
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2023

Glass-like random catalogues for two-point estimates on the light-cone

Schulz, Sebastian

Abstract: We introduce grlic, a publicly available Python tool for generating glass-like point distributions with
a radial density profile n(r) as it is observed in large-scale surveys of galaxy distributions on the past light-cone.
Utilizing these glass-like catalogues, we assess the bias and variance of the Landy–Szalay (LS) estimator of the
first three two-point correlation function (2PCF) multipoles in halo and particle catalogues created with the
cosmological N-body code gevolution. Our results demonstrate that the LS estimator calculated with the glass-
like catalogues is biased by less than 10−4 with respect to the estimate derived from Poisson-sampled random
catalogues, for all multipoles considered and on all but the smallest scales. Additionally, the estimates derived
from glass-like catalogues exhibit significantly smaller standard deviation σ than estimates based on commonly
used Poisson-sampled random catalogues of comparable size. The standard deviation of the estimate depends on
a power of the number of objects NR in the random catalogue; we find a power law σ ∝ N

−0.9

R
for glass-like

catalogues as opposed to σ ∝ N
−0.48

R
using Poisson-sampled random catalogues. Given a required precision,

this allows for a much reduced number of objects in the glass-like catalogues used for the LS estimate of the 2PCF
multipoles, significantly reducing the computational costs of each estimate.

DOI: https://doi.org/10.1093/mnras/stad2868

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-254148
Journal Article
Published Version

 

 

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Schulz, Sebastian (2023). Glass-like random catalogues for two-point estimates on the light-cone. Monthly No-
tices of the Royal Astronomical Society, 526(3):3951-3966.
DOI: https://doi.org/10.1093/mnras/stad2868



MNRAS 526, 3951–3966 (2023) https://doi.org/10.1093/mnras/stad2868 

Advance Access publication 2023 September 22 

Glass-like random catalogues for two-point estimates on the light-cone 

Sebastian Schulz 
‹

Institute for Computational Science, Universit ̈at Z ̈urich, Winterthurerstrasse 190, 8057 Z ̈urich, Switzerland 

Accepted 2023 September 13. Received 2023 August 30; in original form 2023 April 20 

A B S T R A C T 

We introduce GRLIC , a publicly available Python tool for generating glass-like point distributions with a radial density profile 

n ( r ) as it is observed in large-scale surv e ys of galaxy distributions on the past light-cone. Utilizing these glass-like catalogues, 

we assess the bias and variance of the Landy–Szalay (LS) estimator of the first three two-point correlation function (2PCF) 

multipoles in halo and particle catalogues created with the cosmological N -body code gevolution . Our results demonstrate that 

the LS estimator calculated with the glass-like catalogues is biased by less than 10 
−4 with respect to the estimate derived from 

Poisson-sampled random catalogues, for all multipoles considered and on all but the smallest scales. Additionally, the estimates 

derived from glass-like catalogues exhibit significantly smaller standard deviation σ than estimates based on commonly used 

Poisson-sampled random catalogues of comparable size. The standard deviation of the estimate depends on a power of the number 

of objects N R in the random catalogue; we find a power law σ ∝ N 
−0 . 9 
R for glass-like catalogues as opposed to σ ∝ N 

−0 . 48 
R 

using Poisson-sampled random catalogues. Given a required precision, this allows for a much reduced number of objects in the 

glass-like catalogues used for the LS estimate of the 2PCF multipoles, significantly reducing the computational costs of each 

estimate. 

Key words: methods: numerical – methods: statistical – surv e ys – galaxies: statistics – large-scale structure of Universe –

cosmology: observations. 

1  I N T RO D U C T I O N  

The large-scale spatial distribution of galaxies contains crucial 

information about the fundamental physics and the evolution of the 

Univ erse. F or this reason, in the past decades substantial effort has 

been put into analysing its statistical properties in order to extract as 

much of that information as possible with the tools at hand (Davis & 

Peebles 1982 ; Vogeley, Geller & Huchra 1992 ; Feldman, Kaiser & 

Peacock 1994 ; Maddox, Efstathiou & Sutherland 1996 ; Peacock et al. 

2001 ; Efstathiou et al. 2002 ; Tegmark et al. 2004 , 2006 ; Cole et al. 

2005 ; Wang, Brunner & Dolence 2013 ; Shi et al. 2016 ). Common 

summary statistics of interest in these analyses are the two-point 

correlation function (2PCF) and its Fourier-space counterpart, the 

power spectrum. 

The 2PCF, commonly denoted as ξ ( � d ), quantifies the excess 

probability of finding an object (e.g. a galaxy or a dark matter halo) 

at a position � x + � d separated by � d from another object at position � x , 

relative to the ensemble-average background number density n̄ : 

ξ ( � d ) = 〈 δ( � x ) δ( � x + � d ) 〉 , (1) 

where δ( � x ) is the number-density contrast of the objects, 

δ( � x ) = 
n ( � x ) − n̄ 

n̄ 
, (2) 

with n ( � x ) the number density at position � x . In other words, the 

2PCF of the galaxy distribution captures its clustering properties 

⋆ E-mail: sebastian.schulz@uzh.ch 

by quantifying the correlation between pairs of galaxies at different 

separations. 

Specifically, the 2PCF has been used to extract the comoving 

length-scale of the sound horizon during the cosmic period known as 

matter-radiation decoupling. At that time, baryon-acoustic oscilla- 

tions (BAO) were imprinted into the matter distribution (and conse- 

quently into today’s galaxy distribution). This imprint is measurable 

in the galaxy 2PCF in the form of a peak at ≈ 100 Mpc h −1 , which 

can act as a ‘standard ruler’ and is hence useful for understanding the 

expansion history of the Universe (Eisenstein et al. 2005 ; Perci v al 

et al. 2010 ; Blake et al. 2012 ; Alam et al. 2017 , 2021 ). 

There is more information to be extracted from the 2PCF by taking 

into account redshift space distortions (RSDs) that mainly arise from 

the peculiar motion of the galaxies in their gravitational potential 

well (Kaiser 1987 ). The RSDs then provide a way for measuring 

the growth rate of structure (Guzzo et al. 2008 ; Beutler et al. 2012 ; 

Reid et al. 2012 ; de la Torre et al. 2013 ; Pezzotta et al. 2017 ; Hou 

et al. 2018 ; Zarrouk et al. 2018 ; Ruggeri et al. 2019 ), which in turn 

provides insights into the laws of gravity on large scales. 

Future galaxy surv e ys such as the space-based Euclid surv e y 

(Laureijs et al. 2011 ; Amendola et al. 2018 ) or the ground-based 

DESI surv e y (Aghamousa et al. 2016 ; Levi et al. 2019 ) aim to 

increase the accuracy and precision of the inferred cosmological 

parameters by quantifying the clustering statistics of galaxies in 

much larger volumes with accurate measurements of the redshifts 

of tens of millions of galaxies. 

In order to estimate the galaxy 2PCF, it is generally assumed 

that the observed galaxy distribution represents a Poisson sample of 

some underlying galaxy density field (Peebles 1980 ). Given the point 

© The Author(s) 2023. 
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distribution of observed galaxies, it is natural to use estimators based 

on pair counts. Many estimators of this kind have been proposed over 

the years (Peebles & Hauser 1974 ; Davis & Peebles 1982 ; Hewett 

1982 ; Hamilton 1993 ; Landy & Szalay 1993 ). Among those, the most 

commonly used for the 2PCF of large-scale structure is the Landy–

Szalay (LS) estimator (Landy & Szalay 1993 ), which is defined in its 

general form for the cross-correlation between two data catalogues 

D 1 and D 2 

ξLS ( d , μ) = 

̂ D 1 D 2 ( d , μ) −̂ D 1 R 2 ( d , μ) − ̂ R 1 D 2 ( d , μ) + ̂  R 1 R 2 ( d , μ) 

̂ R 1 R 2 ( d , μ) 
, 

(3) 

introducing two random catalogues R 1 and R 2 with the same radial 

density profile and surv e y mask as the corresponding data catalogues. 

For autocorrelations within one data catalogue, D 1 and D 2 are identi- 

cal. In equation ( 3 ), d is the absolute value of the separation between 

a pair of objects within the catalogues and μ is the cosine of the angle 

between the line of sight to the pair � s and the separation vector � d . 

The ̂  D 1 D 2 , ̂ D 1 R 2 , ̂ R 1 D 2 , and ̂ R 1 R 2 correspond to histograms of pair 

counts between the data ( D i ) and random ( R i ) catalogues, binned in 

d and μ and normalized by the total number of pairs between the 

respective two catalogues. In general, the normalized histogram of 

pair counts between two catalogues A and B is given by 

̂ AB ( d , μ) = 
AB( d , μ) 

N A N B − 1 
2 δAB N A (1 + N A ) 

, (4) 

where in our case A , B ∈ { D 1 , D 2 , R 1 , R 2 } . Here, AB ( d , μ) is the 

number of pair counts between catalogues A and B in the respective 

( d , μ) bin, δAB is a Kronecker-Delta which is 1 if A = B and 0 if A �= 

B . Hence, for cross-correlations of two different data catalogues D 1 

and D 2 , the δAB term vanishes, but for autocorrelations, where A = 

B , it is included because in this case pairs are usually not double- 

counted. The same arguments apply for the R i R j pairs, while for the 

D i R j pairs the δij term al w ays vanishes, since those pairs are al w ays 

counted between two separate catalogues, A �= B . 

When the correlations are small ( ξ ≪ 1), which is true for 

the galaxy distribution of the Universe on large scales, the LS 

estimator has the lowest bias and variance of all possible estimators 

based on pair counts if a very densely sampled random catalogue 

which follows the same redshift distribution as the data catalogue is 

provided (Landy & Szalay 1993 ; Kerscher, Szapudi & Szalay 2000 ; 

Keih ̈anen et al. 2019 ). In this case, the variance of the estimator is 

almost Poisson. Commonly the number of objects in the random 

catalogue exceeds the number of objects in the data catalogue by a 

factor of order 10 or higher to ensure this criterion is fulfilled in order 

to keep the bias and variance small (Samushia, Perci v al & Raccanelli 

2012 ; Torre et al. 2013 ; Sanchez et al. 2017 ; Bautista et al. 2020 ). We 

note that at smaller scales (below ≈ 10 Mpc h −1 ), the galaxy 2PCF 

can become of order one, in which case the LS estimator is not the 

optimal estimator anymore. To account for this, Varg as-Mag ana et al. 

( 2013 ) have derived a new optimal estimator that remains unbiased 

on smaller scales as well. 

The random catalogue serves to approximate the pair counts in a 

homogeneous distribution, which are then used together with the pair 

counts in the data distribution and the pair counts across data and 

random catalogues to derive an estimator for the 2PCF. A common 

choice for the random catalogue for large-scale galaxy surv e ys is to 

Poisson-sample from a distribution that is uniform in angular space 

and follows the redshift distribution of the data. A surv e y mask is 

taken into account by setting the number of objects in the random 

catalogue to zero outside of the mask. 

