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Abstract

How can agents learn internal models that veridi-

cally represent interactions with the real world

is a largely open question. As machine learning

is moving towards representations containing not

just observational but also interventional knowl-

edge, we study this problem using tools from rep-

resentation learning and group theory. We pro-

pose methods enabling an agent acting upon the

world to learn internal representations of sensory

information that are consistent with actions that

modify it. We use an autoencoder equipped with

a group representation acting on its latent space,

trained using an equivariance-derived loss in order

to enforce a suitable homomorphism property on

the group representation. In contrast to existing

work, our approach does not require prior knowl-

edge of the group and does not restrict the set of

actions the agent can perform. We motivate our

method theoretically, and show empirically1 that

it can learn a group representation of the actions,

thereby capturing the structure of the set of trans-

formations applied to the environment. We further

show that this allows agents to predict the effect

of sequences of future actions with improved ac-

curacy.

1. Introduction

One of the most enigmatic questions addressed by mam-

malian intelligence is how to build an internal model of the

external world that represents all behavior-relevant infor-

mation to efficiently anticipate the consequences of future

1Max Planck Institute for Intelligent Systems, Tübingen, Ger-
many 2Institute of Neuroinformatics, ETH Zürich, Switzerland
3Max Planck ETH Center for Learning Systems. Correspondence
to: Hamza Keurti <hamza.keurti@tuebingen.mpg.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Code can be found at https://github.com/
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actions. Humans acquire such internal models by interact-

ing with the world, but the learning principles allowing it

remain elusive. We investigate how Machine Learning (ML)

can shed light on this question, as it moves towards represen-

tations that carry more than just observational information

(Sutton & Barto, 2015; Schölkopf et al., 2021) and develops

tools for interactive and geometric structure learning (Cohen

& Welling, 2016; Eslami et al., 2018),

Our setting is inspired by neuroscientific evidence that, as

animals use their motor apparatus to act, efference copies of

motor signals are sent to the brain’s sensory system where

they are integrated with incoming sensory observations to

predict future sensory inputs (Keller et al., 2012). We ar-

gue that such efference copies can be useful for learning

structured latent representations of sensory observations

and for disentangling the key latent factors of behavioral

relevance. This view is also in line with hypotheses formu-

lated by developmental psychology (Piaget, 1964), stating

that perceiving an object is not creating a mental copy of it

but rather internalizing an understanding of how this object

transforms under different interventions. We translate this

idea into an artificial setting in which an agent has to build

an internal representation of a novel environment through

an interactive process. To intervene on its environment, the

agent is allowed to perform a set of transformations, while

observing the impact of its actions. The agent is provided

with a value of the efference copy associated with each

transformation, but does not have prior knowledge on how

they are structured and how they affect the environment.

In reinforcement learning (RL), interaction probes the struc-

ture of the environment and can be leveraged to learn pre-

dictive world models that capture the effect of actions (Ha &

Schmidhuber, 2018). While RL heavily relies on a reward

signal, this does not cover all forms of human learning, and

other objectives compatible with biological evidence have

been proposed, such as predictive coding (Rao & Ballard,

1999; Pezzulo et al., 2022). Our approach, too, aims to

complement rather than utilize RL.

We will aim to learn a type of correspondence (mathemati-

cally, a homomorphism) between the interventional struc-

ture of the world and our representation thereof. To this end,
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we make the assumption that an agent’s actions form a group

(or a subset thereof) where actions are composable. Further,

for learning the environmental transformations caused by its

actions, the agent needs to learn a sensory latent space con-

sistent with its observations. Learning action-observation

relationships then amounts to predicting the change in the

agent’s latent sensory space using the incoming motor com-

mands. Mathematically, this corresponds to an equivariance

property of the sensory representations with regard to the

group acting on the environment (Dodwell, 1983).

While one can mathematically create many such representa-

tions, an agent with bounded computational abilities needs

to choose one allowing efficient manipulation, interpretation

and prediction of changes in its environment. Group theory

suggests that transformations can be efficiently encoded as

matrices, notably through the concept of group representa-

tion. In an appropriately chosen latent space, transforma-

tions of world states can be efficiently encoded as matrix-

vector products, and composed using matrix multiplication.

Additionally, a representational property favoring efficiency

is disentanglement (Bengio et al., 2012; Kulkarni et al.,

2015; Schölkopf et al., 2021), which states that the latent

representation can be decomposed into subspaces reflecting

properties of the environment that the agent can modify

independently. Disentanglement can be framed in a group

theoretic setting by imposing a block diagonal structure

on the group representation (Higgins et al., 2018), thereby

promoting a parsimonious encoding of the group structure.

While mathematical results state that such a latent represen-

tation, where group elements act as matrices, exists under

mild conditions on the group action (Antonyan et al., 2009;

Kraft & Russell, 2014), how to learn it from data without

prior knowledge of the group structure is an open ques-

tion. In the present work, we investigate this question when

observation-action sequences carried out by an agent em-

bedded in an environment can be observed. Our approach

only makes minimal assumptions with respect to the latent

structure to be learned. In particular, instead of directly en-

forcing a parametrized representation of a particular group,

we allow for arbitrary mappings to the space of linear maps.

Our mapping is naturally shaped into a group representation

by observing how actions affect future percepts. We pro-

pose a training loss derived from the commutative diagram

that an equivariant map satisfies, and a predictive autoen-

coder termed Homomorphism AutoEncoder (HAE) trained

on our equivariance constraints. We also propose a sparsity

regularization which favors disentangled representations.

Our contributions can be summarized as follows:

• We propose the HAE framework to jointly learn (ρ, h)
a group representation of transitions, as well as a

symmetry-based disentangled representation of obser-

vations without prior knowledge on the group.

• We provide theoretical justification and experimental

evidence that the HAE learns the group structure of the

transitions for different groups.

• The HAE learns to separate the pose of an object

with regard to the transitions group acting on it, from

the identity of acted-on objects as orbits of the non-

transitive group action.

• We show performance exceeding previous approaches

despite not using prior knowledge on the group struc-

ture to be learned.

Related Work. Learning useful representations has been

addressed with a wide range of methods. Given only un-

labelled observational data, generative models have diffi-

culties to infer ground truth disentangled factors without

additional assumptions on the mechanisms (Locatello et al.,

2019). In the i.i.d. data setting, constraining the function

class mapping the true latent factors to the observations can

help identify these factors (Gresele et al., 2021). Access to

non-i.i.d. data, e.g., from multiple environments, has been

shown to allow uncovering ground truth latent factors, no-

tably through contrastive learning approaches (Hyvarinen

& Morioka, 2016; Khemakhem et al., 2020; von Kügelgen

et al., 2021). This is also in line with methods relying on

interventional data to provide more information about rep-

resentational structure. For instance, Sontakke et al. (2021)

propose disentangling binary factors of variations by learn-

ing interactions which best separate sensory trajectories.

Thomas et al. (2017) propose a specific objective function

that leads agents to learn policies that separately act on the

disentangled properties of the environment. Homomorphic

MDPs (van der Pol et al., 2020) propose equivariant abstrac-

tions of states based on the similarity of both transitions and

rewards.

There is as well a growing interest in group theory to en-

force structure in learned representations. Group invariance

has been suggested as a useful inductive bias to learn causal

structure (Besserve et al., 2018; 2021). While CNNs (LeCun

et al., 1989) leveraged the linear action of the translation

group on the image space, this idea was generalized to other

groups (Cohen & Welling, 2016) or on other data modalities,

leading to the design of appropriate group equivariant linear

maps, and theoretical characterizations (Kondor & Trivedi,

2018). Dehmamy et al. (2021); Zhou et al. (2021); Finzi

et al. (2021) additionally propose to learn group-equivariant

maps from the data instead of imposing a particular con-

volution pattern. A limitation of these works is that they

learn symmetries encoded as linear (matrix) actions in the

measurement space, while many relevant transformations

of the world can only take such form in a well chosen latent

representation of it, and the non-linear mapping between

this representation and the observations typically needs to be

learned as well. Higgins et al. (2018) propose a theoretical

framework for such group-structured representation to pro-
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Figure 1. Left: Commutative diagram of a group-structured rep-

resentation. Right: Toroidal latent world for a moving 2D object

observation, parameterized by the coordinates of the objects’ cen-

ter (red). Dashed lines describe the unwrapping process.

pose a mathematical definition of disentanglement. Several

works describe approaches to learn these group-structured

representations (Yang et al., 2021; Caselles-Dupré et al.,

2019; Quessard et al., 2020; Park et al., 2022), to assess them

(Tonnaer et al., 2022) and to infer transformations between

pairs of observations (Painter et al., 2020; Connor & Rozell,

2020). Inspiring our approach, Caselles-Dupré et al. (2019);

Quessard et al. (2020) derive optimization losses from equiv-

ariance requirements, and Connor & Rozell (2020) leverage

the Lie Algebra and the matrix exponential. All these works

constrain the transformations observed during training to be

restricted to certain subgroups, thereby assuming the agent

has a preference for separately acting on specific aspects

of the state. With the exception of Quessard et al. (2020),

all these works also constrain the group to be a product of

cyclic groups. In contrast, our work does not require prior

knowledge on the group structure, nor does it restrict the set

of allowed transformations between pairs of observations.

