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Abstract

The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a

major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have

been devised. However, these usually require discrete task boundaries. This requirement seems biologically implausible and

often limits the application of CL methods in the real world where tasks are not always well defined. Here, we take inspiration

from neuroscience, where sparse, non-overlapping neuronal representations have been suggested to prevent catastrophic

forgetting. As in the brain, we argue that these sparse representations should be chosen on the basis of feed forward (stimulus-

specific) as well as top-down (context-specific) information. To implement such selective sparsity, we use a bio-plausible

form of hierarchical credit assignment known as Deep Feedback Control (DFC) and combine it with a winner-take-all sparsity

mechanism. In addition to sparsity, we introduce lateral recurrent connections within each layer to further protect previously

learned representations. We evaluate the new sparse-recurrent version of DFC on the split-MNIST computer vision benchmark

and show that only the combination of sparsity and intra-layer recurrent connections improves CL performance with respect

to standard backpropagation. Our method achieves similar performance to well-known CL methods, such as Elastic Weight

Consolidation and Synaptic Intelligence, without requiring information about task boundaries. Overall, we showcase the idea

of adopting computational principles from the brain to derive new, task-free learning algorithms for CL.

Keywords Continual learning · Bio-inspired · Sparsity · Feedback · Lateral inhibition · Activity regularization

1 Introduction

The mammalian brain has an astonishing ability to continu-

ally form new memories while preserving previous ones. In

contrast, artificial neural networks are prone to catastrophic

forgetting when trained on a sequence of tasks or datasets

(McCloskey and Cohen 1989). This is true even if the tasks

are very similar to each other and are likely to benefit from
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similar features. For example, learning to recognize differ-

ent pairs of hand-written digits in sequence is notoriously

difficult for artificial neural networks trained with backprop-

agation (Van de Ven and Tolias 2019).

For multi-layer artificial neural networks, a range of con-

tinual learning (CL) approaches have been devised that

include modifications to the network architecture, loss func-

tion, or the implicit or explicit storage of previous task data

(Van de Ven and Tolias 2019). Usually, these methods require

external information about a task switch. This is in stark con-

trast to natural environments, where tasks are usually not well

defined and need to be inferred from context.

To address the CL problem, brain-inspired approaches

have been developed (Kudithipudi et al. 2022; Parisi et al.

2019). For example, French (1991) pointed out that the

problem of catastrophic forgetting might not be intrinsic to

biological neural networks, but is rather an effect of dis-

tributed and overlapping task representations that emerge

when using the standard backpropagation (BP) algorithm.

In line with this idea, it has been suggested that biological
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networks might avoid catastrophic forgetting by representing

information through a sparse, but task-specific subset of neu-

rons and synapses to which learning is restricted (Lin et al.

2014; Manneschi et al. 2021; French 1991). Other approaches

relax the idea of restricting learning to sub-populations to the

more general notion of learning within restricted subspaces

(Duncker et al. 2020).

In this work, we exploit the idea of restricting learning to

task-specific, sparse representations with the goal to derive a

novel, bio-inspired task-free CL method. In line with the per-

vasive recurrence observed in the visual cortex (van Bergen

and Kriegeskorte 2020), we argue that a task-specific sparsity

mechanism should not only incorporate feedforward infor-

mation (bottom-up) coming from lower hierarchical layers

but also error feedback information coming from higher areas

(top-down). To render both forms of information usable for

such informed sparsity, we adopt Deep Feedback Control

(DFC), a bio-plausible deep learning framework in which

every neuron integrates inputs from the previous layer, as

well as top-down error feedback during learning (Meule-

mans et al. 2022). To enforce sparsity, we combine DFC with

a winner-take-all (WTA) mechanism and restrict learning of

the feedforward weights to active neurons. To stabilize and

protect previously learned representations, we further intro-

duce intra-layer recurrent weights that are updated through

a Hebbian-type learning rule. In the following, we term this

new, combined method sparse-recurrent DFC.

To explain the basics of our algorithm, we first present

related work in Sect. 2. Then, in Sect. 3, we provide imple-

mentation details on how we modified the DFC learning

dynamics to integrate the two major factors required for CL—

sparsity and intra-layer recurrent connections. In Sect. 4, we

show that the introduction of these additional bio-plausible

elements helps to stabilize learning and to reduce forgetting

by regularizing neural activity. We compare our approach

with other established regularization-based CL methods and

show that sparse-recurrent DFC performs comparably well

despite completely lacking information on task boundaries.

Finally, we analyse the resulting task representations in order

to better understand the mechanisms behind the observed

improvement in CL performance.

2 Background

2.1 Computational strategies for continual learning

To overcome catastrophic forgetting, researchers developed

a variety of different strategies that can roughly be classified

into three categories:

(1) Replay methods rely on implicitly or explicitly storing

and revisiting previous data while learning new tasks.

Fig. 1 a Schematic of the sparse-recurrent DFC network and its top-

down feedback controller. The ri (t) values denote neuron activation

vectors for layer i , whereas r∗
L represents the desired network output.

Learning is based on a dynamic process during which neurons inte-

grate feedforward and feedback signals until the network converges

to a sparse target representation minimizing the loss. Weight updates

(dashed lines) of forward weights Wi are restricted to neurons that are

active at convergence (red). Lateral recurrent weights Ri into inactive

neurons are updated via a Hebbian-like learning rule. The Qi values

denote feedback weights, and u(t) refers to the control signal. b Detailed

zoom into layer i showing one active (pink) and one suppressed (grey)

neuron. vff
i , vfb

i , and vi represent feedforward, feedback and combined

activity, respectively. The solid lines represent weights that will not be

changed, whereas dashed lines show weights which will be updated

This can be accomplished by storing small subsets of

previously seen data in a memory buffer, or by train-

ing a generative model (Shin et al. 2017). However, we

do not consider data replay in this work, since we are

interested in methods based on bio-plausible plasticity,

without relying on external data storage.

(2) Regularization methods constrain learning to preserve

parameters that are important for previous tasks, usu-

ally by adding specialized loss terms. Elastic Weight

Consolidation (EWC) and Synaptic Intelligence (SI) are

commonly used representatives of this family, which we

adopt as comparison benchmarks. In EWC (Kirkpatrick

et al. 2017), after the network converges on a task, the

Fisher information of the first task’s loss is computed

through a sampling mechanism. The Fisher term con-

tains information on parameter importance relative to the

first loss and is added as a regularization term to the loss

for the following task. Synaptic Intelligence (Zenke et al.

2017) works through a similar mechanism, but parameter

importance is estimated online based on how much of the

decrease in loss can be attributed to the variation of each

given parameter. In both cases, the regularization term is

added to the loss at the end of each task, and information

on task boundaries is therefore required.

