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Abstract 

 

Microproteins encoded by small open reading frames (sORFs) have emerged as 

a fascinating frontier in genomics. Traditionally overlooked due to their small 

size, recent technological advancements such as ribosome profiling, mass 

spectrometry-based strategies and advanced computational approaches have 

led to the annotation of more than 7000 sORFs in the human genome. Despite 

the vast progress, only a tiny portion of these microproteins have been 

characterized and an important challenge in the field lies in identifying 

functionally relevant microproteins and understanding their role in different 

cellular contexts. In this review, we explore the recent advancements in sORF 

research, focusing on the new methodologies and computational approaches 

that have facilitated their identification and functional characterization. 

Leveraging these new tools hold great promise for dissecting the diverse 

cellular roles of microproteins and will ultimately pave the way for 

understanding their role in the pathogenesis of diseases and identifying new 

therapeutic targets.  
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Introduction 

The mammalian genome is composed of a vast number of uncharacterized and 

unannotated small open reading frames (sORFs), which are commonly misinterpreted 

as “junk DNA” with no defined function outside of gene regulation. With the advent of 

new technologies, thousands of unannotated sORFs – typically located on non-coding 

RNAs and untranslated regions (UTRs) of protein-coding genes - have been shown to 

be translated into functional proteins. New technologies, such as proteomics and 

ribosome profiling, in tandem with advanced bioinformatic methods, have played a 

critical role in driving forward the sORF field. The combination of these approaches 

greatly facilitated the genome-wide annotation of sORFs, thereby unraveling their 

involvement in various cellular functions, including those relevant to human diseases 
1–7.  

 

Most of these novel open reading frames (ORF) defy the conventional rules for gene 

annotation. These rules include a minimal length of 100 codons, an in-frame AUG start 

and a single ORF per transcript 4,8,9. Unannotated ORFs smaller than 100 amino acids 

are classified as sORFs (Figure 1). These include sORFs on non-coding RNAs such 

as long non-coding RNAs (lncRNAs) and overlapping sequences on annotated ORFs, 

classified as alternative ORFs (alt-ORFs) 4,10,11. Moreover, sORFs residing in the 5’ 

untranslated region (5’UTR) of an mRNA are referred to as upstream open reading 

frames (uORFs) 6,12,13, while those found in the 3’UTR are known as downstream ORF 

(dORFs) 12–14.  

 

Recent endeavors to generate standardized sORF catalogs led to the annotation of 

more than 7000 human sORFs and suggest that sORFs form a substantial part of 

eukaryotic genomes 4–6,15. The encoded peptides or microproteins translated from 

sORFs are involved in a variety of cellular functions in both health and disease 2,12,16. 

Microproteins are involved in the downregulation of tumor angiogenesis 17, suppress 

tumor growth18, or in cell proliferation 19. Furthermore, uncharacterized sORFs hold 

great promise as potential drug targets that drive different cellular processes 

underlying the pathogenesis of diseases 2,16,20.  

 

The translation of sORFs can either result in a peptide product or it may have a 

regulatory function, a phenomenon widely observed in the case of most known uORFs 
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12. About 50% of mammalian genes contain uORFs 21–23, which modulate ribosome 

access to the downstream ORF and which can reduce translational efficiency by an 

average of 30-48% 6. However, under stress conditions, uORF-mediated regulation 

allows certain genes such as ATF4 to become translationally induced to rapidly mount 

cellular stress responses 24,25. Genome-wide uORF translation may be subject to 

regulation and contribute to the translational program in embryonic stem cells or tumor 

initiation. Embryonic stem cells (ESCs) decrease their relative uORF translation rates 

when undergoing differentiation 5. Similarly, the stemness signature of muscle stem 

cells has been shown to be partly regulated by uORF-containing mRNAs 26. 

Furthermore, tumor-initiating cells increase their relative rate of uORF translation 

during the early stages of tumorigenesis27.  

 

Here, we review the current methodologies for studying sORFs in the eukaryotic 

genome and outline emerging new techniques to study the function of sORFs and their 

potential involvement in disease.  Although we focus on the eukaryotic genome in this 

review, it is worth noting that substantial progress has been made in the study of 

bacterial and plant sORFs and that most of the identification techniques described 

here can also be applied to lower organisms.  

 

Bioinformatic approaches 

New computational approaches and the availability of RNA sequencing data sets have 

led to better transcriptome annotations and facilitated the classification of 

microproteins (Figure 2). Historically, ORFs were defined as a sequence of DNA that 

is delimited by a start codon followed by a downstream in-frame stop codon. However, 

this approach was biased as it involved an artificial cutoff in annotating only proteins 

larger than 100 amino acids or 300 nucleotides, mainly because any sequence smaller 

than this cutoff was considered nonfunctional or derivative artifacts of canonical 

transcripts and coding sequences 9,28,29. Additionally, the 100 amino acid cutoff results 

from the increasing probability of artifactual ORFs and biologically meaningless 

sequences found in shorter ORFs 9 . The likelihood of a protein-coding ORF increases 

with its length. Thus the reason why many algorithms had a fixed threshold of 100 

amino acids was to avoid dubious non-coding ORFs 9,30–32. Consequently, current 

protein catalogs are skewed for larger proteins, which has resulted in a notable 

underrepresentation of microproteins 5,23. In light of the mounting evidence supporting 
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the presence of sORFs, new algorithms have been developed to adjust the 

classification parameters for the annotation of ORFs. 

