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Abstract

The operation of the Dynamic Vision Sensor (DVS) event

camera is controlled by the user through adjusting differ-

ent bias parameters. These biases affect the response of

the camera by controlling - among other parameters - the

bandwidth, sensitivity, and maximum firing rate of the pix-

els. Besides determining the response of the camera to input

signals, biases significantly impact its noise performance.

Bias optimization is a multivariate process depending on

the task and the scene, to which the user’s knowledge about

pixel design and non-idealities can be of great importance.

In this paper, we go step-by-step along the signal path-

way of the DVS pixel, shining light on its low-level oper-

ation and non-idealities, comparing pixel level measure-

ments with array level measurements, and discussing how

biasing and illumination affect the pixel’s behavior. With

the results and discussion presented, we aim to help DVS

users achieve more hardware-aware camera utilization and

modelling.

1. Introduction

Over the past decade, neuromorphic or event-based

DVSs [1]–[4] gained significant attention as a disruptive

sensing technology, demonstrating key performance ad-

vantages over conventional frame-based sensors, including

wide intra-scene dynamic range, low latency and power

consumption, and a data-sparse output capturing only the

dynamic information in a visual scene [5]. These bene-

fits come at the cost of increased circuit complexity com-

pared to frame-based sensors, which is both a blessing and

a curse. On one hand, DVSs are highly adaptable, offering

many degrees of freedom in performance through tunable

biases; however, optimizing biases for a particular applica-

tion is extremely difficult, even for experts in the technol-

ogy. The goal if this paper is to present the challenging

topic of bias optimization in an easy to understand way and

provide specific guidelines for setting event camera biases

based on task requirements and scene limitations.

General biasing guidance is discussed in [1], [6], [7], but

descriptions are mostly qualitative and do not capture the

trade-offs encountered when adjusting biases. Key perfor-

mance metrics for DVS are measured and reported in [8]–

[10] for varied illumination levels; however, full characteri-

zation across varied bias settings is not reported.

In [11], [12], we show how DVS noise performance and

bandwidth depend on illumination and photoreceptor bias,

and [13] presents a discussion regarding the effect of differ-

ent biases on the output noise rate. In the same work, an

algorithm based on feedback control that dynamically tunes

the bias settings with the goal of keeping the output event

rate within a programmable target window is presented. A

discussion about how biasing affects the sharpness of the

output of a event camera is presented in [14]. In [15], we

propose a DVS characterization method to infer Temporal

Contrast (TC) event threshold, pixel bandwidth, and refrac-

tory period, and show and discuss how the inferred param-

eters depend on the biases.

A good understanding of the pixel operation and the ef-

fect of the biases is also important for the development of

realistic DVS models and simulators [16]–[18]. Accurate

models are important to predict the response of a DVS to

an arbitrary scene, which can both help users optimize their

set-up and generate of simulated event datasets from pre-

existing frame-based datasets. In particular, v2e [17] ex-

plains and models DVS motion blur and noise.

Most of the knowledge about DVS operation existing

in the literature, including that regarding the effect of each

bias, is based on the empirical observation of the DVS out-

put, often supported by a simplified model of the pixel op-

eration. Therefore, many second-order effects and non-

idealities are often overlooked. In this paper, we go a step

further, and present and discuss how visual input signal is

converted and encoded into a stream of ON and OFF events

at the DVS output, and how the different biases can be op-

timized according to the scene and the application require-

ments. Combined with looking at the relation between input

and output, we present and discuss what is going on inside
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the DVS pixel, supported by measurements of a test-pixel

isolated from a DAVIS346 array.

During extensive measurements on internal pixel sig-

nals, we realized certain phenomena are far from intuitive

and many aspects have generally been overlooked or over-

simplified, especially regarding sensitivity and bandwidth.

This oversimplification often leads to incorrect assumptions

about how to bias or to model a DVS. In this work, we

present a thorough description of DVS operation, includ-

ing non-ideal second order effects, and how biasing affects

operation. We present this description using terms that are

simple enough for DVS users with minimal circuit expertise

yet still accurately describe the pixel’s operation.

