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FrameFire: Enabling Efficient Spiking Neural

Network Inference for Video Segmentation

Qinyu Chen, Congyi Sun, Chang Gao, Xinyuan Fang and Haitao Luan

Abstract—Fast video recognition is essential for real-time sce-
narios, e.g., autonomous driving. However, applying existing Deep
Neural Networks (DNNs) to individual high-resolution images is
expensive due to large model sizes. Spiking Neural Networks
(SNNs) are developed as a promising alternative to DNNs due to
their more realistic brain-inspired computing models. SNNs have
sparse neuron firing over time, i.e., spatio-temporal sparsity; thus
they are useful to enable energy-efficient computation. However,
exploiting the spatio-temporal sparsity of SNNs in hardware
leads to unpredictable and unbalanced workloads, degrading
energy efficiency. In this work, we, therefore, propose an SNN
accelerator called FrameFire for efficient video processing. We
introduce a Keyframe-dominated Workload Balance Schedule
(KWBS) method. It accelerates the image recognition network
with sparse keyframes, then records and analyzes the current
workload distribution on hardware to facilitate scheduling work-
loads in subsequent frames. FrameFire is implemented on a
Xilinx XC7Z035 FPGA and verified by video segmentation tasks.
The results show that the throughput is improved by 1.7× with
the KWBS method. FrameFire achieved 1.04 KFPS throughput
and 1.15 mJ/frame recognition energy.

Index Terms—Workload balance, SNNs, VLSI.

I. INTRODUCTION

IN recent years, Deep Neural Networks (DNNs) have

achieved state-of-the-art accuracy in image recognition

tasks [1]–[3]. DNNs are also useful in tasks that involve video

processing, such as autonomous driving. These tasks are more

challenging since they require real-time processing of input

video frames while computing DNNs simultaneously. Thus,

fast neural network inference is critical for video processing

tasks. Generally, natural videos exist with varying degrees

of spatio-temporal redundancy. Various efforts in DNNs have

been made to make the process more efficient by exploiting

such data redundancies. For example, Taylor expansions are

used to produce a compressed DNN by replacing the ReLU

function with dynamically updating masks [4]. However, such

continuous-valued networks usually have tremendous parame-

ters, prohibitively expensive when deployed on mobile devices,

especially in always-on scenarios.

Another approach is to provide efficiency is to employ

Spiking Neural Networks (SNNs). Compared to traditional
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DNNs, SNNs use an event-based model that mimics the spik-

ing behavior of biologic neurons. Therefore, SNNs promise to

achieve better performance with lower complexity, especially

in applications with temporal sequential data streams [5].

SNNs are stateful and thus suitable for processing natural

videos. In a natural video, frames are highly correlated. The

network state of SNNs, i.e., the neuron’s membrane potential,

can keep potentially useful initialized information for the

subsequent frames to speed up the convergence. However, it

might cause decreased accuracy when outdated information

from the previous frame is carried over. To capitalize on

the useful initialization, we previously proposed an adaptable

interval reset of the network state [6], which can achieve 35x

speedup with acceptable accuracy loss.

From a hardware perspective, information travels between

neurons in the form of binary spikes in SNNs, resulting in an

advantage of higher energy efficiency. Previous research on

specialized SNN hardware design, such as large-scale systems

(e.g. Loihi [7] and TrueNorth [8]) and low power accelerators

for resource-constrained applications [9]–[13] have demon-

strated that event-driven SNNs can be efficiently processed.

The energy efficiency primarily benefits from the spatio-

temporal sparsity and replacement of multiply-accumulate

operations by addition. However, the spatio-temporal sparsity

induces an unpredictable and dynamic workload, which is

challenging to be exploited efficiently in hardware.

In this work, we propose an SNN accelerator, FrameFire,

exploring the workload balance for fast video processing. The

main contributions are:

• A Keyframe-dominated Workload Balance Schedule

(KWBS) method is developed to facilitate scheduling

workloads in consecutive frames, achieving 1.7x through-

put.

• An SNN hardware accelerator, FrameFire, for efficient

video processing with the KWBS method is proposed.

