
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2023

Event-based Low-Power and Low-Latency Regression Method for Hand Kinematics
from Surface EMG

Zanghieri, Marcello ; Benatti, Simone ; Benini, Luca ; Donati, Elisa

DOI: https://doi.org/10.1109/iwasi58316.2023.10164372

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-254226
Conference or Workshop Item
Submitted Version

Originally published at:
Zanghieri, Marcello; Benatti, Simone; Benini, Luca; Donati, Elisa (2023). Event-based Low-Power and Low-
Latency Regression Method for Hand Kinematics from Surface EMG. In: 2023 9th International Workshop on
Advances in Sensors and Interfaces (IWASI), Monopoli (Bari), Italy, 8 June 2023 - 9 June 2023, Institute of Electrical
and Electronics Engineers.
DOI: https://doi.org/10.1109/iwasi58316.2023.10164372

Event-based Low-Power and Low-Latency

Regression Method for Hand Kinematics from

Surface EMG

Marcello Zanghieri1⋄∗, Simone Benatti1,2, Luca Benini1,3, Elisa Donati3,4

1 University of Bologna, Bologna, Italy — {marcello.zanghieri2, simone.benatti, luca.benini}@unibo.it
2 University of Modena and Reggio Emilia, Modena, Italy — simone.benatti@unimore.it

3 ETH Zurich, Zurich, Switzerland — lbenini@iis.ee.ethz.ch, eldonati@ethz.ch
4 University of Zurich, Zurich, Switzerland — elisa@ini.uzh.ch

Abstract—Human-Machine Interfaces (HMIs) are a rapidly
progressing field, and gesture recognition is a promising method
in industrial, consumer, and health use cases. Surface electromyo-
graphy (sEMG) is a State-of-the-Art (SoA) pathway for human-
to-machine communication. Currently, the research goal is a
more intuitive and fluid control, moving from signal classification
of discrete positions to continuous control based on regression.
The sEMG-based regression is still scarcely explored in research
since most approaches have addressed classification. In this work,
we propose the first event-based EMG encoding applied to the
regression of hand kinematics suitable for working in streaming
on a low-power microcontroller (STM32 F401, mounting ARM
Cortex-M4). The motivation for event-based encoding is to ex-
ploit upcoming neuromorphic hardware to benefit from reduced
latency and power consumption. We achieve a Mean Absolute
Error of 8.8± 2.3 degrees on 5 degrees of actuation on the public
dataset NinaPro DB8, comparable with the SoA Deep Neural
Network (DNN). We use 9× less memory and 13× less energy
per inference, with 10× shorter latency per inference compared
to the SoA deep net, proving suitable for resource-constrained
embedded platforms.

Index Terms—electromyography, EMG, surface electromyog-
raphy, sEMG, hand kinematics, time series, event-based, silicon
cochlea, spike trains, regression, machine learning, ML, em-
bedded, microcontrollers, MCU, STM32, ultra-low-power, low-
latency, real-time, streaming, event-driven, neuromorphic.

I. INTRODUCTION

Human-Machine Interfaces (HMIs) are an active and rapidly

advancing research domain in which gesture recognition is one

of the most promising approaches for industrial, commercial,

and health scenarios such as robotics, augmented reality, and

rehabilitation & prosthetics [1]. Surface electromyography

(sEMG)-based HMIs are the State-of-the-Art (SoA) in the

⋄Corresponding author.
∗Work done while visiting at the Neuromorphic Cognitive Systems (NCS)

research group of the Institute of Neuroinformatics (INI), University of Zurich
and ETH Zurich, Zurich, Switzerland.

The research presented in this work was supported in part by the EU’s
Horizon 2020 project BonsAPPs (EU grant agreement 101015848), and by
the Marco Polo Programme of University of Bologna.

communication pathway between a human and a device driven

via EMG signals processing [2]. They rely on the analysis

of the electrical activity of muscles sensed via electrodes

positioned on the surface of the skin in a completely non-

invasive way (in sharp contrast with intramuscular EMG), with

great potential for wearable control systems.

Finding an effective mapping from sEMG to control com-

mands is not a trivial task, and SoA approaches tackle the

problem by resorting to Machine Learning (ML) or Deep

Learning (DL) [3] where sEMG signals are mapped to a given

set of gestures (classification) [4] or to continuous degrees of

freedom (regression) [5]. As opposed to conventional pattern

recognition, deep neural networks are able to learn signal

features at training time, often outperforming the handcrafted

features needed for non-deep ML; the learned information

extraction is potentially optimal since data-driven, but not

easily explainable.