1.1. Contributions and Outline

Our goal in this paper is to compile the most comprehen-

sive description of the DVS pixel available by explaining

precisely how a signal produces events, and how pixel be-

havior is influenced by the multivariate combination of user-

defined biases and physical non-idealities along the way. To

accomplish this, Sec. 2 reviews the the pixel response in

general terms by presenting pixel-level node voltage mea-

surements that illustrate a time varying signal propagating

through each stage of a DVS pixel. Secs. 3 and 4 describe

the pixel stages and corresponding biases in detail and re-

port key performance metrics and noise rates across a range

of bias values. We include never-before-published node

voltage measurements from a DAVIS346 pixel and array

measurements to graphically communicate low-level circuit

behaviors in an easy-to-digest format. In Sec. 5, we aggre-

gate this information to present a first-of-its-kind bias opti-

mization spreadsheet tool which recommends specific bias

adjustments or ”tweaks” across a comprehensive range of

task requirements and scene limitations. This deep dive into

pixel performance leads to novel interpretations of thresh-

old levels drifting in time as a function of brightness, and

that every event encodes information about signal, noise,

and junction leakage, which have important implications for

improving future vision algorithms.

2. Basic DVS Operation

The basic operation of the DVS pixel has been exten-

sively covered in [1], [5], [13], [17]. Fig. 1A shows how

each pixel converts an illumination signal changing in time

to an output stream of events representing changes in rela-

tive light intensity. Fig. 1B shows a simplified pixel model.

Input light converted to a voltage by a logarithmic photore-

ceptor, and changes in this voltage are encoded in events.

Events can be of ON polarity, encoding an increase in light

intensity, or of OFF polarity, encoding a decrease in light

intensity. An ON event is associated with ON threshold

(ΘON) – each ON event encodes that the input light inten-

sity changed by a factor of exp(ΘON) since the last event

ON events 
OFF events

Absolute

intensity

on pixel

Time

Same contrast

Same # events

A: Dynamic Vision Sensor (DVS) 

principle of detecting brightness changes

B:  DVS pixel and noise sources

logI

I

threshold

ON polarity

OFF polarity

reset

Logarithmic

photoreceptor

Photons

Change detector

∆lo
gI

Shot noise

Thermal
noise

(shot noise)

Threshold
mismatch

(hot pixels)

Leakage
current

(leak events & hot pixels)

V
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V
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diff
OFF

-ON

θ
on

θ
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Figure 1. A: idealized output from Dynamic Vision Sensor (DVS)

pixel. B: Simplified DVS pixel circuit with main noise sources

(adapted from [19].)

(of either polarity). Similarly, each OFF event, associated

with OFF threshold (ΘOFF), encodes a change by a factor of

exp(−ΘOFF) since the last event. Noise and pixel-to-pixel

mismatch affect the circuit through the sources illustrated.

Fig. 2 shows the detailed DVS pixel circuit. The pho-

toreceptor, A, consists of a photodiode PD that transduces

light into an electric current Ip, and a feedback loop that en-

sures that the output voltage signal Vpr is proportional to the

logarithm of Ip. Stage B cleans the signal by removing fast

changes in Vpr, which is good when the signal of interest

moves slower than the noise components. The maximum

frequency of the signal allowed through this stage is called

the pixel “bandwidth,” and depends on two biases: Ipr and

Isf, as well as the input illuminance. One important remark

here is that the pixel bandwidth is a totally different concept

from the camera’s readout bandwidth, i.e., the total rate of

events we can read out from the camera, which is limited by

the readout circuitry and not by the pixel.

