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A B S T R A C T

Background and objective: Work-related stress affects a large part of today’s workforce and is known to
have detrimental effects on physical and mental health. Continuous and unobtrusive stress detection may help
prevent and reduce stress by providing personalised feedback and allowing for the development of just-in-time
adaptive health interventions for stress management. Previous studies on stress detection in work environments
have often struggled to adequately reflect real-world conditions in controlled laboratory experiments. To close
this gap, in this paper, we present a machine learning methodology for stress detection based on multimodal
data collected from unobtrusive sources in an experiment simulating a realistic group office environment
(N=90).
Methods: We derive mouse, keyboard and heart rate variability features to detect three levels of perceived
stress, valence and arousal with support vector machines, random forests and gradient boosting models using
10-fold cross-validation. We interpret the contributions of features to the model predictions with SHapley
Additive exPlanations (SHAP) value plots.
Results: The gradient boosting models based on mouse and keyboard features obtained the highest average
F1 scores of 0.625, 0.631 and 0.775 for the multiclass prediction of perceived stress, arousal and valence,
respectively. Our results indicate that the combination of mouse and keyboard features may be better suited
to detect stress in office environments than heart rate variability, despite physiological signal-based stress
detection being more established in theory and research. The analysis of SHAP value plots shows that specific
mouse movement and typing behaviours may characterise different levels of stress.
Conclusions: Our study fills different methodological gaps in the research on the automated detection of stress
in office environments, such as approximating real-life conditions in a laboratory and combining physiological
and behavioural data sources. Implications for field studies on personalised, interpretable ML-based systems
for the real-time detection of stress in real office environments are also discussed.

1. Introduction

Since the mid-twentieth century, the nature of the workplace has
changed dramatically [1,2]. These changes include the transition to
knowledge work, the pervasive use of information and communication
technology, and the need for a more flexible workforce [3]. At the same
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time, the prevalence of work-related stress has been increasing [4,5]
and is reported to be the most frequent mental health issue at the
workplace [6]. More recently, the global COVID-19 pandemic with its
dramatic impact on work and social environments has led to an alarm-
ing rise of mental stress and related depressive symptoms [7,8]. These
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developments call for the effective detection of acute work-related
stress to avert the onset of stress-related symptoms, physical diseases
and mental disorders resulting from the chronification of stress [9–11].
Indeed, the continuous detection of stress may support self-monitoring,
self-awareness and self-management of one’s stress levels [12,13]. Ad-
vances in sensor technologies and the progress in computational power
and concurrent rise of machine learning (ML) methods in the last
decades have made the automatic and data-driven detection of stress
in real life attainable. Moreover, continuous stress detection allows
for the design of a specific kind of tailored digital health intervention
called just-in-time adaptive intervention (JITAI) [14,15]. In a JITAI,
selected components, such as intervention prompts, may be adapted
and personalised to an individual’s context and changing stress levels in
real time [16,17]. In addition to increasing adherence [18], adaptive,
personalised intervention prompts help reduce symptoms and change
or increase desired health-related behaviour [19–21].

To achieve continuous, personalised, and real-time stress detection,
it is critical that researchers conduct studies which enable the develop-
ment of prediction models for stress based on unobtrusively collectable
data. A wide range of measurable physiological or behavioural indica-
tors of the stress response have been investigated for this purpose [6,
22,23]. Some physiological signals (e.g., heart rate variability, electro-
dermal activity, skin temperature) may be collected through wearable
biosensors, which are becoming increasingly comfortable, affordable
and accurate [24]. In addition, environmental sensors and integrated
software solutions have been used to collect contextual (e.g., ambient
sound, location, calendar entries) and behavioural data (e.g., mobile
phone usage, facial expressions, keystrokes, mouse movements) related
to stress [15,22,25]. To process the high volumes of data collected
in stress detection studies from multimodal sources, researchers have
come to rely on data-driven ML algorithms [6,26].

Although a considerable number of stress detection studies have
been conducted in the last two decades [for reviews, see, e.g., 15,22,
23,27], and despite the progress in wearable sensor technology and the
rise of ML methods, there remain a number of challenges regarding
the detection of stress in real-world contexts. Consequently, researchers
struggle to adequately translate—perhaps overly optimistic—results
from controlled laboratory experiments into unconstrained environ-
ments, such as offices [28]. Specifically, we argue that the following
six challenges regarding the automated detection of stress levels in a
laboratory environment need to be overcome.

First, previous studies have usually relied on artificial stress-
elicitation methods (e.g., mental arithmetic tasks, the Stroop test, or
the cold pressor test), tasks and experiment protocols that do not
properly reflect real-life contexts, such as an office environment [23].
Second, despite strong evidence that relying on data from multiple
sources to predict stress increases the predictive power of stress de-
tection models [22], many combinations of different data sources
(e.g., physiological cardiac activity data together with behavioural
computer interaction data) have yet to be studied in detail. Third, the
derivation of adequate ground truth labels is necessary for the detection
of stress. However, in stress detection experiments, labels have often
been derived from the assigned experimental conditions [23], while in
the case of office environments and other real-world contexts, this kind
of information is not available. Fewer studies have used psychological
measures, usually based on self-reports [29,30]. In addition, multiclass
or regression models for stress detection are still uncommon compared
to binary classification (i.e., detecting ‘‘stress’’ versus ‘‘no stress’’), even
though an increased granularity might more adequately reflect the
reality of the stress response [26]. Fourth, the majority of studies
have featured single-participant settings with relatively small sample
sizes [31]. As a result, there is a scarcity of more realistic group
scenarios, while the number of data points available for training of
the ML algorithms is also limited. Fifth, on the methodological side,
the relatively small size of generated data sets limits the choice of
ML algorithms to be used to detect stress [32,33]. It follows that

research has yet to leverage the full potential of more complex (and
data-intensive) ML algorithms, such as boosting and deep neural nets,
especially in combination with extensive hyperparameter tuning [26,
34]. Finally, beyond the difficulties of moving from laboratory to field
environments, additional challenges will have to be solved in order
to integrate a developed stress detection model into a JITAI. For one,
based on granular information of the stress level over time, an inter-
vention prompt logic has to be defined in such a way that the intended
positive effect of the health intervention is maximised [35,36]. For
another, stress level-feedback based on the predictions of a developed
ML model, which may be provided to users to improve their stress self-
management, should ideally allow them to make autonomous, informed
decisions regarding their health. To that end, users should be able to
understand this feedback, fostering their autonomy and trust in the
JITAI [37,38], and potentially increasing the adherence to the stress
management programme. Despite the growing body of literature on ML
interpretability methods, also known as ‘‘explanations’’ [39,40], these
methods have rarely been applied to stress detection models [14,41].

With this work we thus pursue the following research goal: to
design a methodology to address the aforementioned six challenges
in detecting stress levels in a laboratory environment and provide
practical implications for automated stress detection in real offices. To
do so, we have developed a methodology for the detection of self-
assessed perceived stress, valence and arousal levels with ML models
based on multimodal data from a laboratory experiment where we
simulated a realistic group office setting in a controlled environment
and exposed participants to different work-related stressors.

Specifically, a total of 90 participants in three experimental con-
ditions were tasked with basic workload throughout the experiment,
while intermittently being subjected to work interruptions and so-
cial pressure. Social pressure was induced with an adapted version
of the Trier Social Stress Test for Groups (TSST-G), a standardised
and well-validated psychosocial stress test [42]. We have previously
described this experimental protocol in our manuscript [43], in which
we examined group differences in the psychobiological stress response
(e.g., salivary cortisol) over time and explored the role of cognitive
stress appraisal as a mediator of the response, in order to contribute to
a better understanding of the psychophysiological processes underlying
work-related stress. Importantly, the results in [43] provide proof of a
successful stress elicitation through our experimental protocol and thus
justify the use of the data set for the purpose of the current manuscript.

Hence, the methodology introduced in this work is developed on the
collected behavioural mouse and keyboard data, physiological heart rate
variability data, and psychological self-reported multidimensional stress
level data consisting of perceived stress, valence and arousal. Its con-
tributions in relation to the state-of-the-art include the combination of
different behavioural and physiological data modalities, multiclass ML
modelling using support vector machines, random forests and gradient
boosting algorithms, implementing extensive hyperparameter tuning,
and using Synthetic Minority Oversampling Technique (SMOTE) [44]
to cope with multiclass imbalance.

Finally, to investigate and promote the interpretability of our ML
model results, our methodology comprises the use of different SHapley
Additive exPlanations (SHAP) value plots [45] to derive explanations
for features and feature interactions characterising different levels of
perceived stress, valence and arousal.

The remainder of this paper is structured as follows. Section 2
provides an overview of the psychophysiology of stress and the mea-
surement of the different stress responses. Section 3 summarises the re-
lated works from automated stress detection research, while discussing
the limitations of existing laboratory studies and the contributions
of our work in more detail. Section 4 describes the data collection,
feature generation and modelling steps of our methodology. Results
are provided in Section 5 and their implications discussed in Section 6.
Section 7 contains the conclusion and directions for future research.
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2. Background

The transactional model of stress by Lazarus and Folkman [46]
proposes that stress is a consequence of interactions between an organ-
ism and its environment. Appraising a stressor as personally relevant
and the disposable resources as insufficient triggers a stress response.
These psychological and multi-system physiological responses elicited
by a stressor [47] can also result in subconscious and intentional
behavioural changes [23]. Prolonged or repeated exposure to acute
stressors leads to chronic stress, which in turn has been linked to a
wide range of negative health outcomes including burnout and de-
pression [48], and cardiovascular diseases [11]. For continuous stress
detection, researchers try to capture acute stress events using quantifi-
able markers of the different stress responses. The monitoring of daily
acute stress can then enable stress management JITAIs to provide tar-
geted, personalised support, with the aim to prevent the development
of chronic stress and the related negative health consequences [49].