Current research aims for a more natural and intuitive con-

trol, hence the need to move from a limited set of predefined

positions to a continuous control that can be performed with

a regression-based approach. So far, regression approaches to

sEMG represent a minority, while the vast majority of the

literature is concerned with classification, focusing mostly on

Deep Neural Networks (DNNs) to counteract the inter-session

variability of sEMG and make classification robust in the long

run through regularization [4] or adaptation [6]. In contrast,

regression works are still scarce in the literature compared to

robust classification efforts. Most existing proposed solutions

for sEMG regression produce DL models that yield a low

regression error [7, 8] but do not take fully into account

the memory, latency, and energy constraints of resource-

constrained embedded computational devices. Some proposed

deep networks require processors designed explicitly for linear

algebra [5] to be executed with ultra-low power consumption

(tens of milliwatts power envelope), a regime suitable for long-

term wearable devices.

In the veins of exploring solutions for ultra-low-power

execution of computationally demanding tasks, Spiking Neural

Networks (SNN) are an emerging class of artificial neural

networks specifically designed to process data in the format of

spike trains (i.e., binary with sparse 1’s, coming as a stream

in continuous physical time). Neurons in an SNN have a

state that emulates the biological membrane potential: it is

excited at the reception of events, and decays over time; upon

crossing a threshold, a neuron fires, i.e., transmits an event (a

spike) to the connected neurons [9]. Neuromorphic processors,

either digital [10] or mixed-signal [11], are an ideal substrate

for the deployment of SNNs, since they are accelerators for

the sequential computation of the emulated potential varying

in time. Moreover, neuromorphic processors perform event-

proportional computing [10]: since each neuron influences

the others only when it fires, events are sparse spike trains,

which cause only sparse updates of the net’s neurons’ states,

greatly reducing latency and energy consumption compared

to inference in a conventional neural network that requires to

compute the entirety of activation maps.

Integration of sEMG acquisition systems with neuromorphic

processors requires converting the digital sEMG raw data into

sequences of events, i.e., timestamps associated with each

channel to be used as input spike train for the event-based

processing. Existing works on processing sEMG on event-

driven hardware show that separation patterns can be extracted

with SNNs consuming < 1 nJ per spike, amounting to as little

as 0.05mW (hundredths of a milliwatt) of total power [12].

However, these works do not address regression yet, but

implement classification [12, 13, 14] or provide insight into the

empirical activation patterns and their class-separability [15].

In this work, we propose a hybrid method based on event-

based EMG encoding, a bio-inspired feature extraction, com-

bined with regression implemented on a low-power proces-

sor ideal for embedded solutions. Our goal is to explore a

goodness-complexity tradeoff for sEMG regression against the

existing literature that focuses on DL models [5, 7, 8, 16]. Our

contribution is three-fold:

• we propose an event-based encoding strategy for the

sEMG that works in streaming, i.e., consumes inputs one-

by-one, producing a stream of output spike events;

• we tune our encoding scheme on the real sEMG regres-

sion dataset NinaPro DB8, achieving a Mean Absolute

Error of 8.8 ± 2.3 degrees, comparable with the SoA

DNN, proving that our spike conversion preserves enough

information for a fine task like regression;

• we profile the resource requirements and execution of

our setup on a commercial digital microcontroller, getting

9× smaller memory footprint, 10× shorter latency, and

13× lower energy consumption per inference compared

to the SoA deep net, proving our method a perfect fit for

resource-constrained embedded platforms.

We release open-source the code of this work at

https://github.com/pulp-bio/event-based-semg-regression.

II. MATERIALS & METHODS

A. sEMG and NinaPro Database 8

The EMG signal is a very informative marker of muscular

activity because it arises from the trains of motor unit action

potentials in muscle fibers [17]. Typically, the EMG has am-

plitude between 10 µV and 1mV and bandwidth up to 2 kHz.

When targeting health or consumer HMIs, non-invasiveness

and acceptance are enabled by sEMG, i.e., the acquisition of

EMG via conductive electrodes on the skin surface. Extracting

information from the sEMG is made difficult by motion

artifacts, signal variability [18, 19], and noise sources such

as floating ground, crosstalk, and power line interference.