Stage C amplifies voltage changes on node Vsf by the

ratio of the capacitors (−C1

C2

), which is around 20 for the

DAVIS346. The resulting amplified signal Vdiff is then com-

pared to an ON threshold proportional to log (Ion/Id) and to

an OFF threshold proportional to log (Id/Ioff) [20]. When

either of the thresholds is met, either an ON or an OFF event

is generated and transmitted to the outside of the array. At

the same time, a reset signal is generated in E, that sets Vdiff

to a reset state value independent of the input and controlled

uniquely by Id. Vdiff is held at the reset state for a time pe-

riod know as “refractory period”. The duration of the re-

fractory period is inversely proportional to its control bias

2



Table 1. Bias names used in this paper (Fig. 2) and their equivalent

name for DAVIS346 and other iniVation cameras

Short name DAVIS346 Description

Ipr PrBp Photoreceptor bias

Isf PrSFBp Source Follower (Buffer) bias

Id DiffBn Change Amplifier bias

Ion OnBn ON Threshold bias

Ioff OffBn OFF Threshold bias

Irefr RefrBp Refractory bias

Irefr, and during the refractory period the input signal is ig-

nored by the pixel. This way, the pixel operation switches

between a tracking mode, in which Vdiff amplifies the input

signal, and a reset mode after each event, where Vdiff is reset

to a known state and ignores input changes.

The equivalence between the bias names used in this pa-

per (and generally adopted in the literature), their descrip-

tive name, and the name used in iniVation documentation

and software is presented in Table 1.

To illustrate pixel response at each stage, Fig. 3 presents

direct measurements of node voltages Vpr (A) and Vdiff (B),

and a computer-reconstructed Vsf signal (C). The recording

captures 1.25 periods of a 5Hz sinusoidal input light signal

with a contrast of 0.62 log-e units (meaning that the ratio

between maximum and the minimum brightness of the sine

wave is e0.62 , or 1.86). This signal results in one OFF

event (at t ≈0.12s) and two ON events (t ≈0.17s ≈0.22s).

The measurements clearly demonstrate how noisy Vpr is in

practice, and how effectively bandwidth control with Isf re-

moves high frequency noise – Vsf is considerably cleaner,

indicating a much more favorable Signal-to-Noise Ratio

(SNR). From Vsf to Vdiff, the signal is inverted and ampli-

fied, resulting in a much larger peak-to-peak signal ampli-

tude. Additionally, we can clearly see the effects of the reset

logic after each threshold crossing, as Vdiff returns to a fixed

level immediately after each event. On this timescale (and

bias configuration), the refractory period is too small to see.

3. The Logarithmic Photoreceptor

3.1. Phototransduction

In the journey from incident photons to DVSs events,

the first and crucial step is phototransduction. Ideally, every

photon the lens captures is focused onto the photodiode and

transfers its energy to break free an electron. The photoelec-

tric effect dictates one photon generates a single ”photoelec-

tron,” provided it has enough energy. Silicon is well suited

to detect visible light, as only ≈1.1 eV of energy is needed

to generate a photoelectron, and visible photons have 1.8

(red) - 3.1 (violet) eV. These photoelectrons move freely

when a voltage is applied, comprising ”photocurrent”.

In reality, several non-ideal behaviors influence pho-

tocurrent. Each photon has a finite probability of interacting

with an atom in the silicon, and some photoelectrons will

recombine with an atom when they encounter a vacancy.

These factors decrease quantum efficiency – essentially, the

fraction of photons that become usable current. Addition-

ally, even when there is no light on the pixel, the photodiode

still conducts a small amount of dark current, and photocur-

rent smaller than this value is indiscernible.

Even when illumination is constant, photons and elec-

trons do not arrive at a fixed rate. Instead, there is some sta-

tistical variability to the number of photons arriving on the

pixel during a given time window, as well as in the number

of electrons arriving at each node in the circuit. This fluc-

tuation results in ”shot noise”, which is the dominant noise

source in DVS operation [11], [12] and the reason why the

measured photoreceptor output in Fig. 3A looks far nois-

ier than the dashed orange signal obtained by averaging the

photoreceptor output over many cycles.