 

Traditionally, protein annotation has heavily relied on evaluating sequence similarities 

and conservation across different species, which proves valuable as selection 

pressure is linked to functional importance 12,33. Furthermore, examining the similarity 

between known protein domains has provided valuable insights into the potential 

function of newly predicted ORFs. However, relying solely on conservation as a 

criterion for identifying non-canonical ORFs could limit the detection of sORFs that, 

although not conserved across species, may still encode functional microprotein 12,34. 

Short proteins are more challenging to classify than larger ones due to stricter 

statistical features to distinguish them from non-coding sequences 31. Sequences 

shorter than 100 amino acids are less likely to show conservation between species 
35,36. Conserved coding sequences show a higher ratio of synonymous compared to 

non-synonymous substitutions (dS/dN), which can be exploited to distinguish them 

from non-coding regions, a difference that is less pronounced in smaller proteins 31.  

 

To address these challenges, a pipeline called PhyloCSF was developed, which can 

systematically resolve conservation problems by considering phylogenetic models for 

shorter sequences. PhyloCSF distinguishes itself from previous tools by using 

empirical codon models, which can compare alignments of coding regions with 

alignments of non-coding regions. Moreover, it incorporates genome-wide training 

data, taking into account codon frequencies and substitution rates to discern protein-

coding from non-coding sequences 37. A recent application of PhyloCSF resulted in 

the identification of 144 novel coding sequences absent in existing catalogs 38. 

Notably, 50 of these newly discovered protein-coding genes encode microproteins 

containing fewer than 100 amino acids, further advocating for the utilization of 

PhyloCSF in sORF detection 38. 

 

Annotation of sORFs is not only challenging but also limited by computational 

algorithms. Many in silico approaches in the past restricted in the annotation of ORFs, 

including the necessity for a single coding sequence per transcript, an AUG start 

codon, a codon bias, a coding region longer than 100 codons and the sequence 

conservation 39–42. With the advent of new technologies and the general increase in 
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sequencing data, computational pipelines have been modified to adjust these criteria. 

In silico approaches can now predict all possible ORF, including overlapping and 

shorter ORFs from existing annotations, novel predicted isoforms and novel proteins 

from alternative ORFs 41. OpenProt is a bioinformatic tool that uses two sources of 

annotations (NCBI-RefSeq and Ensembl) and publicly available ribosome profiling and 

mass spectrometry data sets to facilitate the annotation of predicted sORFs 41. An 

advantage of the technique is that it allows predicting sORFs using a minimal length 

of 30 amino acids and, in its latest update, has even removed the restriction for AUG 

start codons43. Other annotation tools such as ORF finder 44, micPDP 4 and 

uPEPperoni 45 are also used for the detection of sORFs and are reviewed in Table 1. 

In recent years, sORF databases have become available such as sORFs.org 46 and 

smProt 47.     

 

More recent tools use machine learning for the prediction of sORFs. RNASamba and 

DeepCPP are two pipelines that predict sORFs based on neuronal networks 48,49. 

RNASamba was designed to recognize non-intuitive patterns, such as the Kozak 

sequence, in a way that it can learn from previous sequence data to distinguish coding 

from non-coding sequences 48. On the other hand, DeepCPP also uses the information 

around the start codon, which the authors term nucleotide bias, to help predict the 

coding potential of RNA 49. Considering the critical role of nucleotides surrounding the 

start codon in translation initiation, DeepCPP evaluates the codon bias at nucleotide 

positions -3 to +6 from the start codon. It is interesting to point out that this nucleotide 

bias is not the same for non-coding mRNAs 49. MiPepid is another machine learning 

tool that can identify potential microproteins from the DNA sequence 50. Using a 

microprotein database for training, MiPepid achieved a 96% accuracy when tested on 

a blind dataset of high-confidence micropeptides 50. Finally, a fourth new 

computational tool is csORF-finder, which emerged as a tool for characterizing the 

translation potential of sORFs. csORF-finder aims to distinguish coding sORFs 

(csORFs) from non-coding sORFs in different species and thus facilitate the discovery 

of new functional microproteins 51.  

 

A pseudo-alignment algorithm, named ORFanage, was recently established for the 

detection of novel ORFs in the assembled results from RNA-seq 52. ORFanage can 

identify ORFs from RNA-seq data based on the similarity to the reference annotation 
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and similarity within genes in the transcripts52. The method relies on the assumption 

that protein-coding genes produced by different transcripts from the same locus should 

share similarities, which are then exploited to detect new microproteins 52. 

 

With growing data sets and sequencing data available, the new computational tools 

greatly help the identification of sORFs. While bioinformatic tools have undeniably 

advanced and facilitated the identification of sORFs, it is important to emphasize that 

a systematic characterization is essential to validate the existence of the microprotein. 

An overview of the computation tools can be found in Table 1.  

 

 

Ribosome profiling 

Ribosome profiling (Ribo-seq) provides real-time snapshots of translation by 

assessing so-called ribosome-protected fragments (RPF), which indicate the mRNA 

portions that are being translated into proteins. Ribo-seq is a powerful tool that allows 

determining ORFs at codon resolution and greatly helps the identification of previously 

unannotated ORFs (Figure 2) 53,54. The technique was pioneered by Ingolia et al. and 

is based on the sequencing of the approximately 30 nucleotide-long fragments that 

are protected by the ribosomes after nuclease digestion 55. The reads that are obtained 

from the sequencing of the RPFs can be aligned to the transcriptome and provide a 

genome-wide overview of ribosome occupancy. Ribo-seq allows us to determine the 

position of where translation is taking place and, in recent years, has helped to shed 

light on unconventional translation and sORF translation in regions previously thought 

to be non-coding 2,5,56.  