We note that commonly the uncertainty in the 2PCF for galaxy 

clustering observations is dominated by sample variance, originating 

from the fact that the 2PCF in one region of the sky can differ from 

the 2PCF in another region of the sky, and from shot noise due to 

the data points being Poisson-sampled from the underlying density 

distribution. Here we focus instead on the uncertainty in the estimator 

arising from the statistical fluctuations in the number of data–random 

and random–random pairs, neglecting the sample v ariance. K eeping 

the variance of the estimator as small as possible is desired, so that the 

only remaining dominant contribution to the variance is the sample 

variance. 

The variance of the LS estimator is dominated by the density 

fluctuations of the random catalogue (Keih ̈anen et al. 2019 ). The 

amplitude of these fluctuations is given by the power spectrum, 

which, in case of a Poisson-sampled catalogue, is P ( k) = 1 / ̄n , where 

k = 2 π / λ is the absolute value of the wave vector of the Fourier- 

space fluctuations with wavelength λ. The variance within a sphere 

of radius R is related to the power spectrum (Gabrielli, Joyce & Sylos 

Labini 2002 ): 

σ 2 ( R ) = 
1 

2 π2 

∫ 
P ( k ) W 

2 ( k R ) k 2 d k , (5) 

where W ( kR ) is the Fourier transform of a top-hat window function, 

W ( k R ) = 3 
sin ( k R ) − k R cos ( k R ) 

( k R ) 3 
. (6) 

For the Poisson sample, which has a constant power spectrum, the 

variance goes like σ 2 ( R ) ∝ R 
−3 . Increasing the number of objects in 

the random catalogues will decrease the amplitude of the power 

spectrum and thereby the variance of the LS estimator, but this 

comes at a significant additional computational cost as the pair- 

counting process goes like O( N 
2 ). With ever increasing catalogue 

sizes approaching hundreds of millions of galaxies, having random 

catalogues with many more objects than the data catalogues will 

eventually become unfeasible. Since most of the computation time 

for the estimate is taken up by the counting of the random–random 

pairs, it is promising to look for approaches that reduce the time 

taken to perform this computation given a desired precision of the 

estimator, for example by requiring smaller random catalogues, or 

none at all. 

Keih ̈anen et al. ( 2019 ) propose a method to increase the speed 

of the R i R j calculation by splitting the random catalogue R into M s 

subcatalogues R 
μ and then taking the average of the normalized pair- 

counts within each subcatalogue. This method does not affect the 

accuracy of the estimator and can therefore be used to significantly 

speed up the computation time. Ho we ver, the cost can still become 

high if the surv e y is v ery large or if the estimator has to be calculated 

for a large number of data catalogues. 

Breton & de la Torre ( 2021 ) provide a scheme to analytically 

calculate the pair counts involving the random catalogue, given the 

surv e y window function and the radial selection function, speeding 

up the estimate significantly. The method requires an estimate of 

the 2PCF of the angular selection function beforehand. An analytical 

method for higher order statistics is yet to be derived, making random 

catalogues necessary for estimates of ( N > 2)-point correlation 

functions. 

Alternatively, it is worthwhile exploring random catalogue con- 

figurations that have a lo wer v ariance than the Poisson-sampled 

catalogues. The fastest decay of the variance with increasing R for 

any statistical point distribution in three dimensions is σ 2 ( R ) ∝ R 
−4 

which is achieved by a class of distributions that exhibit smaller 

power on large scales than the uniform Poisson distribution with a 
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power spectrum P ( k ) ∝ k 4 . These distributions are called superho- 

mogeneous and examples include periodic grids or glasses (Gabrielli 

et al. 2002 ). 

Glasses have smaller power than a Poisson distribution on scales 

larger than the a verage inter -particle separation, which is why they 

have been of interest in the scientific literature in the past, but 

in a slightly different context. It was suggested that these kind 

of distributions can be used to generate pre-initial conditions for 

cosmological simulations, which need to have as little power as 

possible (White 1994 ; Baugh, Gaztanaga & Efstathiou 1995 ; Hansen 

et al. 2007 ; Joyce, Marcos & Baertschiger 2009 ). Ho we ver, it was 

later found that glasses are not superior to periodic crystals in 

this regard. Therefore glasses are less commonly used in today’s 

cosmological simulations because of the difficulty that lies in creating 

them. 

Recently, D ́avila-Kurb ́an et al. ( 2021 ) have shown that using glass- 

like catalogues leads to a smaller variance in the LS estimates of 

the 2PCF in comparison to using Poisson random catalogues. They 

demonstrated this on a mock catalogue of simulated galaxies on an 

equal-time hypersurface in a periodic box. They found that an LS 

estimate with a desired precision would require glass catalogues with 

fewer objects than what would be needed using Poisson-sampled 

random catalogues. 

In general, glass distributions can be created from a uniform 

Poisson distribution by running an N -body simulation with repellent 

gra vitational forces, b ut this requires a lot of computing resources. 

As an alternativ e, D ́avila-K urb ́an et al. ( 2021 ) have suggested a 

f ast w ay of generating glass-lik e catalogues using the Zeldovich 

approximation of Lagrangian perturbation theory (Zel’dovich 1970 ). 

Starting with a Poisson sample of a uniform distribution in a periodic 

simulation box, one can iteratively displace the objects in a direction 

opposite to the one given by the first-order displacement field 
� � . After many iterations, the power spectrum of the catalogue is 

approximately the one of a glass, with P ( k ) ∝ k 4 . In their work, 

D ́avila-Kurb ́an et al. ( 2021 ) adapted the publicly available BAO 

reconstruction code of Bautista et al. ( 2018 ) 1 based on the Fourier- 

space algorithm of Burden, Perci v al & Howlett ( 2015 ). 

In this article, we aim to extend this approach to catalogues on 

the light-cone with a redshift-dependent comoving number density 

of objects n ( r ( z)), which can be due to a radial surv e y selection 

function or due to an intrinsic redshift-dependent abundance of 

the objects (e.g. high-mass dark matter haloes are less abundant 

at high redshifts). We provide the publicly available Python tool 

GRLIC , to easily create glass-like random catalogues given the surv e y 

specifications [opening angle, surv e y mask, redshift range, and the 

redshift-dependent number density n ( r ( z))]. We stress the fact that 

the glass-like catalogues might not be considered truly ‘random’ due 

to the correlated nature of their data points. Nevertheless, each glass- 

like catalogue is a random realization of the underlying background 

distribution and we will occasionally continue to use this term 

to underscore the glass-like catalogues’ function as the reference 

‘random’ data set in the pair-count estimations of the 2PCF. 

Glasses are particularly useful in this context as they allow for a 

smooth evolution of the number density with radial distance, without 

any discontinuities as they would be una v oidably present in a crystal- 

like structure. 

We use the glass-like random catalogues in the LS estimator to 

estimate the multipoles of the two-point autocorrelation functions 

and 2PCFs of a set of simulated catalogues of dark matter particles 

1 github.com/ julianbautista/ eboss clustering 

and haloes and find that the resulting estimates using the glass-like 

random catalogues have a much smaller variance than the estimates 

using a Poisson-sampled random distribution. There is ef fecti vely no 

bias with respect to the result obtained using a much larger Poisson- 

sampled random catalogue with an identical n ( r ( z)). 

The paper is structured as follows: In Section 2 , we describe 

the methods used to extract the radial density profile from a data 

catalogue, to Poisson sample a random catalogue with an identical 

radial density profile and to generate the glass catalogues from 

them. The application of the Zeldovich method is explained in detail 

and the measurement procedure for the 2PCF multipole estimates 

is described. In Section 3 , we describe the simulations used to 

create the data catalogues, the data catalogues themselves, and 

the glass catalogues used in the LS estimates. In Section 4 , we 

present our results on the estimates of the 2PCF multipoles, as 

well as measurements of their bias and standard deviation. Section 

5 contains a summary of this work and a final discussion of the 

results. Appendix A contains convergence tests of our fiducial set-up 

for creating the glass-like random catalogues. Appendix B contains 

results on an estimate of the 2PCF after applying an e x emplary mask 

to the catalogues. 

2  M E T H O D S  F O R  C R E AT I N G  GLASS  

C ATA L O G U E S  O N  T H E  L I G H T- C O N E  

The goal of the following pipeline is to create a glass-like catalogue 

that mimics the redshift-dependent comoving number density n ( r ( z)) 

of a given data catalogue. The resulting glass has to be locally 

isotropic in comoving coordinates, which is why it is convenient 

to first convert the observed redshifts z of the data catalogue into 

comoving distances r assuming a fiducial background cosmology 

with specified cosmological parameters. Then, the comoving number 

density is derived from a histogram of the number counts N ( r ), taking 

the surv e y geometry into account. 

Alternatively, the user of the code can directly provide a tabulated 

n ( r ( z)) together with the cosmological parameters that fix the 

mapping between r and z. 

We then Poisson sample a random catalogue that follows the 

n ( r ( z)) of the data catalogue, and iteratively displace the objects 

in comoving coordinates until they reach a glass-like distribution. 

The steps will be outlined in detail in the following subsections. 

2.1 Extracting n ( r ) from the data catalogue 

Taking into account that galaxy surv e ys probe times well into matter 

domination, the observed redshifts in the data catalogue are converted 

into comoving distances according to 

r( z) ≈
∫ z 

0 

cd z ′ 

H 0 

√ 

	m ( z ′ + 1) 3 + 	
 + (1 − 	m − 	
 )( z ′ + 1) 2 
, (7) 

where c is the speed of light, H 0 ≡ 100 h km s −1 Mpc −1 the value of 

the Hubble constant today, 	m the density parameter for the matter 

content in the Universe today, and 	
 the density parameter of dark 

energy today. In the remainder of this work, we will implicitly assume 

that the inferred comoving distance r ( z) depends on the observed 

redshift z and drop the argument of the function, r ( z) → r . Note 

that RSDs are not taken into account here, as the goal is to derive 

the large-scale n ( r ) behaviour, which will not be affected by RSD 

significantly due to continuity within the surv e y. 

The number of objects N ( r ) within a bin of width � r centred at 

the comoving distance r is related to the observed number density 
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n ( r ) via 

N ( r) = 

∫ r + �r / 2 

r −�r / 2 

n ( r ′ ) r ′ 2 
∫ π

0 

sin θ

∫ 2 π

0 

W ( r ′ , θ, φ) d r ′ d θ d φ, (8) 

where W ( r , θ , φ) is the surv e y window function that generally 

depends on r , the polar angle θ , and the azimuthal angle φ. In the 

remainder of this work, we will assume simple surv e y shapes for 

light-cones with W ( r min ≤ r ≤ r max , θ ≤ θmax , φ) = 1 and W = 0 

elsewhere. In this case, θmax is the half-opening angle of the surv e y 

and r min and r max are the nearest and farthest inferred distances of 

any object in the surv e y to the observer. The window function can 

easily be generalized to more complex survey shapes. The number 

density within each bin can then be estimated from the number of 

objects in it: 

n ( r ) ≈ N ( r ) 

2 πr 2 (1 − μmin ) �r 
, (9) 

where we assumed that � r is small compared to r and μmin ≡
cos θmax . 