3.2. Feedback logarithmic photoreceptor

One of the key features of the DVS is the logarithmic

photoreceptor (A in Fig. 2) [22]. The logarithmic relation-

ship between input light and output voltage enables two

of the main advantages of the DVS: first, it compresses

the representation of the output signal, allowing a much

higher dynamic range than conventional frame based cam-

eras (which encode light intensity linearly); and second, it

makes small changes around a background value propor-

tional to the background value. This means that it directly

encodes reflectance — to first-order, the same object ob-

served in different light settings will always result in the

same output signal (Fig. 1A). Fig. 4 shows how the pho-

toreceptor voltages Vpr and Vpd change with input illumi-

nance. Vpd is nearly constant with illuminance at a value

determined by Ipr, while Vpr varies with the logarithm of in-

put illuminance with a gain (slope) mostly independent of

Ipr. The measurements also clearly show the lower limit of

dynamic range, set by the dark current.

3.3. Second­order effects of illumination

Even though to a first order approximation the photore-

ceptor output is independent of the absolute illumination

level, this is far from true for practical applications. Ab-

solute illumination strongly affects noise and bandwidth, as

discussed in [11]. The bandwidth of the photoreceptor is

generally directly proportional to light intensity (unless Ipr

is set very low), meaning that in the dark, the ability to de-

tect fast changes in the scene is limited and the latency from

signal change to pixel response is longer. Also the Back-

ground Activity (BA) profile (i.e. the rate of ”noise” events

not encoding signal change) strongly depends on light in-

tensity, as shown in Fig. 5. The figure shows the BA rate vs.

illuminance for both the array and an isolated test pixel op-

3



re
s
e

t OFFON

Id Ion Ioff

I=Ip+Idark

lnI
C1

C2
Vpr

Vpd

Vdiff

PD

Vsf

Ipr Isf

A photoreceptor B buffer C change amplifier D comparators

Bandwidth (Bpr)

Threshold θ

E refractory period

acknowledge

reset
C3

Irefr

Refractory

period ∆refr

Vrefr

F operating principle

Vsf

Vd

Reset Level

time

v
o

lt
a

g
e

v
o

lt
a

g
e

O
N

O
N

O
N

O
N

O
N

O
N

O
F

F

O
F

F

O
F

F

slow BW

fast BW

light

θon

θoff
G 

leak noise 
events

IleakVr

Mr

DL

Figure 2. Typical DVS pixel circuit [21]. The active logarithmic photoreceptor (A) is buffered by a source-follower (B), which drives a

cap-feedback change amplifier (C), which is reset on each event by a low-going reset pulse. A finite refractory period (E) holds the change

amplifier in reset for the refractory period ∆refr. Comparators (D) detect ON and OFF events as seen in F. Periodic leak events result from

junction and parasitic photocurrent Ileak in diode DL (G).

0.5

0.52

0.54

0.56

P
h
o
to

re
c
e
p
to

r 
V

o
lt
a
g
e
 (

V
)

1.3

1.4

1.5

1.6

C
h
a
n
g
e
 A

m
p
lif

ie
r 

V
o
lt
a
g
e
 (

V
)

0 0.05 0.1 0.15 0.2 0.25

Time (s)

0.525

0.53

0.535

0.54

S
o
u
rc

e
 F

o
llo

w
e
r 

V
o
lt
a
g
e
 (

V
)

Source Follower Output Voltage (Vsf)
(reconstructed)

Change Amplifier Output Voltage (Vdiff)

Measured reset level:
1.46 V

OFF
event

ON
events

Measured OFF threshold level: 1.62 V
TC threshold: 0.34 log-e units

Measured ON threshold level: 1.26 V
TC threshold: 0.4 log-e units

Signal obtained
from scope
measurements 

Signal obtained
from scope
measurements: 

RMS noise voltage: 6.2mV
Equivalent to: 0.19 log-e units TC 

Amplitude:
21mV (peak-to-peak) 