2.1. Psychological stress response

Psychological processes are an integral part of the stress response.
They have in some cases been used as a basis to establish ground truth,
that is to provide labels on which to train ML algorithms for stress
detection [23]. Stressors—even standardised laboratory stress tests—
may elicit a wide range of emotions and thoughts [47]. Therefore,
acute stress may be captured through several components of the psy-
chological response. For example, questionnaires that assess degrees of
perceived stress, valence and arousal are reflective of acute stress [50].
Technology has facilitated the collection of momentary stress expe-
riences and events throughout the day (i.e., Ecological Momentary
Assessment, EMA [16]) in real-world environments, such as the work-
place. Nevertheless, self-reporting requires the active and repeated
contribution of a participant and can only yield discrete measurements.

2.2. Physiological stress response

In addition to the psychological response, experiencing stress also
results in an activation of the two major physiological stress systems:
the hypothalamic-pituitary-adrenal axis and the autonomic nervous
system (ANS). A wide range of biomarkers of these systems have been
used to measure stress [23]. However, some of these markers can
be cumbersome to collect (e.g., cortisol levels from saliva or blood
samples, electroencephalogram [EEG] via electrode cap) and are there-
fore unsuitable for unobtrusive, continuous stress detection [15]. Other
physiological signals, such as cardiac or electrodermal activity, can be
collected non-invasively via external sensors and are therefore studied
more frequently [26]. Particularly popular are measures of heart rate
variability (HRV), which quantifies the variability in inter-beat-interval
durations and is sensitive to ANS activity alterations associated with
stress [51]. High HRV is generally linked to improved health and social
functioning, while low HRV is associated with a wide range of disorders
and diseases [52].

HRV may be quantified by a variety of time domain, frequency
domain, and non-linear measures, many of which have been consis-
tently and successfully used to distinguish between stressful and relaxed
states [53]. With recent developments in wearable technology, HRV
data collection has become less obtrusive and cardiac data can now be
acquired via wearable electrode holsters, chest straps, or—though still
at somewhat lower quality—with photoplethysmogram (PPG) sensors
in arm- and wrist-worn devices [24]. Nevertheless, the collection of
cardiac data does require the use of a sensor device, which may be
disagreeable to some potential users. The signal is also prone to dis-
tortion by motion artefacts and affected by confounds such as physical
activity [54].

2.3. Behavioural stress response

Behavioural changes induced by the psychophysiological stress re-
sponse may be reflected in changes in body posture, facial expression,
or one’s interaction with the environment [22]. While behavioural
measurements for stress detection have not been studied as extensively
as physiological ones [26], initial studies provide evidence for their pre-
dictive power for stress detection, and additional research may further
strengthen these results [22]. In addition, many behavioural mea-
sures can be collected non-invasively and without the need for extra
equipment (e.g., through video or audio data collected from sensors in-
tegrated in smartphones or laptops), making them both more affordable
and less obtrusive than physiological signals. However, data sources
such as cameras and microphones might be too privacy-invading for
potential users, especially in a work context [15,55].

In this regard, mouse and keyboard data have been suggested
as some of the best-suited modalities for stress detection in a work
environment [15,32]. While an inherent drawback of mouse and key-
board data is that they are only generated when one interacts with a
computer, most office employees spend a large part of their day in front
of their computer [3]. The association of mouse and keyboard-related
measures with stress can be theoretically grounded in the neuromotor
noise theory by van Gemmert and van Galen [56]. The theory suggests
that the imbalance between resources and demands leads to an in-
creased signal-to-noise ratio in the brain, which is reflected in increased
variations in human movements. Indeed, mouse and keyboard data
have successfully been used in emotion recognition studies [57–60].
However, some researchers have raised doubts as to whether these
data sources have enough correlation with stress to be used for its
detection [61,62].

The achievement of a consensus on the predictive potential of
keyboard and mouse features for stress detection is impeded by the lack
of consistent, theoretically grounded frameworks for feature derivation
for either data modality [63]. Regarding keyboard data, many studies
draw from the early works of Vizer et al. [59] and Epp et al. [60]
to derive a range of features related to typing behaviour, for example
regarding key counts and keystroke dynamics. For mouse data, there
are no clear reference works, thus researchers often develop their own
features based on different characterisations of mouse usage and mouse
movements in particular [57,62].

3. Related work

In this section we discuss recent works on automated stress detec-
tion with a focus on studies intending to simulate work-related stress
in office environments. For the convenience of the reader, the most
relevant related works have been summarised in Table 1 in terms of
collected data modalities, characteristics of the experimental protocol,
ML modelling and use of interpretability methods.

3.1. Multimodal stress detection

Although the different psychobiological stress responses are often
closely associated with one another, they do not always align [50].
Therefore, researchers have frequently collected data from multiple
modalities and found that the combination of different modalities gen-
erally improves the performance of stress detection models [29,67,70].
However, instead of combining as many data sources as possible, the
optimal choice of modalities to be used in a stress detection model
should find a balance between prediction performance and other im-
portant evaluation criteria. Indeed, not all potential data sources are
appropriate for stress detection in a work context such as an office
environment. Besides enabling reliable and continuous stress detection,
data collection should not obstruct employees’ work, interfere with
their daily routines or pose a potential threat to their privacy [15].
Here, we argue that mouse and keyboard data are among the least
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Table 1
Overview of related works on automated stress detection in laboratory environments (ordered alphabetically by first author).

Data modalities Experiment protocol ML modelling iMLg

Physiological Behavioural Worka Stressorsb Baseline task Label derivation Cl.c Nd ne Algorithms Tunef

[64] EDA, EMG, PPG,
RSP, ST

posture, FE – MAT (6 intensities) resting (1) self-report, (2)
observer assessment,
(3) physiology
assessment

3 25 126 SVM ✓ –

[65] ECG, EDA, ST – ✓ adapted TSST,
adapted SCWT,
MAT

resting baseline and stressor
phases

2 34 n.a. LDA, QDA,
SVM, KNN

– –

[66] ECG, EDA, EEG – ✓ MAST (CPT, MAT) resting baseline and stressor
phases

2 15 24 SVM – –

[32] – M, K ✓ M: SCWT (2
intensities), K: MAT

M task:
questionnaire, K
task: report writing

M: intensity of SCWT
before M task, K:
presence of MAT
during K task

2 25 M: 174,
K: 188

KNN, SVM,
NB

– –

[30]h PPG, RSP – – public speaking,
MAT, CPT

resting (1) self-report, (2)
baseline and stressor
phases

2 32 1700 SVM, RF,
Adaboost,
GB, LR

✓ –

[62] – M – MAT game-like M tasks intensity of MAT before
M task

2 53 86–106 LR, KNN,
SVM, RF

✓ –

[67]h PPG, EDA, ST – – MAT (3 intensities) resting baseline phase, low &
high stress from
self-report

3 21 n.a. DT, NB,
KNN, SVM,
bagging, GB,
RF

– –

[33] ECG, RSP – ✓ MIST (MAT in 2
intensities)

resting baseline phase & MAT
intensity

3 39 702 SVM, LDA,
KNN,
Adaboost

✓ –

[41]i ECG, EDA, EMG,
RSP, ST

– – TSST resting baseline and stressor
phases

2 15 1640 RF ✓ ✓

[29] ECG, EDA posture, FE, M,
K, app log

✓ time pressure,
interruptions

report writing (1) baseline and
stressor phases, (2)
self-report

2, regr. 25 2688 NB, KNN,
BN, DT, MLP,
SVM, LinR

– –

[68]i ECG, EDA – – TSST resting self-report regr. 15 1353 RF, GB, RNN ✓ –
[61] – M, K ✓ 2 intensities M: game-like tasks,

K: typing task
self-report 3 62 M: 411,

K: 429
RF-based MIL – –

[63] – M, K – 3 intensities essay writing self-report 3 41 123 SVM, RF, NB,
DT

– –

[34] EDA, PPG, ST FE, speech, K – visual stimuli – self-report 2 40 2400 RNN ✓ –

Abbreviations: ECG = electrocardiogram; EDA = electrodermal activity; EEG = electroencephalogram; EMG = electromyogram; PPG = photoplethysmogram; RSP = respiration; ST
= skin temperature; FE = facial expressions; K = keyboard; M = mouse; CPT = cold pressor test; MAST = Maastricht Acute Stress Test; MAT = mental arithmetic task; MIST =
Montreal Imaging Stress Task; SCWT = Stroop Color Word Test; TSST = Trier Social Stress Test; BN = Bayes net; GB = gradient boosting; KNN = K-nearest-neighbours; DT =
decision tree; LDA = linear discriminant analysis; LinR = linear regression; LR = logistic regression; MIL = multiple instance learning; MLP = multilayer perceptron; NB = naïve
Bayes; QDA = quadratic discriminant analysis; RF = random forest; RNN = recurrent neural net; SVM = support vector machine.
aIntending to simulate work-related stress.
bIntensity of tasks is usually varied via cognitive load, time pressure, and/or socio-evaluative threat.
cNumber of classes.
dNumber of participants.
eTotal number of observations.
fMention a hyperparameter tuning strategy.
gApply interpretable machine learning methods.
hLab study only.
iUse the WESAD data set [69].

obtrusive modalities and have enormous potential for scalability in
office environments, while current wearables can enable the continuous
and flexible collection of cardiac data.