The Non-Invasive Adaptive hand Prosthetics Database 8

(NinaPro DB8)1 [20] is one of the public datasets collected to

enable the ML and DL era of sEMG processing [3]. In addition

to 10 able-bodied participants, it includes 2 right trans-radial

amputees, measuring hand movements contralateral to the

sensed forearm for all participants. To target modelling of

fluid motion and transitions, the protocol consists in slow

gestures lasting between 6 s and 9 s with rests of approximately

3 s, and it includes single-finger and functional (e.g., grasp)

movements. The sEMG was acquired by 16 active double-

differential sensors (Delsys Trigno IM Wireless EMG) on the

right forearm. Angular position of hand joints was measured

by a 18-DoF Cyberglove 2 on the left hand. The shared data

are upsampled to 2 kHz and post-synchronized.

To frame the regression problem, the dataset authors define

5 Degrees of Actuation (DoAs) as linear combinations of

the 18 measured DoFs (Eq. S2 in Supplementary Material

of [20]) to directly address five relevant hand movements:

thumb rotation, thumb flexion, index flexion, middle flexion,

ring+little flexion. We target the same DoAs as ground truth,

applying the same DoF-to-DoA coefficients matrix. So, the

multivariate regression problem consists in optimizing the fit

from the 16 sEMG signals to the 5 DoAs.

Recent works tackling NinaPro DB are the ones by Zhou et

al. [21] and by Bao et al. [16], whereas the SoA is represented

by Zanghieri et al. [5]. Zhou et al. [21] achieved ≥ 90%
recognition accuracy applying DL on time-frequency domain

features. However, addressing NinaPro DB8 as a classification

largely under-exploits the available data, and is even advised

against by the dataset authors due to the deliberately long

transients . Bao et al. [16] did perform a regression, reaching

an average R2 of 0.68 and an RMSE of 13.5 degrees with

a deep network based on a Kalman filter, but they too

underexploited the dataset by only addressing 3 DoAs (index,

middle, ring+little) out of 5, dismissing the 2 thumb DoAs

without discussing this limitation.

The literature SoA on NinaPro DB8 is the work by

Zanghieri et al. [5], who achieved a Mean Absolute Error

(MAE) of 6.89 degrees by deploying a Temporal Convo-

lutional Network (TCN). That SoA TCN can run in real-

time provided that specialized hardware is available, namely a

microcontroller mounting a parallel 8-core processor designed

for energy-efficient matrix multiplication [22].

In this work, we want to explore an accuracy-computation

tradeoff opposite to that pursued in the mentioned SoA work:

our research question is to research the regression accuracy

1http://ninaweb.hevs.ch/DB8

achievable within a limited budget of memory, latency, and

energy.

B. Encoding surface EMG to Events

We perform EMG-to-spike conversion, i.e., encoding of the

sEMG data to an event-based format, which is a simplification

of the cochlear method. Cochlear spike conversion is a signal

processing pipeline inspired by the mechanical separation of

acoustic frequencies taking place in the mammalian cochlea

prior to transduction and encoding into neural train spikes. The

natural cochlea has stimulated bio-inspired hardware designers

to implement silicon cochleas, i.e., circuitry mimicking the

natural spike conversion, either in digital [23] or analog

solutions [24, 25].

The method consists of two stages: (1) bandpass filtering

and (2) Leaky Integrate-and-Fire (LIF) neurons.

1. Bandpass filtering. Each input channel is passed into a

bank of bandpass filters. We used 4 bands covering the whole

bandwidth from 0 to fNyquist, based on 4-th order Butterworth

filters. We set cutoff frequencies with exponential spacing

(adjusted to reach zero):

fn =
en/Nbands − 1

e− 1
· fNyquist n = 0, · · · , Nbands (1)

where Nbands = 4 is the number of bands and fn is the n-th

cutoff frequency between adjacent bands. Since NinaPro DB8

has fsample = 2kHz and thus fNyquist = 1kHz, the resulting

cutoff frequencies are

f0,1,2,3,4 [Hz] = 0.0, 32.1, 119.2, 356.1, 1000.0 (2)

The gains of the 4 4-th order Butterworth filters corresponding

to the 4 bands are shown in Fig. 1. NinaPro DB8 is released

already filtered with a 4-th order bandpass Butterworth be-

tween 10Hz and 500Hz, and we did not apply any additional

cleaning prior to splitting bands. By passing each input chan-

nel in the 4 filters, we expand the number of input channels

from 16 to 64. Then, all signals are full-wave-rectified.