Photoreceptor Output Voltage (Vpr)
Input Temporal Contrast: 0.62 log-e units

Clean signal
(noise artificially
fitered out)  

A

B

C

Figure 3. Test pixel recordings from internal nodes of the DVS

pixel in Fig. 2. A and B show the measured voltage at Vpr and Vdiff

for a 5Hz input sine wave with a TC contrast of 0.62. C shows

a computer reconstruction of Vsf based in A and B, obtained by
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strongly (large current), so the bandwidth is large and thus Vpr is
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Figure 4. Photoreceptor voltage (Vpr) and Photodiode voltage (Vpd)

versus illuminance for two different Ipr settings. The dashed lines

show a fit of a model of the photoreceptor including dark current:

Vpr = UT

κ
log(Ev,p + Ev,dark) + Vp0, where Ev,p is the input il-

luminance, Ev,dark is the illuminance equivalent to the dark cur-

rent observed (fitted to approx. 2mlx), UT is the thermal voltage

(≈25mV at room temperature), κ is a parameter of the transistor

Mfb and is fitted to approx. 0.75. Vp0 is a parameter determining

the voltage level at 1 lx, and it varies with the logarithm of Ipr.

erating in the same conditions. As explained in [11], [20],

the BA consists of a high rate of random shot noise events of

both polarities in the dark, exclusively ON events with rate

proportional to light intensity in bright scenes (described in

Sec. 4), and a dip in BA between these two regions.

3.4. The Source­Follower Buffer

The Source-Follower (SF) Buffer (B in Fig. 2) serves

two main purposes: it decouples the sensitive photoreceptor

stage (A) from the spiking stages of the pixel (C, D, and E),

and it can be used to limit the bandwidth, filtering out noise

components faster than the signal of interest. This effect is

visible in Fig. 3, where Vsf (C) and Vdiff (B) exhibit signifi-

cantly less noise (and of lower frequency components) than
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DAVIS346 biased with Ipr of 30 pA and Isf of 15 pA and nom-

inal threshold and refractory period settings (tweaks of 0 in Figs.

7 and 9) for varying on-chip illuminance. The green and red lines

show the quantiles of the distribution of ON and OFF event rates

in pixels of the array indicated in the figure. The blue line shows

the event rate for a test pixel in the same camera, but isolated from

the array.

Vpr (A). The bandwidth limit imposed by the SF stage is

proportional to its bias current Isf.

3.5. Photoreceptor and Buffer biasing

A discussion about optimal biasing of the photoreceptor

and SF buffer is presented in [12]. Both Ipr and Isf affect

bandwidth and noise, but in different ways. The main prac-

tical difference is that Ipr potentially introduces significantly

more noise than Isf, but because it is downstream in the cir-

cuitry, Isf can be used to remove excess noise introduced by

Ipr. The higher Ipr, the faster the noise components it intro-

duces, and the easier we can filter them out by adjusting Isf.

As a result, contrary to what was proposed in [13], the DVS

achieves significantly better noise performance when Ipr is

high and Isf is low enough to filter out noise introduced by

Ipr. Isf can be used to limit signal bandwidth, but also to

only remove high frequency noise components introduced

by Ipr without affecting signal bandwidth.

Fig. 6 shows the distribution of noise event rate per

pixel in a DVS camera in dark conditions (around 40mlx)

for varying Ipr. We see that for very low Ipr, noise in-

creases with Ipr (because bandwidth increases), but for

higher Ipr noise starts to decrease because the faster (higher

frequency) noise components introduced by Ipr are filtered

out by the SF. The results also show that from a certain

point, increasing Ipr has little effect on the output noise.