(3) Architectural methods are based on structural changes

such as freezing weights, or adding and removing neu-

rons (Rusu et al. 2016). Alternatively, neurons can be

dynamically gated based on context (Masse et al. 2018;

von Oswald et al. 2020). Context, however, is usually
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externally provided rather than inferred by the network

itself, which is a strong assumption that may not always

hold for real-world scenarios. In another approach, a

dedicated system, inspired by the role of the prefrontal

cortex, is used to detect contextual information instead

(Zeng et al. 2019). In this work, we adopt a similar gating-

based approach, in which, conversely, gating is provided

by recurrent activity independently of external task infor-

mation.

2.2 Continual learning in the brain

Although CL in the brain is not well understood, it is likely

that various mechanisms are at play simultaneously, with

some being loosely connected to the three CL strategies

described above (Kudithipudi et al. 2022).

In neuroscience, the trade-off between fast learning and

slow forgetting is known as the stability-plasticity dilemma.

To avoid this issue, the interaction between a more plastic

system, the hippocampus, and a more stable system, the neo-

cortex, has been suggested as a long-term memory storage

mechanism, akin to a data replay strategy (van de Ven et al.

2020). On the other hand, biological networks might control

the stability/plasticity of individual synapses through mech-

anisms collectively referred to as metaplasticity. Through

metaplasticity, synapses that are particularly important for

solving previously learned tasks are left unaltered when

learning new tasks, while less relevant synapses are made

available to store new information, analogously to certain

regularization-based approaches in CL (Jedlicka et al. 2022).

Next, neurogenesis, the birth of new neurons, is sometimes

considered equivalent to architectural approaches that grad-

ually grow the network. However, neurogenesis is believed

to be limited to very specific brain areas, with small numbers

of new neurons, and it is unclear whether it occurs in adult

humans. It is therefore contested whether neurogenesis plays

a role in CL (Parisi et al. 2018).

Finally, animal brains heavily rely on context to flexibly

switch between tasks and to direct learning to task-specific

neurons and synapses. For example, previous studies have

shown that afferents of the olfactory nucleus in rats provide

contextual input from other brain areas, thereby enabling

dynamic and flexible task learning (Levinson et al. 2020).

This not only enables context-specific gating of neuronal

responses to the same stimulus for different environments or

tasks but it also facilitates forward-generalization. Similarly,

the release of specific neuromodulators (e.g. dopamine) has

been linked to the gating of activity and to learning based on

context (Kudithipudi et al. 2022). Overall, it is likely that in

biological networks the modulation of neuronal activities,

either through hierarchical top-down feedback or specific

neuromodulators, directs learning to the most salient aspects

of the task, while protecting older memories that are irrele-

vant in the current context.

2.3 Task-free continual learning

Van de Ven and Tolias (2019) defined three CL scenarios

for which training is organized sequentially on each task and

performance is evaluated as the average accuracy on all pre-

viously learned tasks:

(1) in task-incremental learning (task-IL), the task ID is

available during training and at test time;

(2) in domain-IL, the task ID is available during training but

not at test time;

(3) in class-IL, the task ID is available during training, but

at test time the model must report the task ID alongside

solving the task.

In all these scenarios, however, information on task bound-

aries is provided during training, i.e. the model knows when

training on one task i ends and training on a new task i + 1

begins. Most CL strategies need this information to update

the loss or the network structure in preparation for the new

task. However, such discrete changes in the loss or network

structure do not seem biologically plausible. Therefore, in

this paper, we focus on domain-IL, and on the more chal-

lenging class-IL, but in a setting where task information is

entirely omitted during both training testing.

This so-called task-free form of continual learning is gen-

erally less studied, although a few examples have appeared

in recent years. The majority of these follow a data storage

and replay paradigm (Aljundi et al. 2019b; Wang et al. 2022;

Rao et al. 2019), which we do not consider in this work.

Lee et al. (2020) adopt an architectural approach, based on

an expanding set of experts which, in turn, deal with new

tasks. Among regularization-based methods, Laborieux et al.

(2021) propose a metaplasticity-inspired mechanism, but so

far limited to feedforward, binary networks. Aljundi et al.

(2019a) circumvent the problem of task boundaries by heuris-

tically detecting plateaus in the evolution of the loss, which

signal the end of learning for a task, and use a mixed replay

and regularization strategy. Finally, Pourcel et al. (2022) mix

an architectural method with replay using a dynamic content-

addressable memory for online class-IL.

To clarify how our method fits into this landscape of

brain-inspired algorithms, we next provide details on our

CL approach, which combines DFC, sparsity, and recurrent

Hebbian-like connections.
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3 Activity regularization through sparsity
and recurrent gating

3.1 Deep feedback control

During training, the neuronal dynamics within the DFC

network (Meulemans et al. 2022) can be described by a differ-

ential equation that takes into account the feedforward inputs

vff
i as well as the feedback control signal vfb

i according to

τv v̇i (t) = −vi (t) + vff
i (t) + vfb

i (t)

= −vi (t) + Wiφ
(

vi−1(t)
)

+ Qi u(t)
(1)

where the pre-nonlinearity neuron activations in layer i at

time t are denoted by vi (t), and the incoming weights by

Wi . φ refers to the activation function, while the neuron out-

put is given by ri = φ(vi (t)). The feedback signal u(t) is

calculated by summing the integral and proportional parts

of the network output error e(t) as described by Meulemans

et al. (2022). u(t) is then fed back to each neuron of the

network via the feedback weights Qi . During learning, the

feedforward network and the feedback controller constitute

a recurrent dynamical system that converges to a stable state

(ss) at which the neuron activity vi,ss minimizes the output

error and stabilizes the feedback signal u(t). In practice, we

simulate the dynamics for a set number of iterations and uti-

lize the final activations as stable state values. The number

of iterations is chosen to be high enough such that most sim-

ulations converge.

The final neuron activations ri,ss = φ(vi,ss) are referred

to as ‘targets’ or ‘target activations’ since they represent the

values we want the network to produce without feedback. To

achieve this, the forward weights are learned by comparing

each neuron’s target activation ri,ss to its feedforward-driven

activation φ(vff
i,ss) upon converging to the stable state:

�Wi = η(ri,ss − φ(vff
i,ss))r

T
i−1,ss (2)

where ri−1,ss is the presynaptic, post-nonlinearity activity

with controller feedback, ri,ss is the activity of the neuron

with feedback and φ(vff
i,ss) is the postsynaptic neuron activity

without feedback. In sparse-recurrent DFC, we additionally

centre each weight update to have zero mean before applying

it. This is done in order to prevent a small group of neu-

rons to be more excitable and dominate the winner-take-all

mechanism described in the next subsection. The feedback

weights Qi can be learned (Meulemans et al. 2021, 2022),

but we simplify the learning of the feedback pathway and

re-initialize Qi as the Jacobian of the loss with respect to the

neuron activations for every data point.

The update rule from Eq. 2 implements a learning paradigm

where weight updates are determined by neural activity. This

opens the possibility of regularizing weight updates indi-

rectly by modulating neural activity. We will refer to this

strategy as activity regularization. In the next sections, we

describe how activity regularization (e.g. sparsity and recur-

rent gating) can be utilized to reduce interfering weight

updates between representations of different inputs belong-

ing to different tasks.