2. Background

2.1. Symmetry-Based Disentangled Representation

Learning

We refer to Appendix A for background on groups. We

assume the set of observations O ⊂ R
no is obtained from

a space of world states W through an unseen generative

process b : W → O. For example, consider translations

of the heart-shaped 2D object on an image represented in

Figure 1. If we allow translations leaving the image to

move the object to the opposite side, W corresponds to a

representation of the space of positions of the heart’s center

on a torus, that can be identified with [0, 1]× [0, 1], and we

observe pixel images o ∈ O = R
64×64 (see Figure 2) of

this torus by unwrapping it, opposite borders of this image

coincide on the original torus. An inference process h :
O → Z maps observations to their vector representations

z ∈ Z = R
D.

A group of symmetries G structures the world states by

its action ·W : G × W → W . G is decomposed into a

direct product of subgroups G = G1 × ... × Gn. Here,

each subgroup only transforms a specific latent property

while keeping all others constant. In the example, the

2D toroidal group G ≃ SO(2) × SO(2) acts on the

heart by translating it on the torus through the action:

gθ1,θ2 ·W w = ( θ1
2π + w1,

θ2
2π + w2) mod 1. These

transformations are reflected in the image space by a shift

of pixel activations (see Figure 2) until it reaches the border

after which it appears on the other side.

We call a representation group-structured (cf. Higgins et al.

2018) if it satisfies the commutative diagram in Figure 1

such that:

1. There is an action of G on Z: ·Z : G× Z → Z.

2. The composition f = h ◦ b : W → Z is equivariant,

meaning that transformations of W are reflected on Z,

i.e., ∀g ∈ G,w ∈ W, f(g ·W w) = g ·Z f(w).

A group action ·Z : G × Z → Z induces a group ho-

momorphism ρ : G → Sym(Z) where Sym(Z) is the

group of invertible mappings from Z to itself (more in Ap-

pendix A). We require the group action ·Z on Z to be linear,

in which case the induced homomorphism ρ : G → GL(Z)
is called a group representation (here, GL(Z) is the group

of invertible linear maps on the vector space Z).

We call a group-structured representation disentangled with

regard to the group decomposition G = G1 × ...×Gn if it

satisfies this additional condition:

3. There exists a decomposition Z = Z1 ⊕ ... ⊕ Zn

and a decomposition of the group representation ρ =
ρ1 ⊕ ... ⊕ ρn where each ρi : Gi → GL(Zi) is a

subrepresentation.

The action on Z can then be written

g ·Z z = ρ(g1, ..., gn)(z1 ⊕ ...⊕ zn)

= ρ1(g1)z1 ⊕ ...⊕ ρn(gn)zn, (1)

for g = (g1, ..., gn) ∈ G and z = z1⊕ ...⊕zn ∈ Z. Clearly,

each subgroup Gi acts trivially on Zj , j ̸= i.

By choosing the mapping h such that f = h ◦ b satisfies

f(w) = (cos(2πw1), sin(2πw1), cos(2πw2), sin(2πw2))
T ,

and the block-diagonal group representation ρ such that:

ρ = ρ1⊕ρ2; ρi : gθ1,θ2 7→

(

cos(θi) − sin(θi)
sin(θi) cos(θi)

)

, (2)

we obtain a linear group-structured representation (ρ, h)
disentangled with regard to a decomposition of the group

acting on the latent 2-torus. In Section 6.1, we learn such a

representation using the HAE described in Section 3.
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2.2. Lie Groups and the Exponential Map

A Lie group is a group G that is also a finite-dimensional dif-

ferentiable manifold with smooth composition and inverse.

Its tangent space at the identity is called a Lie Algebra g.

An interesting property of Lie groups is the existence of

the exponential map which lets us generate elements of G
from those of g. Restricting ourselves to connected compact

matrix Lie Groups, the exponential map becomes surjective;

it is defined by the series exp(A) =
∑∞

k=0
1
k!A

k.

We leverage this link between the Lie Group and its

Algebra to use a parametrization of group representa-

tions ρ : G → GL(Z) as the composition ρ = exp ◦φ of

exp : gl(Z) → GL(Z) that maps square matrices to invert-

ible matrices and φ : G → gl(Z) which maps transition sig-

nals to square matrices. This parametrization of ρ allows

flexibility for the group G and provides optimization advan-

tages. We detail the derivation of this composition as well

as its advantages in the Appendix A.

3. Approach and Experimental Setup

Figure 2. The Homomorphism Autoencoder (HAE) consisting of

h (encoder), d (decoder) and ρ = exp ◦φ relies on 2-step latent

prediction to jointly learn the group representation ρ and the ob-

servation representation h. The HAE learns by jointly minimizing

both the latent prediction loss and the reconstruction loss (dotted

connections) to simultaneously learn representations of the obser-

vations and the group actions.

3.1. The Agent Observes Structure through Interaction

In order to discover the underlying structure relating obser-

vations, we consider an agent that interacts with its envi-

ronment and produces rollouts (o1, g1, o2, g2, ..., gN−1, oN )
of observations and group elements which transform the

underlying latent state. The agent does not directly have

access to the group elements g, but to unstructured efference

copies ϕ(g) of its performed actions, which, we assume, are

related to g through an unknown fixed injective mapping ϕ.

We use a random neural network for ϕ in the experiments.

To avoid cluttering, we write g instead of ϕ(g) in the rest of

the paper.

Unlike other works (Quessard et al., 2020; Painter et al.,

2020; Caselles-Dupré et al., 2019), we do not assume the

agent knows how to act specifically along subgroups of the

decomposition. The agent explores its action-perception

dependencies through a random policy, where it samples

actions from a neighbourhood of the identity. Finally, the

agent does not have knowledge of the composition rules

of the group element and only witnesses side effects of

composition through the succession of observations.

Through our proposed Homomorphism Autoencoder, the

agent will learn a group-structured representation (ρ, h) that

is disentangled with respect to a decomposition of the un-

derlying group G.

3.2. Homomorphism Autoencoder (HAE) Architecture

To jointly learn the latent representation h of the obser-

vations and the group representation ρ, we introduce the

HAE, described in Figure 2. This is a deterministic autoen-

coder with encoder h and decoder d, endowed with a group

representation ρ : G → GL(Z) parametrized by a neural

network φ as described in Section 2.2. ρ = exp ◦φ acts

on encoding vectors of observations zt = h(ot) to predict

the encoding of future stimuli through ρ(gt) · zt ≈ zt+1.

The latent prediction is evaluated on both the latent space

through the 2-step latent prediction loss L2
pred and on the

image space through the 2-step reconstruction loss L2
rec.

We optimize L, a weighted sum of both losses, setting their

relative importance with coefficient γ, yielding equation 3.

The losses are separately detailed in the section 4.

L(ρ, h, d) = L2
rec(ρ, h, d) + γL2

pred(ρ, h) . (3)

4. The HAE Learns Symmetry-Based

Representations

Previous attempts to design symmetry-based disentangled

linear representations have put a lot of emphasis on the

disentanglement property. However, it remains unclear how

to learn a symmetry-based linear representation (ρ, h) that

verifies properties 1 and 2 in Section 2.1, without enforcing

strong assumptions on ρ (Caselles-Dupré et al., 2019) or

on the actions the agent can perform (Caselles-Dupré et al.,

2019; Quessard et al., 2020).

In this section, we provide theoretical insights on learn-

ing symmetry-based representations and how the two-step

HAE architecture achieves it with minimal assumptions. We

define the losses used throughout for a given sample path

(o1, g1, . . . , oN ).

The N -step latent prediction loss compares the evolution

of stimuli encodings predicted by using the group repre-

sentation action against the encodings of the corresponding

observations (blue dotted connection in Figure 2):

4



Homomorphism Autoencoder

LN
pred(ρ, h)=

N+1
∑

t=2

∥

∥

∥

∥

∥

h(ot)−
(

t−1
∏

i=1

ρ(gi)
)

h(o1)

∥

∥

∥

∥

∥

2

2

The N -step reconstruction loss compares the reconstruc-

tions of the stimuli obtained from decoding the predicted

evolution of encodings against the actual stimuli (red dot-

ted connection in Figure 2). The reconstruction loss also

evaluates the reconstruction of the initial observation like a

standard autoencoder,

LN
rec(ρ, h, d)=

N+1
∑

t=1

∥

∥

∥

∥

∥

∥

ot−d





(

t−1
∏

i≥1

ρ(gi)
)

h(o1)





∥

∥

∥

∥

∥

∥

2

2

,

where by convention the empty product for t = 1 is 1.