• The proposed accelerator FrameFire is implemented on a

Xilinx XC7Z035 FPGA and verified by video segmenta-

tion tasks. The results show 1.04 KFPS at 200 MHz.

II. MOTIVATION

SNNs have intrinsically event-driven workloads since the

update of membrane potentials is triggered by spikes. As

exemplified in Fig. 1, a large number of neurons barely

fire over the timesteps (dark blue), inducing considerable

sparsity. Connections with zero inputs can be skipped to

save computation and memory access. Although exploiting

spatio-temporal sparsity can reduce the memory footprint



Fig. 1. The load unbalance can be observed in perspective of different input
channels within the feature maps (in a spiking convolutional layer).

Fig. 2. Here we visualize the spike rate distribution of current frame and frame
#(current+100) on the penultimate layer of an image segmentation network.

and latency, general-purpose processors cannot meet these

requirements with high efficiency. Hence, a specialized event-

driven architecture targeting video processing is necessary. To

realize high parallelism, operations in SNNs must be operated

by multiple processing elements (PEs). In this case, PE having

the most workload will become the bottleneck of performance,

reducing the throughput. Fig. 1 shows the significant load

unbalance among different PEs when observing the spike rate

distribution of different channels in a spiking layer, most of the

computing resources (PEs) are wasted, thus reducing the hard-

ware efficiency. As shown in Fig. 2, the related information of

two separate frames is visualized when processing a driving

video. It demonstrates that the spike rate distributions of these

two frames are quite similar, indicating a similar workload

distribution.

III. ARCHITECTURE DESIGN AND DATA PROCESSING

To exploit workload balance and facilitate video process-

ing, the Keyframe-dominated Workload Balance Schedule (K-

WBS) method is introduced. The workload distribution when

processing networks with sparse keyframes will be recorded

and transferred to the host for load balancing scheduling.

In this way, the workload for subsequent frames can be

easily scheduled due to the similar workloads between nearby

frames. Besides, a FPGA-based SNN accelerator is designed

to accelerate video processing, supporting KWBS method.

A. FrameFire: Architecture Overview

Overall architecture. The block diagram in Fig. 3(a) gives

an overview of the proposed accelerator. FrameFire consists of

a controller, on-chip buffers, a workload record-and-schedule

Fig. 3. The proposed system: (a) overall architecture; (b) architecture of the
PE Cluster.

unit, a data collection unit, and a computing unit. On-chip

buffers include a neuron state buffer, a membrane potential

buffer, and weight buffers. The neuron state buffer prepares the

input neuron states consumed by the computing unit and stores

the generated output states. The membrane potential buffer

stores all intermediate membrane potentials to reduce the

latency and power consumption brought by off-chip memory

read and write. The data collection unit and workload record-

and-schedule unit are the main modules for scheduling the

workloads. The data collection unit with a workload interpreter

and multiple spike schedulers is introduced to check the

spikes and arrange the inputs for PEs. The workload record-

and-schedule unit can communicate with the host and data

collection unit to provide the scheduling information. The

computing unit takes charge of most computation tasks in

the SNN model, i.e., the update of membrane potentials. It

consists of several PE clusters. The controller manages the

overall execution, which updates the state of the accelerator

and decodes the information fetched from the host.

PE cluster architecture. Fig. 3(b) shows the architecture

of PE cluster. It primarily comprises multiple PEs, an adder

tree, and a reset-and-spike unit. Each PE cluster is responsible

to compute a slice of the output channels independently. PE

is the basic computation unit and also the grain of workload

scheduling. It receives a slice of input channels with a partial

weight matrix to produce partial sums of membrane potentials.

The adder tree collects the partial sums in the same position of

outputs from all PEs within a cluster and generate temporary

membrane potentials. In the reset-and-spike unit, whether a

neuron fires or not and whether the temporary membrane

potential of a neuron need reset or not, are determined. There



Fig. 4. Demonstration of KWBS method, (a) dataflow targeting workload scheduling, (b) frame processing flow without and with KWBS method.

is a comparator in each reset-and-spike unit for comparing the

temporary membrane potential and the threshold Vth. If the

membrane potential is higher than Vth, a spike is produced.