3.2 Dynamic sparsity

To gradually modulate the network activations towards

sparse, non-overlapping representations, we add a winner-

take-all mechanism on top of the existing DFC network. At

each time step t , we set a fraction si (t) of neurons to be zero.

si (t) is initialized to zero at t = 0 and incrementally grows

over time until it reaches the desired sparsity for the stable

state si,ss, which is a hyperparameter fixed for each layer i .

We refer to these hyperparameters as sparsity levels. As long

as different inputs to the network lead to sufficiently different

activation profiles, this technique should lead to a reduction

in overlap between active populations pertaining to different

data points. As a result, interference during learning should

be reduced by only updating the weights of active popula-

tions.

However, the network cannot learn to suppress specific

neurons because forward connections to inactivated neurons

are frozen. This is an issue because, while we aim to decrease

overlap between representations of different classes, inputs

belonging to the same class should be represented similarly.

WTA sparsity based on feedforward and feedback activity

alone does not ensure this. Our intuition is that, if neurons

keep dropping in and out of active populations during train-

ing, no consistent representations can be learned, leading to

forgetting. To address this problem, we introduce an addi-

tional set of connections with the aim of learning which

neurons are allowed to fire together, and which neurons are

mutually exclusive. This way, we provide a way for the net-

work to stabilize and protect the neuron populations that

together constitute specific representations.

3.3 Gating neuron activity through lateral recurrent
connections

We stabilize neuron populations involved in learned rep-

resentations by introducing lateral recurrent connections.

Because we want to strongly influence which neurons are

active, we implement lateral connections with a gating effect

that multiplies activations by a factor between 0 and 1, similar

to ‘forget’ gates used in LSTMs (Hochreiter and Schmidhu-

ber 1997). We then calculate the neuron feedforward activity

before the nonlinearity as

vff
i (t) = Wiφ (vi−1(t)) ⊙ σ (Ri |ri (t)|) (3)

123



Biological Cybernetics (2023) 117:345–361 349

where Ri refers to the recurrent weight matrix in the i-th

layer, σ to the sigmoid function, and φ to the same activa-

tion function as used in Eq. 1. After applying the effect of

the recurrent gating, we re-scale the population activity to

have the same overall magnitude as before applying the gat-

ing. We thus only change the distribution, but not the total

level of activity. At convergence, we learn the recurrent gat-

ing weights according to a rule inspired by the feedforward

updates from Eq. 2

�Ri = η(|ri,ss| − |φ(vff
i,ss)|)|ri,ss|

T (4)

where ri,ss are the target activations of the presynaptic neu-

rons in the same layer. Because our multiplicative gating

mechanism affects the magnitude, but not the sign of the

activity, we render this inhibition to depend on the magni-

tude of presynaptic activity. We therefore use absolute values

of activity in both the dynamics (Eq. 3) and the update rule

(Eq. 4). Like forward weight updates, we normalize recurrent

weight updates to zero mean. In contrast to the feedforward

weights, however, we only update incoming weights of inac-

tivated neurons (i.e. neurons with activity set to zero by the

winner-take-all sparsity mechanism). This lets us simplify

the above equation to a Hebbian-like update rule for sup-

pressed neurons:

�Ri = −η|φ(vff
i,ss)||ri,ss|

T . (5)

As a result, we only update incoming recurrent weights

for inactive neurons within the target representation, while

for active neurons, we only update the incoming feedfor-

ward weights. Figure 1 (dashed lines) summarizes the weight

updates. As in standard DFC, we use a simple feedforward

pass during test time, for which neither top-down feedback

nor lateral recurrent effects are taken into account. Therefore,

the number of parameters of the trained model is equivalent

to a conventional feedforward network with the same num-

ber of neurons (see “Appendix A.3” for a further discussion

on model complexity).

Please note that gating through lateral connections, while

crucially influencing the WTA selection of the active neuron

population by modulating neuron activity, does not determine

the level of sparsity. WTA sparsity and lateral connections

are interconnected, but distinct mechanisms.

4 Experiments

To test the CL capabilities of our approach, we train sparse-

recurrent DFC on the split-MNIST dataset, according to the

domain-IL and class-IL paradigms (Van de Ven and Tolias

2019). Split-MNIST is a simple computer vision CL bench-

mark in which five pairs of consecutive digits are presented

as a sequence of individual supervised learning tasks. In

domain-IL, all tasks involve predicting the parity (even/odd)

of the input digit, meaning that the output labels stay the

same across tasks, but the input data changes. In class-IL,

a different class has to be predicted for every digit, so that,

across tasks, both the input digits and the class labels change.

4.1 Performance

To establish whether sparse-recurrent DFC actually succeeds

at CL, we compare its performance against other learn-

ing algorithms, namely Synaptic Intelligence (SI), Elastic

Weight Consolidation (EWC), as well as standard BP as base-

line. Previous studies evaluated models at a fixed learning

rate (LR) for a fixed number of epochs (Kirkpatrick et al.

2017; Van de Ven and Tolias 2019), however, we consider

this problematic. Both the LR and the number of epochs can

be seen as indicators for how much a network learns, thus

pointing to an inherent trade-off between learning the cur-

rent task well and forgetting previous tasks. Less learning

generally leads to less forgetting, while at the same time not

allowing the training to converge on the current task. Com-

paring CL algorithms at a single LR for a fixed number of

training samples is problematic for two reasons. First, it does

not account for different (model-specific) optimal amounts of

training. Second, it fails to capture how robust a CL approach

is to more learning, beyond its optimum LR and number of

training samples per task. To overcome this issue, we evalu-

ate learning algorithms in two different scenarios. In the first

scenario we fix the number of epochs and vary the LR. In the

second scenario we fix the LR and vary the training accuracy

that we expect on the current task, before training on the next

task, which results in different numbers of batches trained on

for different models on different tasks. In both scenarios, we

cover a wide spectrum between minimizing forgetting, and

optimizing the current task.

4.1.1 Learning rate performance evaluation

Figure 2a and 2b shows performance for a fixed number of

training samples across a range of LRs for domain-IL and

class-IL, respectively. The initial rise of performance fol-

lowed by a decay can be explained by the fact that very small

LRs (left of the peak) generally prevent sufficient learning

while high LRs (right of peak) lead to catastrophic forgetting.