2. LIF neurons. The spike conversion in strict sense takes

place in 64 LIF neurons, each receiving the output of one

filter as an injected input current. LIF neurons are a simplified

model of the natural neuron, where the state is described by a

membrane potential Vmem(t) obeying the linear electrical law

dVmem

dt
= −

(Vmem(t)− Eleak)−
Iinj(t)
gleak

τ
(3)

where τ is the membrane relaxation time, Eleak is the leak

reversal potential, Iinj is the injected current, and gleak is the

leak conductance. Each time Vmem crosses a threshold Vthr,

the neuron emits a spike event corresponding to the time of

crossing tfire. After each spike the LIF neuron undergoes a

refractory time trefr, i.e. a time interval [tfire, tfire + trefr] during

which Vmem is forced to a reset value Vreset, and neither the

decay nor the inhomogeneous driving term Iinj(t)/gleak act:

Vmem(t) ≡ Vreset t ∈ [tfire, tfire + trefr] . (4)

100 101 102 103

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

 (d
im

en
sio

nl
es

s)

band 1
band 2
band 3
band 4

Fig. 1: Gains of the four 4-th order Butterworth filters of the used
frequency bands. They stop at 1 kHz since it is the Nyquist frequency
of the NinaPro DB8 dataset.

The clearer change of variables

x(t) ≜
Vmem(t)− Eleak

Vthr − Eleak

(5)

xdrive(t) ≜
Iinj(t)

gleak

(6)

cleans away all electrical quantities (unneeded in a numeri-

cal simulation) and yields a dimensionless state with firing

threshold xthr = 1 and law

dx

dt
= −

x(t)− xdrive(t)

τ
(7)

making it clearer that the injected current plays the role of

external driving term. Each of the 64 filtered signals is used

to drive an independent LIF neuron, which carries out the spike

conversion. We parameterize the LIF neurons based on three

values: (i) the empirical gain gdata to convert the arbitrary-units

filtered signals into xdrive(t):

xdrive(t) = gdata · |xbandpassed(t)| ; (8)

we explored 5 values from 1.0 ·105 to 1.0 ·106, approximately

exponentially spaced:

gdata ∈
{

1.0 · 105, 1.7 · 105, 3.0 · 105, 5.5 · 105, 1.0 · 106
}

(9)

(ii) the membrane relaxation time, which we set to τ =
10ms; (iii) the refractory time, for which we explored trefr ∈
{1ms, 2ms}.

To feed spike trains to regression, we adopted a rate encod-

ing. We computed rates based on a causal exponential decay

kernel [26] assigning each spike a weight of exp(−t/τpost)
for t ≥ 0 in the future. In contrast with discrete window-

ing, this kernel does not require storing a variable buffer

of events timestamps but only one floating-point number.

This causal exponential-kernel rate can take values ≥ 0 and

< 1/ (1− exp (−trefr/τpost)). We explore 12 values from 1ms
to 5 s, approximately exponentially spaced:

τpost [ms] ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500,

1000, 2000, 5000}.
(10)

For clarity and compactness, we report all the explored

settings of the event-based encoding in Table I.

TABLE I: Settings explored to tune the event-based encoding.

Parameter
Explored values

role symbol

gain from data to
dimensionless LIF
driving term xdrive

gdata

1.0 · 105, 1.7 · 105, 3.0 · 105,

5.5 · 105, 1.0 · 106

(dimensionless)

refractory time
of LIF neurons

trefr 1ms, 2ms

decay time of post-LIF
causal exponential kernel

τpost

1, 2, 5, 10, 20, 50, 100, 200,
500, 1000, 2000, 5000

milliseconds

LIF dynamics were implemented in Python 3.8 with the

simulator Brian22 [27] v. 2.5 and run with simulation timestep

500 µs, found to be a good tradeoff between time resolution

and computation time; since this is equal to the sampling time

of the data, each filtered sample drives its channel’s LIF for

exactly 1 simulation step.