In previous works, HRV features have frequently been used in
combination with other physiological signals such as electrodermal
activity [cf., e.g., 66,71]. Despite similar collection requirements, very
few studies have combined both mouse and keyboard data [63], al-
though some authors have developed separate models on separate data
sets for each of these modalities [32,61]. The combination of data
across both physiological and behavioural modalities is less common.
For example, in [34], the authors used a wrist-worn device to capture
cardiac, electrodermal and skin temperature data, and a smartphone to
collect facial expression, speech and touch features. To the best of our
knowledge, the laboratory experiment described in [29] is the only one
where mouse, keyboard and HRV data have been collected conjointly,
among additional data sources such as facial expressions and body
posture collected using video cameras.

3.2. Experimental protocols of stress detection studies

The majority of existing studies on stress detection have relied on
laboratory experiments where stress is induced using artificial stres-
sors [30,33,64,66]. To this end, the studies usually followed a similar
protocol in which a non-stressed baseline phase was followed by pe-
riods of stress elicitation, interspersed and/or succeeded by a resting
phase. In some studies, the validity of the protocol to elicit stress-
related changes in the respective phases was assessed with statisti-
cal comparisons of intermittently sampled questionnaire [30,32,62]
or—more rarely—biochemical data [65,66].

The experimental protocol is commonly used to label the collected
data into periods of ‘‘stress’’ and ‘‘no stress’’ [29,32,62], but this kind
of ground truth does not exist in field studies. Assigning all participants
the same level of stress based on the presence or absence of a stressor
might also not adequately address inter-personal differences in stress
reactivity [47]. Thus, some studies have also relied on questionnaire
data to derive labels instead, either discretising scales into classes or in
regression models [29,61,64].
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The chosen stress elicitation task differs widely from study to study.
Although some studies have developed their own stress elicitation
protocols [29,61,64], the majority of studies relied on adaptations of
well-validated stress tests, such as the Stroop test, mental arithmetic
tasks, the cold pressor test, and the TSST [for a review, see, e.g., 23].
While such validated stress elicitation procedures are known to evoke a
strong stress response for most participants, they are very different from
stressful situations that one might experience in the real world. Studies
that have tried to mimic real-world stress situations more closely by
developing their own stress elicitation protocols often rely on time
pressure as the stressor [29,61,65]. However, in real work contexts,
time pressure might easily be confounded with a period of increased
productivity and cannot necessarily be equated with stress [32].

During baseline or resting experiment phases participants often
performed a task that is intended to induce a state of relaxation such
as reading magazine articles or watching videos [65,69]. However, in
a real-life working scenario, people are continuously executing tasks
throughout the day without necessarily experiencing stress. Thus, a
relaxation-inducing baseline or resting phase would not reflect this
baseline workload accurately. In contrast, studies involving mouse and
keyboard data, require a computer task to allow for data collection
during stressful and resting phases. Here, researchers have typically
designed highly specific tasks which are too artificial and simplis-
tic to simulate real working conditions—for example point-and-click
exercises, the Towers of Hanoi game, or queue-prompted text writ-
ing [61–63]. In such studies, different experimental states were then
evoked by varying the demands of the tasks themselves [29,61], or by
periods of stress elicitation immediately preceding the data collection
task [32,62].

In summary, despite some of the above mentioned studies specif-
ically aiming to reflect office-like conditions [29,32,61,66], there is
still room for improvement regarding the realism of the data collection
tasks, baseline workload and stress-elicitation methods in stress de-
tection experiments simulating office environments. In addition, none
of these laboratory studies accounted for the social component of
shared offices in their single-participant setups, further limiting the
generalisability of procedures and results to real-life working scenarios.

3.3. Machine learning-based stress detection

To build a stress detection model researchers usually train ML
algorithms on a generated data set [29,30,32,64]. To do so, they
derive different features from raw data collected from multiple sources,
and use these as input in a binary classification problem aiming to
discriminate between a stressed and non-stressed class. However, only
a few studies have increased the granularity of their labels to a mul-
ticlass classification problem [61,63,67], or considered the collected
self-reported stress levels on a Likert scale as regression labels [29,68].

ML algorithms commonly used to detect stress are support vector
machines, k-nearest neighbours, and random forests [for reviews, see,
e.g., 6,26]. More complex methods, such as boosting, feed-forward and
recurrent neural networks have received some attention only in recent
years [34,68,70], but the application of deep learning methods is lim-
ited by the small size of data sets generated in laboratory experiments.
Additionally, studies aiming to detect stress with ML algorithms show a
high degree of variability in terms of methods, performance assessment
and reporting, which affects the reproducibility and comparability of
results [30,33,72]. In fact, apart from the use of different experimental
protocols to collect data for ML modelling, different data normalisation
procedures are performed [64,66]. Moreover, the reporting of ML
results does not often mention model hyperparameters (e.g., the depth
of the trees in a random forest ensemble) and their tuning [29,63].
Finally, the measures used to select best-performing models vary among
studies, as well. Common choices are the accuracy, the Area Under the
ROC Curve (AUC), and the F1 score [30,32,61].

3.4. Interpretable stress detection models

ML algorithms are capable of capturing complex high-dimensional
relationships in data, but their complexity means that the underlying
decision rules are often not easily understood. This low transparency
may become disadvantageous for a stress detection system based on
nonlinear models for two reasons. First, it impedes the efficient de-
bugging and validation of ML models for stress detection during their
design process. Second, it affects the implementation of ML methods to
detect stress as humans are less willing to trust, adopt and appropriately
use systems that are not understandable and transparent [38,39]. To
overcome these issues, researchers have introduced different inter-
pretable Machine Learning (iML) techniques with the aim to increase
human understanding of and to foster trust in opaque ML methods [39,
40]. One common iML approach is feature attribution, where a weight
is estimated for each feature of a model depending on its importance
for the model’s predictions. For example, tree-based algorithms such
as random forests and gradient boosting allow computing the ‘‘global’’
importance of a feature used to train the tree ensembles. These feature
importance scores return the numbers of times a feature is used in
the ensemble, or a function of the gains of the tree splits using that
feature. However, these scores do not provide information on how
different features may contribute to the ML model prediction of any
given data point, and the different strategies to compute them may lead
to inconsistent results [45].

Among all iML methods that can support the understanding of ML
model outcomes, SHapley Additive exPlanations (SHAP) [45] are one
of the most commonly used in applications. Recent work on affective
computing has seen the use of SHAP values to explain dropouts in
digital health interventions programmes [73] or to evaluate the feasi-
bility of ML methods to detect emotional states and transitions [74].
In previous research on stress detection and affective computing in
general, feature importance methods have in some cases been used as
a feature selection technique [33,75] or to identify the data modalities
having the most discriminative potential [e.g., 61]. To the best of
our knowledge, more advanced methods than off-the-shelf tree-based
feature importance techniques, such as SHAP values, have rarely been
systematically employed in stress detection research [14,41,76]. Jaber
et al. [41] applied SHAP value analysis to the publicly available WESAD
data set [69] to design a prototype stress prediction report for clinicians
reminiscent of blood test results. Rozet et al. [14] used SHAP-like
visualisations of layer-wise relevance propagation scores to interpret
the predictions of their stress detection model based on environmental
and physical activity field data. Lastly, Ng et al. [76] have recently
applied SHAP values to investigate the most predictive features when
predicting next-day stress of pregnant women in a proof-of-concept
study. However, the full potential of interpretability methods to support
engineers in the design of ML models for stress detection and to increase
end-user understanding and trust in these models is yet to be harnessed.

4. Methods

In this section, we introduce the key steps of our proposed method-
ology for the automated detection of stress measures with ML models.
In Sections 4.1–4.3 below we briefly describe the laboratory experiment
which generated the data set used in this work. Additional details
on the experiment procedure can be found in our manuscript [43] in
which we first introduced this protocol and confirmed the successful
stress elicitation while investigating the psychophysiological processes
underlying work-related stress. Then, in Sections 4.4 and 4.5 we detail
the data collection and preprocessing steps. Finally, in Sections 4.6 and
4.7 we describe the ML pipeline for the automated detection of stress
measures in detail and the method we considered to interpret ML model
results. See Fig. 1 for an overview of the proposed methodology.
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Fig. 1. The different steps of our methodology for the automated detection of self-assessed perceived stress, valence and arousal levels with ML models. We describe the step
‘‘Experiment’’ in Sections 4.1–4.3, while Sections 4.4 and 4.5 are devoted to ‘‘Data Collection’’ and ‘‘Data Preprocessing’’, respectively. Finally, in Sections 4.6 and 4.7 we discuss the
‘‘ML Pipeline’’ and ‘‘ML Interpretability’’ steps. Abbreviations: HRV = heart rate variability; SMOTE = synthetic minority oversampling technique; SVM = support vector machine;
RF = random forest; LightGBM = light gradient boosting machine; CV = cross-validation; SHAP = SHapley Additive exPlanations.

4.1. Participants

Ninety participants (44 female) with a mean age of 23.11 (SD=3.80)
were recruited via the university’s online recruitment website. For a
detailed description of exclusion criteria, see [43]. Participants gave
written informed consent and were compensated for participation with
75 Swiss francs. The study was approved by the ETH Zurich’s ethics
commission (EK 2019-N-34).

4.2. Environment

ETH Zurich’s Decision Science Laboratory was modified to mimic
a real-world group office environment. Each participant was assigned
a desk equipped with a computer, mouse and keyboard. A custom-
built software guided participants through the experiment, displaying
instructions screens, questionnaires and the experimental tasks (see
Fig. 2). The software was synchronised between all participants and
programmed specifically for each experimental condition.