2.2 Poisson sampling a random catalogue 

The purpose of the random catalogue used within pair-count estima- 

tors such as the LS estimator is to serve as a sample of a homogeneous 

distribution that mimics the o v erall radial distribution of the data 

catalogue. In general, the n ( r ) measured from the data will exhibit 

fluctuations around the underlying background evolution (which is 

the quantity we are interested in) due to galaxy clustering, and these 

fluctuations become more pronounced as the half-opening angle of 

the surv e y gets smaller (ef fecti vely this is due to increasing cosmic 

variance). Hence, in order to keep the information to be gained from 

the clustering along the line of sight in the estimate, smoothing 

the n ( r ) is desirable. The analytical form of this function is not 

generally defined, as it depends on the surv e y selection function and 

on the intrinsic redshift evolution of the abundance of the observed 

objects, which in turn depends on the physical properties of the 

objects, i.e. their masses, luminosities, or colours. Within this work, 

we perform a third-order polynomial fit to the measured n ( r ), to 

model the o v erall background evolution of the number density of 

‘observed’ dark matter haloes (see Section 3 for more details). 

We then Poisson sample a random catalogue from the n ( r ) 

distribution using the inversion method, where random numbers 

are drawn from a uniform distribution between zero and one and 

converted into a distance r by inverting the cumulative probability 

distribution, 

P cumul ( r ) = 
2 π (1 − μmin ) 

N 

∫ r 

r min 

n ( r ′ ) r ′ 2 d r ′ , (10) 

where N is the total number of objects in the data catalogue. Sampling 

N R = αN objects results in a density profile αn ( r ). In the case of the 

third-order polynomial fit to n ( r ), the integral for the cumulative 

probability can be easily calculated analytically. If the functional 

form of the n ( r ) is not known, e.g. if it is simply a result of smoothing 

the measured n ( r ) with some kernel, the integral can be performed 

numerically. We interpolate such n ( r ) with a cubic spline kernel to 

achieve high numerical precision in the integral. 

In general the functional form of P cumul is not known, and even if it 

is known, finding the inverse is not al w ays trivial. Hence we simply 

find the mapping between r and P cumul using again a cubic spline 

interpolation. 

We randomly sample the cos θ from a uniform distribution be- 

tween μmin and 1, and the φ from a uniform distribution between 0 and 

2 π . These Poisson-sampled randoms are then the initial catalogues 

used for creating the glass-like random catalogues. 

2.3 From Poisson random catalogues to glass-like random 

catalogues 

Starting from an initial set of Poisson-sampled objects distributed 

randomly and uniformly in a periodic box one can create a glass 

by iteratively displacing the objects with a repellent force acting 

between each pair of objects until an equilibrium distribution is 

reached. It is convenient to assign some mass to the objects and 

simply use the force of gravity acting in the opposite direction. A 

full N -body simulation would be the most accurate implementation 

of this displacement, but this requires additional computing resources 

which might become too large in comparison to the eventual gain 

in accuracy of the estimator. Hence, in this work, we employ 

the Zeldovich approximation as suggested by D ́avila-Kurb ́an et al. 

( 2021 ). 

While this is more or less straightforward to implement for 

distributions with a uniform number density, i.e. n ( r ) = const., for a 

non-uniform n ( r ) additional steps are required to include the effects of 

external forces that force the objects to take the desired distribution. 

Those steps will be outlined below. 

2.3.1 Zeldovich approximation 

Lagrangian perturbation theory models the gravitational dynamics 

on large scales in the Universe, where matter density perturbations 

are small, to high accuracy. A central quantity in this theory is the 

displacement field � � , which relates the initial Lagrangian position 

of a fluid element � q to Eulerian positions � x observed at time t , 

� x ( � q , t) = � q + � � ( � x , t) . (11) 

Assuming mass conservation between the Eulerian and Lagrangian 

frame, the displacement field can then be related to the Eulerian 

density perturbations. The linear-order solution of the displacement 

field is 

� ∇ q · � � 1 ( � q , t) = −δ1 ( � x , t) , (12) 

where δ1 is the linear contribution to the density contrast defined in 

equation ( 2 ) and � ∇ q is the differential nabla operator in Lagrangian 

coordinates, i.e. � ∇ q · � a gives the divergence of the vector field � a . 
The displacement field is solved for in Fourier space: 

� � 1 ( � k , t) = 
i � k 
k 2 

δ1 ( � k , t) , (13) 

where we use the following Fourier convention: 

˜ f ( � k ) = 

∫ 
d 3 xf ( � x ) e −i � k ·� x , (14) 

f ( � x ) = 
1 

(2 π ) 3 

∫ 
d 3 k ˜ f ( � k ) e i � k ·� x . (15) 

Switching the sign of the displacement field ef fecti vely mimics 

a situation with repellent gravitational forces. This can be used 

to create a glass-like distribution from an initial Poisson distribu- 

tion, if such a displacement is applied iteratively until an equilib- 

rium configuration is reached, where all the repulsive forces are 

balanced. 

Numerically this procedure is implemented as follows. First, the 

domain is discretized into a sufficiently fine grid and the masses of 

the particles are assigned to the grid cells with a mass assignment 

scheme, e.g. one of the ‘nearest grid point’, ‘cloud in cell’, or 
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‘triangular shaped cloud’ schemes. The density contrast within each 

grid cell is estimated according to equation ( 2 ) and then Fourier trans- 

formed using a fast Fourier transform (FFT) algorithm. The Fourier- 

space displacement field in each grid cell is then estimated from the 

linear density contrast in each grid cell following equation ( 13 ), and 

transformed back with an inverse FFT. Finally the displacement field 

is interpolated at the particle positions with a scheme consistent with 

the chosen mass-assignment scheme. Its ne gativ e value is then used 

to update the particle positions. The density contrast within each cell 

is updated and the process is repeated until the displacements are 

sufficiently small. 

If a given redshift-dependent n ( r ) distribution is to be repro- 

duced, it can be incorporated into the background number density 

from which the density contrast is calculated, n̄ → n̄ ( r), i.e. the 

density contrast in each grid cell is calculated with respect to the 

desired radially dependent number density of the glass-like random 

catalogue. 

In order to achieve periodic boundary conditions, the observer is 

placed in the centre of the box, i.e. the distance r to the centre of 

the box is set to zero, and the box size is chosen so that its side 

length is at least twice the maximum comoving distance r max in the 

surv e y. A buffer zone is added for distances within the box that are 

larger than r max , with constant background number density n̄ ( r > 

r max ) = n ( r max ) which ensures smooth and differentiable boundary 

conditions required for the FFT within the periodic box. Grid cells 

that are located at r < r min are assigned a background number density 

of n̄ ( r < r min ) = n ( r min ). 

We note that the so-defined n̄ ( r) is not differentiable at r min 

and r max , but as long as n ( r ) evolves reasonably weakly within 

the surv e y, this does not cause strong edge effects when later 

Fourier transforming the number densities on the grid, as the non- 

differentiability gets smoothed out by the sampling of the background 

number density on the grid. For stronger evolutions, the n̄ ( r) can be 

extrapolated to r that lie sufficiently outside of the surv e y, so that the 

resulting glass catalogue does not suffer from edge effects near r min 

and r max . Ho we ver, this requires increasing the size of the buffer zone 

to ensure smoothness on the boundaries, which in turn increases the 

required grid resolution to achieve the same resolution within the 

actual surv e y volume. 

The glass is then initialized by Poisson sampling a random 

catalogue as outlined in Section 2.2 within the full spherical surv e y 

shell, i.e. setting μmin = −1, and Poisson sampling uniformly from 

n ( r < r min ) ≡ n ( r min ) and, respectively, n ( r > r max ) ≡ n ( r max ) in 

the buffer zones. We then iteratively displace the objects with the 

rev ersed Zeldo vich displacement field N iter times with the goal to 

achieve a glass-like structure. After N iter iterations, only the objects 

within the specified surv e y volume are kept in the final glass-like 

catalogue. 

Depending on the Fourier grid resolution, after a certain amount 

of iterations, the objects will start to align with the grid, ef fecti vely 

introducing long-range periodicities in the distribution, which is to 

be a v oided if the goal is to create a non-periodic glass. Hence, a 

sweet spot is to be found, where each iteration reduces the initially 

Poisson variance, while too many iterations lead to a periodic crystal- 

like structure. Again, such a crystal-like structure is undesirable for 

the task at hand, because it introduces artificial periodicities and 

anisotropies into the random catalogue. 

2.4 Measuring the 2PCF 

The LS estimate of the 2PCF is performed according to equation 

( 3 ), where we use a mid-point line-of-sight definition: � s = � x + � d / 2. 

Equation ( 3 ) can be used for the cross-correlation between two sets of 

objects, D 1 and D 2 , as well as for the autocorrelation by substituting 

D 2 and R 2 with D 1 and R 1 . 

We note that in the case of autocorrelations, the glass approach 

requires using two separate glass catalogues, since the data points 

within the glass are now correlated. Using only one glass cata- 

logue would lead to a biased estimate of the R 1 R 2 ( d , μ) (D ́avila- 

Kurb ́an et al. 2021 ). This is not a necessary step when estimating 

autocorrelations using a Poisson-sampled random catalogue, but 

since using two separate random catalogues lowers the variance 

of the estimator (D ́avila-Kurb ́an et al. 2021 ), we will also use two 

separate Poisson-sampled random catalogues for fair comparisons of 

variances of the autocorrelation estimates using glasses and Poisson 

samples. 

In this work, we are using a modified version of the publicly 

available code CUTE (Alonso 2012 ) that implements the described 

LS estimator in a very efficient way making optimal use of parallel 

computing. The modifications follow the procedure of Breton et al. 

( 2019 ), which allows for the measurement of odd multipoles in 

the full three-dimensional (3D) correlation function. We note that 

we use the cross-correlation algorithm of CUTE even for the 

autocorrelations, meaning that we double count the pairs in the data 

catalogues and hence set δij to zero in equation ( 4 ). 

The multipoles are then estimated from the full correlation 

function according to 

ξℓ ( d ) ≈
2 ℓ + 1 

2 

1 ∑ 

μ=−1 

ξLS ( d , μ) L ℓ ( μ) �μ, (16) 

where L ℓ ( μ) is the ℓ th order Legendre polynomial and �μ is the 

width of the μ-bin. 