C. Regression

We use linear regression to prioritize low memory and

computation requirements over refined accuracy. We do not

apply any preprocessing to ground-truth DoA signals, nor

any postprocessing to the regression outputs. The R
64 → R

5

multivariate regression problem is parameterized by a 5× 64
coefficients matrix plus a 5-valued intercept; in fp32, this

amounts to a memory footprint of 1576 bytes (including input

and output), and a number of operations of 645FLOP.

As suggested by NinaPro DB8’s authors, we merged ses-

sions 1 and 2 (10 repetitions of each gesture) and used them for

training and validation, and we used session 3 (2 repetitions

of each gesture) for testing. We performed all experiments

separately for each subject, without any multi-subject training

or inter-subject validation.

For training, we downsampled the spike trains with a

time step of 100ms to keep the training computation time

< 8 hours for the whole dataset; at testing, we called the

inference on the spike trains every 16ms, which is the same

time step as the SoA work [5] we compare with.

D. Profiling

We profiled the proposed processing based on memory

footprint, number of operations, power consumption, latency

per inference, and energy consumption per inference. To

measure the latency per inference and to determine the energy

consumption per inference, we implemented the spike conver-

sion (filter banks + LIF neurons) and the linear inference on

an STM32 F401RE microcontroller, which mounts an ARM

Cortex-M4 processor. STM32 F401RE is not designed for

event-based sparse data processing and does not implement

event-driven execution. Our motivation for profiling on this

platform is to showcase how memory-, time-, and energy-

efficient our proposed setup is, even when run on a commercial

general-purpose microcontroller.

2https://github.com/brian-team/brian2

We programmed it in C and compiled with optimization

-Ofast. Latency was measured using the debugger of the en-

vironment STM32CubeIDE v. 1.11, whose overhead produces

a variability of cycle counts in the order of 10 cycles; at a clock

frequency of 84MHz, this amounts to an uncertainty of 0.1 µs,
which is accurate enough for our purpose. Power consumption

was determined based on the value of 146 µA/MHz reported

in the datasheet3 ; at clock frequency 84MHz with a power

supply of 3.3V, this amounts to a power consumption of

40.5mW. Energy per inference was determined by multiply-

ing by experimentally measured latency.

In Section III, we show that our pipeline can run in

streaming, i.e., consuming one sEMG sample per channel

at a time, fitting 10 update steps for each of the 64 LIF

neurons within a latency of 500 µs, which is the sampling rate

of the NinaPro DB8 dataset. Porting to actual event-driven

neuromorphic devices (either digital [10] or mixed-signal [11])

will constitute our future work.

III. EXPERIMENTAL RESULTS

A. Evaluation Metrics

We evaluate the regression using the Mean Absolute Error

(MAE), measured in degrees and defined as

MAE =
1

NinferNDoA

Ninfer
∑

i=1

∥ŷi − yi∥1 (11)

where yi, ŷi ∈ R
5 are the multivariate ground truth and

estimation, measured in degrees, corresponding to the i-th
inference, respectively, ∥·∥1 is the L1-norm, NDoA = 5 is

the number of DoAs (defined in Subsection II-A), and Ninfer

is the total number of inferences in each subject’s Session 3,

obtained by calling one inference every 16ms (as explained in

Subsection II-C). The MAE is a reliable metric of the end-to-

end control goodness because it has the same scale as the target

joint angles; moreover, MAE is a first-order statistic, thus more

robust against outliers compared to (R)MSE or the multivariate

coefficient of determination R2, which are quadratic. We

average all MAEs over time (hence over movement types and

repetitions) and over DoAs, as expressed by Equation 11; and

over all the 12 subjects; this allows comparison with [5].

We profile our processing pipeline by determining memory

footprint, number of operations, latency per inference (in cy-

cles and milliseconds), and energy per inference, as explained

in Subsection II-D

B. Regression Accuracy

We report regression results in Table II, which displays

the optimal decay time τ best
post for the causal exponential kernel

exp(−t/τpost) and the corresponding MAE, obtained for the

explored values of the data gain gdata and the LIF refractory

time trefr, as detailed in Subsection II-B. These results provide

insights both into the best settings and general trends.

Focusing on the optimal settings gbest
data = 3.0 · 105 and trefr

equal to 1ms or 2ms, we show in Fig. 2 the curve for the

3https://www.st.com/en/microcontrollers-microprocessors/stm32f401re

TABLE II: Best decay time τ
best
post of the causal exponential kernel and

regression error obtained for each explored combination of data gain
gdata and trefr (details in Subsection II-B). Best results in bold.