 

With the introduction of this method, Ingolia and colleagues showed that translation 

could occur in the 5’UTR of an mRNA, first in yeast and later in mouse embryonic stem 

cells 5,55. Ribo-seq provided evidence that the mammalian genome undergoes 

substantially more translation than previously assumed. Ribo-seq studies in 

Drosophila, zebrafish, mice, and humans led to the discovery of widespread 

translation on long non-coding RNAs (lncRNAs), upstream and downstream regions 

and even overlapping coding transcripts 2,6,42,57–59. Additionally, the translation from 

non-canonical start sites has helped broaden the repertoire of translated sORFs. 

Alternative start sites can be mapped by Ribo-seq combined with the treatment of 
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inhibitors such as harringtonine or lactimidomycin, which cause ribosomes to 

accumulate at sites of translation initiation 5,60,61. Analysis from harringtonine 

experiments revealed that 44% of AUG start sites are downstream of annotated 

proteins and represent a source of alternative ORFs, resulting in truncated proteins 5. 

Similarly, protein isoforms can emerge through the utilization of upstream start sites, 

resulting in N-terminal extensions if the start site is in frame with the main start site 

and lacks a stop codon in between 5. Treatment with harringtonine also revealed that 

translation could be initiated at near-cognate (non-AUG) start sites. Most of the near-

cognate initiation sites were mapped to the 5’UTR of transcripts, suggesting that 

uORFs are most frequently initiated with GUG start codons 5,27 . 

 

Computational tools play an important role in detecting ORFs from ribosome profiling 

data, enabling the identification of potential microproteins encoded by sORFs. These 

tools leverage the direct evidence of ribosome-protected fragments captured by 

ribosome profiling to pinpoint translated regions within the transcriptome in a genome-

wide fashion. By analyzing ribosome footprints and especially on the basis of the 

characteristic three-nucleotide periodicity indicating bona fide translation, these 

algorithms can distinguish between coding and non-coding sequences and therefore 

map new open reading frames. Some of the commonly used tools for sORF detection 

from ribosome profiling data include ORF-Rater, RiboTaper/ORF-quant, ORFscore, 

RiboWave, RiboCode, DeepRibo, ribotricer and riboHMM 4,42,62–69. Each of these 

computational tools offers distinct approaches to maximize sensitivity and specificity 

and together have significantly expanded our ability to annotate novel sORFs from 

ribosome profiling data.  

 

Since the introduction of Ribo-seq, the technique has allowed us to successfully 

identify sORFs with the potential of encoding microproteins 2,10,31,56,57,70. In recent 

years, numerous researchers in the field have started a joint effort to produce a 

standardized catalog with more than 7000 human ORFs that were identified based on 

Ribo-seq. This effort to annotate sORFs in a standardized manner will facilitate future 

endeavors to dissect the function of these ORFs 15. Separate studies have identified 

sORFs over the years, however, thus far, only 3085 ORFs identified by Ribo-seq have 

been found by more than one research group 15. Furthermore, despite the wealth of 

identified sORFs, only a select few have been further characterized, unveiling their 
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 9 

specific roles in cellular processes. By combining standardization and systematic 

annotation of sORFs with the development of comprehensive tools to dissect their 

potential functions, the approaches will likely shed light on which sORFs impact health 

and disease.   

 

Mass spectrometry-based proteomics 

Although Ribo-seq demonstrates the translatability of sORFs, it does not provide direct 

evidence that these microproteins are present in a cell. Theoretically, RNA-binding 

proteins could also protect mRNA fragments of similar size to ribosome footprints and 

would end up in the Ribo-seq library. In addition, it has been argued that some RPF 

could also result from stalled ribosomes not actively translating RNA. As outlined 

above, to discern true translation from other types of protected mRNA fragments, the 

characteristic three-nucleotide periodicity of Ribo-seq datasets can be assessed by 

computational methods. The three-nucleotide periodicity greatly helps detect bona fide 

translation of longer ORFs. However, the triplet periodicity is challenging to detect on 

very small ORFs such as certain uORFs.  

 

Mass spectrometry (MS) can detect and quantify proteins and, therefore, verify the 

presence of the microproteins. In that sense, MS based proteomics is currently the 

only experimental technique able to provide evidence of the existence of a 

microprotein. Nevertheless, the identification of microproteins by MS methods can be 

challenging and is hampered by the fact that sORFs are commonly excluded from 

protein databases, initiate with near-cognate start sites and produce a few unique 

tryptic peptides7. In recent years, however, MS strategies have been further optimized 

for the identification of sORF (Figure 2) 4,7,13,71.  

 

Mass spectrometry is the gold standard used to characterize the proteome72. Originally 

based on the observations of four peptides with less than 150 amino acids made by 

Oyama et al. 73, an MS technique for the detection of microproteins was developed 

and further optimized. By combining peptidomics with RNA sequencing, Slavoff and 

colleagues detected a total of 90 sORF-encoded peptides (SEPs), 86 of them being 

newly discovered 7. 
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Due to their small size and abundance, MS-based detection of microproteins requires 

previous fractionation and enrichment approaches 29. In MS studies, peptide mapping 

allows direct identification and quantification of proteins. Proteins are fragmented by 

tryptic digestion and the molecular weight of the peptides is measured and compared 

with reference databases. Tryptic digestion can present a problem since the smaller-

sized proteins contain very few and sometimes even no tryptic peptide fragments, 

which biases mapping to more stable and abundant proteins 29,74,75. Replacing trypsin 

with different proteases can enhance microprotein detection 74,76,77.  Size exclusion 

approaches are used to enhance the detection of low molecular weight peptides 78–81.  