As for the reset, there are two different situations. One is

the regular reset, where the membrane potentials are reset by

subtracting Vth from the membrane potentials. Another is the

global interval reset, after configurable interval frames, the

membrane potentials of the entire network might need reset

to zeros. When the configuration content V Reset is set to

1, the global interval reset takes charge; otherwise, the regular

reset works. After that, the updated neuron state and membrane

potential are saved back to buffers.

B. Key-frame-dominated Workload Balance Schedule (KWBS)

Workload unbalance arises when the number of computation

cycles consumed by each PE is different, due to the varying

degree of sparsity. The PE which executes the most zero-

involved computations will first complete the task, and has

to wait until the other PEs finish the computations; thus the

throughput may drop substantially. To address this problem,

efforts should be made to deal with intrinsically event-driven

workloads. Hence, a Keyframe-dominated Workload Balance

Schedule (KWBS) method applied to the FrameFire architec-

ture is proposed, mainly executed in the record-and-schedule

unit and data collection unit.

The record-and-schedule unit. As shown in Fig. 4(a), the

record-and-schedule unit includes two tables: the workload

record table and workload schedule table. The workload

record table records the number of active connections in all

channels across the layers, preparing to schedule workloads of

nearby frames. The workload schedule table stores the specific

scheduling instructions transferred from the host.

The data collection unit. The data collection unit is com-

posed of a workload interpreter and multiple spike schedulers.

The workload interpreter interprets the specific scheduling

instructions transferred from the workload schedule table to

several groups of the input start addresses. Each group of

the input start addresses will be assigned to a specific spike

scheduler. The assigned input start addresses determine the

workload of PEs connected with the corresponding spike

scheduler. The spike scheduler can undertake two main func-

tions simultaneously: 1) detecting the neuron that produces a

spike and generating the memory address of the corresponding

weight, thus filtering out the active connections, 2) counting

the workload of the current input channel, i.e., the number of

active connections in each input channel, and transferring the

workload numbers to the workload record table in the work-

load record and schedule unit. The spike scheduler primarily

consists of a state address generator, a neuron state FIFO, a

non-zero detector, an index2addr unit, and a non-zero counter.

The state address generator generates the address of the neuron

state list according to different start addresses. The neuron

state lists are loaded to the local FIFO from the neuron state

buffer, and then dispatched to the non-zero detector to get

the index of active connections. The index will be decoded

to weight address by the index2addr unit. In this way, the

weights will be directly loaded from weight buffers to PEs for

computation. Meanwhile, once a non-zero state is detected,

a positive enable signal will be generated and sent to the

non-zero counter to accumulate the workload. Each time the

workload of an input channel is obtained, it will be sent to the

workload record table.

The Procedure of applying KWBS method. Processing

videos with continuous frames can be divided into three steps.

First, the SNN model is mapped to the accelerator with a

keyframe. The workload distribution across input channels

will be calculated by the spike schedulers and recorded in the

workload record table. Second, the workload distribution of

the keyframe in the workload record table will be sent to the

host. The channel-wisely balanced workload allocation plan



Interval Frame K 
0                    10                   20                    30                   40                   50 

1.1

1.0

0.9

0.8

0.7

0.6

0.5T
h
ro

u
g
h
p
u
t 

(k
F
P
S
)

1.7X

w/ KBWS method

w/o KBWS method

w/ KBWS method

w/o KBWS method

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

0                   5                  10                15                 20                25                30         

w/ KBWS method

w/o KBWS method

w/ KBWS method

w/o KBWS method

Timestep

L
a
te

n
cy

 (
m

s)
(a) Average throughput (kFPS) with respect to hyperparameter K 

(b) Average latency across timesteps

Fig. 5. Experimental results when running across the video recordings, (a)
Average throughput (kFPS) with respect to hyperparameter K, (b) latency
across the timesteps (K=40).

TABLE I
XC7Z035 FPGA RESOURCE UTILIZATION OF SKYDIVER

Metrics LUT FF DSP BRAM

Avaliable 171900 343800 900 500

Used 41930 16237 0 128

Percentage 24.39% 4.72% 0% 25.60%

is obtained by the host and sent back to the work schedule

table. As shown in Fig. 4(b), the input channels are sorted

according to the workload, and then regrouped to M groups.

