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ABSTRACT

Biological neurons can detect complex spatio-temporal features in

spiking patterns via their synapses spread across their dendritic

branches. This is achieved by modulating the efficacy of the in-

dividual synapses, and by exploiting the temporal delays of their

response to input spikes, depending on their position on the den-

drite. Inspired by this mechanism, we propose a neuromorphic

hardware architecture equipped with multiscale dendrites, each

of which has synapses with tunable weight and delay elements.

Weights and delays are both implemented using Resistive Random

Access Memory (RRAM). We exploit the variability in the high

resistance state of RRAM to implement a distribution of delays in

the millisecond range for enabling spatio-temporal detection of sen-

sory signals. We demonstrate the validity of the approach followed

with a RRAM-aware simulation of a heartbeat anomaly detection

task. In particular we show that, by incorporating delays directly

into the network, the network’s power and memory footprint can

be reduced by up to 100x compared to equivalent state-of-the-art

spiking recurrent networks with no delays.
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1 INTRODUCTION

In the typical artificial neural network models, the neuron’s output

is a nonlinear transformation of the weighted sum of its inputs,
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using a point-neuron model. In point neuron models all synapses

are connected to the same node and their spatial position carries

no extra information. Although for static rate-based information

encoding, point-neuron models have enough complexity to per-

form computation, they are not ideal for detecting the temporal

aspects of dynamic input patterns. Neuroscience findings show

that the dendritic arbor of a neuron implements non-linear integra-

tion in multiple time-scales, and decodes spatio-temporal locality

of arriving events, a mechanism known as coincidence detection

(CD) [1, 2]. CD is highly dependent on the spatial arrangement

of the synapses on the dendrites, which affects the timing of the

arrival of the input spike to the neuron’s soma [2] (Fig. 1). This

spatial arrangement can be modeled as synaptic delays, serving

as an additional parameter for synapses alongside their weight..

In this sense, each synapse can be modeled as a combination of

a temporal variable (delay) and a spatial variable (weight). It has

already been shown that training temporal variables such as adap-

tation time constant of the neuron can improve the accuracy of

Spiking Neural Networks (SNNs) in classifying spatio-temporal

patterns [3]. Similarly, endowing silicon neurons with dendritic cir-

cuits enables them to detect spatio-temporal patterns [4]. However,

so far, no hardware implementation of spiking neural networks

where dendritic temporal delays are learnt has been proposed. Here,

we propose an event-based architecture based on Resistive Random

Access Memory (RRAM) that implements both delays and weights.

We exploit the strong programming variability of the HfO2-based

RRAM in its High Resistive State (HRS) to sample synaptic delays

from the range of milliseconds, and program RRAM devices to tune

synaptic weights. We show that our approach enables more efficient

processing of spatio-temporal sensory signals in real-time, using

only feed-forward networks, without resorting to recurrency, and

demonstrate how it reduces the memory and power footprint by

two orders of magnitude, compared to equivalent Recurrent Neural

Networks (RNNs).

2 RRAM-BASED DENDRITIC COMPUTATION

Inspired by the dendritic structure of the biological neurons of

Fig. 1, we propose a hardware architecture equipped with multiscale

dendrites, each of which has synapses with tunable weight and

delay elements, implemented using RRAM (Fig. 2). The delay is
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Figure 1: Biological neurons include synapses distributed

spatially in their dendritic arbor, which gives rise to delayed

inputs. The coincidence of the delayed spikes are detected as

the input features in each dendrites. 𝑑1, 𝑑2 and 𝑑3 show the

average delay of each dendritic compartment depending on

their spatial arrangement with respect to the neuron’s cell

body (soma).

implemented using an RRAM coupled with a capacitor (the RRAM-

C element), while the weight is represented by one RRAM device. A

dendritic circuit is then constituted by a RRAM-C element, activated

by input spikes applied to an access transistor, and by an output

section featuring the weight RRAM, outputting a weighted current

pulse.

Dendritic circuits can be arranged into arrays, as shown in Fig. 2.

Each row constitutes a dendritic branch, with synapses that have

both delay and weight elements. The synaptic delays of each den-

dritic branch have a certain distribution with a mean that is dif-

ferent from other branches. The green columns receive the spatio-

temporal inputs, and each column receives the input from a different

channel. The input spikes from these channels go through delays

and get weighted and are then filtered by a different time constant

(𝜏𝑖 ). The delayed, weighted and integrated current contributions

are then summed to the neuron’s soma on the right end, which

is modeled as Leaky integrate and fire (LIF). To learn to classify

spatio-temporal signals in this architecture, each dendritic branch

needs to detect signal features at its integration time scale, through

coincidence detection. In other words, the delay and weight param-

eters should be configured to perform CD in the presence of an

input feature. This makes relevant spikes available to the output

neuron with temporal coincidence and leads the output neuron to

produce spikes in turn.