This, combined with the fact that increasing Ipr leads to

higher power consumption, suggests that there is an opti-

mal sweet spot for Ipr (dependent on the selected Isf) at the

lowest Ipr where all of its noise components are filtered out.
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Figure 6. Distribution of the BA per pixel in a DAVIS346 array

(in purple) for varying Ipr and for an isolated test pixel (in blue)

at an on-chip illuminance of 40mlx and Isf of 30 pA and nominal

threshold and refractory period settings

This point can be found empirically by finding the min-

imum Ipr setting beyond which any increase will result in

negligible noise rate reduction. Under these circumstances,

bandwidth is limited by (and proportional to) input light

intensity up to an illumination level dependent on Isf, and

then limited by Isf at higher illumination levels. In [12], we

can see how bandwidth increases with Isf , allowing higher

frequency noise components to pass through – leading to

higher noise rates and pixel bandwidth.

4. Event Generation

The last step of the DVS pixel is the conversion of a volt-

age signal to a stream of events, as described in Sec. 2. Un-

derstanding the process of event generation is fundamental

to understanding how DVS encodes data. One key aspect

of event generation is that the state of the pixel (i.e. cur-

rent illumination level) is stored (and reset after each event)

in Vdiff as an analog voltage. Unlike digital memory, ana-

log memory destructively decays in time. In the case of the

DVS, this happens because of current that leaks through the

reset switch (G in Fig. 2). The effect of leakage is that the

voltage Vdiff linearly decays in time at a rate that increases

with absolute input illuminance. One way to look at this,

is that Vdiff is continually drifting toward an ON event, even

in the absence of changes to the input signal. In this case,

Vdiff hits the ON threshold level at a fixed rate, generating

so called ”leak events,” which dominate the BA in brighter

scenes, as depicted in Fig. 5 [20]. An important note is that

leakage is not noise – its behavior is deterministic, and sig-

nal information is not destroyed but rather encoded in the

timing between events.

Even though events are often discriminated into either

“signal”, “noise”, or “leak” for simplification [11], [17],

[19], it is important to note that an event never consists
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Ion, Ioff and Id, and the dashed lines were measured for 10x higher Ion, Ioff and Id. B shows the TC threshold equivalent to the same

measurements. C shows the same measured voltages as A, but for varying ON/OFF balance tweak, and D the equivalent TC thresholds.

purely of one of these phenomena. Rather, every event is

a combination of all three. Noise causes not only the gen-

eration of events in the absence of signal changes, but also

uncertainty (jitter) in the timing of an event in response to a

signal change. Observing Fig. 3, we can predict that events

will most likely occur when noise adds constructively to the

signal in the direction of the nearest threshold. In the same

way, a small underthreshold signal can generate an event if

noise adds constructively, and an over-threshold signal may

not generate an event if noise adds destructively. Addition-

ally, leakage makes it progressively harder to generate an

OFF event (and easier to generate an ON event) as time in-

creases after each reset. This can be interpreted as the OFF

threshold increasing and the ON threshold decreasing lin-

early in time. These aspects of event generation influence

how a DVS should be biased, and should also be incorpo-

rated to design more robust event-processing algorithms.

4.1. Event Threshold

The TC event threshold quantifies how much the input

signal needs to change since the last event to trigger the

next event. An ON event is generated when Vdiff drops low

enough to toggle the output of the ON comparator (D in

Fig. 2). This level is controlled by Ion. Likewise, Ioff con-

trols the level to which Vdiff has to increase to generate an

OFF event. This results in TC thresholds, ΘON and ΘOFF,

proportional to log (Ion/Id) and log (Id/Ioff) respectively.

To study the effect of the TC threshold, we adjusted the

Threshold Tweak implemented in jAER described in [13].

The Threshold Tweak is a user defined value between -1 and

1 that controls the TC threshold by adjusting Ion and Ioff.

The solid green and red lines in Fig. 7A show the measured

Vdiff values at which ON and an OFF events occur, and the

solid black line shows the voltage to which Vdiff is reset af-

ter each event. As expected, increasing the tweak increases

the distance between the reset level and the threshold levels,

but with two caveats: first, the ON threshold deviates from

the desired linear variation with the tweak - this results from

inaccurate modeling in jAER which can be corrected, and

second, the OFF threshold saturates for higher tweaks - this

happens because the value for Ioff reaches the minimum al-

lowed for proper circuit operation. The second condition

can be alleviated by increasing all Id, Ion, and Ioff by the

same factor (at the expense of higher power consumption).