4.3. Procedure

Data were collected during three sessions of 30 participants each.
In each session, participants were randomly assigned to one of three
experimental conditions (stress condition 1, stress condition 2, and
control condition) and transferred to three separate rooms. Before
the experiment started, a set of questionnaires was used to assess
sociodemographic and psychological baseline characteristics. The ex-
periment itself consisted of six blocks (see Fig. 3), in which participants
were asked to act as employees of a fictitious insurance company.
After each block, participants filled out a set of psychological state
questionnaires. During all blocks except block 4, participants received
email messages asking them to perform typical office clerk tasks using
the custom-built software. There were three types of tasks: transcribing
handwritten claims reports, aggregating sales numbers and scheduling
appointments. During block 4, participants from both stress conditions
were confronted with a situation designed to elicit psychosocial stress,
whereas the control condition experienced a friendly version of the
situation. Specifically, we adapted the TSST-G [42] such that in the
stress conditions, two line managers (portrayed by actors) interviewed
the participants in front of their peers in search for the best candidate
for a promotion. In the control condition, the situation was framed as
a non-evaluative professional training which involved reading a work-
related dialogue aloud in unison. To induce anticipatory stress in the
two stress conditions, we announced the upcoming interaction to the
participants 20 min in advance. As an additional stressor, participants
in stress condition 2 received frequent chat messages from their man-
ager during blocks 2 and 3 (i.e., before and during anticipation), which
interrupted them in their workflow with urgent questions related to
their tasks and performance.

Fig. 2. (a) The experimental setup simulating an office environment, including desks,
computers and saliva sampling equipment. (b) Screenshot of the experiment software
displaying the email inbox, an open tab for one of the three experimental tasks
(transcribing scanned insurance claim forms) and the chat window. Cf. also Fig. 1
and A.1 in [43].

4.4. Data collection

Participants’ mouse and keyboard usage was captured via a custom-
built software deployed on their computers. The recorded computer
mouse data consists of timestamps (in ms), the 𝑥 and 𝑦 coordinates of
the cursor on screen (in pixels) and the type of mouse operation per-
formed (i.e., movement, left, right or middle click, left or right double
click, scrolling up or down). Mouse activity was logged at a frequency
of 8 Hz. The recorded keyboard data consists of timestamps (in ms) and
an identifier of the respective key that was pressed. Cardiac activity
was collected with the Firstbeat Bodyguard 2 (Firstbeat Technologies
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Fig. 3. Study protocol adapted from [43]. Self-assessed psychological measures of stress were collected at the end of each block via questionnaire. Mouse and keyboard activity
was logged for all experiment blocks except block 4, where no interaction with the computer took place. Cardiac activity was recorded continuously throughout the experiment.

Oy; Jyväskylä, Finland), an ambulant electrocardiogram device which
participants wore throughout the experiment. The device records R-
peaks (timestamp and duration; in ms) at a frequency of 1000 Hz.
Participants subjective stress load after each block was assessed us-
ing the Multidimensional Mood State Questionnaire (MDMQ) [77].
The MDMQ includes the subscales valence (‘‘positive–negative’’) and
arousal (‘‘calm–nervous’’) with ranges from 4 to 20, where low scores
indicate negative valence and nervousness, respectively. A single item
on a 5-point Likert scale (1 to 5) was used to assess the perceived level
of stress explicitly (i.e., ‘‘How stressed are you in this moment?’’).

In addition to the measures described above, psychological base-
line characteristics were measured before the experiment, and addi-
tional psychological state questionnaires and biochemical measures
(salivary cortisol and salivary alpha-amylase) were collected before
the experiment and after each block. For the analysis of these data,
see [43].

4.5. Data preprocessing

4.5.1. Measures of stress
From the raw collected mouse, keyboard and cardiac activity data,

features were extracted from non-overlapping segments to avoid data
leakage. A segment duration of 1 min was chosen, a temporal granular-
ity which has been proposed in previous works [29,54]. In particular,
for HRV data, several studies have confirmed that such a segment
length is sufficient to distinguish between levels of stress [53,78,79].
However, for mouse and keyboard data, a clear consensus on seg-
ment duration has yet to be established, with previous works deriving
features on segments ranging from 5 s [61], to one minute [29], to
10 min [32], or even aggregated per given experiment task of varying
length [62,63].

The labels assigned to each segment correspond to the self-
assessments at the end of the respective experiment block. To reflect the
multidimensionality of the psychological stress response, we derived
distinct sets of labels from the arousal, valence and perceived stress
scales described in Section 4.4. The scales were each divided into
three distinct classes to allow for granular predictions, while at the
same time removing noise and mitigating class imbalance, similar
to [63,80,81]. Specifically, we mapped the scores {1, 2}, {3}, and
{4, 5} on the perceived stress scale to low, medium and high perceived
stress, respectively, the scores {4,… , 9}, {10,… , 14}, {15,… , 20} on the
valence scale to negative, neutral and positive valence, respectively, and
the scores {15,… , 20}, {10,… , 14}, {4,… , 9} on the arousal scale to low,
medium and high arousal, respectively.

4.5.2. Mouse features
Mouse features capture either the occurrence count of specific

mouse events or the dynamics of mouse movements. Example of oc-
currence count-related features are the number of clicking or scrolling
events within a specific time window, or the number and duration
of pauses within the window. We define a mouse movement as a

consecutive series of mouse locations on the screen that is delimited by
either a click or scroll operation, or a pause of more than 500 ms. The
pause threshold was chosen based on previous research [63]. Mouse
movements can be characterised by different features. Examples are
speed and acceleration, the deviation from an optimal straight line
between the start and end point of the movement and the number
of direction changes that occurred within a movement. All features
extracted in this study were based on features used in previous re-
search [29,57,63,82]. We aggregated all features based on mouse
events that could occur more than once within a segment using the
mean and standard deviation [57]. If an event did not occur within a
segment, the respective features were set to zero. In total, we derived
31 mouse features, see the Appendix for the full list and description of
features.

4.5.3. Keyboard features
Keyboard features capture either the occurrence count of specific

groups of keys or the dynamics of two or three consecutively pressed
keys (so-called di- and trigraphs). A digraph has been defined as two
consecutive keys which were recorded at most 500 ms apart. A trigraph
is the combination of two consecutive digraphs (sharing the middle
key). The 500 ms threshold was chosen based on literature [83] and
delimits a pause in the typing behaviour. Examples of occurrence count-
related features are the number of character keys pressed during the
time window in question, or the number of the delete and backspace
key counts. Note that we purposefully did not collect more granular
count features which might risk the identification of specific tasks dur-
ing the experiment. Keystroke dynamics features include the averaged
typing speed and pause durations within a segment, the time difference
between consecutive keys for digraphs and trigraphs in general, and
for the most common specific graphs (i.e., the ‘‘ER’’ digraph and the
trigraph with a ‘‘Space’’ key in the middle). All extracted features were
based on previous research [29,59,60,63]. Note that our data does
not include press and release information on individual keys due to a
limitation in the software used to record keyboard activity. As a result,
we could not derive some common digraph and trigraph features,
such as dwell and flight time [60]. We aggregated all features based
on events that could occur more than once within a segment using
the mean and standard deviation. If an event did not occur within a
segment, the respective features were set to zero, as it has been done
in previous research [32]. In total, we derived 19 keyboard features,
see the Appendix for the full list and description of features.

4.5.4. HRV features
The Firstbeat Bodyguard 2 device continuously recorded RR interval

lengths (in ms) during the experiment. We used the Python package
hrv (version 0.2.8) [84] to preprocess the RR interval (RRI) data and
derive HRV features for each one-minute data segment. RRI time series
are subjected to noise caused, for example, by ectopic heart beats or
motion artefacts. Filtering and interpolating the RRI tachogram may
reduce the impact of such artefacts on the HRV feature estimation [85].
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Table 2
Class imbalance of the three stress measures on the full data set and without block 4.

Level With block 4 Without block 4

Perceived Stress low 4128 (61%) 3628 (61%)
medium 1600 (24%) 1400 (24%)
high 1048 (15%) 868 (15%)

Arousal low 3520 (52%) 3120 (53%)
medium 2512 (37%) 2162 (37%)
high 744 (11%) 614 (10%)

Valence negative 142 (2%) 102 (2%)
neutral 1608 (24%) 1358 (23%)
positive 5026 (74%) 4436 (75%)

We therefore excluded observations with unrealistic values (under 300
or over 2000 ms) and applied the threshold filter of the hrv package
to detect outliers. This filter is comparable to the threshold-based
algorithm offered by the popular HRV analysis software Kubios [86].
In this approach, each RRI value is compared to the local median and
excluded if it differs by more than a certain threshold (chosen as 450 ms
or ‘‘very low’’ in our case). All excluded values were replaced by cubic
spline interpolations. The filtering results showed that the recordings
of two participants were of insufficient data quality (more than 10%
non-normal heartbeats), which were therefore excluded from further
analysis. From the denoised data, we derived time and frequency
domain, and non-linear measures of HRV that are commonly used in
literature and that have been shown to reliably discern stressed from
non-stressed states on ultra-short recording lengths [53,78]. To calcu-
late the frequency domain features, we estimated the power spectral
density of the RRI time series. The estimation was performed via Fast
Fourier Transform (using Welch’s method with Hann windows) from
the detrended and equidistantly re-sampled RRI data (constant trend;
cubic spline interpolation at 4 Hz). In total, we derived 9 HRV features,
see the Appendix for the full list and description of features.