 

Mass spectrometry can also be combined with separation techniques such as liquid 

chromatography to help with the identification of microproteins. In recent years, MS 

has become important, not only because of its ability to identify proteins (whether small 

or large), but also for its power to quantify and molecularly characterize them via the 

identification of posttranslational modifications 79,82. 

 

The challenge of the different MS strategies to detect sORFs is the requirement of 

reference databases from which the peptides can be identified 7,71. In most MS 

experiments, a custom database is generated that contains all potential peptides 

translated from the transcriptome 7,71,79,83. The absence of sORF repositories and 

catalogs encourages the coupling of MS with genomic or transcriptomic data 84. Many 

new sORF have been identified by mapping MS data to RNA sequencing and Ribo-

seq data 7,85. Using three- or six-frame translation to generate an expanded reference 

protein database can improve the detection of sORFs 85–87. Other challenges include 

the small size of the encoded peptides and the lack of conservation of sORF 

sequences between organisms.  

 

To ensure that the peptide identified via MS is not a result of false positive proteomic 

profiling, it is critical to validate newly discovered microproteins. This is especially true 

for microproteins for which only 1 peptide has been detected. A widely adopted 

validation technique involves the use of isotopically labeled standards, which are 

chemically indistinguishable 79. The synthetic peptide should show similar MS spectra 

profiles except for a mass shift introduced from the isotopic label of the synthetic 

peptide 79,82.  A second method used for the validation of small encoded peptides is 
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the siRNA-based silencing of the transcript together with targeted MS and peptide 

standards, assessed by using RT-qPCR 79.   

 

Mass spectrometry has become a powerful tool to validate the expression of 

microproteins. Additionally, MS can help infer protein function via interaction partners, 

as recently shown using the so-called MicroID approach 88. Proximity biotinylation-

based techniques have the potential to systematically map the interaction partners of 

microproteins and serve as an attractive method for characterizing sORF-encoded 

microproteins. In the MicroID approach, the authors developed an elegant high-

throughput technique by which novel sORFs were identified and mapped to different 

subcellular localizations such as the nucleus or nucleolus. Furthermore, they also 

determined functional information based on molecular interactors accessed via 

transcriptome data 88. Another powerful example for MS-based identification of 

microproteins is major human leukocyte antigen class I (HLA-I) peptidomics. Using 

such a strategy in induced pluripotent stem cells (iPSCs), 240 non-canonical peptides 

from uORFs but also sORFs on lncRNAs could be identified, indicating that a portion 

of sORFs can enter the HLA-I presentation pathway to become part of the antigen 

repertoire 2. They also employed an elegant, minimally disruptive mNeonGreen split-

fluorescent tagging strategy to visualize select microproteins, which is based on a 16 

amino acid tag fused to the microprotein and can be detected once it complements 

with the remainder of the split mNG protein 2,89,90. 

 

Given the high number of potential microproteins identified by these different methods, 

it is critical to validate their expression by orthogonal assays. The predicted 

microproteins can be validated using different tools, including reporter assays, epitope 

tagging and loss of function assays. In a recent study using comparative proteomics, 

the authors annotated differentially expressed novel sORFs in leukemia cells and 

reported their subcellular localization by FLAG-tagged microprotein overexpression 

and subsequent visualization by immunofluorescence91. A potential issue for 

microproteins is that common fluorescent tags often exceed the size of microproteins, 

which can affect their biophysical and biochemical properties. To this end, an elegant 

new technique introduces a single non-canonical amino acid either at the N- or C-

terminus of microproteins. This technique, called single-residue terminal labels 

(STELLA), can be exploited for minimal tagging of microproteins without disturbing the 
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physical or biochemical properties of microproteins92. Microproteins can also be 

validated by chemical labeling coupled with proteomic identification, as previously 

reviewed93. Protein interactions can help elucidate the putative role of a new 

microprotein. PRISMA, a protein interaction screen on a peptide matrix, was 

developed to identify the interactome of evolutionary young microproteins via 

sequence motifs36.  

 

With the improvement in omics technologies, the combination of mass spectrometry, 

ribosome profiling and bioinformatic tools has enabled a better and more 

comprehensive discovery of sORFs and their corresponding microproteins2,56,87,94. 

The concurrent identification of sORFs through both Ribo-seq and MS  can offer robust 

evidence for the existence of microproteins, laying the necessary foundation for their 

subsequent characterization. While integrating these different technologies enabled 

the annotation of new microproteins, it remains a challenge to characterize and 

validate these newly discovered sORFs and determine their function in different 

cellular contexts.   

 

Translation initiation and regulation of gene expression 

Similar to conventional genes, the control of sORF expression involves tight regulation 

at various stages of the gene expression cascade, including transcriptional and 

translational control mechanisms. For uORFs, mRNA isoforms can include or exclude 

uORFs, achieved through alternative transcription start site selection or by alternative 

splicing, which enables the cell to elegantly regulate uORF-mediated cellular function 
95–99. Long-read sequencing methods, such as those offered by the PacBio and 

Nanopore platforms, enable comprehensive assessment of mRNA isoforms, including 

the presence or absence of uORFs, along with the assessment of the full transcript 
100–102. Additional methods geared towards uORF detection and transcription start site 

selection include the 5’ cap capture methods such as CAGE-seq (Cap Analysis of 

Gene Expression) to generate snapshots of the 5’ end and the 5’UTR 103,104.  