The dashed lines show the corresponding levels when all

currents are increased by a factor of 10. Fig. 7B shows TC

thresholds equivalent to the same measurements, as well as

the expected TC level modeled by jAER. Considering the

interpretation of leakage as a gradual decrease of ΘON and

increase of ΘOFF following each reset, these TC thresholds

represent measured values immediately after reset.

Fig. 8 shows how BA varies with the Threshold Tweak.

As predicted by [11], noise rates depend exponentially on

the threshold. This dependence is given by the tail of the

Gaussian function, since noise is approximately normally

distributed. For higher thresholds, shot noise becomes neg-
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Figure 8. Distribution of ON (in green) and OFF (in red) BA per

pixel in the array and BA rate in an isolated test pixel (in blue)

for varying jAER Threshold Tweak at an on-chip illuminance of

40mlx, Ipr of 3 nA, Isf of 15 pA, and nominal threshold and re-

fractory period settings

ligible and leak events dominate the output.

4.2. Balance between ON and OFF thresholds

In ideal DVS operation, for most applications, it would

be desirable to have the same TC threshold for ON and

OFF events. However, as seen before, leakage introduces

a fundamental imbalance between ON an OFF events, with

a preference towards ON events. As discussed in [23], de-

liberately applying imbalanced thresholds towards a more

sensitive ΘON can lead to better noise performance.

The balance between ΘON and ΘOFF while keeping the

same ΘON+ΘOFF can be adjusted by altering the bias Id,

or equivalently, the ON/OFF balance tweak implemented in

jAER, which adjusts Id around a nominal value. The effect

of the tweak is shown in C and D in Fig. 7. In C, we can see

that the voltage level at the output of the Change Amplifier

that results in an ON or OFF event (green and red lines) is

independent of the tweak, but the level to which Vdiff resets

after an event (black line) changes linearly with the tweak.

In D we see how this translates to TC threshold.

4.3. Refractory period

The duration of the refractory period is inversely propor-

tional to its control bias Irefr. Fig. 9A shows the measured

length of the refractory period for varying values of the Max

Firing Rate Tweak in jAER. A linear change in the tweak

corresponds to an exponential change in Irefr. The refrac-

tory period was measured by directly observing the reset

signal of a test pixel after an event and measuring the time

the pixel is held in reset mode. Samples of pulses of the

reset signal for different tweaks are shown in Fig. 9B. The

pixel is held in reset while the reset signal is low (below

≈ 1.2V). As shown, the length of the refractory period is
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Figure 9. In-pixel measurements on the refractory period. A shows

the length of the refractory period vs. the jAER Max Firing Rate

Tweak. The length was obtained by directly measured the time

during which the reset signal is active. B show average samples

of measured pulses of the reset signal for different values of the

tweak, with the correspondence with the points in A marked. C

shows the same averaged reset pulse (for a tweak of −0.2) and the

average of Vdiff for ON (in green) and OFF (in red) events.

controlled by changing the speed of the rising edge of the

reset pulse. We observed that below a tweak of −0.8, Irefr is

too weak to drive the pixel out of reset, and the pixel stops

operating properly. Fig. 9C shows the measured voltage at

Vdiff following an ON (green) OFF (red) event, and the reset

signal in blue. When the reset pulse drops, Vdiff moves to

the reset level (≈1.5V). When the reset signal nears this

level, the pixel starts to respond to the input signal again.

This is not depicted here since the input signal is not chang-

ing. However, right after the reset signal reaches 1.2V, Vdiff

drops slightly from the reset level. This effect is usually not

problematic (it is equivalent to having a slightly lower reset

level), but for refractory periods faster than around 100 µs,
the amount of this deviation increases. For extremely short

refractory periods, the operation of the pixel is severely af-

fected - setting a practical upper limit to Irefr.