To enable real-time processing, the delayed elements should be in

the range of the time constant of the sensed real-world signals, e.g.,

in the order of 10s-100s of milliseconds. Thus, to implement such

delays on-chip, while reducing the capacitor size, we exploit the

HRS of RRAMs. Since the conductive filament resulting in resistive

switching is very weak in the HRS, controlling the precise value of

the resistance of RRAMs in the HRS is difficult. This can be seen in

the HRSmeasurements preformed on HfO2-based RRAM [5] shown

in Fig. 3, with large variability in the HRS following a log-normal

distribution. The mean of this distribution is a function of the reset

voltage with which the device is switched to the HRS [6]. Due to

this variability, resetting the delay devices using the same voltage

results in samples from the corresponding log-normal distribution.

Each dendritic branch then features a variable delay with a certain

mean, proportional to the mean HRS of the RRAMmultiplied by the

capacitance C. The network objective is then to learn the correct

weights corresponding to the delay samples from this log-normal

distribution, such that the neuron performs coincidence detection,

reacting to the temporal features of the signal.

3 RRAM-AWARE TRAINING

The HRS of delay RRAMs cannot be precisely controlled. Therefore,

prior to the training, we initialized the resistance values of delay

RRAMs by sampling fromHRS and kept them fixed. This substantial

variability enables dendritic architecture to take advantage of a

range of delay values.

The dendritic architecture poses some constraints in the offline

training procedure, which have to be accounted for in order to

extract its full potential. In the current configuration of the archi-

tecture, weight-RRAMs only express positive weights with limited

precision (approximately 3 bits [5]), contrary to the 32 bit float-

ing point precision available on CPU/GPU. Also, the resistance is

limited to a certain interval that delimits the Low-Resistive-State

(LRS), which in our case spans from 7kΩ to 50kΩ. The HRS can

also be utilized in the weight-RRAMs when the algorithm selects

low weights, although the LRS is preferable for weight-RRAMs as

it is more controllable. Moreover, the weight value in such devices

is not deterministic [7], i.e. the resistance value in LRS after the pro-

gramming operation can be modeled as sampling from a Gaussian

distribution whose mean is determined by the programming opera-

tion, and its standard deviation is due to the device non-idealities

and cannot be controlled.

Due to the variability of RRAMs, offline training of the dendritic

architecture has to be tailored to the RRAM characteristics. In this

work, a simple weight-clipping is used after the weight-update to

ensure all weights remain positive and within the permitted range

or resistance.

The limited precision is accounted for using a mixed-precision

approach [8, 9]. Gradients calculated with the backprogagation al-

gorithm are accumulated on high-precision variables on an external

computer. At the end of each epoch, this variable is checked and - if

the change passes the quantization step - the related RRAM device

is reprogrammed. In such cases, the weight is updated by sampling

its value from the new corresponding Gaussian distribution.

More precisely, the set of resistive levels assumed by the RRAM is

defined by 𝜇𝑛 , where 𝑛 goes from 1 to 8 (3 bits), each representing a

resistance in the LRS. The high-precision variable (32-bit), also said

hidden-weight𝑊𝑖 𝑗 , triggers a reprogramming operation when it

approaches a new resistive level 𝜇 𝑗 , starting from a different value.

𝜇 : |𝑊𝑖 𝑗 − 𝜇 | =
𝑛

min
𝑘=0

{|𝜇𝑘 −𝑊𝑖 𝑗 |} (1)

where 𝑛 is the number of available resistive levels on the RRAM

devices. The RRAM-aware training procedure is summarized below:

• 𝑛𝑝𝑟𝑒 epochs of pre-training on the 32-bit weights only, ob-

taining the pre-trained parameters𝑊𝑝𝑟𝑒 ;
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Figure 2: Dendritic architecture using complex synapses containing RRAM delays and RRAM weights. Each channel (shown in

green) is applied to a parallel set of synapses (in dashed blue box) in each row, which constitutes a distribution of delays, of

which a sample is taken through learning the weight values. Each branch/row can integrate the delayed and weighted input

channels with a different time constant 𝜏𝑖 .