In both losses, the Euclidean norm may be replaced by other

positive functions. In practice, we use the Euclidean norm

for Lpred, but use binary cross-entropy for Lrec, which is a

common choice for image data. The 1-step latent prediction

loss L1
pred is simply enforcing the commutative diagram in

Figure 1, and N -step losses allow us to extend the commu-

tative diagram to multi-step settings.

To provide guarantees for our approach, we make minimal

assumptions on the world states symmetries.

Assumption 1 (Standard action on world states). G and W
are compact smooth manifolds and there exists a map m :
W → W ∗diffeomorphic onto its image, where W ∗ is a finite

dimensional real vector space such that G admits a con-

tinuous injective group representation ρ∗ : G → GL(W ∗)
and the action of G on W corresponds to the matrix-vector

multiplication by ρ∗ on W ∗: g ·W w = m−1 (ρ∗(g)m(w)).

This technical assumption encompasses a wide range of

transformations of the physical world that can be modelled

by linear actions of matrix groups such as SO(n) in an ap-

propriate latent space. It should not be misunderstood as

making any linear approximation of non-linear functions. In

particular, the generative process b can be highly non-linear.

Compactness allows defining a unique “uniform” probabil-

ity measure on the group and to make sure all world states

can be explored with suitable sample paths. Introducing the

mapping to W ∗ allows modelling general linear actions on

W as matrix vector products.2 Mild sufficient conditions

under which Assumption 1 holds are given in (Antonyan

et al., 2009; Kraft & Russell, 2014).

Theoretical results (see Appendix B). If we assume such

ρ∗ is given, then minimizing L1
pred(ρ

∗, h) is enough to learn

2E.g., the conjugate action MAM⊤ of matrix M on matrix A
can be represented by the vectorization operation vec and the Kro-
necker product ⊗, such that vec(MAM⊤) = (M ⊗M)vec(A)

a symmetry-based representation (see Proposition 2 in Ap-

pendix B). However, when ρ∗ is not known, a group repre-

sentation ρ of G needs to be learned over a space of arbitrary

mappings, minimizing L1
pred(ρ, h) and can lead to the trivial

representation (see Proposition 3 in Appendix B).

Our main result justifies the use of a 2-step latent prediction

loss, to which the observations reconstruction loss should

be added, to provide guarantees for the HAE to learn a

symmetry-based representation. The proof is in Appendix B.

Proposition 1 (informal). Under generative model of

Section 2.1 with b diffeomorphic onto its image and As-

sumption 1, consider a setting where sample paths have

a strictly positive density on a G-invariant support. If

(ρ, h, d) are continuous and minimize the expectation of

L2
pred(ρ, h) + γLk

rec(ρ, h, d), for k ≥ 0, then ρ is a non-

trivial group representation and (ρ, h) is a symmetry-based

representation.

The reconstruction loss Lk
rec, k ≥ 0 is added to the objec-

tive to prevent the representation to collapse into a trivial

solution by ensuring h is not constant for a given fixed group

representation ρ0 (see Proposition 4 in appendix). However,

while enforcing the reconstruction of only the initial observa-

tion using L0
rec is sufficient in theory, we found empirically

that using L2
rec performs better when jointly learning (ρ, h).

5. Learning a Disentangled Representation

While we previously elaborated on enforcing a symmetry-

based representation, we now discuss how to enforce its dis-

entanglement. As expressed in Section 2.1, the disentangle-

ment condition for a linear action on Z with group represen-

tation ρ is a decomposition of both the representation space

Z =
⊕n

1 Zi and the group representation ρ =
⊕n

i=1 ρi.
Here, the subgroup representations ρi are representations of

the subgroups Gi on the subspaces Zi. Following that the

group G is decomposed along the latent world’s parametriza-

tion, the group representation ρ of the action signals ϕ(g) is

disentangled with regard to the group decomposition when-

ever, in matrix form, it is a block-diagonal matrix of the

subgroups representations:

ρ
(

ϕ(g1, ..., gn)
)

=ρ1(g
1)⊕ ρ2(g

2)⊕ · · · ⊕ ρn(g
n) . (4)

However, an agent acting on its environment observes tran-

sition ϕ(g) but does not necessarily have access to its

ground truth decomposition into components (g1, ..., gn) ∈
G1×...×Gn. Therefore, we investigate inductive biases that

can constrain our trainable group representation in the space

of matrices of the block diagonal form given in equation 4.
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5.1. Strong Constraint to Enforce Disentanglement

We first assume prior knowledge of (1) the number of groups

in the decomposition and (2) the dimension of each sub-

group representation dim(Zi), and shape the output of our

neural network φ as in equation 5, its matrix exponential

will have the same shape.

φ(ϕ(g))=













φ1(ϕ(g)) 0 . . . 0

0 φ1(ϕ(g))
. . .

...
...

. . .
. . . 0

0 . . . 0 φ1(ϕ(g))













(5)

While we do not prove that this block diagonal constraint

leads to disentanglement, we show through experiments that

the HAE learns a symmetry-based representation (ρ, h) that

is disentangled with regard to the ground truth decomposi-

tion of the group G and takes the form of equation 4.

5.2. Soft Constraint to Enforce Disentanglement

To drop the assumption of prior knowledge of the number

of disentangled subgroups and their dimensions, we take

inspiration from work on structured sparsity inducing losses

(Bach et al., 2011) to add the following regularization term

in the loss:

Lsparse(ρ)=
∑

t

∑

i≥0

√

∑

j≥i+1, k≤i

ρkj(gt)2+ρjk(gt)2 (6)

This term favors block-diagonal patterns (see example

in Figure 12) by jointly minimizing the group of terms

(ρij(gt))ij that violate a given block-diagonal configura-

tion. See Appendix B.2 for more details. The model is then

trained on the composite loss

L = Lrec + γLpred + δLsparse .

We can then choose a representation space Z = R
D with

D large enough to accommodate the total dimension of the

group representation, extra dimensions being “trivialized”

into one dimensional subspaces by Lsparse.

6. Experiments

6.1. Learning a 2D-Toroidal Latent Structure

We consider a subset of the dSprites dataset (Matthey et al.,

2017) where a fixed scale and orientation heart is acted on

by the group of 2D cyclic translations G = Cx ×Cy , result-

ing in the setup described in Section 2, where G is a discrete

subgroup of the Lie group SO(2) × SO(2). The group

G is decomposed such that the components of its element

g = (gx, gy) produce a translation on the observed image

along the x and y axis, respectively. The HAE is trained

on 2-step paths (o1, ϕ(g1), o2, ϕ(g2), o3), where ϕ is a ran-

domly chosen non-linear mapping to a 50-dimensional am-

bient space, implemented with a neural network. We use

the soft constraints for disentanglement. Architecture and

hyperparameters for training are specified in the appendix C.

Figure 3. Top: Projection of the HAEs’ 8−dimensional latent

representation vectors z of the translated heart dataset, exhibiting

the 2D toroidal structure of the world’s state. Color indicates the

heart’s x position, while markers indicate y position. Bottom:

Evaluation of the learned and disentangled group representation ρ
for actions over a grid centered on the identity element. Arrows in-

dicate the direction of actions g. The representation trivializes the

subspace spanned by the indices 1, 3, 4, 5, Cx and Cy act respec-

tively on dimensions [2, 3] and [7, 8] through rotation matrices.

Learned data representation. We visualize the learned

8−dimensional encodings of the considered dataset through

2-dimensional random matrix projection (Figure 3 top). The

learned manifold corresponds to the expected latent space

topology of the 2D torus S1 × S1 introduced in Section 2.

Learned Group Representation ρ. We then evaluate the

learned matrices for the identity id = (0, 0), and a grid of

actions around the identity including the generator elements

of each subgroup 1x = ( 2π32 , 0), 1y = (0, 2π
32 ) and their in-

verses −1x = (− 2π
32 , 0),−1y = (0,− 2π

32 ). Recall that the

components of the group element g = (gx, gy) were “mixed”

using an unknown high-dimensional non-linear mapping ϕ
such that axis information of the transformations was not

directly accessible. The results, Figure 3 (bottom), show

that ρ(id) = I8 as expected from a group representation,
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and that the representation of generators along each axis

acts on a different subspace of the representation. The ma-

trices also correspond to the rotation matrices predicted

in Equation 2. A visualization of ρ over a wider neigh-

bourhood of the identity, provided in Figure 13 of the ap-

pendix, shows that composition of transformations are also

learned correctly, according to the homomorphism property

ρ(ϕ(gg′)) = ρ(ϕ(g))ρ(ϕ(g′)).