 

In addition to transcriptional control, translational regulation significantly impacts 

uORF expression due to the critical role of translation start site recognition by scanning 

ribosomes 105,106. Decades of research, particularly focusing on the arguably best-
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studied uORF-containing gene ATF4, have highlighted how cellular context and 

changes in the translational machinery influence the recognition of uORFs 24,105.  

 

Translation can be divided into three main steps: initiation, elongation and termination, 

which includes ribosome recycling for a new round of protein synthesis. Translation 

initiation is the rate-limiting phase of translation 107–109. It begins with the formation of 

the ternary complex (eIF2-GTP-Met-tRNAi), which assembles with the 40S ribosomal 

subunit to form the preinitiation complex (PIC) to scan the 5’ untranslated region 

(5’UTR) 109,110. When the PIC reaches the start codon, the GTP in the ternary complex 

is hydrolyzed and with the release of eIF2-GDP, the 60S ribosomal subunit joins the 

PIC complex to form the 80S complex and initiate translation 109.  

 

The 5’UTR plays therefore a critical role in ribosome recruitment to mRNA, influencing 

translation start site selection and initiation 23,105,111,112. Different structures and 

elements in the 5’UTR, such as RNA secondary structures, Internal Ribosome Entry 

Sites (IRES), motifs for RNA binding proteins, single or multiple upstream initiation 

sites and uORFs can shape the translation of the downstream main ORF 105,111–114.  In 

the case of the uORFs, translation initiates within the 5’UTR and can represent 

competition for the PIC to detect the start codon of the main coding sequence, 

consequently negatively regulating translation of the CDS 61,105,115,116. Nonetheless, it 

is important to point out that uORFs do not always repress the translation of the main 

ORF, as specific conditions such as stress may allow the re-initiation of translation at 

the main ORF 105,116–119. Thus, uORFs can add an additional layer of regulation to 

rapidly boost downstream translation to changes in the cellular environment. Over the 

last decades, luciferase-based assays in cultured cells have greatly helped in 

elucidating the regulatory function of uORFs. These approaches could be combined 

with translation-competent lysates for in vitro translation, which enables recapitulation 

of the key steps of uORF translation and the regulatory role of uORFs with regard to 

main ORF translation 120.   

 

The sequence context surrounding the initiation codon is important for the translation 

of uORFs and protein-coding sequences 121. The PIC recognizes preferentially the 

correct start codon – usually AUG – in an optimal context known as the Kozak 

consensus sequence.  
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Monitoring the start codon selection is feasible through various techniques, including 

Global Translation Initiation Sequencing (GTI-seq), which employs a similar principle 

as the translation start site inhibitor Harringtonine 61,122. These methods enable 

genome-wide mapping of translation start sites, which are based on blocking initiating 

ribosomes while allowing the elongating ribosomes to run off. Coupled with the 

ribosome profiling protocol, GTI-seq or Harringtonine treatment solely results in 

translation start site peaks without the reads from elongating ribosomes, therefore 

providing strong evidence that the start sites of potential sORFs are indeed recognized 

by the translational machinery. Global translation initiation sequencing (GTI-seq) 

indicates that approximately 74% of the upstream translation initiation sites (TIS) are 

non-AUG start codons. CUG is the predominant start codon for uORF, showing a 

frequency of ~30% compared to ~25% frequency of the conventional AUG TIS 61. 

Additionally, conventional ribosome profiling studies similarly suggest that uORFs 

show a preference for near-cognate start codons, with CUG and GUG being the most 

frequent TIS 5,27.   

 

Genome editing using CRISPR  

A major challenge in the sORF field is distinguishing functionally relevant sORFs from 

mere sORF expression. As outlined above, there are multiple approaches to detect 

and annotate sORFs experimentally and computationally. Consequently, the field will 

have to progress beyond the essential task of cataloging sORFs and transition toward 

comprehensive genome-wide analyses to unravel the functional significance of 

sORFs. For the majority of sORFs, their functions remain untested, necessitating the 

use of genome editing techniques to explore loss-of-function and gain-of-function 

effects and analyses of the resulting phenotypes in cell culture studies and in vivo. 

These strategies will be essential in shedding light on the functional roles of sORFs. 

 

The most commonly used and rapidly evolving genome editing technique is the 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system and 

their associated Cas endonucleases. These short regularly spaced repeats were 

found in both bacteria and archaea and are part of their DNA repair system against 

phages and plasmids 123–125. Among the different types of immunity, type II can be 

applied to genome editing 125–128.  
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The microbial adaptive immune response has been exploited to target any genomic 

location by using a single guide RNA (sgRNA) in combination with the Cas 

endonucleases 128. Endogenous repair mechanisms such as homologous directed 

repair (HDR) or nonhomologous end joining (NHEJ) are induced by the DSB 127,129,130. 

As a result, the DSB can be used to insert, delete, or modify a genomic target.  When 

introducing exogenous DNA fragments as templates for recombination, specific 

mutations can be introduced. In the absence of a DNA template for HDR, the NHEJ 

pathway prevails, leading to insertions or deletions introduced to the target locus 
131,132. 