SETTINGS RESULTS

gain

(dimensionless)

refractory

time (ms)

best decay

of kernel

τbest
post (ms)

MAE

(degrees)

1.0 · 105
1.0 500 9.47± 2.57

2.0 500 9.38± 2.52

1.7 · 105
1.0 500 9.04± 2.44

2.0 500 8.95± 2.38

3.0 · 105
1.0 500 8.84± 2.28

2.0 500 8.84± 2.26

5.5 · 105
1.0 500 9.02± 2.36

2.0 500 9.06± 2.33

1.0 · 106
1.0 500 9.39± 2.53

2.0 500 9.58± 2.62

search on τpost, with which we identified the optimal value

of the causal exponential kernel length, i.e., τ best
post = 500ms.

The curve is convex because a too-short (too-long) decay time

of the exponential kernels weighs too much the recent (old)

spikes, i.e. computes the rate at a timescale that does not match

the actual timescale of the hand’s kinematics. The best MAE

of 8.84±2.26 degrees is consistent within 1 standard deviation

with the SoA value of the TCN in [5], which is 6.89 ± 2.08
degrees. The TCN’s MAE standard deviation is not reported

in the SoA paper [5], and we determined it by reproducing

the setup of [5]. Compatibility within 1 standard deviation

suggests that our setup yields a regression quality as good as

the SoA from a practical point of view. The MAE standard

deviations in the range from 2.0 degrees to 2.6 degrees are an

empirical measure of the general, natural variability in angular

regression error across DoAs and subjects; in contrast, the

literature reporting standard deviations of regression accuracy

only reports the range [20] or the standard deviation [16] of

the determination coefficient R2, which is dimensionless and

standardized by DoA, hence not informative about the physical

scale of the error variability.

Regarding the general trends outside the best settings, we

can see that the choice of the refractory time has little

impact compared to the choice of data gain since the former

always produces differences in MAE of less than 0.1 standard

deviations, and the range of MAEs obtained is mainly due

to the data gain setting. Another strong general trend is the

consensus about τ best
post = 500ms since even the grid-adjacent

values of 200ms or 1000ms never turn out to be optimal;

we interpret this consensus as a general estimation of the

characteristic time scale of the variation of the kinematics in

the NinaPro DB8 data.

It is worth remarking that τpost by no means involves

a delay in computation due to a wait. The decay due to

the causal exponential kernel is applied recursively at every

update of the firing rate: at each simulation step, the rate

is updated by multiplying it by exp (−∆tsim/τpost), where

10 3 10 2 10 1 100 101

Decay time of causal exponential kernel (s)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
AE

 (d
eg

re
es

)

average ± std
average of TCN by (Zanghieri et al., 2021)
std of TCN, reproduced as per (Zanghieri et al., 2021)

Fig. 2: Tuning curve of the decay time τ
best
post of the causal exponential

kernel, for the optimal settings data gain gdata = 3.0 · 10
5 and

refractory time trefr = 2ms.

∆tsim is the simulation timestep, then incrementing by +1
if the corresponding LIF neuron has fired at the current

simulation step. This sequential update is performed at each

step, requiring a lightweight computation, regardless of the

numerical value of τpost. In detail, since exp (−∆tsim/τpost) is

constant and is pre-computed once for all, updating the rate

r as r ← r · exp (−∆tsim/τpost) + 1 [if spike] only requires

1 multiplication, 1 condition test, and (if test if positive) 1
addition per neuron per simulation step. A long τpost, such as

τ best
post = 500ms, simply means that the relative decrease per

simulation timestep is small.

C. Profiling

We report the profiling results on the STM32 F401RE com-

mercial microcontroller in Table III. Compared with the TCN

of [5], the proposed regression setup has 9.8× smaller memory

footprint, 10.6× shorter latency, and 13.3× lower energy

consumption per inference. Thus, the event-based processing

proposed in this work achieves an accuracy comparable to the

SoA [5] while fitting in a much more limited resource budget.

The memory saving is due to the fact that we do not buffer

temporal data, always consuming data in streaming except for

the filters’ states of the initial filtering stage.