Group representation through the Lie Algebra allows for

linear latent traversals. We describe in Appendix C.2.4

how our learned group representation ρ = exp ◦φ gives

access to the Lie algebra of the group, which then offers a

linear basis (A1, A2) to navigate the group and therefore

the data manifold (see Figure 4).

Figure 4. We visualize the linear traversal of the group algebra for

the dSprites experiment and its effect on the predicted image recon-

struction. The first row corresponds to a traversal tA1 (horizontal

displacement), while the second row corresponds to the traversal

tA2 (vertical displacement).

Learning SO(2) × SO(2) × SO(2). We use the hard

constraints for disentanglement presented in section 5.1 to

learn a group structured representation for a similar setup

where we add the rotations of the heart resulting in a discrete

subgroup of SO(2)× SO(2)× SO(2). Visualizations and

architecture are available in Appendix C.2.6.

6.2. Rollout Prediction

One important application of learning structured represen-

tations is to predict how the observations would change

given sequences of actions. We consider longer rollouts

(o1, g1, ..., gN−1, oN ) of the dsprites transition dataset the

HAE model was trained on. We compare the HAE to two

other approaches of modeling the dynamics in the latent

space: (1) Unstructured: zt+1 = h(zt, at), where h is a

learnable function. Similar approaches have been widely

adopted in recent model-based deep RL methods (Ha &

Schmidhuber, 2018; Schrittwieser et al., 2020). (2) Givens:

zt+1 = Razt, where Ra =
∏

i,j G(i, j, θij) and G(i, j, θij)
are the Givens rotation matrices. This approach was pro-

posed by Quessard et al. (2020) to parametrize the group

representation of the performed actions.

We evaluate the methods in an offline setting, where we

train each method on a given set of 2-step trajectories and

test their generalization ability on a hold-out set of 128-

0 20 40 60 80 100 120

Steps

0

500

1000

1500

2000

2500

3000

3500

4000

R
ec
o
n
st
ru
ct
io
n
E
rr
o
r

HAE

Givens

Unstructured

Figure 5. Step-wise reconstruction loss on the test dataset. Lines

and shadings represent median and interquartile range over 50

random seeds.

step trajectories. See Appendix C.3 for details on the setup.

Figure 5 shows the reconstruction loss for each method on

the test trajectories. Our result suggests that the HAE can

outperform other methods significantly.

6.3. Unsupervised Separation of Identity and Action

Figure 6. Projection of the 8−dimensional representation vectors

z of the translated dsprites objects. 4 units of z encode position

information, while one direction of the remaining 4 dimensional

space encodes shape identity. Colors indicate y position, markers

indicate x position and each torus corresponds to a different shape.

Next, we consider the subset of the dSprites dataset consist-

ing of three shapes (heart, square and ellipse) acted on by

the previous group of 2D cyclic translations G = Cx × Cy .

This action is not transitive (see Appendix A). Indeed, given

a world state w corresponding to a given shape at a given

location on the torus, the set G ·w of all world states we can

transition to corresponds to the same shape at all possible

locations. This is called the orbit of w (see Appendix A).

We have 3 orbits, one for each shape. We do not assume

knowledge of any of this and train the HAE using the soft

constraint for disentanglement described in Section 5.2 us-
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Figure 7. Example reconstructions of a 128-step interaction. Top

and bottom row respectively correspond to the original and recon-

structed observations.

ing a representation space of dimension D = 8.

Results show that the model learns a group representation

ρ (see Figure 17) similar to the one learned in the single

shape example, where 4 dimensions correspond to the space

acted on non trivially by ρ. Figure 6 confirms the HAE

learns the representation of the cyclic translation group ac-

tion shared among shapes, but also learns to separate the

representations according to object shape along additional

latent dimensions, giving rise to three distinct G-invariant

tori. This is reminiscent of the two streams hypothesis of

visual processing (Goodale & Milner, 1992), in which the

”What” pathway processes information related to object

identity, while the ”Where” pathway processes information

related to the object pose, relevant for manipulation. See

Appendix C.4 for a more thorough analysis of this setup.

6.4. Learning SO(3) Structured Representations.

We now investigate whether HAEs can learn representations

involving more complex groups than those decomposable

into SO(2) subgroups. We consider 2D images of a 3D

bunny rotated in 3D space. The group acting on the states

of this object is SO(3). It is a 3D manifold with a rather

complex topology (notably it is connected, but not simply

connected) and contrary to SO(2) it is not commutative.

SO(3) is also a 3−dimensional simple group, it cannot be

decomposed as a direct product of non-trivial subgroups. A

3D rotation can be described by three angles of consecutive

1D rotations around orthogonal axis, a popular choice is the

Euler angles in the order Z-Y-X: yaw, pitch and roll.

We train the HAE on a dataset of 2−step transitions with

small Euler angles g sampled uniformly in the interval

[−0.5, 0.5]rad. The angles are passed through the fixed

random neural network ϕ before being forwarded through

the group representation ρ. We continue to write g for both

g and ϕ(g). Figure 7 shows the quality of reconstructions

on a test 128−step transition.

We choose a representation dimension large enough and

let the sparsity loss (See Section 5.2) trivialize unnecessary

dimensions. Figure 9 shows the group representation ρ(g)
for specific rotations g. The group representation emerges

block-diagonal due to the sparsity loss despite the group

not being decomposable. The blocks correspond to the ir-

reducible representations of SO(3). One might expect a

single 3 dimensional block consisting of rotation matrices,

which would be enough to act on the position of a point-like

particle on the surface of a sphere, however it cannot cor-

respond to a transitive action over 3D orientations because

the orbits by the action would be spheres (a 2D manifold).

Instead, we obtain two irreducible representations of dimen-

sions 3 and 5. This could be seen as the decomposition of

a 9−dimensional representation of SO(3). Which makes

sense assuming each orientation of the bunny is encoded as

a rotation matrix. As such, the 9−dimensional representa-

tion corresponds to the action of SO(3) on 3× 3 matrices

through R ·M = RMRT with R ∈ SO(3).

One of the benefits of the parametrization ρ = exp ◦φ is to

leverage the Lie algebra of the group of transitions. Indeed,

as the mapping ρ = exp ◦ φ converges to a group represen-

tation of SO(3), φ(g) for different transitions g spans the

Lie algebra and a basis (group generators) can be obtained

by applying PCA on the set of {φ(g)}g∈G inferred from ob-

served samples. Figure 8 shows that linear traversals of the

Lie algebra correspond to 1D rotations visualized through

their action on the bunny’s orientation. It is interesting to

note we obtain full-circle rotations through these traversals

even though the model was trained solely on transitions with

rotations smaller than 30◦.

Figure 8. Linear traversal of the Lie algebra along the 3 principal

components.

Figure 9. Group representation ρ(g) for example actions g corre-

sponding to identity (center), and rotations π/8 (left) and −π/8
(right) around the yaw axis (top), the pitch axis (middle) and the

roll axis (bottom).
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To appreciate how well the group structure is captured, we

evaluate the reconstruction error over long 128-step rollouts

in Figure 10. We compare our approach to an unstructured

forward model trained on the same dataset. Compared to

the unstructured model, the HAE keeps a low reconstruction

error since at every step the latent remains on the represen-

tation manifold.

When training the HAE on a similar dataset where the action

also shifts the bunny’s hue, the resulting Lie algebra is

decomposed into color and rotation as seen through the

traversals in Figure 11.

More details are provided in the Appendix D.
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Figure 10. Reconstruction error for 128−step rollouts. Line and

shadings correspond respectively to the mean and standard devia-

tion over 20 seeds.

Figure 11. Linear traversal of the Lie algebra along the 4 principal

components.

7. Discussion

We provide theoretical and experimental evidence support-

ing that the HAE allows an agent to infer the geometric

structure of its environment by learning a corresponding

group-structured low-dimensional internal manifold. In con-

trast to earlier works, our assumptions are relaxed to general

properties of the structuring group, involving in particular

compactness and connectedness. Unlike other methods, we

do not constrain observed actions to be performed along

the generative factors. One limitation of our framework (as

well as of previous works) is the deterministic nature of the

mapping between state and environment. The intrinsically

non-linear nature of the problem makes the theoretical anal-

ysis more challenging in the stochastic setting and is left to

future work.

Our theoretical result emphasizes the benefits of a 2-step

prediction objective to learn the group structure of the latent

representation. In addition, the requirement of an additional

loss on the reconstruction of the observations resonates with

the central role played by predictive coding frameworks in

neuroscientific accounts of representation learning (Rao &

Ballard, 1999; Pezzulo et al., 2022). In this sense, our result

suggests an interplay between different learning objectives

that, when achieved jointly, may endow human and artificial

agents with interventional world representations.