 

Altering the sequence of the sgRNA will allow to target any region of interest in the 

genome. In recent years, optimizing the sequence of the sgRNA has led to 

improvements in the on-target activity and a reduction of off-target effects 133. Different 

tools can be used to design sgRNAs and predict their target activity, however, these 

tools commonly rely on canonical genes as reference, posing challenges for targeting 

smaller genes like microproteins. In the human genome, the overall frequency of 

finding a ‘GG’ is 5.21%, which means that the ‘GG’ dinucleotide, critical for the sgRNA 

design, is found approximately every 42 bases 134. For smaller genes, such as 

microproteins, this issue significantly reduces the chances of finding a PAM site and 

designing good sgRNAs to target them. Considering that the median size of an uORF 

is 48-78 nucleotides 23,27,35,135,136 and the median size of a translated human sORF 

from a long non-coding RNA is 72 nucleotides 35, there may be, on average, only 2-4 

PAM motifs per microprotein (considering both strands). This notion aligns with our 

own experience and the design of typically 2-3 sgRNAs per sORF. Furthermore, the 

design of CRISPR screens can be particularly challenging for sORFs that overlap 

other genetic elements, such as altORFs. It is important to note that any phenotype 

attributed to the disruption of an sORF should be complemented by for example 

reintroducing the sORF.  

 

Over the past decade, numerous studies have demonstrated the remarkable efficiency 

of the CRISPR/Cas system for genome editing. As interest in the technique grew, 

different Cas endonucleases have been discovered, modified and used for genome 

editing. CRISPR interference (CRISPRi) employs a modified version of the Cas9 
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protein, the dead Cas9 (dCas9), which is fused with an interference domain and is 

used to silence the expression of a gene. On the other hand, CRISPR activation 

(CRISPRa) utilizes a dCas9 that is fused to an activation domain, such as for example 

the dCas9-SunTag system, to turn on gene expression. Additionally, the 

CRISPR/Cas12a and Cas12b systems function similarly to CRISPR/Cas9 but exhibit 

different PAM sequences and editing efficiencies, introduce sticky ends instead of 

blunt ends, and cut at distinct sites relative to the PAM sequence 137–139. These 

variations make Cas12a and Cas12b valuable additions to the CRISPR platform, 

particularly in targeting sORFs that may have been resistant to Cas9 gene editing due 

to low editing efficiency or missing NGG PAM sequence in the sORF locus. 

 

CRISPR screens 

CRISPR screens have emerged as a powerful tool to dissect the function of genes. 

The two main types of CRISPR screens, arrayed and pooled screens, have become 

instrumental in addressing diverse biological questions (Figure 3). Serving as an 

unbiased interrogation of gene function, CRISPR screens introduce perturbations into 

cells,  which subsequently reveal cellular phenotypes 140.  

 

In arrayed screens, individual reagents are synthesized and distributed into multi-well 

plates and are therefore spatially separated. As each well introduces a distinct 

perturbation, the approach enables the identification of the specific sgRNA responsible 

for the gene perturbation without the need for sequencing. Arrayed screens can have 

advantages, such as the possibility to couple them with microscopy-based high-

content screenings, but are also laborious and therefore result in lower throughput 
133,141,142. On the other hand, pooled CRISPR screens provide a scalable and powerful 

platform and allow the targeting of multiple genes using a library of pooled sgRNAs. 

This library is delivered to cells through lentiviral transduction, resulting in cells 

harboring single sgRNAs that integrate into the cell's DNA and edit the targeted gene 

based on the sgRNA sequence. Subsequently, these perturbed cells are subjected to 

selective pressure or monitored over multiple passages. At the end of the experiment, 

sequencing and sgRNA identification enable us to infer gene function by calculating 

the representation of the sgRNAs in the library 141.  
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In a recent study, 553 non-canonical ORFs were comprehensively analyzed using a 

CRISPR screen coupled to single-cell RNA sequencing 143. Among the targeted ORFs, 

386 were identified as sORFs with less than 100 amino acids and resided either 

upstream or downstream of known protein-coding genes and on long non-coding 

RNAs (lncRNAs). By performing a CRISPR loss-of-function screen in eight different 

cell lines, the authors observed viability phenotypes in 10% of the targeted ORFs 143. 

Subsequent analyses of the 13 top-scoring ORFs provided valuable insights into their 

functional role in cancer cell survival 143. This study exemplifies therefore the power of 

CRISPR screenings in deciphering the function of microproteins as they enable an 

unbiased approach to simultaneously target them and determine their function in 

different biological contexts.   

 

The main advantage of CRISPR screens lies in their high throughput and scalability, 

which enables the simultaneous interrogation of thousands of genes or microproteins. 

While most of these screens have been conducted in vitro using various cell lines, one 

significant drawback is their inability to account for environmental factors and cellular 

interactions between different cell types. To address these limitations, different 

approaches have been taken to design in vivo screens in mouse models, which can 

be challenging to set up but provide the opportunity to assess the consequences of 

sORF perturbations within a living organism. More recent in vivo screens include for 

example screens to identify modulators for tumor growth or immunotherapy targets 
144,145.  

 

Single-cell CRISPR screens 

While pooled CRISPR screenings are undeniably powerful, they have the important 

limitation that they are restricted to simple readouts such as proliferation or the 

expression of a marker gene. To address this drawback, a suite of new tools has been 

developed that enable the coupling of single-cell RNA sequencing with pooled 

CRISPR screening (Table 2), thereby providing a high-throughput functional 

dissection of genes with single-cell transcriptomic readout.  

 

In a conventional pooled CRISPR screen, it is not possible to identify which sgRNA is 

expressed in each cell. The main issue is that the sgRNA, being processed by the 

human U6 RNA Polymerase III (RNAP III), will not undergo posttranscriptional 
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modifications, including the polyadenylation, making it incompatible with the RNA-

sequencing techniques 146. To solve this issue, the sgRNA in each cell can be 

identified via a Polymerase II transcribed barcode used in Perturb-seq, CRISP-seq 

and Mosaic-seq methods 147–149, or by detecting the sgRNA within the Pol II transcript 

used in the CROP-seq method 150. In the past six years, many more techniques have 

been developed, allowing for the integration of CRISPR with next-generation 

sequencing. The advent of single-cell CRISPR screens offers the opportunity to 

investigate gene function within the context of regulatory pathways and holds great 

promise for investigating microproteins at single-cell transcriptomic resolution in vitro 

and in vivo 147–151.  