2.5 Variance of the LS estimator 

Let us reconsider the LS estimator of equation ( 3 ). The bias and 

variance of the LS estimator has been derived in detail in Landy & 

Szalay ( 1993 ), assuming an infinitely large random catalogue. In 

this limit, and with infinitesimally small bins, the estimator is 

unbiased and has almost Poisson variance. In Keih ̈anen et al. ( 2019 ), 

the deri v ation was generalized to finite random catalogues, which 

introduces a small bias to the estimate. While the variance of the LS 

estimate depends on the size of the bins used for the pair counts, as 

well as on geometric properties of the surv e y (these are the so-called 

edge terms in the variance), to zeroth order in ξ the LS variance 

is dominated by the Poisson variances of the pair counts. Then, 

keeping the number of objects in the data catalogues fixed, the biggest 

contribution to the variance of the LS estimate comes from the D i R j 

terms, as their Poisson variance decreases as σ 2 ( D i R j ) ∝ N 
−1 
R j 

. The 

contribution from the R 1 R 2 term is suppressed, as it has a variance 

that decreases more quickly, σ 2 ( R 1 R 2 ) ∝ N 
−1 
R 1 

N 
−1 
R 2 

. F or v ery large 

numbers of objects in the Poisson-sampled random catalogue, 

the variance of the LS estimator is hence expected to be almost 

proportional to N 
−1 
R j 

. 

Using glass-like catalogues instead of Poisson-sampled catalogues 

leads to a different expected variance of the LS estimator. We will 

assume that its variance is still dominated by the variance of the 

D i R j terms, which is now no longer Poisson. As discussed before, 

the variance within a sphere of radius R scales like R 
−4 for a glass 

distribution, in contrast to the R 
−3 scaling of a Poisson distribution. 

Increasing R at fixed number density of objects is equi v alent to 

increasing the number density of objects within a sphere at fixed R . 

From this argument and from N R j ∝ R 
3 it follows that in the limit 
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of very large N R j the variance of D i R j approximately evolves like 

N 
−1 
R j 

if the R j catalogue is Poisson-sampled, and it approximately 

evolves like N 
−4 / 3 
R j 

for a glass catalogue. If the number of objects in 

the random catalogue is much larger than the number of objects in the 

corresponding data catalogue by a factor of α, i.e. N R j = αN D j , then 

we expect the standard deviation σ of the LS estimate to decrease 

approximately like σ ∝ α−0.5 for the estimate utilizing the Poisson- 

sampled random catalogues, and like σ ∝ α−2/3 for the estimate 

derived from the glass-like catalogues. 

3  DA  TA  C A  TA L O G U E S  

To test the validity of our approach for generating glass-like random 

catalogues with a specified n ( r ) distribution, we estimate the two- 

point autocorrelation and cross-correlation functions for a set of 

particle and halo light-cones and compare the bias and variance 

of the estimators using different numbers of objects within the 

glass and random catalogues. The particle light-cone used in this 

work is generated with gevolution , a relativistic N -body code for 

cosmological simulations which produces light-cone data in comov- 

ing space during run time (Adamek et al. 2016 ). Notably, the full 

space–time metric on the light-cone is stored, allowing for self- 

consistent ray tracing of the objects on the light-cone. In this work, 

we make use of the full-sky particle light-cone of the UNITY2-LOWZ 

simulation, with a number of N part = 5760 3 particles within a periodic 

box of volume V box = (4032 Mpc h −1 ) 3 . This translates to a mass 

resolution of M part = 3 × 10 10 M ⊙ h −1 . Within gevolution the force 

of gravity acting on each particle is calculated with a particle-mesh 

scheme—the mesh resolution within the UNITY2-LOWZ simulation is 

700 kpc h −1 , i.e. the number of grid cells is exactly the number of 

particles in the periodic simulation box. The underlying cosmology 

is a standard Lambda cold dark matter model with three neutrino 

species with masses of 0, 0 . 008 689, and 0 . 05 eV , respectively. The 

cosmological parameters are set to A s = 2.215 × 10 −9 , n s = 0.9619, 

h = 0.67, 	b = 0.049, 	cdm = 0.26 858, and T CMB = 2 . 7255 K. 

Adding the massive neutrino contribution to the total matter density, 

we end up with 	m = 0.31 898 and 	
 = 0 . 68095, i.e. the global 

space–time is flat. The initial conditions are generated from the 

linear transfer functions of CLASS (Blas, Lesgourgues & Tram 

2011 ). In Lepori et al. ( 2023 ), dark matter haloes are identified 

as spherical o v erdensities by running the ROCKSTAR halo finder 

(Behroozi, Wechsler & Wu 2013 ) on the particle light-cone in 

comoving space. The haloes and particles are then raytraced through 

the metric light-cone using the ray-tracing algorithm described in 

Lepori et al. ( 2020 ) to finally obtain a full-sky particle catalogue and 

a full-sky halo catalogue on the light-cone in redshift space, including 

RSD and other relati vistic ef fects. In this w ork, we mak e use of those 

catalogues. Specifically, we select a subset of particles and haloes 

from the full light-cone outputs at redshifts 0.05 ≤ z < 0.5, which 

translates to r min ≈ 148 Mpc h −1 and r max ≈ 1313 Mpc h −1 . For the 

particle light-cone we randomly select ∼5 × 10 6 objects and from 

the halo catalogue we extract two subsamples: one that contains 

low-mass haloes that are each made up of 30 ≤ N part < 40 Friends- 

of-Friends (FoF) particles as identified by ROCKSTAR , corresponding 

to an FoF mass range of 9 × 10 11 ≤ M FoF < 1.2 × 10 12 M ⊙ h −1 , and 

one that contains high-mass haloes that are made up of N part ≥ 300 

particles each, corresponding to masses M FoF ≥ 9 × 10 13 M ⊙ h −1 . 

The catalogues used in this work are summarized in Table 1 . For 

the halo catalogues, we fit a polynomial of third order to the n ( r ), 

weighting the fit by the inverse of the Poisson error within each shell, 

Table 1. Summary of data catalogues used in this work. All catalogues are 

light-cones on the full sky with a redshift range of 0.05 ≤ z < 0.5. 

Object type Number of objects Number of particles per object 

Particle 4999 574 N part = 1 

Low-mass halo 5759 987 30 ≤ N part < 40 

High-mass halo 5204 348 N part ≥ 300 

Figure 1. Number density of objects in the particle and halo catalogues 

studied in this work. The solid lines represent the number of objects per 

(10 Mpc h −1 ) 3 within spherical shells of thickness �r ≈ 12 Mpc h −1 . The 

orange dashed line represents the constant average number density of the 

particles, while the blue dashed line represents the third-order polynomial fits 

to the n ( r ) curves of the halo catalogues. 

i.e. we minimize 

E = 

N ∑ 

i= 0 

∣∣∣∣
n i − ˆ n 

σi 

∣∣∣∣
2 

, (17) 

where n i is the number density within the i th r -bin, ˆ n the value of 

the polynomial at the i th r -bin, and σ i the standard deviation of 

the number density within the i th r -bin, which is assumed to be 

approximately Poisson, 

σi = 

√ 
N i 

V i 
, (18) 

where N i is the number of objects in the i th bin and V i is the 

volume of the i th shell with width � r . For the particle light-cone, we 

assume n ( r ) to be constant, as the number of dark matter particles 

is conserved in the simulation and there is no selection function for 

our surv e y, i.e. all objects are observ ed with a probability of P = 1. 

The number density of the particles n ( r) = const. = n̄ is estimated 

from dividing the total number of particles in the catalogue by the 

surv e y volume. We plot the radially dependent number density of 

objects for each catalogue in Fig. 1 , together with the background 

n ( r ) derived from the polynomial fits to the binned halo number 

densities and the constant value associated with the particle number 

density. 

3.1 Glass catalogue specifications 

Following the steps outlined in Section 2 , we create Poisson-sampled 

random catalogues and glass-like random catalogues with different 

numbers of objects N R i = αN D i , where α ∈ { 0.5, 1, 2, 10, 20 } . 
To be precise, for each data catalogue listed in Table 1 and each 

value of α, we create 20 pairs of independent random catalogues 

R 1 and R 2 to be used for the LS estimate according to equation ( 3 ), 
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Figure 2. Number density of objects in the particle and halo data catalogues 

(dotted), and of corresponding Poisson-sampled random catalogues (dash–

dotted) and glass catalogues (solid). The curves represent the number 

of objects per (10 Mpc h −1 ) 3 within spherical shells of thickness �r ≈
12 Mpc h −1 . 

giving 40 independent Poisson-sampled and 40 independent glass- 

like random catalogues per α per data catalogue. We note that the 

Poisson-sampled catalogues have exactly N R i = N D i objects, while 

the glass-like catalogues can end up with more or fewer objects as 

some objects can be displaced across the surv e y volume boundaries 

during the Zeldovich iterations. The fluctuation in the number of 

objects in the glass-like catalogues is below 1 per cent of the desired 

number. 

We choose a number of Zeldovich iterations N iter = 2, the impact 

of this choice is tested by creating additional glass-like catalogues for 

the high-mass halo catalogue, using numbers of iterations N iter ∈ { 1, 

2, 3, 5, 10 } in Appendix A . The box size is chosen such that the buffer 

zone spans ∼ 400 Mpc h −1 on both sides of each direction, i.e. the 

side length of the cubic box in which we evolve the glasses is L box = 

2 × ( r max + 400) Mpc h −1 ≈ 3427 Mpc h −1 . Following the approach 

of D ́avila-Kurb ́an et al. ( 2021 ), the number of grid points is chosen 

such that the cell size is approximately one quarter of the average 

inter-particle separation in the light-cone, i.e. for the particle light- 

cone, with n ≈ 0 . 5 ( h/ 10 Mpc ) 3 the average inter-particle separation 

is d inter = n −1 / 3 ≈ 12 . 6 Mpc h −1 . This leads to a required number of 

N grid ≈ 1080 grid cells in one grid dimension, i.e. the total number 

of grid cells is ( N grid ) 
3 . In order to speed up the FFT, we choose the 

nearest number that is a power of two, which results in N grid = 1024. 

We test the impact of this choice by varying the number of grid cells 

N grid ∈ { 128, 256, 512, 1024 } in Appendix A . We employ a ‘cloud 

in cell’ mass assignment scheme that is implemented in the public 

code PYLIANS (Villaescusa-Navarro 2018 ) to distribute the particle 

point masses onto the grid and to interpolate the displacement field 

at the particle positions. 

In Fig. 2 , the n ( r ) measured from each data catalogue (dotted 

curves) are plotted together with the n ( r ) of corresponding Poisson- 

sampled catalogues (dash–dotted curve) and glass catalogues (solid 

curve) with α = 1. The density distributions of the Poisson-sampled 

random catalogues as well as those of the glass-like catalogues are in 

good agreement with the measured n ( r ) of the data. The n ( r ) of the 

Poisson-sampled catalogues fluctuate more strongly than the n ( r ) of 

the glass-like random catalogues. 

In Fig. 3 , we show the projected number density of central slices 

with a thickness of �y = 100 Mpc h −1 through the high-mass halo 

light-cone (top panel), and a corresponding Poisson-sampled random 

catalogue (bottom-right panel) and glass-like random catalogue 

(bottom-left panel) with α = 1. The glass catalogue appears smoother 

Figure 3. Projected number of objects in central slices with thickness �y = 

100 Mpc h −1 through the high-mass halo light-cone (top panel), a high-mass 

halo Poisson-sampled random catalogue with α = 1 (bottom-right panel), 

and a corresponding glass catalogue (bottom-left panel). 