When using a set of cyclic actions, we find that the HAE

learns a toroidal manifold similar to the embeddings re-

ported in neuroscience, for example, in the hippocampus

of mice where toroid-like embeddings encode the animals’

head-direction (Chaudhuri et al., 2019). When considering

an environment consisting of different objects acted on by

the same group of transformations, we find that the HAE

learns the shared geometric structure and separates the ob-

jects into different orbits, resulting in a quotient space of

transformation invariant representations of the objects. In

particular, the emergence of these invariant object represen-

tations suggests that the enforced group structure allows

the unsupervised learning of additional behavior-relevant

information encoded in the latent representation.

We further provided experimental support for the ability of

HAEs to learn the action of more complex groups such as

SO(3) and showed that HAEs’s Lie algebra structure of the

learned group representation can be explored using PCA.

In conclusion, we have shown theoretically and experimen-

tally that the proposed HAE approach constitutes a step

towards moving from statistical representations to latent

interventional representations, learned in a self-supervised

manner without reinforcement signal. Subject to relatively

limited assumptions, these representations successfully cap-

ture the environment’s ground-truth interventional group

structure.
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(BMBF): Tübingen AI Center, FKZ: 1IS18039B.

9



Homomorphism Autoencoder

References

Antonyan, N., Antonyan, S. A., and Rodrı́guez-Medina, L.

Linearization of proper group actions. Topology and its

Applications, 156(11):1946–1956, 2009.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. Opti-

mization with sparsity-inducing penalties. Foundations

and Trends in Machine Learning, 4:–, 2011. ISSN

19358237. doi: 10.1561/2200000015.

Bader, P., Blanes, S., and Casas, F. Computing the matrix

exponential with an optimized taylor polynomial approxi-

mation. Mathematics 2019, Vol. 7, Page 1174, 7:1174, 12

2019. ISSN 2227-7390. doi: 10.3390/MATH7121174.

Bengio, Y., Courville, A., and Vincent, P. Representation

Learning : A Review and New Perspectives. (1993):1–30,

2012.

Besserve, M., Shajarisales, N., Schölkopf, B., and Janzing,

D. Group invariance principles for causal generative

models. In AISTATS, 2018.

Besserve, M., Sun, R., Janzing, D., and Schölkopf, B. A

theory of independent mechanisms for extrapolation in

generative models. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, pp. 6741–6749, 2021.
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A. Background on group theory

In this section, we provide an overview of group theory concepts exploited in this work.

Definition A.1 (Group). A set G is a group if it is equipped with a binary operation · : G×G → G and if the group axioms

are satisfied

1. Associativity: ∀a, b, c ∈ G, (a · b) · c = a · (b · c)

2. Identity: There exists e ∈ G such that ∀a ∈ G, a · e = e · a = a.

3. Inverse: ∀a ∈ G, there exists b ∈ G such that a · b = b · a = e. This inverse is denoted a−1.

We are often interested in sets of transformations, which respect a group structure, but are applied to objects that are not

necessarily group elements. This can be studied through group actions, which describe how groups act on other mathematical

entities.

Definition A.2 (Group Action). Given a group G and a set X , a group action is a function ·X : G× X → X such that the

following conditions are satisfied.

1. Identity: If e ∈ G is the identity element, then e ·X x = x, ∀x ∈ X .

2. Compatibility: ∀g, h ∈ G and ∀x ∈ X, g ·X (h ·X x) = (g · h) ·X x

The group action ·X : G× X → X induces a group homomorphism ρ·X : G → Sym(X). (where Sym(X) is the group

of all invertible transformations of X) through:

∀(g, x) ∈ G×X, ρ·X (g)(x) := g ·X x

The group homomorphism property of ρ·X comes from the group action axioms of ·X :

ρ·X (id)(x) = id ·X x = x (identity)

= idX(x)

So ρ·X (id) = idX . and

ρ·X (g1 · g2)(x) = (g1 · g2) ·X x = g1 ·X (g2 ·X x) (compatibility)

= ρ·X (g1) ◦ ρ·X (g2)(x)

Equality over all of X leads to equality of the functions: ρ·X (g1 · g2) = ρ·X (g1) ◦ ρ·X (g2).

In what follows, we are interested in linear group actions in which case the acted on space is a vector space V and the

induced homomorphism ρ maps G to the group GL(V ) of invertible linear transformations of V . This mapping is called a

group representation. Actions of this type have been studied extensively in representation theory.

Definition A.3 (Group Representation). Let G be a group and V a vector space. A representation is a function ρ : G →
GL(V ) such that ∀g, h ∈ G, one has ρ(g)ρ(h) = ρ(g · h).

Note that such definition is not restricted to finite dimensional vector spaces, however we will limit our study to this case,

such that representations are appropriately described by mappings from G to a space of square matrices.

Definition A.4 (Lie Group). A Lie Group G is a nonempty set satisfying the following conditions:

• G is a group.

• G is a smooth manifold.

• The group operation · : G×G → G and the inverse map .−1 : G → G are smooth.
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We limit ourselves to the study of linear Lie Groups, Lie groups that are matrix groups. The tangent space to a Lie Group at

the identity forms a Lie Algebra. A Lie Algebra g is a vector space equipped with a bilinear map [., .] : g× g → g called the

Lie Bracket. We will not introduce the Lie Bracket as we do not make use of it. The Lie Algebra somehow describes most

of everything happening in its Lie Group. This connection is established through the exponential map.

Definition A.5 (Exponential Map). The exponential map exp : g → G is defined for matrix Lie Groups by the series:

eA =
∞
∑

k=0

1

k
Ak. ∀A ∈ g

The exponential map is not always surjective. However if we only consider groups that are connected and compact, the

exponential is surjective, which justifies our parametrization of the group representation through:

ρ : G
φ
−→ g = Mn(R)

exp
−−→ GLn(R)

Where φ is a trainable arbitrary mapping.

Lie Groups, Algebras and Representations When a group G is also a smooth manifold it is called a Lie Group. The

tangent space to the group G at the identity forms a Lie Algebra g: a vector space equipped with a bilinear “Lie bracket”

operator [ . , . ]. Importantly, when the Lie group has a representation ρ : G → GL(V ), the Lie algebra can also be associated

to a (matrix) representation R : g → gl(V ), which is the differential of ρ and where gl(V ) denotes the Lie algebra consisting

of all linear endomorphisms of V , with bracket given by [X,Y ] = XY − Y X . Restricting ourselves to matrix Lie groups,

we will leverage a convenient link between these two representations through the matrix exponential given by the series

exp(A) =
∑∞

k=0
1
k!A

k for arbitrary square matrix A. When ρ is faithful (i.e. injective) and under certain assumptions on the

group – for instance if G is a connected, compact matrix Lie group (Hall, 2015, Corollary 11.10) the so-called exponential

map of the group writes

expG : g → G
A 7→ ρ−1 ◦ exp(R(A))

and is surjective. Therefore, the whole group G can be described using elements of the Lie algebra. As a consequence, expG
has a right inverse and for any group element g we can write expG ◦ exp−1

G (g) = g, which leads to

exp ◦R ◦ exp−1
G (g) = ρ(g) .

Thus ρ(g) can be decomposed as exp ◦φ(g) with φ = R ◦ exp−1
G . From an algorithmic perspective, we can thus learn ρ by

exploiting differentiable implementations of the matrix exponential (Bader et al., 2019) and fit the mapping φ with a neural

network and backpropagation. Because for different values g ∈ G, the elements φ(g) live in a vector space, they may be

easier to learn than their group representation ρ(g) which lives on a manifold. For illustration of this aspect, the standard

group and algebra representations for SO(2) are, respectively,

ρ(θ) =

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

and R(θ) = θ

[

0 1
−1 0

]

.

The Lie algebra structure can be leveraged even if we do not consider a set of transformations covering the whole Lie group.

For example, discrete image translations of an integer number of pixels along one dimension can be approximated (by

enforcing periodicity at image boundaries) by a cyclic subgroup of the 2D rotation group SO(2), where the rotation angle is

constrained to be a multiple 2π/n, with n being the number of pixels of the image along this dimension.

Group action types The effect of a group action on a base space X varies according to the properties of the homomorphism

defined by the group action

τ :G → Sym(X)

g 7→ g ·X □

We introduce two types of actions:
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Definition A.6 (Transitive Group Action). The action of G on X is transitive if X forms a single orbit.

in other words, ∀x, y ∈ X, ∃g ∈ G; g · x = y.

Definition A.7 (Faithful Group Action). The action of G on X is faithful if the homomorphism G → Sym(X) correspond-

ing to the action is bijective (an isomorphism).

In that case, ∀g1 ̸= g2 ∈ G, ∃x ∈ X; g1 · x ̸= g2 · x .