4.6. Machine learning pipeline

The data preprocessing procedures detailed in Section 4.5 resulted
in a data set containing a total of 6776 observations and 59 features
derived from three different modalities and 88 participants. In order
to adjust for inter-individual differences, we then user-calibrated all
non-ordinal features (i.e., all except count-related features) using robust
standardisation,

𝑥standardized =
𝑥 −Med
IQR

,

with Med = median and IQR = interquartile range derived from the
participant’s baseline recording of block 1, similar to [33,63]. Each
observation was labelled with the respective level of perceived stress,
valence and arousal derived from the subsequent self-report. The mea-
sures are affected by different degrees of class imbalance (see Table 2).
The preprocessed data set shows that participants mostly perceived low
levels of stress and arousal, and positive levels of valence over the course
of the experiment, which is not surprising as stress was only elicited
for a subset of participants and experiment blocks. To compare the
potential of the behavioural and physiological features for detecting
stress, we considered all possible combinations of modalities. Block 4 of
our experiment was the only phase where no computer interaction took
place (see Fig. 3), hence all mouse and keyboard features for segments
of this block have the value zero. As there is no information available
for the mouse and keyboard modalities for these observations, we did
not use data from block 4 when training classifiers based on only one
or both of these two modalities (reducing the number of observations
to 5896).

We used support vector machines (SVM), random forests (RF), and
light gradient boosting machines (LightGBM) [87] to detect perceived
stress, arousal and valence levels separately. LightGBM is a gradient

boosting method that employs an ensemble of decision trees where the
trees are added in sequence and learned by fitting the negative gradi-
ents in each iteration. We used the Python packages scikit-learn
and lightgbm (versions 0.24.1 and 3.2.1, respectively) to implement
the ML models. While SVM and RF algorithms have frequently been
used in similar studies [e.g., 29,32,62], boosting methods are less
common [30,67]. To the best of our knowledge, the novel LightGBM
algorithm—which promises higher efficiency and accuracy than other
boosting methods [87]—has not yet been applied in stress detection
studies. Similar to [29,64], to contextualise our results we compared
the best-performing models against a baseline classifier which max-
imises the class prior (i.e., it always predicts the most frequent class,
for each stress measure).

We applied a stratified cross-validation (CV) procedure with 10
folds to tune the hyperparameters of the SVM, RF and LightGBM mod-
els, a frequently used approach in affective computing [29,60,63,82,
88]. The hyperparameter grids can be found in Appendix. Training data
are oversampled using the Synthetic Minority Oversampling TEchnique
(SMOTE) [44] to handle the multiclass imbalance, which has yielded
promising results in other works [63,65]. The SMOTE algorithm gen-
erates synthetic examples of the minority classes along line segments
connecting a given data point to its K-nearest neighbours [44]. As a
result, for each of the 10 runs of the CV procedure, each ML model
was trained on a balanced training data set and evaluated on a test
data fold showing multiclass imbalance.

For each feature set, algorithm and hyperparameter configuration,
we computed the weighted average precision, recall, F1 score (i.e., the
harmonic mean of precision and recall), and AUC across the three
classes, for each stress measure, on each of the 10 class-imbalanced
test data folds. Precision for each class 𝑖 is defined as the number of
true positives (TP) over the sum of both TP and false positives (FP),
recall is defined as the number of TP over the sum of both TP and false
negatives (FN), while the F1 score is the harmonic mean of the two,
i.e.,

precision𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

, recall𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

,

F1 score𝑖 =
2

1

precision𝑖
+

1

recall𝑖

, 𝑖 ∈ {0, 1, 2}.

For SVM, we tuned the kernel function, the degree in case of a poly-
nomial kernel, the regularisation parameter, and the kernel coefficient.
For RF, we tuned the number of trees in the ensemble, the maximum
number of features at each split of a tree in the ensemble, the split
criterion, the minimum number of samples at each split, and the
maximal depth of each decision tree in the ensemble. In the case of
LightGBM, we tuned the boosting type, the number of estimators, the
learning rate, the maximal depth of each tree in the ensemble, and
the percentage of features at each split of a tree. For each of the three
algorithm, we also tuned the number of K-nearest neighbours for the
SMOTE oversampling step. We selected the optimal hyperparameter
configuration using a grid search optimising the weighted average F1
score over the 10 test data folds as, by definition, the F1 score encodes
both the precision and recall of each model [30,33].

4.7. Estimation of SHAP values

We employed SHAP values [45] for our ML model interpretability
analyses. SHAP values are scores that are theoretically grounded in the
Shapley values used in game theory. The SHAP method decomposes
a single prediction of an ML model into the additive contribution of
each feature (i.e., the SHAP values). Therefore, the set of SHAP values
provides an interpretation of the prediction of any data point (local
explanation), unlike other methods such as the off-the-shelf feature
importance scores for tree-based ML models (e.g., RF and gradient
boosting). In contrast to other feature attribution methods, SHAP values
also fulfil a set of desirable properties (i.e., local accuracy, missingness
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Table 3
Performance results, averaged over classes and folds, for the best ML models on behavioural features, for all stress measures. Abbreviations:
prec = precision; rec = recall; M = mouse features; K = keyboard features.

Algorithm Features Perceived stress Arousal Valence

F1 prec rec AUC F1 prec rec AUC F1 prec rec AUC

SVM M 0.527 0.548 0.515 0.619 0.523 0.534 0.515 0.631 0.705 0.714 0.698 0.670
K 0.524 0.514 0.545 0.576 0.489 0.504 0.505 0.560 0.663 0.686 0.646 0.617
MK 0.529 0.557 0.513 0.637 0.531 0.555 0.518 0.645 0.694 0.725 0.676 0.695

RF M 0.557 0.569 0.550 0.661 0.580 0.594 0.573 0.698 0.749 0.751 0.749 0.737
K 0.579 0.577 0.582 0.673 0.582 0.583 0.585 0.693 0.751 0.746 0.761 0.741
MK 0.582 0.585 0.582 0.681 0.580 0.594 0.573 0.698 0.750 0.751 0.750 0.736

LightGBM M 0.601 0.594 0.612 0.689 0.589 0.586 0.593 0.711 0.752 0.746 0.770 0.743
K 0.589 0.579 0.615 0.677 0.597 0.594 0.604 0.714 0.756 0.752 0.775 0.755
MK 0.625 0.618 0.643 0.729 0.631 0.630 0.635 0.757 0.775 0.772 0.782 0.796

Baseline Classifier 0.469 0.379 0.615 0.500 0.366 0.280 0.529 0.500 0.646 0.566 0.752 0.500

Table 4
Performance results, averaged over classes and folds, for the best ML models on HRV features and the combination of HRV with one or both
of the behavioural modalities, for all stress measures. Abbreviations: prec = precision; rec = recall; H = HRV features; M = mouse features; K
= keyboard features.

Algorithm Features Perceived stress Arousal Valence

F1 prec rec AUC F1 prec rec AUC F1 prec rec AUC

SVM H 0.501 0.484 0.547 0.562 0.503 0.522 0.492 0.626 0.655 0.660 0.651 0.615
MH 0.531 0.546 0.521 0.629 0.530 0.538 0.524 0.638 0.697 0.710 0.686 0.676
KH 0.515 0.509 0.523 0.587 0.498 0.511 0.491 0.603 0.658 0.653 0.664 0.587
MKH 0.534 0.528 0.545 0.575 0.525 0.552 0.511 0.648 0.693 0.693 0.693 0.650

RF H 0.529 0.537 0.524 0.627 0.531 0.532 0.531 0.640 0.682 0.682 0.684 0.659
MH 0.580 0.580 0.589 0.686 0.586 0.588 0.586 0.706 0.726 0.726 0.731 0.720
KH 0.559 0.561 0.557 0.664 0.577 0.578 0.577 0.696 0.733 0.734 0.735 0.740
MKH 0.589 0.595 0.594 0.702 0.607 0.609 0.606 0.729 0.745 0.745 0.751 0.761

LightGBM H 0.531 0.536 0.526 0.627 0.528 0.530 0.527 0.644 0.688 0.691 0.685 0.668
MH 0.599 0.596 0.604 0.708 0.597 0.599 0.597 0.726 0.735 0.734 0.736 0.759
KH 0.581 0.576 0.588 0.685 0.595 0.594 0.598 0.728 0.745 0.742 0.749 0.771
MKH 0.612 0.608 0.624 0.727 0.617 0.620 0.616 0.751 0.757 0.760 0.756 0.799

Baseline Classifier 0.461 0.371 0.609 0.500 0.355 0.270 0.519 0.500 0.632 0.550 0.742 0.500

and consistency [45]). To estimate SHAP values, we used the Tree-
SHAP algorithm of the SHAP Python package (version 0.39.0) on the
best-performing ML model for each stress measure, after retraining it
on the entire data set of observations. We derived three different types
of SHAP plots for all stress measures to gain insights into the workings
of our best-performing ML models (i.e., the SHAP global, beeswarm and
dependence plots).

5. Results

In this section, we provide a summary of the main results of the
ML pipeline from Section 4.6, which lies at the core of the proposed
methodology described in Section 4 and shown in Fig. 1. Specifically,
in Section 5.1 we describe in detail the results of the modelling pro-
cedures and the evaluation of the resulting ML models for all three
stress measures and combinations of collected mouse, keyboard and
cardiac activity data. Then, in Section 5.2 we provide the results of
the SHAP value analysis of the best-performing models emerging from
the ML pipeline. To do so, we show (1) global, (2) beeswarm, and (3)
dependence SHAP plots [89] for the lowest and highest levels of all
three stress measures.