Figure 4. Power spectrum of the particle catalogue in the full box with 

N grid = 512, for different numbers of Zeldovich iterations N iter . Before 

applying an y Zeldo vich displacement the power spectrum is equal to the 

Poisson shot noise, P ( k) = 1 / ̄n . After one Zeldovich iteration, the power on 

scales larger than the average inter-particle separation approaches P ( k ) ∝ k 4 . 

The blue dashed vertical line marks the Nyquist wave number k Nyq , the orange 

dashed vertical line marks the wavelength corresponding to the maximum 

scale of interest in our LS estimator of the 2PCF, λ = d max = 120 Mpc h −1 . 

and exhibits smaller fluctuations than the Poisson-sampled random 

catalogue on intermediate to large scales, while still reproducing the 

n ( r ) of the data catalogue. 

The number density of the particle catalogue is conserved, which 

means that the objects in the Poisson-sampled random catalogues and 

the glass-like catalogues are distributed uniformly in the periodic 

box (before removing the objects outside of the surv e y volume). 

We show the power spectrum of these catalogues estimated with 

PYLIANS using a 512 3 grid in Fig. 4 . The case without any Zeldovich 

iterations, N iter = 0, corresponds to the Poisson-sampled catalogue, 

and the cases with N iter > 0 correspond to the glass-like catalogue 

after N iter Zeldovich iterations. The Poisson-sample has a shot 

noise power spectrum, P ( k) = 1 / ̄n , as expected. The Zeldovich 
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iterations decrease the power on scales larger than the average inter- 

particle separation. The Nyquist wave number is marked with the 

blue dashed vertical line. The orange dashed vertical line marks 

the wave number that corresponds to fluctuations with wavelength 

equal to the maximum separation considered in the LS estimate of 

the 2PCF, λ = d max = 120 Mpc h −1 . Fluctuations with wavelengths 

much larger than that are expected to contribute only weakly to the 

correlation function and its v ariance belo w d max . We find that for k 

abo v e that wave number and below the Nyquist wave number the 

power spectrum of the glass-like catalogue is very close to P ( k ) ∝ k 4 

after N iter = 2 Zeldovich iterations, which is the result for a glass 

distribution. 

4  RE SULTS  

4.1 2PCF multipoles 

We estimate the full 3D 2PCF of all possible combinations of data 

catalogues (DD), with 500 bins in −1 ≤ μ ≤ 1 and 25 bins in 

0 ≤ d ≤ 150 Mpc h −1 according to equation ( 3 ). This leads to d - 

bin widths of �d = 6 Mpc h −1 . For each DD pair, we estimate 

the 2PCF using different types of random catalogues (C), which 

can be either Poisson-sampled random catalogues (R) or glass-like 

random catalogues (G), and different values of α. For each of these 

cases, we perform 20 independent estimates of the 2PCF, using 

independent pairs of the same type of random catalogue. From each 

full 2PCF estimate, we proceed to estimate the monopole, dipole, 

and quadrupole ( ℓ = 0, ℓ = 1, and ℓ = 2) following equation ( 16 ). 

Then, the sample mean 〈 ξC ,α
ℓ, DD ( d) 〉 within each bin of d is estimated 

from the 20 individual 2PCF multipole estimates according to 

〈 ξC ,α
ℓ, DD 〉 ( d ) ≡

1 

20 

20 ∑ 

i= 0 

ξ
C ,α
i,ℓ, DD ( d ) , (19) 

where the ξ
C ,α
i,ℓ, DD ( d) are the individual LS estimates of the 20 2PCFs 

using the same type of random catalogue and the same value of α. 

Then we estimate the sample standard deviation σ
C ,α
ℓ, DD ( d) as 

σ
C ,α
ℓ, DD ( d) ≡

√ √ √ √ 1 

19 

20 ∑ 

i= 0 

(
ξ

C ,α
i,ℓ, DD ( d) − 〈 ξC ,α

ℓ, DD 〉 ( d) 
)2 

, (20) 

which is the square root of the sample variance estimator. Fig. 5 

shows the sample mean of the multipoles of the particle (P), low- 

mass halo (L), and high-mass halo (H) autocorrelation and cross- 

correlation multipoles using the Poisson-sampled random catalogues 

with α = 20, which is understood to be an estimate close to the true 

2PCFs of the respective data catalogues. For the even multipoles, 

the absolute values are plotted. The monopole is ne gativ e for values 

of d � 117 Mpc h −1 , and the quadrupole is al w ays ne gativ e in the 

range of d shown in the figure. We show here only the dipoles 

of the cross-correlations, as the autocorrelations have a vanishing 

dipole. The errorbars indicate the standard deviations in each bin 

of d . We additionally plot the theoretical prediction for the matter 

autocorrelation at the ef fecti ve redshift of the particle catalogue, 

z̄ = 0 . 364 produced by COFFE (Tansella et al. 2018 ), which includes 

all linear order relativistic effects in the full-sky 2PCF. 

The monopole signal of the particle autocorrelation agrees well 

with the theoretical linear prediction for the matter autocorrelation. 

The BAO peak in the correlation of the particle catalogue is broader 

than the one of the linear prediction, which is an expected result from 

non-linear clustering in redshift space (McCullagh & Szalay 2012 , 

2015 ). 

Figure 5. The sample mean monopole, dipole, and quadropole of the LS 

estimates of the particle (P), low-mass halo (L), and high-mass halo (H) 

autocorrelations and cross-correlations using 20 pairs of independent Poisson- 

sampled random catalogues with α = 20. We show the absolute values of 

the even multipoles; the monopole becomes negative at d � 117 Mpc h −1 , 

while the quadruopole is al w ays ne gativ e in the depicted range of d . F or the 

dipole, only the cross-correlations are shown, as the autocorrelation dipoles 

vanish. The errorbars indicate the standard deviation in each bin. The dotted 

grey lines are the linear theory predictions for the particle autocorrelation 

multipoles at the ef fecti ve redshift ̄z = 0 . 364 produced with COFFE . 

The dipole signal is an expected result for redshift space cross- 

correlations of differently biased tracers (Bonvin, Hui & Gaztanaga 

2014 ), such as low- and high-mass haloes (in this context, the linear 

bias b is a quantity which encapsulates how much stronger a field δH 

is clustered in comparison to the matter field δm via the relation δH = 

b δm , from which it is evident that the linear bias is also expressed 

through the amplitude of the 2PCF monopole compared to the 2PCF 

monopole of matter). Here, linear theory predicts that the amplitude 

of the dipole signal is positively affected by large differences in the 

linear bias between the correlated populations. The linear biases of 

the high- and low-mass halo catalogues can be estimated from their 

monopoles and the particle autocorrelation monopole: 

b = 

√ 

ξ0 , DD 

ξ0 , PP 
, (21) 

where DD is either HH for the high-mass haloes or LL for the 

lo w-mass haloes. Alternati vely, one can di vide the respecti ve halo- 

particle cross-correlation monopole by the particle autocorrelation 

monopole to get a separate estimate of the linear bias. Using both of 
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these methods, we derive a linear bias b HH ≈ 1.76 for the high-mass 

halo catalogue and b LL ≈ 1.47 for the low-mass halo catalogue. The 

linear bias of the particle catalogue is per definition b PP = 1, so the 

linear bias difference between the high-mass halo catalogue and the 

particle catalogue is larger than the linear bias difference between the 

high- and the low-mass halo catalogue. Taking only this linear bias 

difference into account, the expected dipole amplitude of the cross- 

correlation between the high-mass haloes and the particles should be 

larger than that of the cross-correlation between high- and low-mass 

haloes, but the opposite is true. 

There is an additional contribution to the redshift-space 2PCF 

dipole from the so-called evolution bias (Maartens et al. 2021 ): 

f evo ≡ d ln n ( z) 

d ln a 
, (22) 

where n ( z) is the comoving number density of the catalogue and 

a is the cosmic scale factor, a = 1/(1 + z). The evolution bias 

quantifies the evolution of a population’s comoving number density 

with respect to redshift due to e.g. merging—as can be seen in Fig. 1 

the number density of the high-mass haloes decreases with redshift, 

while the number density of low-mass haloes increases. Similar to 

the linear bias, a large evolution bias difference leads to a predicted 

increase of the dipole amplitude. We estimate the evolution bias of the 

halo catalogues according to equation ( 22 ), and get f evo 
HH ≈ 0 . 85 and 

f evo 
LL ≈ −0 . 28. Again, per definition the evolution bias of the particle 

catalogue is zero, so indeed there is a larger bias difference between 

the high- and the low-mass halo catalogue, which might explain why 

the dipole amplitude is larger for the high-mass halo–low-mass halo 

cross-correlation. Ho we ver, plugging these v alues into the theoretical 

model of COFFE (not shown here), we still find a disagreement 

with the dipole amplitude of our measurements. We suspect that 

a contributing factor could be the unequal distribution of the two 

halo populations across different redshifts. While COFFE predicts the 

dipole signal at a fixed ef fecti ve redshift, the dipole we observe is 

taken o v er a relativ ely lar ge redshift range. At lar ge redshifts, there 

are more low-mass haloes and fewer high-mass haloes, possibly 

contributing to the final dipole with a larger bias difference than what 

is inferred from the 2PCF monopoles taken across the whole redshift 

range. The exact theoretical modelling of this effect is beyond the 

scope of this paper and will be investigated in future work. 

The linear biases are also expressed in the quadrupole estimates. 

While the linear theory prediction follows approximately the trend of 

the particle catalogue estimate, it does not match exactly. We suggest 

this can be attributed to non-linear contributions like the finger-of- 

God effect (Jackson 1972 ), which is an apparent elongation along 

the line of sight of the redshift-space tracer distribution close to the 

centres of clusters, induced by a Doppler shift from the velocity 

dispersion. The discrepancy between the linear theory prediction of 

Kaiser ( 1987 ) and measurements on scales below ∼ 20 Mpc h −1 is 

well known and attempts at including this effect into the modelling 

have been made (see e.g. Peacock et al. 2001 ; Scoccimarro 2004 ; 

Bianchi, Chiesa & Guzzo 2015 ; Bianchi, Perci v al & Bel 2016 ; 

Satpathy et al. 2017 ). In the quadrupole the finger-of-God effect 

acts opposite to the RSDs on larger scales which appear as a 

flattening of the tracer distribution due to the Doppler shift induced 

by coherent infall velocities of the tracers. Indeed, in Fig. 5 , the 

estimated quadrupole of the particle catalogue 2PCF is suppressed 

with respect to the theory prediction on scales below ∼ 80 Mpc h −1 , 

with the difference becoming larger going to smaller scales, which 

supports the assumption of non-linear velocity contributions playing 

a role in explaining this discrepancy. 

Figure 6. Bias of the multipoles of the estimated cross-correlation between 

the high-mass halo catalogue and the particle catalogue with different choices 

of random catalogues and values of α. Solid lines represent results using 

glass-like catalogues, while dash–dotted lines represent results from using 

Poisson-sampled random catalogues. The biases of the LS estimates of the 

other data catalogue pairs are plotted with a semitransparent line style. 