We also define the orbits by a group action:

Definition A.8 (Orbit by a Group Action). The orbit of an element x ∈ X by the action ·X of a group G is the set

G ·X x = {g ·X x : g ∈ G}

When the action of G is transitive on X , then X is the single orbit by the action of G:

∀x ∈ X,G ·X x = X

Such is the case for our experiments using a single shape. We also explore the case where the action is not transitive in the

multi shape experiment visualized in Figure 6.

B. Theoretical foundations of HAEs

B.1. Proofs

The following propositions are established for more general losses than the ones defined in main text, which have been

simplified for the sake of readability. In this setting, we consider sequences of a possibly large number n of actions and we

sum N -step losses for all possible subsequences and not only the sequences at t = 1 (which is the setting of main text). This

leads to the losses

LN
pred(ρ, h)=

∑

t

N
∑

j=1

∥

∥

∥

∥

∥

h(ot+j)−
(

j−1
∏

i=0

ρ(gt+i)
)

h(ot)

∥

∥

∥

∥

∥

2

2

, (7)

and

LN
rec(ρ, h, d)=

∑

t

N
∑

j=0

∥

∥

∥

∥

∥

ot+j−d

(

(

j−1
∏

i=0

ρ(gt+i)
)

h(ot)

)∥

∥

∥

∥

∥

2

2

. (8)

Where the empty product
∏−1

i=0 ρ(gt+i) is the identity matrix by convention.

Additionally, given that we are considering settings where the observed data distribution is restricted to a submanifold of the

ambient space (e.g. the pixel space), we introduce formal tools to model continuous random variables in such setting (we

leave aside the easier case of a discrete state space). We restrict ourselves to smooth manifold structures, and introduce the

notion of smooth positive manifold density, which essentially generalises the Lebesgue measure to manifolds for integration

theory, and in particular, associates a strictly positive value to each open neighborhood of the manifold. We refer to (Lee,

2013, Chapter 16) for a detailed introduction of the concept. Such density always exist in such case (but is not unique) (Lee,

2013, Proposition 16.37). Let µ be such a positive manifold density, then one can define a continuous random variable w
that have a compactly supported density pw with respect to µ on M in the following sense: there exist a continuous positive

function pw : M → R with compact support, such that for any set A ∈ W from the Borel σ algebra (the smallest containing

all open sets), we have:

P (w ∈ A) =

∫

W

1Apwµ =

∫

A

pwµ .

When applying a diffeomorphism to such variable, the result will also have a density that can be computed using the classical

change of variable formula.

First we provide a formal statement of the main theoretical result of the paper together with its proof, and then proceed to

prove the other propositions.
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Proposition 1. Under generative model of Section 2.1 with b diffeomorphic onto its image and Assumption 1, with a smooth

positive manifold density µ on W . Consider a setting where the distribution of observations (o1, g1, ..., on) is generated

according to Section 2.1, such that there exists t ∈ {1, . . . , n− 1} for which the corresponding world state-actions joint

distribution (wt, gt, gt+1) has a density p with respect to µ× µG × µG, where µH is the Haar probability measure of G
(i.e. the unique probability measure invariant by the action of any group element), and such that the support of p takes

the form supp(p) = Si ×G×G where Si is a G invariant set of initial states. Let γ > 0, if (ρ, h, d) are continuous and

minimize the expectation of L2
pred(ρ, h) + γLk

rec(ρ, h, d), for k ≥ 0, then ρ can be restricted to the linear group GL(V ) of

a vector subspace V such that ρV : G → GL(V ) is a non-trivial group representation and (ρV , h) is a symmetry-based

representation.

Proof. Under Assumption 1, the true state space W is acted upon by G through its representation (ρ∗,W ∗). As such,

m ◦ b−1, the inverse of the generating process composed with the injective mapping m of the assumption, and ρ∗ verify

L2
pred(ρ

∗,m ◦ b−1) = 0 and Lk
rec(ρ

∗,m ◦ b−1, b ◦m−1) = 0.

As a consequence, if (ρ, h, d) minimizes the full loss, it is a zero of this loss, which implies it is a zero of both the

reconstruction and prediction losses.

This further implies that (ρ, h, d) minimizes the 0-step reconstruction loss, which entails that h is injective by Proposition 4.

We assumed (ρ, h) minimizes E(o1,g1,...,on)[L
2
pred(ρ, h)] therefore E(o1,g1,...,on)[L

2
pred(ρ, h)] = 0.

Observed transitions (ot, gt, ot+1) correspond to an action on the true world states wt+1 = gt ·W wt — (ρ, h). Under our

assumptions, by contradiction, any 2-step sequence in the support of the distribution verifies:

ρ(gt)h(ot) = h(ot+1) (9)

and

ρ(gt+1)ρ(gt)h(ot) = h(ot+2) . (10)

Indeed, assuming otherwise, there would exist a value (wt, gt, wt+1, gt+1, wt+2) where this is not satisfied. By continuity

of h, ρ and the norm, there would exist a neighborhood U such that for all (w′
t, g

′
t, w

′
t+1, g

′
t+1, w

′
t+2) ∈ U either

∥ρ(gt)h(ot)− h(ot+1)∥
2 > 0

or

∥ρ(g′t+1)ρ(g
′
t)h(o

′
t)− h(o′t+2)∥

2 > 0 .

and since the distribution has strictly positive density, integrating norms over the neighborhood would lead to a strictly

positive loss and thus to a contradiction.

Let us prove ρ is a group representation, meaning it verifies ρ(g2g1) = ρ(g2)ρ(g1), ∀g1, g2 ∈ G.

Let g1, g2, g3 ∈ G such that g3 = g2g1.

Let w1 in the support Si, then by assumption w2, w3 which verify w2 = g1 ·W w1, w3 = g2 ·W w2 = g3 ·W w1 also belong

to Si and we have the following commutative diagram for the associated observed transitions.

Consider then any 2-step transitions (ot, gt, ot+1, gt+1, ot+2) and (o′t, g
′
t, o

′
t+1, g

′
t+1, o

′
t+2) such that:











ot = o′t = o1

ot+1 = o2

ot+2 = o′t+1 = o3
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and










gt = g1

gt+1 = g2

g′t = g3 = g2g1 .

Those belong to the support of the sample path distribution by assumption, such that, using (10), L2
pred = 0 implies:

ρ(gt+1)ρ(gt)h(ot) = h(ot+2) therefore ρ(g2)ρ(g1)h(o1) = h(o3). Moreover, using (9) ρ(g′t)h(o
′
t) = h(o′t+1) therefore

ρ(g3)h(o1) = h(o3).

Therefore we have ρ(g2)ρ(g1)h(o1) = ρ(g3)h(o1) or ρ(g2)ρ(g1)h(o1) = ρ(g2g1)h(o1)

Let us define V = span(h ◦ b(Si)). As the above equality is verified for any o1 in the image of the support of µi by b we

get by linearity that ρ(g2)ρ(g1)z = ρ(g2g1)z for all z ∈ V (equality of linear mappings over vectors that span a vector

subspace).

Moreover, V is stable by ρ. Indeed, consider one element z ∈ V and g ∈ G, then z =
∑

k h ◦ b(wk), with all wk ∈ Si. As

a consequence, they satisfy (using (9))

ρ(g)h ◦ b(wk) = h ◦ b(g ·W wk) ∈ h ◦ b(Si) ,

for all k, by assumed G-stability of Si. As a consequence

ρ(g)z =
∑

k

ρ(g)h ◦ b(wk) ∈ span(h ◦ b(Si)) = V ,

Therefore the restriction of ρV of ρ to V satisfies ρV (g1g2) = ρV (g1)ρV (g2) and is a group representation of G.

The injectivity assumption ensures h(O) does not collapse to a single element.

Let us show h is a group-structured representation.

By (9), we have for every observed transition (wt, gt) (i.e. wt taking any value in Si and gt taking any value in G)

h(ot+1) = ρ(gt)h(ot)

where ot = b(wt) and ot+1 = b(wt+1), by the generative model assumptions. Then

ot+1 = b(wt+1) = b(gt ·W wt)

such that

h ◦ b(gt ·W wt) = ρ(gt)h ◦ b(wt) .

Remarks. We provide some justification for the assumption on the distribution of the observed sample paths for steps

t, ..., t+ 2 exploited in the formal version of Proposition 1. Taking a G-invariant support Si associated to the distribution of

states at time t ensures that the same states are visited at t and subsequent steps. This can be typically achieved by choosing a

time t such that the transition form initial states w1 have reached all points of the orbits of this state such those are associated

with a positive density. Conditions to achieve this with specific choice of transition probability can be studied with the

framework of Markov chains on general spaces, and relate to the concept of “mixing”. The restriction to have W with a

manifold structure addresses the case of uncountable infinite world states, while maintaining enough structure to be able to

define probability densities. Implicitly, the restricts the result to those manifold where the Lebesgue measure can be defined,

which covers the broad case of oriented Riemannian manifolds. Another version of our result is easily obtained in the

simpler case of a countable set of world states. For simplicity, we also assume a positive density for transitions gt and gt+1

with respect to the Haar measure. This allows us to prove our result by only focusing on 2-step transitions. However, this

may be considered a strong assumption when comparing to practical settings were group elements for each transitions may

not be selected from the whole group. For example, for connected Lie groups, it may be more natural to consider transition

picked from a neighborhood of the identity (e.g. rotation with a maximal angle), which limit the amount of changes from

one state to the next. We believe it is possible to generalize our result to such setting by exploiting a broader range of time
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points of the observed sequences, although this would require more technical assumptions and proof developments. Finally,

the resulting restriction of the representation to subspace V essentially reflects the boundaries of the explored state space,

restricted to Si.