10
5

10
8

Read Resistance ( )

0.0

0.2

0.4

0.6

0.8

1.0

P
D

F,
 V

R
ST
=
1.
5V

1e 5

0.0

0.5

1.0

1.5

P
D

F,
 V

R
ST
=
2.
0V

1e 8

Figure 3: Variability of RRAMs in their HRS follows a wide

log-normal distribution. The shift in the distribution is as a

result of different reset voltages.

• converting the hidden weights𝑊𝑝𝑟𝑒 to RRAM values after

updating the scaling factor 𝑠𝑤 relating the resistance of the

RRAM to the hidden weight;

• 𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 epochs on the 3-bit precision RRAM weights, i.e.

the values sampled from the LRS levels, scaled by 𝑠𝑤 .

with 𝑠𝑤 obtained as max𝐿𝑅𝑆/max𝑊𝑡𝑟𝑎𝑖𝑛𝑒𝑑 .

Importantly, the resistive levels 𝜇𝑖 and the standard deviation

values related to the RRAM resistance are obtained from a 4kbit

RRAM array operated with the smart programming procedure, as

in [7].

4 RESULTS

To show-case the computational power of dendrites, we bench-

mark the architecture of Fig. 2 on a real-time sensory processing

task, namely heartbeat anomaly detection, using Electrocardiogram

(ECG) data. We choose the MIT-BIH dataset [10] and focus on the

data of patient 208, presenting a balanced amount of normal and

abnormal heartbeats. The raw data, consisting of the voltage traces

recorded from different electrodes, is delta-modulated to obtain

spike trains that are fed to the dendritic architecture [11] (Fig 4).

The spiking activity of the output neurons signals the presence of

arrhythmia in the heartbeat, performing binary classification. Im-

portantly, the accuracy in solving this task depends on howwell the

temporal features in a heartbeat signal are interpreted to identify

anomalies. In our particular model, the dendritic architecture, this

means that the delay values have to match the temporal features

of the input signal. The average heartbeat duration is on the order

of 700 ms, so the relevant temporal features should be a fraction

of that period. These temporal features are detected through the

delays. To find the average value of the delays required to detect the

ECG features, we sweep the mean of the delay RRAM distribution,

while fixing the capacitance size to 100 𝑓 𝐹 . Figure 5 shows the accu-

racy as a function of the mean value of the log-normal distribution

related to the delay RRAM, with the equivalent delay shown on top

of the figure. As can be seen, the task is solved (i.e. accuracy > 95%)

with a mean delay of 40𝑚𝑠 . This delay corresponds to a HRS of

500 𝐺𝑂ℎ𝑚𝑠 which is difficult to achieve with HfO2-based devices.

However, their pristine state can be used to achieve this resistance.

Alternatively, Ferroelectric Tunnel Junction devices are promising

candidates for such large resistance levels [12].

Using the mean delay of 40ms, a single output neuron, with

two dendritic branches of 64 synapses each, can achieve up to 95%

accuracy on the real-time ECG anomaly detection task. This is com-

pared to more than 100 units required in Spiking Recurrent Neural
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LIF NeuronHeartbeat 2 Inputs 2x64 Dendrites

Normal

Arrythmia

D1 DN

Figure 4: Arrhythmia detection with the dendritic architecture. The voltage recording of the heartbeat is converted to spike-

trains and then fed to the Dendritic Architecture. An output neuron fires to signal the anomalies in the heartbeats.

Networks (SRNNs) from previous works, giving rise to 100 × reduc-

tion in power consumption for the aforementioned task [13, 14].

Table 1 shows the comparison of the estimated power consumption

and memory footprint of the dendritic architecture against other

state of the art methods.

Figure 5: Accuracy of the Dendritic Architecture on the ECG

arrhythmia detection, as a function of the delay-RRAMmean

resistance.

This work [15] [14] [16] SNN

Power 0.53 µW 48.6 µW 516.1 µW 64mW

Memory Footprint 256 b 73 kb 64 kb (NA)

Table 1: Energy and power consumption comparison with

the state of the art.

5 CONCLUSIONS

We have introduced an RRAM-aware dendritic architecture, which

is empowered by delays, and as a result, can introduce temporal

richness to a feedforward network that can classify a sensory pro-

cessing task with up to 100x less power consumption and less than

100x in memory footprint compared to recurrent networks. The

power benefits are thanks to the delays which keep the temporal

information of the data in a passive fashion, without the need for

active storage of data through recurrency.
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