As discussed in [13], [23], Irefr sets a trade-off between

data fidelity and noise rate. A higher refractory period re-

duces noise, but of discards some signal information (e.g.
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Figure 10. Multivariate biasing ef-

fects. 10ms accumulations of DVS

events are shown while viewing a

125RPM motorized disk (A) with

gray dots of varied contrast and speed

(radial distance) under 15 lx illumi-

nation with a f/1.8 lens. Events are

green (ON) and red (OFF), and full

scale rendering is 3 events. Each

image (B-H) represents a combina-

tion of threshold (High/Low), band-

width (Fast/Slow), and refractory pe-

riod (Long/Short) biases. The lead-

ing edge of the dimmest (yellow) and

fastest (blue) detectable dot is identi-

fied by an arrow. If multiple dots of

the same speed are detected, only the

dimmest is indicated – if multiple of

the same brightness, only the fastest.

consecutive events at an edge indicating a brighter object).

5. Multivariate Bias Dependency

As DVS are applied to increasingly diverse applications,

it is important to consider both the low-level behaviors con-

trolled by sensor biases and the multivariate effects of their

combination. Fig. 10 provides a visualization of how varied

bias combinations can have a drastic influence on sensor re-

sponse to the same dynamic scene. The scene consists of

a motorized disk with small white dots of different contrast

and radial distance, rotating at 125RPM under dim indoor

lighting conditions, using a scene illuminance of ≈ 15 lx.

From this small sample set, its clear that varied bias com-

binations result in drastically different performance. From

left to right, the sensor becomes gradually more sensitive

to faster and dimmer spots, but the noise also increases. In

this scenario, the combination of bandwidth and threshold

determines the fastest and dimmest detectable objects in a

scene. The refractory period limits how much information

is collected from each dot. For example, in Fig. 10D, the

long refractory period makes it more difficult to differen-

tiate between objects of varied brightness compared to H,

where the brightest dots clearly produce more events. All

three parameters influence noise, and nuanced interactions

can have a significant influence on overall noise rates, as

demonstrated in [23].

Although these visual examples are instructive, in a real

application, there are more than just two sensing criteria

to consider. To facilitate selecting an optimal bias config-

uration for widely varied scenarios, we created an online

spreadsheet1 that recommends a combination of event cam-

1CVPR 2023 - DVS Bias Optimization Tool: https://docs.google.com/

spreadsheets/d/1XaS3hkcjlbSG5gaMnlAy89rbsomILDgu/edit#gid=1310047800

era biases based on six criteria that describe task require-

ments and scene limitations. The selected criteria are data

priority (i.e., whether higher event counts that include high-

fidelity brightness information, or a data sparse representa-

tion of the visual field with lower event counts is preferred),

sensor motion, background illumination, object size, object

contrast, and object speed. Each criteria is split into two

categories, resulting in 64 categorical combinations, and for

each we propose a set of bias ”tweaks” to use as a starting

point for optimizing event camera performance. Because

different event camera models and software interfaces have

slightly different bias formats, we describe bias tweaks in

relative terms (i.e. fast-mid-slow bandwidth, low-mid-high

sensitivity, long-mid-short refractory period).

6. Conclusion

The results and discussion presented in this paper bring

light to the internal operation of the DVS pixel, by showing

how low-level effects such as noise and leakage affect sig-

nal, and by exploring how biasing can be optimized when

these effects are considered. Moreover, we propose a novel

way to interpret events as a combination of signal, noise,

and leakage, and an interpenetration of leakage as a vari-

ation of TC threshold in time. These approaches can lead

to more optimal modeling and utilization of the DVS. The

proposed Bias Optimization Tool summarizes information

described in the paper, and provides the DVS user with an

easy way to optimize biasing based on the task and scene,

considering interaction of the main variables playing a role

in the process.
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