We now provide some more additional theoretical results related to the HAE structure and learning objective.

Proposition 2. Under generative model of Section 2.1 with b diffeomorphic onto its image and Assumption 1, with smooth

smooth positive manifold density µ on W . Consider a setting where the distribution of observations (o1, g1, ..., on) is

generated according to Section 2.1, such that there exists t ∈ {1, . . . , n−1} for which the corresponding world state-actions

joint distribution (wt, gt, gt+1) has a density p with respect to µ× µG × µG, where µH is the Haar probability measure of

G (i.e. the unique probability measure invariant by the action of any group element), and such that the support of p takes

the form supp(p) = Si ×G×G where Si is a G invariant set of initial states. Assume we have access to the ground truth

representation ρ∗. If h minimizes the expectation of L1
pred(ρ

∗, h) then h is a symmetry-based representation, meaning h ◦ b
is equivariant.

Proof. Under Assumption 1, the true state space W is acted upon by G through its representation (ρ∗,W ∗). As such

the inverse of the generating process composed with the injective mapping m of the assumption m ◦ b−1 and ρ∗ verify

L1
pred(ρ

∗,m ◦ b−1) = 0.

As a consequence, h also achieves zero expected loss such that, following the same reasoning as the one leading to (9) in the

proof of Proposition 1 for all ot = b(wt) with wt ∈ Si

h(ot+1) = ρ∗(gt)h(ot) .

by the generative model assumptions

ot+1 = b(wt+1) = b(ρ∗(gt)wt) .

Also ot = b(wt) such that

h ◦ b(ρ∗(gt)wt) = ρ∗(gt)h ◦ b(wt) .

Proposition 2 is clearly weaker than Proposition 1 notably in the sense that it requires assuming the knowledge of ρ∗. This is

due to the limitation of the 1-step prediction loss.

The next proposition further illustrates that non-injectivity of h may yield unstructured (trivial) representations when learning

based on the prediction loss.

Proposition 3. The trivial group representation ρ = I (that always maps to the identity matrix) combined with a constant h
is a zero of the prediction loss L1

pred(ρ, h).

Proof (sketch). Choosing constant mappings h(o) = C and ρg = 1 for all (o, g) trivially leads to a vanishing prediction

loss.

The next proposition shows that this injectivity can be enforced using the reconstruction loss.

Proposition 4. Consider the setting of Proposition 1. Assume the encoder h and the decoder d are continuous and minimize

L0
rec(ρ, h, d) then h is injective.

Proof. Assume the encoder h and the decoder d are continuous and minimize the 0-step reconstruction. Then the loss must

be zero as choosing the left inverse b−1 as encoder (and b as decoder) achieves such loss value.

∀o, o′ ∈ O, such that o ̸= o′.

Then by continuity of d and h
d(h(o)) = o and d(h(o′)) = o′ ,

as otherwise the expected loss would be stricly positive (similarly as the reasoning in Proposition 1). Therefore

d(h(o)) ̸= d(h(o′)),
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Figure 12. Left: Non allowed non-zero regions induced by each value of the index i on a representation of dimension 5. Right: an example

pattern resulting from the activations of the terms corresponding to i ∈ {1, 3}.

which implies

h(o) ̸= h(o′) .

Therefore h is injective.

B.2. Disentanglement through Sparsity Loss

To drop the assumption of prior knowledge of the number of subgroups in the representation as well as the dimension for

their representation, we propose a sparsity loss (Equation 6) on the group representation that prefers block-diagonal patterns

(Example in Figure 12) by minimizing the terms of (ρij(gt))ij that do not belong to allowed non-zero terms. The loss is

inspired from works on sparsity inducing losses (Bach et al., 2011).

Lsparse(ρ) =
∑

t

∑

i≥0

√

∑

j≥i+1, k≤i

ρkj(gt)2 + ρjk(gt)2 .

The model is then trained on the composite loss:

L = Lrec + γ ∗ Lpred + δ ∗ Lsparse

We can then choose a representation space Z = R
d with d large enough to accommodate the total dimension of the group

representation, extra dimensions are then trivialized by Lsparse.

Figure 12 shows how the term associated with each value of i induces a direct sum of 2 subrepresentations ρ = ρ1 ⊕ ρ2
with a different split of the total representation dimension. Combining patterns produces any possible decomposition into a

direct sum of subrepresentations.

C. Experiment: Learning representations structured by G = SO(2)× ...× SO(2)

C.1. Setup

We consider a subset of the dsprites dataset (Matthey et al., 2017) where a fixed scale and orientation heart is acted on by the

group of 2D cyclic translations G = Cx × Cy . G is a discrete subgroup of SO(2)× SO(2). The corresponding transition

dataset contains tuples (o1, g1, o2, ..., gN−1, oN ), where the observations oi are 64× 64 pixels and the transitions are given

by ϕ(g) where g = (gx, gy) ∈ G represents the angular displacement and ϕ is a two layer multi-layer perceptron, radomly

initialized and fixed throughout the experiment. ϕ(g) is a 50-dimensional vector of non-linear mixture of gx and gy . Details

for ϕ are summarized in Table 1.

Table 1. ϕ architecture.

Parameter Value

Linear Layers [200, 50]

Activation ReLU

Random Seed 10
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C.2. Learning a disentangled representation

C.2.1. HYPERPARAMETERS

Model architecture We use a symmetrical architecture for the encoder and decoder, which we summarize in Table 2. The

network was trained on the combined loss:

L = L2
rec(ρ, h, d) + γL2

pred(ρ, h) + δLsparse(ρ)

Where we use the Binary Cross Entropy loss for the reconstruction term instead of the Mean Squared Error as it is better

behaved during training.

Table 2. Network architecture.
Parameter Value

Conv. Channels [32, 32, 32, 32]

Kernel Sizes [6, 4, 4, 4]

Strides [2, 2, 1, 1]

Linear Layer Size 1024

Activation ReLU

Latent space 4

γ 400

ρ dimension 8

ρ Linear Layers [1024]

ρ activation ReLU

δ 0.1

Training hyperparameters We trained the network using the hyperparameters summarized in Table 3.

Table 3. Training hyperparameters.

Parameter Value

Optimizer Adam

Learning rate 0.001

Number of training sequences 10000

Batch size 500

Epochs 101

C.2.2. VISUALIZATION

We obtained manifold Figures 3 and 6 by projecting the D-dimensional representation vectors of all images in the dataset on

a random 2D plane through Random Matrix Projection. We chose the projection with the most explainable visualization.

C.2.3. REPRESENTATION OF A NEIGHBOURHOOD OF IDENTITY

Figure 13 displays ρ over a wider neighbourhood of the identity.

C.2.4. LATENT TRAVERSAL

We show how learning a mapping to the group algebra can be leveraged to navigate the group and the data manifold. We

remind that ρ = exp ◦φ, where φ maps to the algebra g of the group G, and exp is the matrix exponential which gives a

connection between the algebra and the lie group.

The mapping φ and the group representation ρ are constrained to be block diagonal matrices either through the strong

constraint as seen in Section 5.1 or the soft constraint which uses a sparsity loss on ρ described in Section 5.2. We consider

the soft constraints case where no assumptions are made about the size of the matrices. And we use the model trained
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Figure 13. The representations of actions (horizontal and vertical displacements) in a square J−2, 2K× J−2, 2K around the identity for the

dSprites experiment show a homomorphism structure.

as in Section 6.1. Our matrices φ(g), ρ(g) are of dimension 8. However, we know that we overparametrized our group

representation so we use PCA over the Algebra representation of a batch of transition signals φ(g) and find two principal

components A1 and A2 that are matrices equal to zero except for two 2D skew symmetric blocks.

We obtain the figure 4 by linearly traversing the algebra along its base vectors through tA1 and tA2 for equally spaced

values of t ∈ J0, 10K and passing it to the matrix exponential which yields invertible matrices of the form Ri,t = etAi . We

encode an arbitrary initial observation to obtain its representation vector z, and traverse the latent space through Ri,tz. We

decode the obtained vectors to obtain the predicted images.