These CL performance profiles confirm our initial intuition

that choosing a single LR to compare CL methods might lead

to overestimating one method over another. We regard good

performance in this setting as a function of both peak accu-

racy and the degree to which accuracy can be maintained once

the optimal LR is reached. In domain-IL, sparse-recurrent

DFC significantly outperforms BP and achieves a similar

performance profile to EWC. Compared to SI, our approach
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Fig. 2 Performance evaluation of split-MNIST for BP, EWC, SI,

and DFC-sparse-rec for domain-IL (left column) and class-IL (right

column). Error bars represent standard deviations using five random

seeds. a Split-MNIST accuracy at the end of training in the domain-IL

paradigm on the whole test set (all digits) for a range of learning rates

(LRs). The number of training iterations is fixed at four epochs. Stars

indicate average performance on an accuracy-maximizing window of

six LRs. b Accuracy of models at the end of training in the class-IL

paradigm on the whole test set for every LR. Stars indicate average

performance on an accuracy-maximizing window of six LRs. c Accu-

racy of models at the end of training in the domain-IL paradigm on the

whole test set for a range of minimum early stop accuracies. The LR

is fixed, and training is stopped at every task once the train accuracy

for the current batch reaches the given minimum accuracy value. The

maximal number of epochs trained for is 10. d Accuracy of models at

end of training in the class-IL paradigm on the whole test set for a range

of minimum early stop accuracies

performs worse in terms of peak accuracy, but maintains

accuracy over 70% for a wider range of LRs. In class-IL,

sparse-recurrent DFC outperforms all other methods both in

peak accuracy and average accuracy.

4.1.2 Early stop performance evaluation

Figures 2c and 2d show performance for a fixed LR across a

range of early stop accuracies for domain-IL and class-IL,

respectively. In domain-IL, sparse-recurrent DFC outper-

forms BP for almost all minimum accuracies. However, it is

most competitive when we train each task to convergence. For

training up to very high accuracies, sparse-recurrent DFC is

comparable to both EWC and SI. In class-IL sparse-recurrent

DFC outperforms all other CL algorithms for the majority of

accuracies.

Overall, we conclude that sparse-recurrent DFC repre-

sents a competitive CL method that shows a robust per-

formance independent of the amount of learning on each

individual task. In the next section, we investigate in more

detail the effects on accuracy with respect to the main com-

ponents of our method: feedback, sparsity and intra-layer

recurrency.

4.2 Integrating feedback signals facilitates CL

A major difference between standard BP and DFC is that in

DFC, the activity of each neuron during training reflects feed-

forward as well as feedback (error) signals coming from the

top-down controller. As a result, target representations ri,ss

are specific to both input and output, with data points exhibit-

ing larger overlaps in active neuron populations if these have

similar features or the same label. Figure 3a shows that CL

performance is improved across a wide range of LRs if we

take into account feedback signals when selecting the remain-

ing active population within the sparse target. Although the

combination of equal parts feedforward and feedback activ-

ity yields the best results overall, feedback activity alone

achieves high accuracy for L R = 1e − 3.5. We hypothesize

that low LRs lead to less training of forward weights, render-

ing input selectivity less useful. Thus, it may be beneficial for

the network to rely solely on feedback when determining the
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active population. This is consistent with our idea that incor-

porating feedback signals generally facilitates the sparsity

selection process, allowing the learning of more task-specific

representations.

4.3 Sparsity and recurrent gating are required for CL

We next investigate whether both sparsity and intra-layer

recurrence in the DFC framework are crucial for CL. We

compare the accuracy of sparse-recurrent DFC against stan-

dard DFC, sparse DFC and recurrent DFC. As opposed to

sparse-recurrent DFC, recurrent DFC has no inactivated neu-

rons to constrain the recurrent weight updates to. We thus

apply the recurrent weight update rule from Eq. 4 to all neu-

rons. Figure 3b shows that neither sparsity nor recurrent

gating alone significantly alters CL performance across LRs.

However, the combination of the two leads to better perfor-

mance across a wide range of LRs.

Figure 3c shows accuracy as a function of the sparsity

parameters si,ss. For the first hidden layer, a small but nonzero

sparsity level yields the best performance, while for the

second hidden layer, higher sparsity levels work best. This

dependence on layer depth is expected, because the early lay-

ers of multi-layer neural networks encode low-level features

common to multiple classes and class-selectivity is a disad-

vantage for these neurons (Morcos et al. 2018), while the later

layers encode higher-level features which are more specific

to individual classes (Zeiler and Fergus 2014; Mahendran

and Vedaldi 2016).

4.4 Aligning sparse, separated representations
across tasks facilitates domain-IL

Next, we test whether the combination of sparsity and

recurrent gating facilitates CL by reducing representational

overlap, in a domain-IL setting. We compute the reduction

in overlap (i.e. separation) between last hidden layer rep-

resentations of all pairs of digits, at the end of training.

We distinguish between intra-label separation (MNIST digits

with the same parity label) and inter-label separation (digits

with different parity labels), as shown in Fig. 3f. We compute

representational separation between digits as

s(d1, d2) = 1 −
a

d1

l · a
d2

l

‖a
d1

l ‖‖a
d2

l ‖
; ad

l =

n
∑

j=1

|rd
l, j | (6)

where rd
l, j represents the activations in layer l elicited by the

j’th sample of digit d. Figure 3d shows the averages of inter-

and intra-label representational separations for DFC variants.

Interestingly, sparse DFC shows high representational sep-

aration, but does not yield significantly higher accuracies

compared to standard DFC or BP. This suggests that overall

increases in representational separation alone do not account

for performance improvements that we observe in Fig. 3b.

To better understand this result, we next devise a new

measure of separation, which we term normalized inter-

label separation and that is defined as the average difference

between inter-label separation and intra-label separation.

Figure 3e shows this separation metric over a wide range of

LRs. For the LRs where sparse-recurrent DFC yields higher

normalized inter-label separation, we also observe better CL

performance (compare to Fig. 3b), suggesting that the rela-

tive degree of digit representational overlap can explain the

CL performance profile that we observe for sparse-recurrent

DFC. This indicates that sparse-recurrent DFC facilitates

domain-IL performance by representing even and odd digits

in two partially separated neuron populations that are reused

across tasks. As a first result, we conclude that, although spar-

sity is necessary to create non-overlapping representations,

sparsity alone is not sufficient for aligning these across tasks.

Such alignment, however, seems beneficial for domain-IL,

where several digits are represented by the same label. We

next investigate how recurrent gating helps to learn represen-

tations that are compatible across tasks.

The final hidden layer of a network has to learn represen-

tations of the input that are linearly separable by its readout

weights. One possible way to prevent catastrophic forgetting

is to ensure two things. Condition 1: The hyperplane sep-

arating representations of different labels (implemented in

the network by the readout layer) needs to stay the same,

or similar across tasks. Condition 2: Data points repre-

sented in the final hidden layer need to stay on the same

side of the classification hyperplane that was initially learned

as we train on subsequent tasks. We measure feedforward

activations φ(vff
L−1) (no recurrent gating) and target acti-

vations rL,ss (including effects of controller and recurrent

gating) to test whether recurrent gating helps to achieve this.

