infestations. This made Akirin

a potential antigen for vaccine development against An. arabiensis.

METHODS The efficacy of three antigens, namely recombinant Akirin from An. arabiensis, recombinant

Akirin from Aedes albopictus, and recombinant Q38 (Akirin/Subolesin chimera) were evaluated as novel

interventions for An. arabiensis vector control. Immunisation trials were conducted based on the concept

that mosquitoes feeding on vaccinated balb/c mice would ingest antibodies specific to the target antigen.

The antibodies would interact with the target antigen in the arthropod vector, subsequently disrupting its

function.

RESULTS All three antigens successfully reduced An. arabiensis and reproductive capacities, with a

vaccine efficacy of 68-73%.

CONCLUSIONS These results were the first to show that hosts vaccinated with recombinant Akirin vac-

cines could develop a protective response against this outdoor malaria transmission vector, thus providing

a step towards the development of a novel intervention for An. arabiensis vector control.

Table 5: Example abstract in CAS-auto segmented by GreedyCAS-NN, where the first sentence of the BACK-

GROUND category is attributed to the conclusion segment. Best view in color printing.

Title: Interest in COVID-19 vaccine trials participation among young adults in China: Willingness,

reasons for hesitancy, and demographic and psychosocial determinants (Sun et al., 2021)

BACKGROUND With the demand for rapid COVID-19 vaccine development and evaluation, this paper

aimed to describe the prevalence and correlates of willingness to participate in COVID-19 vaccine trials

among university students in China.

METHODS A cross-sectional survey with 1,912 Chinese university students was conducted during

March and April 2020. Bivariate and multivariate analyses were performed to identify variables associated

with willingness to participate.

RESULTS The majority of participants (64.01%) indicated willingness to participate in COVID-19

vaccine trials. Hesitancy over signing informed consent documents, concerns over time necessary for

participating in a medical study, and perceived COVID-19 societal stigma were identified as deterrents,

whereas lower socioeconomic status, female gender, perception of likely COVID-19 infection during the

pandemic, and COVID-19 prosocial behaviors were facilitative factors. Further, public health mistrust and

hesitancy over signing informed consent documents had a significant interactive effect on vaccine trial

willingness.

CONCLUSIONS High standards of ethical and scientific practice are needed in COVID-19 vaccine re-

search, including providing potential participants full and accurate information and ensuring participation

free of coercion, socioeconomic inequality, and stigma. Attending to the needs of marginalized groups

and addressing psychosocial factors including stigma and public health mistrust may also be important to

COVID-19 vaccine development and future uptake.

Table 6: Example abstract in CAS-auto segmented by GreedyCAS-NN, where the last sentence of the RESULTS

category is attributed to the conclusion segment. Best view in color printing.

Table 7 shows an example abstract that contains a word pair, whose contribution to the overall NMI
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score is the greatest.

Title: Hepatitis B surface antigen assembles in a post-ER, pre-Golgi compartment (Huovila et al., 1992)

Expression of hepatitis B surface antigen (HBsAg), the major envelope protein of the virus, in the absence

of other viral proteins leads to its secretion as oligomers in the form of disk-like or tubular lipoprotein

particles. The observation that these lipoprotein particles are heavily disulphide crosslinked is paradoxical

since HBsAg assembly is classically believed to occur in the ER, and hence in the presence of high levels

of protein disulphide isomerase (PDI) which should resolve these higher intermolecular crosslinks. Indeed,

incubation of mature, highly disulphide crosslinked HBsAg with recombinant PDI causes the disassembly

of HBsAg to dimers. We have used antibodies against resident ER proteins in double immunofluorescence

studies to study the stages of the conversion of the HBsAg from individual protein subunits to the secreted,

crosslinked, oligomer. We show that HBsAg is rapidly sorted to a post-ER, pre-Golgi compartment which

excludes PDI and other major soluble resident ER proteins although it overlaps with the distribution of

rab2, an established marker of an intermediate compartment. Kinetic studies showed that disulphide-linked

HBsAg dimers began to form during a short (2 min) pulse, increased in concentration to peak at 60 min,

and then decreased as the dimers were crosslinked to form higher oligomers. These higher oligomers are

the latest identifiable intracellular form of HBsAg before its secretion (t 1/2 = 2 h). Brefeldin A treatment

does not alter the localization of HBsAg in this PDI excluding compartment, however, it blocks the for-

mation of new oligomers causing the accumulation of dimeric HBsAg. Hence this oligomerization must

occur in a pre-Golgi compartment. These data support a model in which rapid dimer formation, catalyzed

by PDI, occurs in the ER, and is followed by transport of dimers to a pre-Golgi compartment where the

absence of PDI and a different lumenal environment allow the assembly process to be completed.