In particular, we notice that the latency of ≲ 450 µs per

inference is shorter than the sampling time of the NinaPro DB8

dataset (namely, < 500 µs) and of most sEMG applications.

Thus, our method meets the real-time constraints of an sEMG-

based gesture recognition device.

IV. CONCLUSION

In this work, we have presented a solution for estimating

the hand kinematics from sEMG relying on an event-based

encoding of the input data. This is the first proposal of an

event-based encoding of sEMG oriented to regression, a more

complex task than classification. The regression error compa-

rable with existing solutions proves that the spike event format

preserves the information for this finer task while fitting much

lower resource requirements than the dominant Deep Learning

TABLE III: Profiling of the proposed event-based encoding and regression processing, compared with the SoA TCN setup.

Platform
Memory

(kB)
Operations

Latency Power

(mW)

Energy per

inference (µJ)

MAE (degrees)

µ± σcycles (k) time (µs)

TCN of [5] GAP8a [22] 70.90 6.32·106 in int32b 476 4760 51.0 243.0 6.89 ± 2.08c

This work STM32 F401RE 7.19 7.07·103 in fp32 37.69 ± 0.02 448.6 ± 0.2 40.5 18.2 8.84 ± 2.26

a https://greenwaves-technologies.com/gap8 mcu ai/
b 8-bit models use 8-bit weights and maps, but layers run in int32 and outputs are requantized to uint8 after activation.
c The TCN’s MAE standard deviation is not reported in [5], so we determined it by reproducing the setup of the original work.

approaches. The long-term research direction after this work

is to assess event-based computing paradigms and computing

platforms as new candidates for sEMG regression, in addition

to the convolutional approach based on matrix multiplication

on temporal data buffers. We will target implementation onto

event-driven hardware to take full advantage of the energy

efficiency of event-proportional computing.

ACKNOWLEDGMENT

We thank David Kubánek for sharing the code4 of his

alternative exploratory PCA + spike-conversion regression on

NinaPro DB8.

REFERENCES

[1] J. Cannan et al. “Human-Machine Interaction (HMI): A Sur-
vey”. In: University of Essex (2011).

[2] L. Guo et al. “Human-Machine Interaction Sensing Technol-
ogy Based on Hand Gesture Recognition: A Review”. In: IEEE
THMS 51.4 (2021). DOI: 10.1109/THMS.2021.3086003.

[3] A. Phinyomark et al. “EMG Pattern Recognition in the Era of
Big Data and Deep Learning”. In: MDPI BDCC 2.3 (2018).
DOI: 10.3390/bdcc2030021.

[4] M. Zanghieri et al. “Temporal Variability Analysis in sEMG
Hand Grasp Recognition using Temporal Convolutional Net-
works”. In: IEEE AICAS 2020. 2020. DOI: 10 . 1109 /
AICAS48895.2020.9073888.

[5] M. Zanghieri et al. “sEMG-based Regression of Hand Kine-
matics with Temporal Convolutional Networks on a Low-
Power Edge Microcontroller”. In: IEEE COINS 2021. 2021.
DOI: 10.1109/COINS51742.2021.9524188.

[6] U. Côté-Allard et al. “Deep Learning for Electromyographic
Hand Gesture Signal Classification Using Transfer Learning”.
In: IEEE TNSRE 27.4 (2019). DOI: 10.1109/TNSRE.2019.
2896269.

[7] R. C. Sı̂mpetru et al. “Accurate Continuous Prediction of 14
Degrees of Freedom of the Hand from Myoelectrical Signals
through Convolutive Deep Learning”. In: IEEE EMBC 2022.
2022. DOI: 10.1109/EMBC48229.2022.9870937.

[8] R. C. Sı̂mpetru et al. “Sensing the Full Dynamics of the
Human Hand with a Neural Interface and Deep Learning”.
In: bioRxiv preprint. 2022. DOI: 10.1101/2022.07.29.502064.

[9] W. Maass. “Networks of Spiking Neurons: The Third Gener-
ation of Neural Network Models”. In: Neural Networks 10.9
(1997). DOI: 10.1016/S0893-6080(97)00011-7.

[10] A. Di Mauro et al. “SNE: an Energy-Proportional Digital
Accelerator for Sparse Event-Based Convolutions”. In: DATE
2022. 2022. DOI: 10.23919/DATE54114.2022.9774552.