Regarding condition 1, Fig. 4b shows that, if we classify tar-

get activations at training onset of a new task according to

the previously learned separation boundary, sparse-recurrent

DFC consistently yields higher classification accuracies than

sparse DFC. This suggests that lateral connections regular-

ize new target activations such that they better align with

previously learned task boundaries. This idea is illustrated in

Fig. 4a, showing that target activations of the second task are

separated by the same hyperplane that divides targets of the

first task. Regarding condition 2, we measure the direction

of movement of feedforward activations from the beginning

to the end of training. We next quantify how much the data

points move towards the initially learned separation bound-

ary. Figure 4c suggests that sparse-recurrent DFC reduces

the movement towards the previous decision boundary com-

pared to sparse DFC. Taken together, our results suggest that

recurrent gating helps fulfil both conditions. For more details
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Fig. 3 Necessity of sparse-recurrent DFC components and activity sep-

aration analysis for domain-IL. Error bars represent standard deviations

using five random seeds. a Split-MNIST performance when using vary-

ing ratios of feedforward and feedback activity to select the suppressed

population for different learning rates (LRs). The x-axis represents the

fraction of feedback activity used for the selection of neurons to be sup-

pressed. A value of 0 means only feedforward activity (ff) is considered,

a value of 1 means only feedback (fb) is taken into consideration, and

0.5 corresponds to an equal mix of the two activities. This activity mix

is only used for selecting the active neuron population, but the activity

flowing through the neurons corresponds to the normal network activity

given by Eq. 1. b Cross-LR evaluation for all DFC variants. The plot

reflects the overall performance on all split-MNIST digits at the end

of training. c Cross-LR accuracy for different combinations of hidden

layer sparsity levels. The accuracies were aggregated to single num-

bers by averaging over a contiguous window of six LRs that maximizes

average performance, and over five random seeds. d Inter- and intra-

label separations for DFC variants after all five tasks have been learned.

Intra-label separations are calculated for all digit pairs with the same

label, inter-label separations for all pairs of digits with different labels.

Results are averaged over nine LR values. e Normalized inter-label sep-

aration calculated as the difference between inter-label separation and

intra-label separation at the end of training across a range of LRs. f

Visualization of intra- and inter-label distances in the space of activity

separation

on the calculation of these metrics involving hyperplanes, see

“Appendix C”.

4.5 Learning within separate subspaces facilitates
class-IL

One possible strategy to address class-IL is to enforce sparse,

non-overlapping representations of different digits, thereby

preventing interfering weight updates between classes. To

test whether sparse-recurrent DFC utilizes this strategy, we

record target activities of different digits after they are first

learned and measure the representational overlap of all pairs

of digits using Eq. 6. Figure 5a shows that, while sparse

DFC leads to some increase in representational separation,

sparse-recurrent DFC maximizes separation across all LRs

compared to other DFC variants. These results are consis-

tent with our initial idea of reduced representational overlap

facilitating CL. Intuitively, if different neurons are used for

different tasks, weights of neurons that were important in

early tasks are less likely to be changed. Similar to domain-

IL, sparsity in class-IL can thus be seen as a necessary

condition for the formation of non-overlapping representa-

tions.

To gain a better understanding of why recurrent gating

helps to increase representational separation in class-IL, we

next analyse its effect on altering the dimensionality of tar-

gets. Figure 5b shows the effective dimensionality (Roy and

Vetterli 2007) of the target activations of different tasks after

learning for recurrent DFC, sparse DFC and sparse-recurrent

DFC. The results suggest that the combination of sparsity and

recurrent gating leads to a significant decrease in effective

dimensionality of the target activations. This led us to hypoth-

esize that representations learned for a new task are less likely

to affect dimensions that were important for previous tasks.

To investigate if recurrent gating leads to a reduction in reuse

of previously learned subspaces, we compute the fraction of
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Fig. 4 Effects of recurrent gating on last hidden layer targets rL−1,ss and

feedforward activations φ(vff
L−1) during learning. Error bars represent

standard deviations using five random seeds. a Schematic of task 1 and

2 representations with respect to the hyperplane (dashed line) dividing

task 1 target activations (grey) according to their label. This diagram

illustrates two things: First, the new target representations align with the

previously learned hyperplane in terms of label separation (supported

by b). In other words, the hyperplane that separates task 1 targets also

separates task 2 targets. Second, task 1 representations generally move

less towards the separating hyperplane as subsequent tasks are learned

(supported by c). This is represented by the arrows. b Alignment of

new task target activations with previous hyperplanes. This is measured

as the fraction of initial target representations (rL−1,ss, before learning

task i), of the new task i that are correctly separated according to the

hyperplane learned on the previous task i − 1. c Movement of feedfor-

ward activations φ(vff
L−1) of previous tasks towards the hyperplane after

learning subsequent tasks, normalized by movement in all directions

Fig. 5 Last hidden layer target activation (rL−1,ss belonging to task i ,

after learning task i) analysis for class-IL. Error bars represent stan-

dard deviations over five random seeds. a Representational separation

(Eq. 6) between pairs of digits for DFC variants for a range of learn-

ing rates (LRs). b Effective dimensionality (Roy and Vetterli 2007)

of targets averaged over tasks and random seeds for DFC variants for

LR = 0.001. c Visualization of the ’unaltered dimensionality fraction’

γ measure described in “Appendix D”. The left and right ellipses repre-

sent the subspace used by the first i −1 tasks, and by task i , respectively.

γ quantifies the dimensionality of the coloured area as a fraction of the

dimensionality of the area of the left ellipse. d Unaltered dimensionality

fraction γ (described in Eq. 18 from “Appendix D” and visualized in

subplot c) for DFC variants

the effective dimensionality used by previous tasks that is

left unaltered by the current task (Fig. 5c). For more details

on the calculation of this metric, see ‘Appendix D”. Fig-

ure 5d validates our hypothesis that recurrent gating reduces

the fraction of dimensions that are altered by new tasks, thus

reducing the extent to which new weight updates interfere

with parameters important for previous tasks.

5 Discussion

In summary, we have presented a new, bio-inspired, task-free

CL approach that yields competitive performance compared

to other CL methods on a simple computer vision bench-

mark. To restrict learning to a reduced set of task-specific

parameters, our method (sparse-recurrent DFC) integrates

feedforward and feedback information to constrain activ-

ity to a sub-population of neurons. In addition to being

more biologically plausible, we show that including top-

down signals is beneficial for CL. Our results are consistent

with the idea that sparsity is a requirement for reducing

representational overlap, but suggest that sparsity alone is

insufficient for protecting previously learned model param-

eters. We show that intra-layer recurrent connections, when

combined with sparsity, facilitate the protection of old task

representations, leading to competitive CL performance of
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DFC on split-MNIST. For both domain- and class-IL, recur-

rent gating in combination with sparsity restricts learning

to low-dimensional subspaces. In domain-IL, the same sub-

space consisting of two separated neuron populations is

shared across tasks; in class-IL learning is restricted to mul-

tiple distinct subspaces.

From a neuroscience perspective, our findings might allow

experimental researchers to derive new hypotheses about

how the brain minimizes catastrophic forgetting. One predic-

tion of our sparse-recurrent DFC network is that intra-layer

recurrent connections are only critical during learning but

not inference, since we only use recurrence at training time.