5.1. Evaluation of ML models

In Tables 3 and 4 we provide an overview of the best-performing
SVM, RF and LightGBM models, considering all three stress measures.
As mentioned in Section 4.6, the best-performing models are chosen
by considering the weighted average F1 score over the 10 test data
folds. Table 3 contains the results for the models trained on behavioural
features, for which observations from block 4 were excluded (i.e., the
mouse and/or keyboard modalities). Table 4 contains the results for the

models trained on either HRV data only, or on HRV data in combination
with one or both of the behavioural modalities, and considering ob-
servations drawn from all six experimental blocks. Both tables include
the results of the baseline classifiers maximising the class priors. In the
Appendix, we indicate the optimal hyperparameter configurations for
the best-performing models per stress measure.

Overall, the LightGBM models trained on mouse and keyboard
features outperform the models trained on other feature subsets or with
other algorithms, for all three stress measures. These models result in
F1 scores equal to 0.625, 0.631 and 0.775 for perceived stress, arousal
and valence, respectively. All the tuned models in Tables 3 and 4
perform considerably better than the corresponding baseline classifiers.
In particular, the LightGBM model trained on mouse and keyboard
features to detect perceived stress (F1=0.625) shows an increase in
F1 score equal to +33% with respect to the corresponding baseline
classifier (F1=0.469). The increase of F1 score in the case of arousal
and valence is equal to +72% and +20%, respectively. The performance
improvements of the best models compared to the baseline classifiers
are driven by gains in both precision and recall. The gains in precision
are higher than the ones in recall, since the baseline classifiers optimis-
ing class priors naturally achieve a fairly high recall on the imbalanced
test folds.

The RF models consistently outperform the SVM models in terms of
all four performance measures, while the LightGBM models fare even
better for most feature sets and stress measures. The only exception
are the HRV modality models, where the tuned RF model achieved a
slightly higher F1 score than the LightGBM one (0.531 vs. 0.528). For
the SVM algorithm, models trained on mouse features yield slightly
better results than on keyboard features, while for RF models, the
reverse holds true. In the case of LightGBM, the mouse modality worked
better than keyboard data for detecting perceived stress, but not for
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Table 5
Average performance results of the best LightGBM on mouse and keyboard features modalities, for
each stress measure and corresponding classes.

Label Class F1 precision recall AUC

Perceived stress low 0.776 0.726 0.832 0.741
medium 0.382 0.450 0.334 0.679
high 0.386 0.436 0.348 0.761

Arousal low 0.716 0.712 0.721 0.768
medium 0.591 0.580 0.603 0.739
high 0.343 0.388 0.309 0.760

Valence negative 0.294 0.298 0.303 0.875
neutral 0.515 0.575 0.468 0.787
positive 0.865 0.843 0.889 0.797

arousal and valence. The combination of the two modalities, however,
generally improves performance in comparison to single modalities. For
SVM, RF and LightGBM algorithms, models on HRV features are out-
performed by those including also one or both behavioural modalities
for all stress measures. The increase is generally larger when adding
mouse modality rather than the keyboard modality, with the exception
of the LightGBM model detecting valence. In the case of the SVM
models detecting arousal, the model based on both HRV and keyboard
features even performs worse than the model based on HRV data only.
Considering the best LightGBM models on mouse and keyboard data
in comparison to those based on all features, the addition of HRV
features to behavioural ones leads to a decrease of performance equal to
−2% for either perceived stress, arousal, or valence. Finally, comparing
the three different stress measures, valence is the most accurately
detected measure (F1=0.775), followed by arousal and perceived stress,
for which the best LightGBM models trained on behavioural measures
reach similar performance (F1=0.625 and F1=0.631).

For each stress measure, in Table 5 we report the per class average
performance over the 10 imbalanced test folds of the best-performing
model, that is the LightGBM model trained on mouse and keyboard fea-
tures. We recall that, due to class imbalance (see Table 2), each test fold
contains on average 140 samples with a medium stress level, 61 samples
with a high arousal level, and only 10 samples with a negative valence
level. In the case of perceived stress detection, the model reaches the
lowest F1 score on the medium stress level class. Performance slightly
improves in the case of high stress class and considerably in the case
of the low stress class, where F1=0.776. In the case of the detection
of arousal and valence, the performance of the model decreases with
the increase of class imbalance. In fact, the arousal model shows the
highest performance in detecting the low arousal level with F1=0.716,
followed by medium and high levels. Similarly, the valence model shows
the lowest performance on the negative valence class, considerably
improving on the neutral (F1=0.515) and positive classes (F1=0.865),
instead.

To verify the beneficial effect the SMOTE oversampling, we checked
the performance of the best-performing models (i.e., LightGBM models
trained on mouse and keyboard features) when tuned on the same
hyperparameter grids (see Appendix) but without SMOTE. Results in-
dicate that without SMOTE, the F1 scores would decrease by 2% for
perceived stress and arousal, and 3% for valence.

5.2. Model interpretation with SHAP values

In order to visualise the feature contributions in our best-performing
models, we show the SHAP global and beeswarm plots over 20 features
for the tuned LightGBM models based on mouse and keyboard data,
after retraining on the entire data set (without block 4 observations).
Specifically, we include SHAP beeswarm plots for the low and high
perceived stress, low and high arousal, and the negative and positive
valence classes, respectively. Finally, we present a selection of SHAP
dependence plots, for each stress measure.

The SHAP global plots include the set of the 20 features with the
highest mean absolute SHAP values across all three classes, per each

stress measure. The SHAP beeswarm plots list the 20 features with
the highest mean absolute SHAP value for the selected class. In each
plot, the 𝑥-axis corresponds to the SHAP values for all features at
each observation, shown as coloured dots. When multiple dots land at
the same 𝑥 position, they are piled up to show density. Their colour
corresponds to the values of the feature under consideration, see the
vertical scale on the right-hand side of each plot. Note that the features
(except key and click counts) have been user-calibrated with data from
block 1, and that detailed descriptions of all features can be found
in Appendix. By definition, for any feature, observation, and class, a
positive SHAP value indicates a positive impact of the corresponding
feature on the prediction of the class for the given observation, and
vice versa for negative values. Finally, each SHAP dependence plot maps
the SHAP values of a selected feature against its observed values. The
observations can be coloured by the value of another feature, allowing
to analyse interactions between pairs of features. The procedure is
particularly useful in the case of ‘‘vertical dispersion’’, that is when
multiple observations in the dependence plot are characterised by the
same feature value but different SHAP values.

5.2.1. Perceived stress
The global SHAP plot in Fig. 4(a) shows that the three features with

highest mean absolute SHAP values are all mouse modality features,
specifically the mean Euclidean distance between the end and start
locations of mouse movements (DirectDistMean), and the count and
standard deviation of durations in mouse movement pauses (MousePa-
useCount, MousePauseDurStd). For DirectDistMean and MousePauseC-
ount, the mean absolute SHAP value for the low perceived stress level
shows the highest contribution to the total mean absolute SHAP value
of the features, while for MousePauseDurStd, the mean absolute SHAP
value of the high perceived stress level accounts for 73% of the total
mean absolute SHAP value of the feature.

The low perceived stress level SHAP beeswarm plot (Fig. 4(b))
shows multiple features with a high dispersion of SHAP values around
zero. This means that features such as the mean and standard deviation
of the duration between clicks (TimeBtwClicksMean, TimeBtwClicksStd),
and the standard deviation of the ‘‘overshoot’’ distance in the 𝑦 di-
rection (yOvershootStd) also contributed strongly to the probability of
low perceived stress for some observations. Considering the globally
important mouse features DirectDistMean and MousePauseCount, we
note that low values of either feature are associated with positive SHAP
values, for most observations. This means that values of the mean
Euclidean distance of mouse movements lower than average (i.e., lower
than the corresponding average in block 1, per participant) and a low
number of pauses between mouse movements are generally associated
with an increase in the probability of low perceived stress by the model.

The SHAP dependence plot in Fig. 7(a) plots the SHAP values of
DirectDistMean against the feature’s values. The colouring by the value
of the mean average speed of movements (AvgSpeedMean) shows that
the observations with movements of shorter distance than average,
which contribute positively to the low perceived stress class prediction,
are characterised by low average speed. Important keyboard-related
features such as the time spent typing (TypingTime), the counts of
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Fig. 4. SHAP value plots for the best LightGBM model on mouse and keyboard features, in the case of perceived stress detection. Descriptions of the features can be found
in Appendix.

pauses in typing (KeyPauseCount) and delete and backspace key oc-
currences per minute (ErrorCount) follow a similar overall pattern to
the one of DirectDistMean and MousePauseCount, with low values
increasing the probability of the low perceived stress class.

The high perceived stress level SHAP beeswarm plot (Fig. 4(c))
shows that the top three most important features are mouse fea-
tures, specifically MousePauseDurStd, the number of mouse movements
(MovementCount) and the mean of the summed angles traversed within
a mouse movement (SumAngleMean). The plot also presents a few
mouse features with high dispersion of SHAP values around zero.
Considering the globally important mouse features DirectDistMean and
MovementCount, we note that high values of the two features are
each associated with positive SHAP values, for most observations. This
means that observations with many or farther than average movements
are generally associated with an increase in the probability of high
perceived stress. A SHAP dependence plot of DirectDistMean coloured
by SumAngleMean (see Fig. 7(b)) reveals that positive SHAP values of
the mouse movements with longer than average distances are mostly
characterised by high values of the summed traversed movement
angles.

5.2.2. Arousal
The global SHAP plot in Fig. 5(a) shows that the top three fea-

tures with highest mean absolute SHAP values are MousePauseDurStd,
KeyPauseCount and duration spent typing per number of keys pressed
(TimePerKey). Their per class mean absolute SHAP value distribution
differs. In the case of MousePauseDurStd, the mean absolute SHAP
value for the high arousal level shows the highest contribution to
the total mean absolute SHAP value of the feature. In the case of
KeyPauseCount and TimePerKey, the highest contributions are driven
by the mean absolute SHAP values for the low and medium levels,
respectively.