[11] S. Moradi et al. “A Scalable Multicore Architecture with Het-
erogeneous Memory Structures for Dynamic Neuromorphic
Asynchronous Processors (DYNAPs)”. In: IEEE TBCAS 12.1
(2018). DOI: 10.1109/tbcas.2017.2759700.

4https://github.com/davidkubanek/SNN-hand-kinematics-estimation-from-sEMG-signals

[12] E. Donati et al. “Discrimination of EMG Signals using a
Neuromorphic Implementation of a Spiking Neural Network”.
In: IEEE TBioCAS 13.5 (2019). DOI: 10.1109/TBCAS.2019.
2925454.

[13] Y. Ma et al. “Neuromorphic Implementation of a Recurrent
Neural Network for EMG Classification”. In: IEEE AICAS
2020. 2020. DOI: 10.1109/AICAS48895.2020.9073810.

[14] Y. Ma et al. “EMG-based Gestures Classification Using a
Mixed-Signal Neuromorphic Processing System”. In: IEEE
JETCAS 10.4 (2020). DOI: 10.1109/JETCAS.2020.3037951.

[15] E. Donati et al. “Processing EMG Signals using Reservoir
Computing on an Event-based Neuromorphic System”. In:
IEEE BioCAS 2018. 2018. DOI: 10 . 1109 / BIOCAS . 2018 .
8584674.

[16] T. Bao et al. “A Deep Kalman Filter Network for Hand
Kinematics Estimation using sEMG”. In: Pattern Recognition
Letters 143 (2021). DOI: 10.1016/j.patrec.2021.01.001.

[17] R. M. Rangayyan. Biomedical Signal Analysis. John Wiley &
Sons, 2015. DOI: 10.1002/9781119068129.

[18] A. Burrello et al. “Tackling Time-Variability in sEMG-based
Gesture Recognition with On-Device Incremental Learning
and Temporal Convolutional Networks”. In: IEEE SAS 2021.
2021. DOI: 10.1109/SAS51076.2021.9530007.

[19] E. Donati et al. “Long-Term Stable Electromyography Clas-
sification using Canonical Correlation Analysis”. In: (2023).
DOI: 10.48550/arXiv.2301.09729.

[20] A. Krasoulis et al. “Effect of User Practice on Prosthetic Finger
Control with an Intuitive Myoelectric Decoder”. In: Frontiers
in Neuroscience 13 (2019). DOI: 10.3389/fnins.2019.00891.

[21] X. Zhou et al. “Time–Frequency Feature Transform Suite
for Deep Learning-based Gesture Recognition using sEMG
Signals”. In: Robotica 41.2 (2023). DOI: 10 . 1017 /
S026357472200159X.

[22] E. Flamand et al. “GAP-8: A RISC-V SoC for AI at the Edge
of the IoT”. In: IEEE ASAP 2018. 2018. DOI: 10.1109/ASAP.
2018.8445101.

[23] A. Jiménez-Fernández et al. “A Binaural Neuromorphic Audi-
tory Sensor for FPGA: A Spike Signal Processing Approach”.
In: IEEE TNNLS 28.4 (2017). DOI: 10.1109/TNNLS.2016.
2583223.

[24] S.-C. Liu et al. “Event-based 64-channel Binaural Silicon
Cochlea with Q Enhancement Mechanisms”. In: IEEE ISCAS
2010. 2010. DOI: 10.1109/ISCAS.2010.5537164.

[25] M. Yang et al. “A 0.5V 55µW 64×2 Channel Binaural Silicon
Cochlea for Event-Driven Stereo-Audio Sensing”. In: IEEE
JSSC 51.11 (2016). DOI: 10.1109/JSSC.2016.2604285.

[26] I. M. Park et al. “Kernel Methods on Spike Train Space for
Neuroscience: A Tutorial”. In: IEEE MSP 30.4 (2013). DOI:
10.1109/MSP.2013.2251072.

[27] M. Stimberg et al. “Brian 2, an Intuitive and Efficient Neural
Simulator”. In: eLife 8 (2019). DOI: 10.7554/eLife.47314.

	Introduction
	Materials & Methods
	sEMG and NinaPro Database 8
	Encoding surface EMG to Events
	Regression
	Profiling

	Experimental Results
	Evaluation Metrics
	Regression Accuracy
	Profiling

	Conclusion