Although this is surprising, there are data suggesting that bio-

logical brains do this as well. Van Rullen et al. (1998) argue

that, given the short response time in face recognition tasks,

neurons do not have the time to emit much more than one

spike at each processing stage. This would imply that initial

inference can happen before recurrence takes effect. Based

on our work, neuroscientists could, for example, manipulate

recurrent communication within cortical hierarchies, to test

if an animal’s ability to perform inference or to learn multiple

tasks sequentially is affected.

From a machine learning perspective, our new method is

relevant because it is based on a novel set of working princi-

ples to achieve CL. As sparse-recurrent DFC naturally infers

non-overlapping representations and thus non-interfering

parameter updates, it does not require any task boundaries

or task information either during training or testing. While

other task-free CL methods exist and achieve competitive

performance, they are not exclusively based on specialized

weight update rules, as they use either data replay or expand-

ing architectures. The only exception we could find is limited

to binary networks (Laborieux et al. 2021). Moreover, in

future work, our approach could be combined with other

task-free CL methods (replay and non-replay-based) which

might lead to even better CL performances. Although the

current implementation of sparse-recurrent DFC is com-

putationally less efficient when compared to standard CL

algorithms running on GPUs, DFC is ideally suited for a

neuromorphic hardware implementation that might be more

energy-efficient. Finally, we want to acknowledge the lim-

itations of our experimental paradigm: MNIST is a simple

dataset, and the number of tasks is limited. While results from

additional experiments suggest that our method generalizes

to other datasets (Appendix A.1) and more tasks (Appendix

A.2), performance gains are diminished when considering a

mixed-dataset training paradigm (Appendix A.2). This sug-

gests a need for an overlap in useful features between tasks

for sparse-recurrent DFC to facilitate CL.

Overall, our work showcases the idea of adopting biolog-

ical principles of neural computation and learning to derive

new CL methods that not only perform significantly better

than BP, but also show performance comparable to existing

CL algorithms.
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Appendix A: Additional performance results

A.1 Fashion-MNIST

To assess whether performance gains achieved by sparse-

recurrent DFC generalize to other datasets, we repeated our

performance experiments on the Fashion-MNIST dataset

(Xiao et al. 2017). Due to the high similarity of certain

pairs of classes (e.g. sandal/sneaker or pullover/coat) and

big differences between others (top/sneaker), domain-IL task

performance becomes highly dependent on the order of the

classes. To approximate general CL performance, we tested

all models on the same 10 random permutations of classes,
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which were learned in the same pair-wise fashion as split-

MNIST. Averages and standard deviations are thus computed

over the 10 permutations of classes. For this performance

comparison, we retuned the regularization coefficients for

EWC and SI, but did not retune sparsity levels and recurrent

learning rate for sparse-recurrent DFC. At most, this would

give our approach a slight disadvantage.

Figure 6 shows that our approach still yields performance

at least as good as EWC and SI. For domain-IL, the improve-

ments are less significant than the ones we obtained with

split-MNIST. However, the same can be said for EWC and SI.

From these results, we conclude that our approach general-

izes beyond the MNIST distribution. Moreover, not needing

to retune the hyperparameters of our model to maintain the

performance gains suggests that our approach is quite robust.

However, for a thorough assessment of robustness to different

datasets, more work has to be done.

A.2 CombiningMNIST and fashion-MNIST

To test the continual learning models on a larger number of

tasks, as well as to test their robustness to sequential learning

across different datasets, we developed the following new

continual learning task: We first train the network under con-

sideration sequentially on x pairs of MNIST digits, and then

on x pairs of fashion-MNIST pictures. We ran this experi-

ment for x = 2 and x = 4, resulting in a total of 4 and 8 tasks,

respectively. Considering both scenarios allows us to analyse

the effect of a sequence task increase (doubling of the number

of tasks) in addition to comparing performance of learning

algorithms on a new cross-dataset training paradigm. For the

same reason as discussed in Appendix A.1, we evaluate CL

performance over 10 random permutations of class orderings.

The results are shown in Fig. 7.

In the case of 2 tasks per dataset, Fig. 7a shows that sparse-

recurrent DFC improves upon BP when it comes to accuracy

on dataset 1 after having been trained on both datasets. The

improvements are seen in the high learning regime (low LRs),

which we would expect to see in learning methods that are

more robust against catastrophic forgetting. However, SI and

EWC show more significant improvements in accuracy over-

all. Moreover, because sparse-recurrent DFC does not learn

dataset 2 as well as the other methods (Fig. 7b), its perfor-

mance improvements over BP on both datasets (Fig. 7c) are

low, and clearly not as good as EWC and SI.

Doubling the number of tasks in both datasets leads to a

similar situation. Figure 7d shows significant and consistent

improvements of sparse-recurrent DFC over BP accuracy in

high LR regimes, although overall accuracy is lower than

that for EWC and SI. Figure 7e shows that, unlike in the

case of 2 tasks per dataset, sparse-recurrent DFC generally

shows better accuracy on dataset 2 than all other methods.

Combining these results, Fig. 7f shows that sparse-recurrent

DFC yields significantly higher accuracy than BP over most

LRs, as well as similar (although still lower) accuracy as

EWC and SI.

Overall, the combination of two different datasets within

one sequence task diminishes performance of sparse-recurrent

DFC relative to other learning algorithms when compared to

the case of just one dataset as seen in Sect. 4.1 and Appendix

A.1. However, the reduction in forgetting compared to BP

in high learning regimes and on average are still reliable.

We suspect that, in the case of more drastic shifts in input

distribution (as is the case when shifting from MNIST to

fashion-MNIST), explicit task-boundary information is espe-

cially useful to consolidate weights important for the first

dataset, which would give EWC and SI an advantage over

our method. Moreover, the superior single-dataset accuracy

of our method also suggests that sparse-recurrent DFC suc-

ceeds, especially in those situations where representations

learned in one task can be reused in subsequent tasks. While

this might sound obvious, the successful reuse of represen-

tations is not trivial, as is seen when looking at the CL

performance of BP.

To summarize, this experiment shows that, while CL per-

formance improvements over BP can be maintained for both

cross-dataset learning, as well as an increase in the sequence

task length, it also points to a limit of our method: A certain

overlap in terms of useful features between tasks may be a

prerequisite for our method to protect against forgetting. To

make it more resistant against more drastic changes in input

distributions, adaptations may be necessary. In any case, we

believe that requiring different tasks to benefit from simi-

lar features is not an artificial limitation, as biological brains

are likely to reuse common features of the natural environ-

ment (e.g. edges, textures,...) when learning different tasks.

While MNIST and fashion-MNIST are both visual, MNIST

is most likely too simple and idiosyncratic to learn repre-

sentations that will also be useful for transfer learning on

fashion-MNIST.