4.2 Bias and standard deviation of the 2PCF multipole 

estimates 

We now quantify the accuracy and precision of the different LS 

estimates. In this context, we define the bias �ξ
C ,α
ℓ, DD ( d) of each sample 

mean 2PCF multipole with respect to the corresponding estimate 

using the Poisson-sampled random catalogues with α = 20: 

�ξ
C ,α
ℓ, DD ( d) ≡ 〈 ξC ,α

ℓ, DD 〉 ( d) − 〈 ξR ,α= 20 
ℓ, DD 〉 ( d) , (23) 

which contains information on the accuracy of the 2PCF estimate. 

The precision of each estimate is quantified by the ratio of its standard 

deviation to the standard deviation of the corresponding measurement 

using the Poisson-sampled random catalogue with α = 20: 

R 
C ,α
ℓ, DD ( d) ≡ σ

C ,α
ℓ, DD ( d) 

σ
R ,α= 20 
ℓ, DD ( d) 

, (24) 

The biases and standard deviations of the 2PCF estimates of the 

different data catalogue pairs DD ∈ { HH, HL, LL, HP, LP, PP } are 

similar when the particular choice of random catalogue and α is 

the same. In Fig. 6 , we plot the bias of the multipoles of the cross- 

correlation between the high-mass halo catalogue and the particle 

catalogue for different choices of random catalogues and values of 

α. The biases of the LS estimates of the other data catalogue pairs are 

plotted with a semitransparent line style to demonstrate the expected 
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range of the bias depending on the used data catalogues. The absolute 

value of the bias for all measurements stays well below 10 −4 for all 

multipoles of interest and separations d > 20 Mpc h −1 . Increasing 

the value of α leads to less fluctuations in the bias for all multipoles 

irrespective of the chosen type of random catalogue, and to a smaller 

span between the minimum and maximum bias across the different 

data catalogue combinations. At small scales, d < 20 Mpc h −1 , the 

bias fluctuates more strongly, e.g. for the monopole using the glass- 

like catalogue with α = 0.5, it increases up to 2 × 10 −4 . We suspect 

this is mainly due to a noisier estimate of the 2PCF multipoles on 

smaller scales, as on these scales there are fewer pairs to be counted. 

It is expected that the measurements using the glass-like catalogues 

behave like the measurements using the Poisson-sampled random 

catalogues with the same α at scales below the average inter- 

particle separation. Nevertheless, most evident for the monopole 

estimates, the glass results start to disagree systematically with the 

results obtained from using the Poisson-sampled random catalogues 

at small scales, d < 20 Mpc h −1 , as the bias increases to values of 

∼2 × 10 −4 at d = 10 Mpc h −1 for any of the glass-like catalogues 

used in this work. We suspect that this additional bias at small scales 

can be attributed to the limitations of the Zeldovich approximation, 

which requires a discrete grid o v er which the density distribution is 

smoothed. If the size of the grid cells is not significantly smaller than 

the average inter-particle separation, a bias is introduced to the LS 

estimate of the 2PCF multipoles on scales below the grid cell size 

(see also Appendix A ). 

We plot the standard-deviation ratio of the estimated multipoles 

of the cross-correlation between the high-mass halo catalogue and 

the particle catalogue for different choices of random catalogues 

and values of α in Fig. 7 . The standard-deviation ratios of the 

LS estimates of the other data catalogue pairs are plotted with 

a semitransparent line style to demonstrate the expected range of 

the standard-deviation ratio depending on the used data catalogues. 

The glass-like catalogues outperform the Poisson-sampled random 

catalogues significantly and to similar degree on all scales considered 

in this work. At α = 1 the standard-deviation ratio using the glass-like 

random catalogues is only R 
G,α= 1 
ℓ, HP ( d) ∼ 2, while for the Poisson- 

sampled random catalogues, it is R 
G,α= 1 
ℓ, HP ( d) ∼ 5, i.e. in this case the 

estimate using the glass catalogue is more than twice as precise as the 

estimate using the Poisson-sampled random catalogue. The standard 

deviation using the glass-like catalogue with α = 2 is almost the 

same as using the Poisson-sampled random catalogue with α = 20, 

which is a significant impro v ement. This holds approximately for all 

autocorrelations and cross-correlations considered in this work, with 

minor fluctuations. 

4.3 Scaling of the standard deviation with α

We now have a closer look at the scaling of the standard deviation 

of the LS estimate with increasing numbers of objects in the 

Poisson-sampled or glass-like catalogues, respectively. To this end, 

we plot the standard-deviation ratio of the estimated multipoles of 

the cross-correlation between the high-mass halo catalogue and the 

particle catalogue in the bin centred at d = 99 Mpc h −1 against α, 

depending on the chosen type of random catalogue, in Fig. 8 . Again, 

the transparent lines show the results for the LS estimates of the 

remaining data catalogue pairs. Here, we also include results from 

using a glass-like catalogue with α = 0.1, which have a significantly 

higher median standard deviation than the other catalogues with 

larger α. From the considerations in Section 2.5 , we expect different 

power -law beha viours of the standard-deviation ratio with increasing 

Figure 7. Standard-deviation ratio of estimated multipoles of the cross- 

correlation between the high-mass halo catalogue and the particle catalogue 

for different choices of random catalogues and values of α in Fig. 7 . Solid 

lines represent results from using glass-like random catalogues, while dash–

dotted lines represent results from using Poisson-sampled random catalogues. 

The standard-deviation ratios of the LS estimates of the other data catalogue 

pairs are plotted with a semitransparent line style. 

α, depending on the type of random catalogues used in the LS 

estimate. We fit power laws to the data (grey dashed lines) and find 

that the standard-deviation ratio of the monopole estimate using the 

glass-like catalogues behaves like R 
G ,α
0 , HP ( d = 99 Mpc h −1 ) ∝ α−0 . 9 

while for the Poisson-sampled random catalogues the power law 

is less steep: R 
R ,α
0 , HP ( d = 99 Mpc h −1 ) ∝ α−0 . 48 ≈ α−0 . 5 . Hence, the 

larger the choice of α, the bigger the advantage of the glass-like 

catalogues. A similar behaviour is found for the other two multipoles 

investigated in this work. The grey dotted line shows the expected 

power law for LS estimates utilizing glass-like catalogues according 

to the considerations in Section 2.5 . The measured power law for the 

LS estimate utilizing glass-like catalogues disagrees slightly with 

the expected result, but is within the range of fluctuations from the 

measurements between all the data catalogue combinations. 

5  C O N C L U S I O N S  

Building on top of the ideas outlined in D ́avila-Kurb ́an et al. ( 2021 ), 

we developed the publicly available code GRLIC , which can be used 

to generate glass-like point distributions with radially dependent 

number densities. The main application of this code is the generation 

of random catalogues for pair-count estimates of N -point correlation 

functions of e.g. galaxy-clustering data on cosmological light-cones. 
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Figure 8. Standard-deviation ratio of the estimated multipoles of the cross- 

correlation between the high-mass halo catalogue and the particle catalogue 

in the bin centred at d = 99 Mpc h −1 using glass-like random catalogues 

(solid curves) and Poisson-sampled random catalogues (dash–dotted curves), 

versus the value of α. The transparent lines show the results for the LS 

estimates of the other data catalogue pairs. We find different power-law 

behaviours for the LS estimates of the 2PCF monopole, depending on the type 

of random catalogue used: R 
G ,α
0 , HP ( d = 99 Mpc h −1 ) ∝ α−0 . 9 and R 

R ,α
0 , HP ( d = 

99 Mpc h −1 ) ∝ α−0 . 48 (dashed grey lines). The power-law behaviour of the 

other two multipoles is similar. Additionally, the grey dotted line shows the 

expected power law for LS estimates utilizing glass-like catalogues according 

to the considerations in Section 2.5 . 

The commonly used LS estimator relies on the assumption that 

a random catalogue with a very large number density is used. If 

this assumption holds the LS estimator is unbiased, and its variance 

is dominated by the variance of the random catalogue. Hence, it is 

common practice to generate Poisson-sampled random catalogues 

that mimic the radially dependent number density and contain a 

factor of order ∼10 to ∼100 more objects than the data catalogues. 

An alternative approach has been explored by D ́avila-Kurb ́an 

et al. ( 2021 ). Glass-like catalogues can be generated from Poisson- 

sampled random catalogues using the Zeldovich approximation, 

and these catalogues exhibit considerably less power on scales 

abo v e the average inter-particle distance, and hence require a lower 

number density than the usual Poisson-sampled random catalogues 

to achieve a similar variance in the LS estimator. This method has 

been applied to data catalogues with uniform background number 

densities, e.g. simulated galaxies within a periodic box, on an equal- 

time hypersurf ace. Glass-lik e catalogues are a convenient choice 

here, because they have already been investigated on their possible 

use for generating pre-initial conditions within cosmological N -body 

simulations, which evolve particles under the influence of gravity 

on an equal-time hypersurface within a periodic box. For the first 

time, we show that it is possible to create glass-like catalogues that 

follo w a gi ven background density distribution on large scales but 

qualitativ ely preserv e the glass-like properties on small scales. This 

is a big advantage to periodic crystals which will have discontinuities 

if their large-scale density is to be inhomogeneous. 

We apply this idea to radially dependent distributions as they 

are common in galaxy or halo catalogues with selection func- 

tions and verify that the non-uniform glass-like random approach 

gives similarly promising results as the y hav e been reported in 

D ́avila-Kurb ́an et al. ( 2021 ). For this purpose, we estimate the 

autocorrelations and cross-correlations of three sets of simulated 

data catalogues using different Poisson-sampled and glass-like 

random catalogues with various numbers of objects: one particle 

catalogue with constant comoving number density, one high-mass 

halo catalogue with decreasing comoving number density as the 

comoving distance increases, and one low-mass halo catalogue with 

an increasing comoving number density as the comoving distance 

increases. We extract the first three multipoles of the LS estimator of 

these 2PCFs and find that the glass-like catalogues generated in this 

way outperform the Poisson-sampled catalogues significantly. 

We find that no significant bias is introduced on most scales 

when using glass-like random catalogues. Only on scales below 

d = 20 Mpc h −1 there is a slight increase of the bias with our fiducial 

set-up, but relative to the signal, it is still very small. The tests 

performed in Appendix A hint to the idea that this additional small 

bias is caused by inaccuracies in the Zeldovich approximation due 

to a limited grid resolution. Hence, it will be interesting to explore 

the results using an N -body PM 
3 scheme, which works just like the 

Zeldovich approximation on large scales, but uses direct particle–

particle force calculations on smaller scales. It is expected that this 

approach will be less biased, but the required additional computing 

resources might not make up for the reduction of the bias. 

Currently, the variance in the estimate of the cosmic 2PCF of 

galaxies is dominated by the sample v ariance. Gi ven the ongoing 

technological advances for cosmological surv e ys we speculate that 

future surv e ys that co v er a larger volume of the observ able Uni verse 

and contain a higher density of tracers of the underlying density 

distrib ution will ha ve reduced sample variance and hence might 

eventually warrant a need for a more precise estimator of the 2PCF, 

which can be acquired by gaining control of the variance arising from 

the statistical fluctuations in the random catalogues. This variance 

can be reduced by increasing the number of objects in the random 

catalogue. 