Third, the workload allocation will refer to the scheduled

workload instructions when processing the interval frames

between every two keyframes. The keyframe is randomly

selected from the video recordings of every K frames. Because

the selected K is usually big, the communication overhead

such as latency and power consumption between the host and

the accelerator can be ignored. Fig. 4(b) also demonstrates the

frame processing flow without and with KWBS method. The

latency is reduced when the KWBS method is applied, since

the computation cycles of interval frames are much less than

the keyframe due to the adjusted workload allocation.

IV. EXPERIMENTAL RESULTS

In this work, we study the task of detecting lanes in driving

videos. As for the spiking segmentation model, we use an

encoder-decoder architecture network to realize the end-to-

end pixel-wise prediction. The model is tested on the dataset

from MLND-Capstone project1, achieving 97.10% accuracy.

For converting the DNN we use an open-source SNN toolbox2

which implements the conversion method described in [14].

The most important feature of FrameFire is its ability to

accelerate video processing efficiently. To verify and analyze

the performance, we investigate the effects of adding the

KBWS method. The SNN model is mapped to the accelerator

1https://github.com/mvirgo/MLND-Capstone/
2https://snntoolbox.readthedocs.io/

TABLE II
COMPARISON WITH PREVIOUS WORKS

Metrics TCAS-II’21 [15] ICCAD’20 [16] ASSCC’19 [17] This work

Platform VC707 XCZU9EG XC7VX690T XC7Z035

Network MLP MLP/CNN1 MLP2 CNN3

Dataset MNIST MNIST MNIST MLND-stone

Task image classifi. image classifi. image classifi. video seg.

Freq. (MHz) 100 125 - 200

Power (W) 1.6 4.5 0.7 1.2

Pred. Energy
5.04 2.34/33.84 0.77 1.15

(mJ/frame)

KFPS 0.32 1.92/0.13 0.91 1.04

Throughput
− − 0.73 23.2

(GSOp/s)

Efficiency
− − 0.95 19.3

(GSOp/s/W)

1 Classification network with 784-500-500-10 and 28x28-32C3-P2-32C3-P2-
256-10 for MNIST.

2 Classification network with 784-512-384-10 for MNIST.
3 Segmentation network with 160x80x3-8C3-16C3-32C3-32TC3-16TC3-

1TC3-160x80x1, C and TC denote the convolutional layer and transposed
convolutional layer, respectively.

with K values ranging from 0 (recovering the baseline) to

50. When evaluating the performance of the driving videos

(Fig. 5(a)), the frames per second (FPS) is improved from

0.61 KFPS to 1.04 KFPS when K increases to 40, and slightly

drops when K increases to 50, implying that the throughput

will be affected if the K value is too high, it is because

that the outdated information of workload allocation might

negatively affect the performance. The selection of K values

depends on the speed of content change over the video frames

and the specific application scenarios. Fig. 5(b) also gives the

computing latency when K equals 40, it shows that at each

timestep, the KBWS method can well schedule the workload

regardless of the dynamic nature of SNNs.

The proposed FrameFire accelerator is synthesized and

implemented on XC7Z035 FPGA running at 200 MHz. The

host is responsible for sending data into the programmable

logic part and collecting the results. The resource utilization

is summarized in Table I. Table II presents the results of

this work and prior state-of-the-art processors. This work

achieves 1.04 KFPS and 1.15 mJ/image prediction energy

when processing the video segmentation network. Compared

with previous SNN accelerators [15]–[17] mainly focusing on

processing image tasks, our work is specifically designed to

optimize the video processing, and can process larger networks

with competitive prediction throughput.

V. CONCLUSION

In this paper, we proposed a high-throughput SNN acceler-

ator, FrameFire, for efficient video processing. The proposed

KWBS method can be applied to FrameFire to alleviate the

workload unbalance. FrameFire was implemented on a Xilinx

XC7Z035 FPGA and verified by video segmentation tasks.

The results show that the FPS was improved by 1.7× to

1.04 KFPS.
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