The SHAP beeswarm plot for the low arousal class (Fig. 5(b))
shows that, globally, features characterising the typing pauses, namely
KeyPauseCount and the mean and standard deviation of duration (Key-
PauseDurMean, KeyPauseDurStd) contribute strongly to the low arousal
prediction. Here, a low number of typing pauses, and lower mean and
variation in typing pause durations than average are each associated
with increased probabilities for low arousal by the model.

The SHAP beeswarm plot for the high arousal class (Fig. 5(c))
shows that the top five features are all mouse behaviour-related. For
example, high values of MovementCount and MousePauseCount are
each associated with increased probabilities of high arousal. The de-
pendence plot in Fig. 7(c) of MovementCount coloured by the value
of the MovementDurStd reveals that numbers of mouse movements
per minute higher than 26 are generally associated with an increased

probability of high arousal. Low numbers of mouse movements are
associated to a decrease of probability of high arousal. Moreover, for
each number of mouse movements, higher variability in the duration
of the movements is related to a greater reduction in the probability of
high levels of arousal.

5.2.3. Valence
The global SHAP plot in Fig. 6(a) shows that the top three features

with highest mean absolute SHAP values are KeyPauseDurMean, the
mean ‘‘overshoot’’ in the 𝑥-direction of mouse movements ending in a
click (xOvershootMean), and the mean sum of the distances between
the recorded positions and the optimal straight line between start and
end positions of the mouse movement (SumDistToLineMean). For all
three features, the mean absolute SHAP value of the negative valence
class accounts for the majority of the total mean absolute SHAP value
of the feature.

The SHAP beeswarm plot of the negative valence class (Fig. 6(b))
shows that globally, low values for KeyPauseDurMean, xOvershootStd,
and SumDistToLineMean are each associated with lower probabili-
ties of the negative valence class, while low values for Movement-
DurMean are associated with a higher probability for the negative
valence class. The first three features show dispersion to the left of
the SHAP value zero. Moreover, low values of MovementDurMean
are associated with an increased probability of negative valence. The
dependence plot in Fig. 7(d) of SumDistToLineMean coloured by the
value of the mean number of direction changes within a movement
(NrDirChangesMean) reveals that mouse movements deviating more
strongly from the straight line than average are associated with high
probability of negative valence and are characterised by a high number
of direction changes along the movement. The dependence plot of
ErrorCount in Fig. 7(e) shows that a number of typing errors per minute
higher than 2 is associated with an increase in the probabilities of
negative valence.

The SHAP beeswarm plot for the positive valence class (Fig. 6(c))
shows that globally, low values for the KeyPauseCount and KeyPause-
DurMean, ErrorCount and TypingTime are each associated with an
increased probability of positive valence by the model. Similarly, a
low MousePauseCount is also related to an increased probability of
positive valence. The dependence plot in Fig. 7(f) of MovementDurMean
coloured by the value of the average distance to the optimal straight
line between end and start positions of the movement (AvgDistToLine-
Mean) reveals that observations with duration longer than average are
associated with an increased probability of positive valence, and they
are also characterised by high deviations from the optimal straight
line. The dependence plot in Fig. 7(g) of KeyPauseCount coloured
by the value of ErrorCount reveals that observations with few typing
pauses, associated with increased probabilities of positive valence, are
characterised by a low number of typing errors.
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Fig. 5. SHAP value plots for the best LightGBM model on mouse and keyboard features, in the case of arousal detection. Descriptions of the features can be found in Appendix.

Fig. 6. SHAP value plots for the best LightGBM model on mouse and keyboard features, in the case of valence detection. Descriptions of the features can be found in Appendix.

Fig. 7. SHAP dependence plots for the best LightGBM models on mouse and keyboard features for selected features. (a) SHAP values of DirectDistMean coloured by AvgSpeedMean
for detecting low perceived stress. (b) SHAP values of DirectDistMean coloured by SumAngleMean for detecting high perceived stress. (c) SHAP values of MovementCount coloured
by MovementDurStd for detecting high arousal. (d) SHAP values of SumDistToLineMean coloured by NrDirChangesMean for detecting negative valence. (e) SHAP values of ErrorCount
for detecting negative valence. (f) SHAP values of MovementDurMean coloured by AvgDistToLineMean for detecting positive valence. (g) SHAP values of KeyPauseCount coloured
by ErrorCount for detecting positive valence. Descriptions of the features can be found in Appendix.
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Table 6
Overview of key findings and implications.

Our results in
context

Our experimental protocol improves the status quo of automated stress detection by simulating a realistic office
environment and collecting behavioural and physiological data from a large sample of participants, while the
performance of our models is higher or in line with those of comparable studies across the different stress measures.

ML algorithms LightGBM models outperform SVM and RF in predicting perceived stress, arousal and valence levels.

Data modalities The combination of mouse and keyboard data outperforms all others in predicting perceived stress, arousal and
valence levels.

ML
interpretability

SHAP value analyses revealed that the predictions of different levels of stress measures may be characterised by
specific mouse movement or typing behaviour:
– high perceived stress: long, ‘‘wavy’’ mouse movements; low perceived stress: short, direct, slow mouse movements,
– high arousal: high number of mouse movements; low arousal: low number of typing pauses,
– positive valence: low number of typing pauses and typing errors; negative valence: high number of typing errors.

Implications for
real office
environments

Multi-item validated psychological instruments may support the prediction of self-assessed stress more efficiently
than ad-hoc scales.
A baseline measurement to calibrate the data of new users may help with high inter-individual variability.
Research on different time windows and propagation techniques of self-reported stress levels over time is needed.
Personalised insights into the predictions using SHAP values may help with finding the right balance of false
positives and false negatives.
The use of multiple modalities allows managing the time intervals without computer interactions in real office
environments.
Security concerns regarding the collection of keyboard data in office environments may be mitigated by the
derivation of high-level features on local machines.

6. Discussion

In this work, we develop an ML pipeline to detect different stress-
related states (perceived stress, arousal, valence) at a granular level
(three classes) from physiological (HRV) and behavioural (mouse and
keyboard) data sources collected in a laboratory experiment with 90
participants, which simulated a realistic group office environment and
induced stress with realistic work-related stressors. The ML pipeline
comprises SVM, RF and LightGBM algorithms, the use of SMOTE over-
sampling to address multiclass imbalance, and the computation of
SHAP values to interpret the results of ML modelling. In the follow-
ing Sections 6.1–6.4 we discuss our key findings from the developed
methodology, while in Section 6.5 we consider the implications of our
results for future research in real office environments (see Table 6 for
a summary of findings and implications).

Our results reveal that LightGBM models trained on mouse and
keyboard features were best able to predict perceived stress, arousal
and valence levels, in terms of averaged F1 scores on test folds of a
stratified 10-fold cross-validation. Highest performance is achieved in
the case of valence, followed by arousal and perceived stress, although
this difference may be driven largely by the varying degrees of class im-
balance (see Table 2). The multiclass labels in our data are moderately
to severely imbalanced. This affects the performance of the ML models,
especially for the minority classes of all stress measures, as shown in
Table 5. However, the models achieve much higher performance on
the majority classes of all stress measures. These classes correspond to
a state of normal baseline activation for office workers and thus, in a
healthy work environment, to the prevalent classes in real life.

6.1. Our results in context

The direct comparison of the results from different stress detec-
tion studies, ours included, is impeded by differences in experimental
settings, generated features, and the choice of ML algorithms and
performance measures. Despite some works achieving very high perfor-
mances in detecting stress, many authors believe that such results might
be overly optimistic due to procedural and methodological limitations
of the underlying studies [32,62]. Nevertheless, we try to contextualise
our results with a selection of notable works below.

In terms of the experimental protocol used to generate training data,
the work by Koldijk et al. [29] is arguably one of the most compa-
rable to our own. Their experiment was also designed to mimic an
office scenario, where 25 participants were asked to write reports and
prepare presentations under three different conditions: under neutral

conditions; under time pressure; and while receiving email messages as
a form of interruptions. In contrast, we included an additional socio-
evaluative stressor in the form of the adapted TSST-G and tested a
larger number of participants. Moreover, we performed a more in-
depth analysis of our mouse, keyboard and HRV data resulting in a
wider range of features from these modalities. In terms of performance
results, Koldijk et al. [29] achieve up to 90% accuracy to distinguish
the neutral from stressful working conditions from their entire feature
set. However, this set includes facial and posture features derived from
camera data, which are likely to raise privacy concerns in real office
environments [15]. When considering only computer and physiology
data, their achieved accuracy of the binary classification task drops to
68%, which is more in range of our own results. Salmeron-Majadas
et al. [63] developed affect recognition models based on mouse and
keyboard data generated in a laboratory experiment aimed to simulate
a real-life learning scenario. In their experiment, 41 participants were
asked to write three short essays based on word prompts of increas-
ing difficulty. Their best models trained on a user-calibrated data set
achieved accuracies of 0.647 and 0.663 when classifying three levels of
arousal and valence, respectively. As the class-weighted recall is equal
to overall accuracy by definition, we may compare those results to
the recall values of our own best mouse- and keyboard-based models
yielding a similar 0.635 for arousal but considerably higher 0.782 for
valence.