The group algebra offers a smooth parametrization of the group and consequently of the data manifold and enables the

prediction of observations evolution in the absence of performed actions. Indeed, in the above example, all transformations

can be obtained in the form exp(t1A1 + t2A2) for t1, t2 ∈ R. In addition, this parametrization allows us to obtain actions

from the whole group, beyond the discretization considered and the limitation of the range of actions.

C.2.5. SPARSITY BASED DISENTANGLEMENT

We show in Figure 12 the learned group representation for the same dataset used in the experiment described in Appendix C.1

where instead of enforcing a block diagonal structure, it emerges under the influence of the sparsity inducing loss described

in Appendix B.2. We do not assume knowledge of the representation dimension and we set it to a value high enough (8 in

the example) and we find the HAE learns the disentangled representation found in the main experiment and trivializes the

extra dimensions.

C.2.6. ADDITIONAL EXPERIMENT

We consider a subset of the dataset consisting of all variations of the heart under a fixed scale. As such the heart is acted on

by the group G = Gθ ×Gx ×Gy = C39 ×C32 ×C32. We train a similar model to the one described in the section C.2.1 by

changing the latent space to 6 dimensions, the group representation is fixed of the form ρ = ρ1 ⊕ ρ2 ⊕ ρ3 each of dimension

2. We expect a disentangled representation space Z = Z1 ⊕ Z2 ⊕ Z3. For the visualization of the learned representation

manifold Figure 14, we visualize each subspace Zi separately by only varying one generative factor and keeping all else

fixed. We also visualized the learned representations for a subset of transitions corresponding to the elementary generative
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transitions for each subgroup in Figure 15.
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Figure 14. Visualization of the 6D embedding vectors for the heart dataset. For each visualized 2D subspace, we only vary the latent

represented by the subspace.

C.3. Rollouts prediction

We adapt the setting of multi-step prediction as in (Quessard et al., 2020), where agents can perform multiple simple actions

to the object. In our experiment, we allow the agent to control the object in the dSprite dataset with 7 actions. Namely,

translation in the x-y axes, rotation in both directions (clockwise, counter-clockwise), and idle. Each action corresponds to

an increment/decrement in one of the generating factors of the dataset, except for idle, which does nothing. Additionally, we

use the heart shape from the dataset to fully utilize the orientation latent factor.

We train each method with a set of pre-generated set of 2-step trajectories and evaluate on a hold-out pre-generated set of

128-step trajectories. For each trajectory, we begin by sampling a random initial state (x,y position and orientation) from all

possible states. After that, we sample actions uniformly from the 7 possible actions at each step until the number of steps is

satisfied.

For the Rotations method (Quessard et al., 2020) and HAE, each action is represented using a matrix ρ(g), and the transition

in the latent space is simply zt+1 = ρ(gt)zt. For the Unstructured method, we use a 2 layer MLP of size [128, 128] to model

the transition by zt+1 = fθ(zt, gt), where we concatenate the latent vector zt and the one-hot encoding of the action at.

The reconstruction loss is the same for all three methods, as described in Section 4. For HAE, we additionally add the latent

prediction loss Lpred as described in Section 4. We increase γ to 1600 which we found to be more stable when matrices are

directly parameterized instead of mapped from MLPs. For the Rotations method, an additional entanglement loss Lent is

required to encourage each matrix to act on the fewest dimensions of the latent space, which is equal to

Lent =
∑

g

∑

(i,j) ̸=(α,β)

|θgi,j |
2 with θgα,β = max

i,j
|θgi,j |.

For the Unstructured method, we only use the reconstruction loss and no additional terms.

Aside from the action sampling scheme described above, we also perform another rollout experiment using the sampling

strategy described in Section 6.3 where actions were sampled around the identity uniformly. We use ϕ = id. For simplicity,

we reduce the range of the actions from J−10, 10K to J−3, 3K, also, we only consider x-y translation in this additional

experiment. The training process is the same as described above, where we train and test on offline pre-generated datasets of

2-step and 128-step trajectories.
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Figure 15. Evaluation of the learned group representation for the heart dataset. The identity (upper left) and generative transitions of each

subgroup yields disentangled block rotation matrices.

C.4. Multi-objects

We use a similar dataset to the one described in section C except that we use all three shapes: Heart, Ellipse and Square.

Because we are considering the action of the same group, observation sequences that start with a given shape have the

same shape throughout at different positions. We use a HAE model with a representation of dimension 8, trained for

disentanglement using the soft block sparsity regularization described in section 5.2. The model learns representations of

the observations that span 5 dimensions visualized in Figure 6, where 4 representation units contain information about pose

with regard to the translation group, while the remaining 4 dimensions encode shape along a single principal component.

The associated learned group representation ρ can be visualized for a neighbourhood of the identity in Figure 17.

D. Experiment: Learning representations structured by G = SO(3)× SO(2)

D.1. Data generation

To generate the transitions dataset (ot, gt, ot+1, gt+1, ot+2)t, we apply small relative rotations to the vertices of the bunny.obj

and render it with 20 colors equally spaced from the color hue wheel. The interaction gt decomposes into the relative rotation

angles (Roll, Pitch, Yaw) and the color shift on the color wheel. The rotations are sampled from a continuous uniform

distribution centered around the identity and maximum angles of 0.5rad, the color shifts are simultaneously sampled from a

discrete uniform distribution centered around 0 and with a maximum color shift of 3. The dataset we used contains 300K
such interaction sequences.

D.2. Hyperparameters

Model architecture We use a symmetrical architecture for the encoder and the decoder, summarized in Table 4. The

network was trained on the combined loss:

L = L2
rec(ρ, h) + γL2

pred(ρ, h)

We use the Binary Cross Entropy loss for the reconstruction term instead of the Mean Squared Error.
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Figure 16. Step-wise reconstruction loss for the SO(2)× SO(2)× SO(2) experiment. Lines and shadings represent the mean and one

standard error over 15 seeds.

Table 4. Network architecture.
Parameter Value

Conv. Channels [64, 64, 64, 64]

Kernel Sizes [6, 4, 4, 4]

Strides [2, 2, 1, 1]

Linear Layer Size 1024

Activation ReLU

Latent space 11

γ 200

Group representation dimensions [2,3,3,3]

Training hyperparameters We trained the network using the hyperparameters summarized in Table 5.

Table 5. Training hyperparameters.

Parameter Value

Optimizer Adam

Learning rate 0.0005

Number of training sequences 300000

Batch size 300

Epochs 501

Iterations per epoch 600

D.3. Rollouts prediction

Similar to dSprites, we also test our method’s ability to predict longer rollouts than the 2−steps rollouts encountered during

training. For simplicity, we only consider the group G = SO(3) of rotations without color shifts. We use the same network

architecture described in Table 4. The training set consists of 300,000 2-step trajectories, while the test set consists of 200

128-step trajectories. We compare our method to the Unstructured method described in Section C.3.
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Figure 17. HAE trained on multiple dSprites shapes. Visualization of the group representation matrices ρ(ϕ(g)) for g in a square around

the identity. The representation of the identity transition g = 0 is found at the center of the grid and red arrows indicate the direction of

the latent transition signal g. ρ exhibits disentangled block diagonal structure and each non-trivial block shows the expected rotation

matrices predicted in Equation 2

.

E. Third-Party Software

E.1. Deep Learning Framework

To implement our architecture we used the deep learning framework PyTorch. (Paszke et al., 2019)

E.2. Hyperparameter Search

We used the hyperparameter search utility provided in the hypnettorch project https://github.com/chrhenning/

hypnettorch/tree/master/hypnettorch/hpsearch to perform a random grid search.

E.3. Dataset

In the presented experiments, we used the dSprites dataset (Matthey et al., 2017). The dSprites dataset is an image dataset of

white sprites on a black background, varying in shape (heart, ellipse, square), in scale (6 values), in orientation (39 values,

cyclic), in x and y position (32 values each). We consider all factors besides shape to be cyclic, in particular for the x and y
positions, we ”glued” opposite borders of images into a torus. The resolution of the images is 64× 64 pixels.

For the 3D rotation experiment, we used the Stanford bunny (Turk & Levoy, 1994), which was obtained from 3D scanning a

ceramic figurine of a rabbit. The 3D model consists of 35947 vertices and 69451 triangles, for a more detailed description,

please see http://graphics.stanford.edu/data/3Dscanrep/. The model is colored from 10 equally spaced

colors on the hue wheel. We render colored images of shape [3, 72, 72]. We act on the 3D model by applying small rotations

and small translations of its color on the hue wheel.
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F. Computational resources

The experiments were performed on an NVIDIA GeForce RTX 3090 and A100 GPUs, and training a model takes

approximately 20 mins for the dSprites dataset and 3− 5 hours for the 3D dataset.

G. Societal Impact

This work proposes new findings in basic research. To the best of our knowledge, this work does not have immediate

applications with a negative societal impact.
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