Alternatively, glass-like catalogues can be used instead of Poisson- 

sampled random catalogues, as the LS estimates using the glass- 

like random catalogues have significantly reduced variance. We 

find a power-law behaviour of the standard-deviation ratio at 

d = 99 Mpc h −1 , where the glass-like estimates of the monopole 

of the cross-correlation between the high-mass haloes and the 

particles follow a steeper power law than the Poisson-sampled 

random estimates: R 
G ,α
0 , HP ( d = 99 Mpc h −1 ) ∝ α−0 . 9 and R 

R ,α
0 , HP ( d = 

99 Mpc h −1 ) ∝ α−0 . 48 . While we reco v er the expected behaviour for 

the standard deviation of the LS estimate using the Poisson-sampled 

random catalogues, the power-law slope for the glass-like random 

catalogues is steeper than the expected value of −2/3. We propose one 

possible explanation for this discrepanc y: F or the measurements with 

α < 1, we suspect that the variance of the R i R j term could become 

important and contribute to the power law with a different slope. 

For the glass distributions, the standard deviation of the R i R j term 

is expected to decrease like N 
−2 / 3 
R i 

N 
−2 / 3 
R j 

≈ N 
−4 / 3 
R i 

. The combined 

contributions of the D i R j and R i R j terms could then lead to a broken 

power law which only goes like α−2/3 for larger values of α, and like 

α−4/3 for small values of α. The value we measure is in between the 

expected values for the two dominant contributions, which could hint 

that indeed both contributions are rele v ant in the range of sampled 

values of α. 

In general, slight deviations from the Poisson variance are expected 

even for the LS estimate utilizing the Poisson-sampled catalogues. 

This is because the bin width and surv e y geometry affect the 

variance via the so-called edge terms (see e.g. Landy & Szalay 1993 ; 
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Keih ̈anen et al. 2019 ). Since the width of the d -bins used in the 

2PCF estimate affects its variance, it matters also when assessing the 

benefit of using glass-like random catalogues o v er Poisson-sampled 

random catalogues (see also Appendix A ). If the bin size is chosen 

to be too small, i.e. much smaller than the average inter-particle 

separation, the variance of the estimate using glass-like catalogues is 

similar to the variance of the estimate using Poisson-sampled random 

catalogues, because in the glass-like catalogue the fluctuations are 

only suppressed on scales larger than the average inter-particle 

separation and fluctuations in the number counts between two small 

neighbouring bins are uncorrelated, just as they are in the Poisson- 

sampled random catalogue. As the bin width is increased, the 

correlated nature of the larger-scale fluctuations in the glass-like 

catalogues makes the variance decrease faster than in the Poisson 

sample, whose fluctuations remain uncorrelated on all scales. This 

could provide another explanation for the unexpected power-law 

slope for the glass-like random catalogues: As we decrease α, but 

keep the bin width fixed, the variance contribution from the bin 

width can become non-negligible such that the variance using glass- 

like random catalogues becomes more similar to the variance one 

gets when using Poisson-sampled random catalogues. 

In future w ork, it w ould be interesting to perform a robust 

theoretical modelling of the variance of the LS estimator using glass- 

like catalogues, in a similar fashion as in Keih ̈anen et al. ( 2019 ), to 

gain a better understanding of this scaling. 

For the data catalogues used in this work, we find that the LS 

estimate using a glass-like catalogue with α = 2 is as precise as 

the LS estimate using a Poisson-sampled random catalogue with 

α = 20. While this translates to a hundredfold speed-up of the 

O( N 
2 ) computation of the R 1 R 2 pair-counts, increasing α further 

w ould mak e the advantage of the glass-like catalogues even more 

pronounced, due to the steeper power law with the glass-like 

catalogues (even though we expect the power-law slope to become 

closer to −2/3 for larger α). 

Our results apply specifically to catalogues with surv e y volumes, 

number densities, and estimator bin widths as specified in this work, 

but should translate to catalogues with different volumes and number 

densities if the d -bin width is adapted accordingly and if a well- 

resolv ed Zeldo vich grid is computationally affordable. 

As an example, consider a typical surv e y with lower number 

density, such as the SDSS DR14Q quasar catalogue (P ̂ aris et al. 

2018 ) which contains around 80 quasars per square degree at 

redshifts 0.9 < z < 2.2 within a surv e y area of 2044 deg 2 . Given 

the redshift depth and the surv e y area, the volume V that contains 

N = 80 deg −2 × 2044 deg 2 = 163 520 quasars is calculated, V = 

4 π /3( r ( z = 2.2) 3 − r ( z = 0.9) 3 ) f , where f is the fraction of the 

surv e y area with respect to the full sky, f = 2044/41253, and the co- 

moving distances to each redshift are r( z = 2 . 2) ≈ 3756 . 5 Mpc h −1 

and r( z = 0 . 9) ≈ 2115 . 4 Mpc h −1 . From these one can estimate the 

observed number density of quasars in that redshift bin to be N / V = n 

≈ 1.8 × 10 −5 h 3 Mpc −3 , which is approximately 28 times lower than 

the number density of the particle catalogue investigated in this work. 

The a verage inter -particle separation is then d inter ≈ 38 Mpc h −1 and 

an impro v ement of the variance is e xpected if the d -bin width is 

chosen to be not much smaller than d inter / α. The required box size 

for such a surv e y is given by twice the distance to the maximum 

redshift z = 2.2 with an additional buffer zone of ≈ 400 Mpc h −1 on 

each side, which results in approximately 8400 Mpc h −1 . Then, the 

required number of grid cells such that the cell size is approximately 

equal to one quarter of the average inter-particle separation is 

N grid = 4 × 8400/38 ≈ 880. The required resolution is similar 

to the resolution used in the paper, so it is reasonable to assume 

that creating glass-like catalogues for this case is efficient. Due to 

the smaller number densities in such a surv e y, the shot noise of a 

Poisson-sampled random catalogue at a fixed α would be larger. One 

could minimize the dominant Poisson variance contribution of the 

data–random pairs by choosing a larger α such that the number of 

random–random pairs with separations below the maximum scale 

of interest remains small enough to be computable in a reasonable 

amount of time. Creating a glass-like catalogue could reduce the 

variance contribution of the data–random pairs even further, and the 

results presented in this work suggest that this relative reduction 

is stronger for larger values of α. The larger volume of the quasar 

surv e y makes the contribution from the sample variance smaller and 

thus increases the relative importance of the variance of the estimator 

itself. Therefore, creating glass-like catalogues for the estimation of 

the 2PCF in such a surv e y is expected to be worthwhile. 

The n ( r ) distributions of the catalogues investigated here vary by 

relatively small amounts over the survey depth. Introducing selection 

functions to the surv e y can lead to less trivial variations of the n ( r ) 

distribution for each catalogue. Tests on artificial catalogues with 

stronger variations in n ( r ) have shown that for these catalogues, glass- 

like catalogues produced with GRLIC lead to similar impro v ements in 

the variance of the estimated 2PCF as was found for the catalogues 

investigated in this work. 

We attempt to model the effects of a surv e y mask in Appendix B 

and find that the estimator variance is reduced in a similar fashion 

when using glass-like random catalogues compared to using Poisson- 

sampled random catalogues for the specified mask, suggesting that 

the geometric contributions to the variance are subdominant. It is 

unclear whether a more complicated mask could eventually lead to 

the geometric contributions to the variance to dominate. When this 

happens, we expect that the advantage of using glass-like random 

catalogues o v er Poisson-sampled random catalogues might differ 

from what is reported in this work—we suspect that the glass-like 

catalogues will exhibit a lower variance contribution from geometric 

effects if compared to Poisson-sampled catalogues, because in 

general the edges of the surv e y will be sampled more smoothly 

by the glass-like catalogue, since its fluctuations are suppressed with 

respect to the Poisson-sampled case on most scales. A detailed study 

of the effects of masks on our results is beyond the scope of this 

paper and is postponed to future work. 

In practice, if GRLIC is to be used for masked surv e y data, it is 

required that the underlying n ( r ) distribution is derived from the 

surv e y beforehand by using equation ( 8 ) and a version of equation 

( 9 ) that models the actual window function of the surv e y instead of 

setting it to 1 everywhere. From this underlying n ( r ) distribution, 

an unmasked glass-like catalogue can be sampled with GRLIC , 

and the surv e y mask is applied to the glass-like catalogue, e.g. 

by weighing each object accordingly, when computing the 2PCF 

estimate. 

We suggest that the glass-like random catalogues will also pro v e 

to be useful for pair-count based estimates of higher order statistics 

such as the three-point correlation function, where the computation 

time-scales like O( N 
3 ). Creating glass-like random catalogues can 

also be beneficial for Fourier-space analyses using e.g. the FKP 

estimator described by Feldman, Kaiser and Peacock (Feldman et al. 

1994 ), where high values of α are required to suppress the estimator 

variance. Here, the requirement of large α does not pose such a big 

problem for the computation time, because FFT algorithms can solve 

the discretized equations quickly on a grid regardless of the size of 

the random catalogue. Ho we ver, being able to reduce the required α

by using glass-like catalogues could be advantageous in some cases, 

e.g. if a speed-up of the mass-assignment procedure used to assign 
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the densities to the grid on which the FFT is performed is desired, or 

if there are memory limitations for storing the random catalogues. 

The main limitations in creating the glass-like catalogues with 

GRLIC are memory requirements for the discretized grid used in 

the Zeldovich approach. The grid needs to be finely spaced in 

order to a v oid biasing of the 2PCF estimate at small scales. For 

surv e ys with maximum redshift z max ≈ 0.5 and comoving number 

densities of n ≈ ( h/ 10 Mpc ) 3 , a grid with N grid = 1024 is sufficient 

for unbiased measurements for d ≥ 20 Mpc h −1 , but the demand for 

a larger number of grid cells increases as the maximum redshift or 

the comoving number density of the survey becomes larger in order 

to ensure a well-resolv ed Zeldo vich grid with as few objects per 

grid cell as possible. In the current implementation of GRLIC , the 

observer is put into the centre of the discretized box, and the box 

size is adjusted to fit the maximum comoving distance of the objects 

within the data catalogue, ef fecti vely increasing the physical size of 

the grid cells. This will make creating glass-like catalogues for very 

deep pencil beam surv e ys with high number densities difficult. In 

the future, this aspect can be made more memory efficient: Instead 

of creating a full spherical glass with the given n ( r ) in a periodic 

cube, from which the final glass-like random catalogue is cut out, 

the surv e y volume can be placed into a minimum bounding box. 

Here, a v oiding unwanted edge effects is more involved, because 

of the discontinuous number densities on the periodic boundaries 

of the bounding box. A transitional region between the survey 

volume and the bounding volume can be implemented to ensure 

stability within the surv e y volume. In the current implementation of 

GRLIC , the bulk of the memory requirement is co v ered by the entities 

stored on the discretized grid. The background number density, the 

density contrast, and the displacement field are stored using single- 

precision floating point numbers. On a grid with N grid = 1024 these 

already require ≈ 4 + 4 + 13 = 21 GB of random-access memory. 