A.3 Role of model complexity

It might be argued that comparing sparse-recurrent DFC to

other models with the same number of neurons is unfair due

to the added complexity of lateral and feedback connections.

However, this should not be a concern, since the additional

connections of sparse-recurrent DFC are only in use during

training. For testing, we only use feedforward weights. In

other words, after training, recurrent and feedback weights

are “discarded” and our model has the exact same complexity

as models trained with BP, EWC or SI. Moreover, the notion

that additional parameters alone cannot account for perfor-

mance improvements is also supported by Fig. 3b showing

that lateral connections alone do not produce gains in accu-

racy.
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Fig. 6 Performance evaluation of fashion-MNIST for BP, EWC, SI,

and DFC-sparse-rec for domain-IL (left column) and class-IL (right

column). Error bars represent standard deviations using ten different

permutations of the class ordering. a Fashion-MNIST accuracy at the

end of training in the domain-IL paradigm on the whole test set (all

classes) for a range of learning rates (LRs). The number of training iter-

ations is fixed at four epochs. Stars indicate average performance on an

accuracy-maximizing window of six LRs. b Accuracy of models at the

end of training in the class-IL paradigm on the whole test set for every

LR. Stars indicate average performance on an accuracy-maximizing

window of six LRs. c Accuracy of models at the end of training in the

domain-IL paradigm on the whole test set for a range of minimum early

stop accuracies. The LR is fixed, and training is stopped at every task

once the train accuracy for the current batch reaches the given mini-

mum accuracy value. The maximal number of epochs trained for is 10.

d Accuracy of models at end of training in the class-IL paradigm on the

whole test set for a range of minimum early stop accuracies

Regardless, to ascertain that our improvements in CL

performance cannot simply be matched by an increase in

model complexity, we compared the performance of sparse-

recurrent DFC to a bigger BP-trained network, as well as

a bigger winner-take-all DFC model (DFC-sparse). Equa-

tion 7 shows how the number of parameters in a feedforward

network in our setting can be computed as a function of

the number of units per hidden layer x . The first, second,

and third term represent weights and biases of the first hid-

den layer, second hidden layer and output layer, respectively.

Equation 8 shows how the number of parameters in our recur-

rent network (including feedback and lateral connections)

can be computed. For this, we add the lateral connections in

the second term and the feedback connections in the third

term.

nff(x) = (784x + x) + (x2 + x) + (2x + 2) (7)

nrec(x) = nff(x) + 2x2 + 2x (8)

To compare our sparse-recurrent DFC model, with 20

units per hidden layer, against a feedforward networks with

at least as many parameters during training, we need to find

x such that nff(x) > nrec(20), which is already achieved by

setting x = 21. Unsurprisingly, this will lead to no signifi-

cant performance improvement compared to x = 20, so to

show the effect of increased model complexity for BP, we

will use x = 30. Figure 8a shows how sparse-recurrent DFC

compares to the bigger BP network, as well as the default

BP network for reference. The same is shown in Fig. 8b for

DFC-sparse.

We can see that, while the increased size does improve

performance somewhat for low LRs, accuracy decreases at

high LRs. Overall, changes in average performance are negli-

gible and the gains in accuracy achieved by DFC-sparse-rec

cannot be attributed to increased model complexity during

training.

A.4 Accuracy vs. tasks learned

In Sect. 4.1, we evaluate the performance of models on split-

MNIST by recording the test accuracies after training on all

tasks. To analyse how cumulative performance develops as
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Fig. 7 Performance evaluation of DFC-sparse-rec, BP, EWC, SI on

mixed dataset consisting of pairs of MNIST digits and pairs fashion-

MNIST pictures. MNIST tasks are presented first as dataset 1, and

fashion-MNIST tasks are presented subsequently as dataset 2. Perfor-

mance is evaluated both for 2 tasks per dataset (first row), as well as 4

tasks per dataset (second row). Accuracies are evaluated at the end of

training on the whole sequence task on dataset 1 (first column), dataset

2 (second column) and the combined dataset (third column). Error bars

represent standard deviations using ten different permutations of the

class orderings. a Cross-LR test set accuracy on dataset 1 after learning

2 tasks of both datasets in sequence. b Cross-LR test set accuracy on

dataset 2 after learning 2 tasks of both datasets in sequence. c Cross-LR

test set accuracy on the combined dataset after learning 2 tasks of both

datasets in sequence. d Cross-LR test set accuracy on dataset 1 after

learning 4 tasks of both datasets in sequence. e Cross-LR test set accu-

racy on dataset 2 after learning 4 tasks of both datasets in sequence.

f Cross-LR test set accuracy on the combined dataset after learning 4

tasks of both datasets in sequence

more tasks are learned, we plot the mean accuracy of the

first i tasks after training on task i (Fig. 9). Each model was

evaluated with its optimal LR for 4 epochs. Curves that start

with low accuracies for task 1 can be explained by the fact

that choosing an LR that leads to convergence on task 1 is

not optimal for the final accuracy on all tasks. Moreover, the

increase in cumulative accuracy for task 4 in domain-IL can

be attributed to the similarity of the digit pairs 0/1 and 6/7.

Appendix B: Hyperparameters

Our approach for choosing hyperparameters in sparse-

recurrent DFC is to start with a configuration that is optimized

to solve normal MNIST classification (non-CL) (Meulemans

et al. 2022), and to leave all existing parameters unaltered

for split-MNIST. Adding sparsity and recurrent gating intro-

duces layer-wise sparsity levels and recurrent learning rate,

respectively, as new hyperparameters. These new hyperpa-

rameters were tuned separately for domain-IL and class-IL.

For EWC and SI, we tuned the regularization coefficient.

The overarching principle here is that we only tune hyper-

parameters specifically associated with solving CL. Table

1 shows all tuned hyperparameters, as well as the activation

function (which was not tuned). Table 2 shows the remaining

hyperparameters shared by all models. Hyperparameter tun-

ing was performed with respect to maximal average accuracy

over a consecutive window of 6 LRs in cross-LR evaluation.

The same hyperparameters were used for minimum accuracy

evaluation.

Appendix C Hyperplanemetrics

In Sect. 4.4 we compute two quantities that involve the use

of hyperplanes dividing datapoints into two classes, as per

the domain-IL setup (Van de Ven and Tolias 2019). In both

cases we obtain the separation hyperplane by fitting a logis-

tic regression model to a set of target activations of the last

hidden layer {r
k, j

L−1}k∈ti , where ti refers to a set of indices

of datapoints belonging to task i . r
k, j

L−1 represents the last

hidden layer target activations induced by datapoint k after

that network has been trained on task j . Let hi, j denote the

hyperplane obtained by fitting a logistic regression model to

classify {r
k, j

L−1}k∈ti according to the domain-IL class labels.