(wp, wc) pair that contributes the most to the overall NMI(P;C) score: (HBsAg, compartment)

Table 7: Example abstract in CAS-human segmented by GreedyCAS-NN. The word pair that contributes the most

to NMI(P;C) is in bold. Best view in color printing.
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C Impact on NMI When Moving One Word

Let wp ∈ P be any premise word, wc ∈ C be any conclusion word, Ai a fixed abstract, and gAi

j one

possible segmentation (we use the index j to represent the segmentation). By moving one arbitrary word

w from the premise segment PAi

j to the conclusion segment CAi

j , I(P;C) changes. We investigate the

major terms in the equation of mutual information. We aim to find those word pairs that predominantly

contribute to I(P;C) so that the computation can be simplified, which essentially will allow the algorithm

to run on a larger batch size.

First, we examine what happens to the marginal probabilities p(wp) and p(wc):

p(wp) =
c(wp,P)− I[wp = w]
∑

w′
p
c(w′

p,P)− 1

p(wc) =
c(wc,C) + I[wc = w]
∑

w′
c
c(w′

c,C) + 1

Here I denotes an indicator function and c a counter function. The indicator function takes the value 1

if the condition in the bracket is fulfilled, otherwise, it takes the value 0. For the marginal probabilities,

we have the following cases:

• If wp = w, then p(wp) decreases; if wp ̸= w, then p(wp) increases.

• If wc = w, then p(wc) increases; if wc ̸= w, then p(wc) decreases.

Then, we examine what happens to p(wp;wc), the main term in computation of I(P;C)

p(wp;wc) =

∑

j ̸=i c(wp, P
Aj )c(wc, C

Aj ) +
(
c(wp, P

Ai)− I[wp = w]
) (

c(wc, C
Ai) + I[wc = w]

)

∑

(w′
p,w

′
c)

(
c(w′

p,P)− I[w′
p = w]

)
(c(w′

c,C) + I[w′
c = w])

=

constant
︷ ︸︸ ︷
∑

j ̸=i

c(wp, P
Aj )c(wc, C

Aj )+

α
︷ ︸︸ ︷
(
c(wp, P

Ai)− I[wp = w]
)

β
︷ ︸︸ ︷
(
c(wc, C

Ai) + I[wc = w]
)

∑

(w′
p,w

′
c)

c(w′
p,P)c(w

′
c,C)

︸ ︷︷ ︸
constant

+
∑

(w′
p,w

′
c)

{
c(w′

p,P)I[w
′
c = w]− c(w′

c,C)I[w
′
p = w]− I[w′

p = w]I[w′
c = w]

}

︸ ︷︷ ︸
γ

=
a+ αβ

b+ γ
,

here a and b are the constant terms within the fraction, since moving w in Ai will not affect other

abstracts. For the joint probability, we have the following cases:

• If wp ̸= w and wc ̸= w, p(wp;wc) remains unchanged.

• If wp = w and wc ̸= w, then

p(wp;wc) =
a+ (α− 1)β

b− c(wc,C)
.

• If wp ̸= w and wc = w, then

p(wp;wc) =
a+ α(β + 1)

b+ c(wp,P)
.

• If wp = w and wc = w, then

p(wp;wc) =
a+ (α− 1)(β + 1)

b+ c(wp,P)− c(wc,C)− 1
.
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Till this point, we found it very difficult to predict how p(wp;wc) will change when moving w. The

reasons are:

• For the case of wp = w and wc = w, we cannot tell a priori whether c(w,P)− c(w,C) is positive,

i.e. whether w appears more frequently within premise segments or conclusion segments. This leads

to the uncertainty of determining the change in the sign of mutual information.

• The normalizing factor of NMI, which is essentially the minimum between H(P) and H(C), cannot

be determined after moving w.

Also, because for any research domain, it is nearly impossible to get a large number of papers that

study exactly the same research question (e.g., it’s not possible to get thousands of papers that study the

effectiveness of COVID-19 vaccines, due to limited number of clinical trials that have been done so far),

therefore, further increasing the batch size is not feasible.

Due to the above reasons, we only computationally studied how NMI would change when moving one

word from the premise segment to the conclusion segment (see Figure 5).
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