Again this could be circumvented by using PM 
3 N -body simulations 

which do not require high grid resolutions to accurately simulate the 

repellent forces on small scales. Nevertheless it is expected that in 

the near future, memory resources will become more available which 

will make the use of glass-like catalogues even more advantageous 

compared with using Poisson-sampled random catalogues. 
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APPE N D IX  A :  C O N V E R G E N C E  TESTS  

We test the convergence of our fiducial set-up by varying the number 

of Zeldovich iterations N iter as well as the number of grid cells N grid 

used in the generation of glass-like catalogues with α = 1 for the LS 

estimate of the 2PCF multipoles for of the high-mass halo catalogue. 

In general, each successive iteration of the Zeldovich displacement 

represents a higher order correction to the initially Poisson-sampled 

random catalogue, so already after one iteration, the Poisson noise 

is expected to be reduced by the largest amount due to the first-order 

correction. One can increase the number of iterations to add second- 

order and higher order corrections, but the question is whether at 

a certain point discretization effects originating from the Zeldovich 

grid become evident, imposing a maximum on the acceptable number 

of iterations N iter . 

Figs A1 and A2 show the resulting bias for the 2PCF monopole 

using the fiducial number of 25 bins in d corresponding to 

�d = 6 Mpc h −1 and using 100 bins in d which translates to 

�d = 1 . 5 Mpc h −1 , respectiv ely. F or the fiducial binning, we find 

that increasing the number of iterations (top panel) reduces the 

bias on scales below 20 Mpc h −1 , but introduces an oscillation of 

Figure A1. Bias of the monopole of the high-mass halo autocorrelation 

using glass-like random catalogues with α = 1 and �d = 6 Mpc h −1 , created 

with different numbers of iterations of the Zeldovich approximation N iter 

(top panel) and different numbers of grid cells N grid (bottom panel). The grey 

dotted vertical lines represent the spacing between the grid cells in the fiducial 

grid with N grid = 1024. Increasing the number of iterations decreases the bias 

on scales below 20 Mpc h −1 . After no more than 10 iterations, the estimator 

bias oscillates around zero. Decreasing the number of grid cells increases the 

small-scale bias of the estimates. 

the estimator bias around zero after no more than 10 iterations. 

The oscillatory feature in the bias can be understood better when 

inspecting the results in Fig. A2 . Here, the oscillation becomes 

apparent already after as few as three iterations of the Zeldovich 

approximation. We suspect that after too many iterations, the objects 

in the catalogue eventually align with the grid. If that is the case, 

there are expected to be spikes in the LS estimate at separations 

that are equal to separations that are prominent in the periodic 

grid point distribution. We add vertical dotted grey lines that are 

spaced with � = 3.346 Mpc h −1 which corresponds exactly to the 

distance between each grid point with N grid = 1024. The period of 

the oscillations coincides very well with the spacing of the vertical 

gre y lines. F or �d = 1 . 5 Mpc h −1 , we find that using more than 

three iterations is suboptimal, as then the oscillations start to become 

noticeable. 

Reducing the number of grid cells at �d = 6 Mpc h −1 (bottom 

panel of Fig. A1 ) leads to an additional small-scale bias in the 

monopole, and this additional bias becomes apparent at larger scales 

as the number of grid cells is reduced. Further, the bias starts to 

oscillate around zero as soon as N grid = 256. This is again more 

apparent for the binning with �d = 1 . 5 Mpc h −1 (see bottom panel 

of Fig. A2 ). While with a grid resolution of N grid = 1024 for 

N iter = 2 there are no oscillations in the bias, decreasing the grid 

resolution to N grid = 512 leads to an apparent oscillation of the 

bias around zero with a period that corresponds to the new grid 

cell separation (i.e. twice the grid cell separation that corresponds 

to N grid = 1024). This hints to an interplay between the required 

grid resolution and the maximum possible number of iterations in 

the Zeldovich approximation in order to get an unbiased result, i.e. 

optimally, the grid should be as fine as possible to prevent biasing 

Figure A2. Bias of the monopole of the high-mass halo autocorrelation using 

glass-like random catalogues with α = 1 and �d = 1 . 5 Mpc h −1 , created 

with different numbers of iterations of the Zeldovich approximation N iter 

(top panel) and different numbers of grid cells N grid (bottom panel). The grey 

dotted vertical lines represent the spacing between the grid cells in the fiducial 

grid with N grid = 1024. As the number of iterations increases, the monopole 

bias oscillates more and more around zero, with a period corresponding to 

the grid cell separation. This is attributed to grid alignment of the objects in 

the glass-like catalogue after too many iterations. Decreasing the number of 

grid cells increases the small-scale bias of the estimates. For a fixed number 

of iterations N iter = 2, decreasing the grid resolution makes the oscillatory 

feature apparent, with periods whose dominant contribution is the respective 

grid cell separation. 
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Figure A3. Bias of the quadrupole of the high-mass halo autocorrelation 

using glass-like random catalogues with α = 1 and �d = 6 Mpc h −1 , created 

with different numbers of iterations of the Zeldovich approximation N iter 

(top panel) and different numbers of grid cells N grid (bottom panel). The grey 

dotted vertical lines represent the spacing between the grid cells in the fiducial 

grid with N grid = 1024. Decreasing the number of grid cells increases the 

small-scale bias of the estimates. 

at small separations, and the number of Zeldovich iterations needs 

to be balanced such that it is high enough to give a converged glass 

with low bias at small separations, but small enough to prevent the 

oscillatory feature caused by discretization of effects. 

Fig. A3 shows the same test results as Fig. A1 , but for the 

quadrupole of the 2PCF. The small-scale bias is reduced in a similar 

fashion if the number of iterations is increased, but the oscillation 

around zero is not as present as for the monopole. Reducing the 

Zeldovich grid resolution introduces an additional bias on small 

scales, which grows larger and affects larger scales as the resolution 

decreases. 

Fig. A4 shows the standard-deviation ratio of the monopole and 

quadrupole of the high-mass halo autocorrelation estimate using the 

glass-catalogue with α = 1 with different N iter and N grid . The standard 

deviation of the estimate is largely unaffected by different choices of 

N iter and N grid . There is a slightly larger standard deviation if a smaller 

grid with N grid = 128 is used. This can be attributed to the fact that 

for such a very low number of grid cells, the creation of a glass-like 

catalogue is not working efficiently, as the grid cell size also imposes 

a lower limit down to which scales the power of the original Poisson- 

sampled catalogue can be suppressed. For better resolved grids we 

find that already after one iteration of the Zeldovich approximation, 

the standard deviation is basically converged. 

Since the variance of the catalogue is well-suppressed already after 

N iter = 1, we suggest that a safe choice in general is not to use values 

of N iter larger than 2 in order to a v oid discretization effects while 

ensuring convergence of the glass. We note that D ́avila-Kurb ́an et al. 

( 2021 ) used a larger number of iterations up to N iter = 50. They 

find that after as few as five iterations the variance is converged. A 

difference between their work and the work presented here is the 

definition of the density contrast that is the basis for calculating the 

Zeldo vich displacement. D ́avila-K urb ́an et al. ( 2021 ) choose to use 

a Gaussian kernel to smooth the particle distribution and estimate 

the densities on a grid. We use the cloud-in-cell mass-assignment 

scheme, and self-consistently interpolate the displacement field at 

the particle positions using a matching kernel. We suspect that using 

Figure A4. Standard-deviation ratio of the 2PCF monopole (top panel) 

and quadrupole (bottom panel) of the high-mass halo autocorrelation using 

glass-like random catalogues with α = 1, created with different numbers of 

iterations of the Zeldovich approximation N iter (solid curves) and different 

numbers of grid cells N grid (dotted, dash–dotted, and dashed curves). Increas- 

ing the number of iterations has negligible effect on the standard-deviation 

ratio. Decreasing the number of grid cells increases the standard-deviation 

ratio slightly. 

Figure A5. Standard deviation of the estimated 2PCF cross-correlation 

between the high-mass catalogue and the particle catalogue for different 

choices of d -bin widths � d , using glass-like random catalogues with α = 2 

(orange curves) and Poisson-sampled random catalogues with α = 20 (blue 

curves). 

a Gaussian kernel to smooth the particle distribution from which the 

densities are estimated leads to an underestimation of the repulsive 

gravitational forces for each particle, because the amplitude of the 

displacement depends on the amplitude of the density contrast, which 

is smaller if the densities are smoothed beforehand. This could lead to 

a larger number of required Zeldovich iterations to reach a glass-like 

distribution. 

We additionally plot the estimator variance for the cross- 

correlation between the high-mass halo catalogue and the particle 

catalogue for different choices of d -bin widths � d in Fig. A5 , using 

either glass-like random catalogues with α = 2 (orange curves) or 

Poisson-sampled random catalogues with α = 20 (blue curves). It 

is evident that the variance reduction when using glass-like random 

catalogues in the estimate is affected by the specific choice of d -bin 

width—when using glass-like catalogues, the estimator variance de- 
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creases with increasing bin width, while for Poisson-sampled random 

catalogues, the estimator variance remains largely unaffected. There- 

fore, the advantage of using glass-like catalogues is larger the larger 

the width of the d -bins in relation to the a verage inter -particle separa- 

tion. While the maximum bin width of �d = 15 Mpc h −1 tested here 

gives the best improvement of the variance, for our fiducial set-up we 

use �d = 6 Mpc h −1 , to have a finer sampling of the 2PCF estimates. 

APPENDIX  B:  EFFECTS  O F  A  SURV EY  MASK  

In order to test the effect of more complicated masks, we introduce 

a surv e y mask to the high-mass halo catalogue and the particle 

catalogue and estimate their cross-correlation and its variance using 

either mask ed glass-lik e random catalogues or mask ed Poisson- 

sampled random catalogues with different α. The mask remo v es 

all objects with μ < −0.8, −0.6 < μ < −0.4, −0.2 < μ < 0, 0.2 

< μ < 0.4, and 0.6 < μ < 0.8, as well as all remaining objects with 

ϕ < − 2 
3 π , − 1 

3 π < ϕ < 0, and 1 
3 π < ϕ < 

2 
3 π . In Fig. B1 , it is shown 

that the o v erall variance of the estimate increases when introducing 

the mask, but the glass-like catalogues provide the same advantage 

as in the unmasked case: Using a d -bin width of �d = 6 Mpc h −1 , 

the glass-like random catalogue with α = 2 has the same variance as 

the Poisson-sampled random catalogue with α = 20. The increased 

variance of the masked estimate is attributed mainly due to a reduced 

number of objects available to the pair-counting algorithm. 

Figure B1. Standard deviation of the estimated 2PCF cross-correlation 

between the high-mass catalogue and the particle catalogue, for the fiducial 

case without any mask and the case after applying a mask, using a glass-like 

random catalogue with α = 2 (orange curves) and a Poisson-sampled random 

catalogue with α = 20 (blue curves). 
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