We use an L1 penalty for the logistic regression model to
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Fig. 8 Analysis of model capacities on domain-IL split-MNIST accura-

cies. a Performance of DFC-sparse-rec network (as used in our previous

experiments), the default BP network, and a bigger BP network with 30

units per hidden layer instead of 20. b Performance of DFC-sparse-rec

network (as used in our previous experiments), DFC-sparse with the

same number of neurons, and a bigger DFC-sparse network with 30

units per hidden layer instead of 20

Fig. 9 Average accuracy of first i tasks after training on i’th task. LRs were chosen for each model individually to maximize performance. All

models were trained for four epochs. a Cumulative domain-IL accuracies for first i tasks on test set. b Cumulative class-IL accuracies for first i

tasks on test set

Table 1 Model-specific

hyperparameters
DFC BP EWC SI

s1−3,ss Domain-IL 0.4,0.8,0.5 – – –

s1−3,ss Class-IL 0.2,0.8,0.0 – – –

Recurrent LR 40 – – –

Reg. coef. domain-IL – – 105 × 2−9, (103) 101, (101)

Reg. coef. class-IL – – 105 × 2−9, (103) 102, (103)

Activation function tanh relu relu relu

Except for the activation function, all of these hyperparameters were tuned for performing well on split-

MNIST in a cross-LR evaluation paradigm. Additionally, the regularization coefficients of EWC and SI were

retuned for fashion-MNIST in the same cross-LR evaluation paradigm (values in brackets). The three numbers

in the sparsity level rows correspond to the 2 hidden layers and the output layer, respectively. The effect of

sparsity in the output layer is solely to freeze weights of inactive neurons during training for wrong labels
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Table 2 Hyperparameters

shared between all used models
All models

# Hidden layers 2

Hidden layer sizes domain-IL 20,20

Hidden layer sizes combined dataset (domain-IL) 50,50

Hidden layer sizes class-IL 200,200

Learning rate (outside of LR evaluation) 0.001

Batch size 512

Epochs 4

Optimizer Adam

Forward weight initialization Xavier

encourage sparse hyperplanes, otherwise we use the default

parameters from the sci-kit learn library (Pedregosa et al.

2011).

C.1 Hyperplane alignment

Here we measure the extent to which {r
k,i−1
L−1 }k∈ti are correctly

separated by hi−1,i−1, that is how well a hyperplane from a

previously learned task i − 1 divides targets of new tasks i ,

before the network has been fit on the new task. If we rep-

resent classification accuracy of hi, j on {r
k,u
L−1}k∈tv (i , j and

u, v representing arbitrary task indices) as hi, j ({r
k,u
L−1}k∈tv ),

then the hyperplane alignment metric α is given by Eq. 9.

α =
1

4

5
∑

i=2

hi−1,i−1({r
k,i−1
L−1 }k∈ti ) (9)

α values are further averaged over 5 random seeds.

C.2 Movement towards hyperplane

For this metric, we consider distances travelled of feedfor-

ward activations, which we would normally refer to as φ(vff
i ).

But because we are running out of space for superscripts, we

will refer to r̃
k, j

L−1 as the last hidden layer feedforward acti-

vations induced by datapoint k after that network has been

trained on task j . Please note, however, that hi, j is still com-

puted as before, using target activations (including controller

and recurrent effects). We quantify the distance of feedfor-

ward activations travelled from when they are first learned,

to when task 5 training has been finished, with respect to

the initially learned hyperplane. More precisely, for all task

indices i , we compute the difference of the projections of

{r̃
k,i
L−1}k∈ti and {r̃

k,i−1
L−1 }k∈t5 on the normal of hi,i , which we

denote as ni,i . Let T c
i, j denote the matrix that contains as

rows all elements of {r̃
k, j

L−1}k∈ti which have c as their correct

class label, where c ∈ {0, 1}. From these matrices, we can

compute the L1 distances travelled by datapoints with class

c from task i projected onto the hyperplane normal ni,i as

seen in Eq. 10.

d̃c
i = (−1)c · (T c

i,5 − T c
i,i )ni,i (10)

The (−1)c factor is important to ensure inverted signs of

travelled distances in the two classes. We need this because

directions towards the hyperplane for one class are directions

away from the hyperplane for the other. Because we only

want to quantify distance travelled towards the hyperplane

direction, and not away from it, we clip the distance vectors

to only have positive values.

dc
i = clip(d̃c

i , 0,∞) (11)

Finally, we obtain the mean normalized movement towards

the hyperplane of activations from task i by dividing the

average distance travelled towards hi,i by the average abso-

lute distance travelled in any principal direction, as shown in

Eq. 12.

βi =
〈dc

i 〉c∈{0,1}

1
2
〈|T

0,1
i,5 − T

0,1
i,i |〉

(12)

We need to divide the normalizing factor in the denomina-

tor by 2 because we are technically averaging over twice as

many directions as there are matrix entries. This is because

we consider both positive and negative directions for each

principle dimension. The βi values are averaged over tasks i

and 5 random seeds.

Appendix D: Fraction of unaltered subspace

With the unaltered subspace metric γ we attempt to approxi-

mate the idea of the fraction of dimensions used by previous

tasks that are left unaltered by the current task, as visualized

by Fig. 5c. We reuse the notation from the previous section,

where {r
k, j

L−1}k∈ti refers to the set of target activations rL,ss
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elicited by datapoints of task i upon learning task j . To quan-

tify the dimensionality of a set of neural activity vectors of

a given layer, we utilize the effective rank metric proposed

by Roy and Vetterli (2007). The effective rank of a matrix

A with positive singular values σ1,≥ σ2 ≥ ... ≥ σQ is cal-

culated using Shannon entropy H as shown in Eqs. 13 and

14.

pk =
σk

∑Q
k=1 |σk |

(13)

erank(A) = exp(H(p1, ..., pQ)) (14)

We compute the effective rank of the matrix containing

activity vectors as rows to quantify the effective dimen-

sionality of the representations. We calculate the effective

dimensionality of previously learned tasks (up to but with-

out task i), the current task i , and the combination of previous

tasks and the current task as shown in Eqs. 15, 16, 17, respec-

tively.

dimprev(i) = erank({r
k, j

L−1}k∈
⋃i−1

l=1 tl
) (15)

dimcurr(i) = erank(r ti ) (16)

dimcum(i) = max(erank([r t1, ..., r ti ]),

dimprev(i), dimcurr(i)) (17)

Effective rank as a function of sets of target activations

does not guarantee monotonicity, which means that the effec-

tive rank of a subset of targets can be larger than the effective

rank of the superset. To avoid invalid fractions, we guaran-

tee monotonicity between previous, current and cumulative

dimensionality by making sure dimcum is at least as big as

dimprev and dimcurr. If we subtract the cumulative dimen-

sionality from the sum of the previous and the current one,

we get the intersection of the two, i.e. the dimensionality that

is affected by the current task. To quantify the unaltered frac-

tion of previous dimensionality γ , we subtract the fraction of

the intersection divided by the previous dimensionality from

1 as shown in Eqs. 18.

γ = 1 −
dimprev(i) + dimcurr(i) − dimcum(i)

dimprev(i)
(18)
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