 

Only a few large-scale functional characterization screens of microproteins have been 

performed by using single-cell CRISPR screenings. In a recent study, Chen and 

colleagues combined Ribo-seq and mass spectrometry techniques to annotate and 

generate a library of non-canonical ORFs. Initially, a pooled CRISPR screen was 

performed, leading to the identification of over 500 potential targets exhibiting a 

significant proliferation phenotype. To gain deeper insights into the role of non-

canonical ORFs, a second step involved a Perturb-seq screen, focusing on 83 uORFs 

and 80 lncRNAs, to assess the transcriptomic changes resulting from the loss-of-

function of the sORF 2. These analyses revealed sORF functions in different cellular 

pathways suggesting that sORFs play diverse cellular roles and highlighting the power 

of single-cell CRISPR screenings to analyze the function of microproteins 2. Another 

elegant example of such a screening strategy was a study aimed at identifying 

regulators of zygote genome activation (ZGA)-like transcription in mouse embryonic 

stem cells, which exploited a modified CROP-seq vector used for a CRISPRa library 

coupled with single-cell transcriptomics 152. Out of the 230 genes that were assessed, 

24 were identified to have a ZGA-like signature and 9 of those genes were 

independently validated as ZGA-like transcription regulators 152. 

 

Single-cell CRISPR screens are especially powerful when carried out in vivo as they 

have the potential to interrogate gene function simultaneously in different tissue cell 

types. To date, only a few in vivo single-cell CRISPR screens have been performed. 

In 2020, the Perturb-seq vector was used for a CRISPR screen in vivo targeting 35 

risk genes for autism spectrum disorder and developmental delay (ASD/ND)153. The 
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in vivo Perturb-seq method was able to target the five main different cell types in the 

brain and uncover common pathways targeted by multiple perturbations 153.  More 

recently, an in vivo immune screen was performed using the CROP-seq vector to 

elucidate tumor immune evasion mechanisms154. These studies expand the power of 

genetic screens into biological and disease models in mammals, facilitating the 

understanding of tissue-wide gene function. These advanced single-cell CRISPR 

technologies provide therefore an attractive set of tools for targeting sORFs and hold 

great promise in understanding sORF function in different disease contexts.  

 

Conclusion 

The rapid advancement in the field of sORFs has been driven by a variety of innovative 

technologies and computational approaches that emerged rather recently, offering 

opportunities for functional characterization and understanding of the role of 

microproteins. The development of various in silico tools and pipelines has 

revolutionized the annotation and identification of sORFs, leading to the expansion of 

the standardized catalog of these elusive coding sequences in eukaryotic genomes. 

Ribosome profiling and mass spectrometry-based approaches helped tremendously 

to identify and validate sORFs by providing direct experimental evidence that they are 

translated into stable microproteins. As demonstrated in recent studies, the utilization 

of CRISPR-based systems, especially when coupled with single-cell RNA sequencing, 

enables comprehensive and systematic analyses of sORF expression and function. 

We expect that large-scale CRISPR screens will continue to expand the functional 

repertoire of microproteins. These tools hold great promise for dissecting sORF 

function in different cellular contexts and unraveling their role in the pathogenesis of 

disease.   

 

Nevertheless, the field faces challenges in identifying functionally relevant sORFs and 

sifting through the catalog of thousands of potential sORFs in the mammalian genome 

to tease apart relevant sORFs from those without a clear cellular function. Further 

investigations utilizing loss-of-function and gain-of-function approaches in relevant 

cellular contexts will be crucial for elucidating the functional significance of these 

microproteins. As sORFs continue to attract growing interest, it is evident that the 

continued integration of new methodologies will pave the way for new discoveries in 

this fascinating field of microproteins. Ultimately, unraveling the diverse cellular roles 
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of sORFs will have profound implications, shedding light on regulatory mechanisms 

and uncovering new therapeutic targets for a wide range of diseases. 
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Figure legends 

 

Figure 1: The classification of sORFs  

Schematic representation of different open reading frames (ORFs) and their genomic location. 

A large fraction of the mammalian genome is composed of small open reading frames (sORFs) 

in the untranslated regions (red). Canonical ORFs, conventionally more than 100 amino acids 

long, are depicted at the top, with exons delimited with a known start and stop codon flanked 

by 5’ untranslated region (UTR) and 3’UTR. The mammalian genome encodes transcribed 

and potentially functional sORFs between 10 and 100 amino acids, which can be classified 

according to their genomic location. Upstream open reading frames (uORFs) are found in the 

5’UTR of conventional ORFs, while downstream ORFs (dORFs) are found in the 3’UTR of 

conventional ORFs. In some cases, alternative ORFs arise from alternative initiation start sites 

within canonical ORFs and lead to shorter isoforms of a known ORF. sORFs can also be found 

in intronic regions of canonical ORFs and in intergenic regions between two canonical ORFs, 

known as intronic and intergenic sORFs, respectively. Finally, an important source of sORFs 

are long non-coding ORFs.  

 

Figure 2: Identification of sORFs 

Schematic workflow of the different methods used for the identification of small ORFs. 

Samples from diverse sources, human biopsies, mouse cells and cultured cells can be 

processed using ribosome profiling (Ribo-seq), mass spectrometry (MS) and/or computational 

approaches. Ribo-seq captures snapshots of ribosome-protected fragments that are purified 

and sequenced. Small ORFs showing 3-nucleotide periodicity are most likely to be translated 

into microproteins. Microproteins can be extracted, digested, fractionated and enriched by size 

selection followed by proteomics. Data are searched against custom databases containing the 

potential sORFs. Computational approaches to determine sORFs rely on predictions based 

on the conservation between species, codon bias and coding potential and transcriptomic and 

proteomic data analysis. The different algorithms can predict the presence of sORF based on 

detecting similarity to known proteins or domains, nucleotide composition, codon substitution 

or machine learning approaches. 

 

Figure 3: Targeting sORFs using CRISPR  

Schematic representation of the CRISPR screening workflow. Top panel: For pooled CRISPR 

screens, the sgRNA library is transduced into Cas9-expressing cells in vitro. Cells are 

harvested at the end of the experiment (e.g. following a certain number of passages or 

treatment) and submitted to sequencing. The enrichment and depletion of the sgRNAs is then 

used to infer gene function. Middle panel: Arrayed CRISPR screens are carried out in different 
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wells, where one sgRNA is targeted per well. In an arrayed screen, the phenotype can be 

linked directly to the sgRNA to determine gene function. Lower panel: single-cell CRISPR 

screens in vitro and in vivo. Similar to pooled CRISPR screens, cells are transduced with a 

pooled library. Single cells are then subjected to single-cell RNA-seq to obtain the 

transcriptomic readout coupled to cell-type specific sgRNA representation. In an in vivo single-

cell CRISPR screen, the sgRNA library is delivered, for example, directly into mouse embryos 

or adult mice. At a later time point, the organ of interest is collected, and cells are isolated for 

single-cell RNA-seq, which can determine proliferative changes and the transcriptomic 

consequences of the sgRNA in different cell types.  
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Table 1: Bioinformatic tools 

Methods 
based on 
sequence 
prediction 

 Reference 

PhyloCSF Codon substitution and conservation elements  36 

OpenProt Uses public available datasets to asses Ribo-seq and MS  41 

RNASamba Neuroal network to predict sORFs, recognizes Kozak sequence 44 

DeepCPP Algorithm using nucleotide bias to predict sORFs 46 

MiPepid Machine learning tool using for identificaton of sORFs based on 
known sORFs 

49 

csORF-finder Uses trinucleotide deviation from expected mean to distinguish 
between coding sORFs from non-coding sORFs 

50 

ORFanage Pseudo alignment algorithm for the detection of sORFs from 
RNA-seq data 

51 

sORF finder Detection of sORFs according to 3-nucleotide composition bias 43 

micPDP Search for sORFs based on codon substitutions observed in 
whole-genome alignments 

4 

uPEPperoni Detection of uORFs based on location and transcript 
conservation 

45 

sORFs.org Database of sORFs based on Ribo-seq data and integrates MS 
evidence and conservation searches 

47 

SmPROT sORFs reported in literature, databases, Ribo-seq and MS data 49 

Methods 
based  
on ribosome 
profiling 

  

ORF-Rater ORF Regression algorithm using Ribo-seq data to quantify 
translation regardless of start codon, overlap and length 

40 

ORFscore Codon in-frame reads  4 

ORFquant Annotation and quantification of tranlation level of ORFs 
considering multiple transcript isoforms 

71 

RiboTaper Identification of translated regions based on 3-nucleotide 
periodicity 

62 

Ribotricer Identification of translating ORFs based on 3-nucleotide 
periodicity 

73 

RiboWave Uses wavelet transform and 3-nucleotide periodicity to located 
the P-site  

63 

RiboCode De novo annotation of the translatome using 3-nucleotide 
periodicity 

65 

DeepRibo Neuronal network using ribo-seq data to determin binding 
patterns and translation initiation sites  

66 

riboHMM Identification of coding sequences based on abundance and 
codon pediodicity  

64 

 

Table 1: Compilation of different bioinformatic tools, divided according to sequence 

prediction and ribosome profiling methods, used for the predictions and identification of small 

open reading frames.  
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Table 2: Single-cell CRISPR methods 
 

Method  Reference 

Perturb-seq 

The Perturb-seq method combines a pooled 
CRISPR screen with single-cell RNA-seq by a 
guide barcode (GBC) expressed for each 
perturbation.  

143 

CRISP-seq: 

The CRISP-seq technique allows the identification 
of the sgRNA that infects each individual cell by 
using a vector that contains the gRNA sequence 
and a transcribed polyadenylated unique guide 
index with a fluorescent selection marker.  

142 

Mosaic-seq: mosaic 
single-cell analysis by 
indexed CRISPR  
sequencing 

Mosaic-seq couples CRISPRi with single-cell RNA 
sequencing. The library of vectors targeting 
enhancers also carries a unique barcode that 
allows the identification of the sgRNA.  

144 

CROP-seq: CRISPR 
droplet sequencing  

The CROP-seq method, unlike the other methods, 
does not pair the sgRNA with a barcode. Instead, 
the CROP-seq method uses the sgRNA as a 
barcode overlapping the Pol II transcript.  

145 

 

Table 2: Summary of the different single-cell CRISPR methods currently available with a 

small description of the principle of the method. 
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Figure 3: 
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Highlights: 

• Microproteins are encoded from small open reading frames in noncanonical 

regions 

• Bioinformatics, Ribo-Seq, and proteomics led to the annotation of >7000 sORFs  

• CRISPR screens are a powerful tool for identifying the function of microproteins  
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