Regarding HRV data, Dai et al. [30] recently ran a laboratory
experiment where 32 participants were subjected to public speaking,
mental arithmetic and cold pressor tasks to elicit stress. HRV data were
collected via smartwatches equipped with PPG sensors. Comparable to
our own work, Dai et al. [30] employed SVM, RF and boosting methods
and further state that they used grid search to tune hyperparameters
of their models. When classifying periods perceived as stressful versus
non-stressful, the authors achieved an F1 score of 0.599, while we
report a value of 0.531 for our best HRV-based model to predict three
classes of perceived stress. However, we considerably improve the
performance of models trained on HRV data by including behavioural
sources, as shown in Tables 3 and 4.

6.2. Machine learning algorithms

Our results show that the boosting-based LightGBM algorithm gen-
erally outperforms RF and SVM across feature sets and stress measures,
while RF consistently fared better than SVM. There are still rela-
tively few stress detection works implementing boosting algorithms,
and those that do typically focus on older methods, such as adaptive



Journal of Biomedical Informatics 139 (2023) 104299

14

M. Naegelin et al.

boosting [30,67,69]. In those works, however, boosting algorithms do
not always outperform RF [69], and SVM has even beaten both RF and
boosting methods on some occasions [30,67]. For example, Can et al.
[71] found that RF performed better than SVM on larger feature sets.
We also confirmed that applying SMOTE in order to address the im-
balance in our data can help increase performance, in line with results
from other works [63,65]. With regards to our hyperparameter tuning,
it is not possible to compare our results with existing studies, as these
only rarely mention any hyperparameter selection strategy [30,62], and
even less often report a hyperparameter grid [75]. We hope that by
doing so ourselves, we may help with the current lack of comparability
of ML-based stress detection models [72].

6.3. Data modalities

In the literature, the link between the physiological stress response
and changes in HRV is well-established [for a review, cf. 51], and
studies using HRV data to infer relaxed versus stressful states have
often achieved high performance results [33,54,66]. In contrast, studies
with HRV data where the non-stressed phase corresponds to a basic
workload task rather than full relaxation usually see lower perfor-
mances [30,67]. In our study, the single modality HRV models also
attain low performance scores, getting outperformed by both mouse
and keyboard single modality models—although they still performed
better than the baseline classifier maximising class priors.

The combination of different modalities is generally thought to
increase performance in stress detection tasks [22]. Similarly, we found
that models using both mouse and keyboard features have higher
performance than those trained on only a single modality. Interest-
ingly, when comparing the results for models trained on mouse and/or
keyboard features to those additionally including HRV features, it
seems that the inclusion of the HRV modality does not yield a large
impact on performance. While few studies with both behavioural and
physiological features exist [29,34,70], the latter are thought to have
more predictive power for stress detection [15]. In contrast, our re-
sults add to the existing evidence that the computer-based features
may outperform physiological features in the context of work-related
stress [29,70,90]. Here, it is possible that chosen stressors elicited a
milder physiological stress response than other acute stress tests, or
that the baseline workload tasks already incurred a certain level of
activation of the physiological system.

Compared to HRV data, few previous studies have explored the use
of mouse and keyboard data to detect stress [15,22]. While these two
modalities are frequently studied in combination [e.g., 29,63], they
are often collected in two separate data generation tasks [32,61]. For
example, Pepa et al. [61] developed a 3-level stress detection system
based on mouse and keyboard features. To generate keyboard data, par-
ticipants copied a short text, with and without time and performance
pressure, while mouse data were collected in three separate game-like
tasks of varying difficulty (e.g., a Tower of Hanoi game). The two
disjoint data sets were then used to train two separate classifiers. Such
a dichotomous approach might neglect the potential of the combination
of both modalities to improve stress detection performance as evi-
denced by our own results. Our results also indicate that mouse features
may have more predictive power to classify stress-related states than
keyboard features, especially when used in combination with HRV data.
An explanation for this finding might be that stress-induced neuromotor
noise could more easily be detected in mouse movements than in typing
behaviour. In fact, Freihaut and Göritz [62] have recently reviewed
the theoretical reasoning and empirical evidence for the link between
stress and mouse movement behaviour. They state that there is strong
support for stress affecting goal-directed movements such as mouse
movements [62]. In their own experiment with 53 participants, how-
ever, the authors found that their trained classification models cannot
significantly outperform random guessing in most cases. Hence further
research is needed regarding the link between stress and keyboard
dynamics, despite promising results from empirical studies [32,59–61],
and now this work.

6.4. Interpretation of results with SHAP values

The SHAP value analysis on the best-performing models indicates
that both mouse and keyboard features show high importance, for all
stress measures, but that the feature attributions differ for each stress
measure and across the respective levels. A number of insights emerge
from the analysis of the model SHAP beeswarm plots. For example,
low perceived stress may be characterised by relatively short, slow and
direct mouse movements, while those during high perceived stress are
longer and ‘‘wavy’’ (i.e., they covered a large sum of absolute angles
along each movement). A relatively high number of mouse movements
may be indicative of high levels of arousal, especially if the variability
in movement duration is high. Positive valence movements could be
characterised as relatively long in duration, and deviating far from the
straight line, while negative valence movements seem to be less precise
and show a high number of direction changes. In addition, few typing
pauses with a low number of typing errors were indicative of positive
valence, while a high number of typing errors increased the probability
of negative valence.

We note that these scenarios stem from a non-exhaustive exploratory
analysis and thus need to be confirmed in further studies. We also
do not know how well these scenarios might generalise to the real
world, where there is likely a high amount of variability in keyboard
and mouse usage pattern between companies, employees and even
tasks. However, we specifically designed our baseline workload tasks
to reflect typical mouse and keyboard usage and selected mouse and
keyboard features which characterise general behaviour rather task-
specific pattern. To the best of our knowledge, we are the first to
investigate different SHAP value plots of mouse and keyboard features
in stress detection models. However, a few previous studies have
explored statistical analyses in term of correlations or group mean
differences of individual mouse or keyboard features with respect to
stress levels. For example, and similar to our interpretations of mouse
movements relating to perceived stress, Freihaut and Göritz [62] found
that participants travelled further distances with their cursors during
the high stress condition. Sanchez et al. [91] also report a positive
and significant correlation of traversed pixels with stress level in a
longitudinal field study and they found a significant correlation of the
number of errors with stress level. Banholzer et al. [92] found evidence
for a trade-off between mouse speed and accuracy under stress. Further-
more, Salmeron-Majadas et al. [58] found a high correlation between
valence and the mean duration of mouse movements, in accordance
with our findings.

We argue that the value of using interpretable ML methods, such as
SHAP, is twofold. First, they become a tool for engineers to audit and
validate their ML models, providing valuable insights to understand
stress as a function of behavioural and physiological data. Second,
as commonly stated in the iML research domain [39,40], they may
become valuable in supporting users’ understanding of the logic behind
the detection of stress levels. In the context of a stress management
JITAI, improved transparency of predictions could foster the user’s
trust in a model, and thereby increase their adherence to the pro-
gramme [39]. Here, engineers may use local and global SHAP expla-
nations of the ML models and their predictions to provide explanatory
reports to the user. For example, Jaber et al. [41] recently designed a
stress prediction report aimed at psychiatrists, which is reminiscent of
a standard blood test and lists the SHAP value-based prediction impacts
of a range of physiological features from the wearable stress and affect
detection (WESAD) data set [69]. In addition, the insights from SHAP
analyses could potentially also be used to tailor notifications or inter-
vention prompts in a JITAI, supporting the promotion of individualised
coping strategies.
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6.5. Implications for real office environments

Stress detection in real-life office environments clearly faces many
additional challenges over controlled laboratory settings. In the field,
ground truth labels are usually collected via self-reported EMA since,
unlike in laboratory experiments, there is normally no objective infor-
mation available on the presence of stressors. As shown by the results
of this study, stress can be measured with different measures and ML
models show different levels of performance, when considering per-
ceived stress, arousal or valence, hence assessing stress along only one
dimension might be inadequate for in-field applications. For example,
acute stress is sometimes defined as a state of high arousal combined
with negative valence [92]. Our results show that multi-item validated
psychological instruments may support the prediction of self-assessed
measures of stress more efficiently than ad-hoc scales, such as the one
we introduced to measure perceived stress levels. Self-reports may be
well-suited to capture inter-individual differences in the response to
stressors, but they come with the drawback of relying on peoples’ recall
abilities, their degree of self-awareness [22], and their willingness to
share their genuinely perceived state of stress [47], which further
underlines the need for continuous, unobtrusive, data-driven stress
detection.

The high inter-individual variability in the stress response means
that stress detection models do not generalise well to data from unseen
subjects [29,63,82], which is arguably one of the biggest challenges
researchers are facing when moving from constrained laboratory en-
vironments with limited amounts of participants to deployment in a
real office with an abundance of potential new users [23,28]. While
a general one-fits-all model is unlikely to produce satisfactory results
in the wild, training a new, individual model for each new user is
presumably too inefficient. More promising avenues are the use of a
baseline measurement either to calibrate the data of new users (which
would be a straight-forward adaption for our developed pipeline), or to
apply transfer learning on a pretrained model [80].

Moreover, the time window of validity of each self-report has to be
assessed. In this work, we backpropagated the self-assessed stress levels
over each block (i.e., between 10 and 18 min) for each participant.
However, in the field researchers would need to define the time window
for which each EMA self-report of stress levels should hold. This time
window might be a couple of minutes to an hour or more into the past,
or the near future, for each participant. To the best of our knowledge,
there is no research on the theoretical foundation for the temporal
validity of EMA self-reported stress levels and the optimal frequency
of their collection in office environments.

It is also not a priori clear what level of performance an ML model
for stress detection in an office environment should achieve. For ex-
ample, while false negatives increase the risk of missing to adequately
treat a person at risk for serious stress-induced health consequences, too
many false positives could simply impede a user’s workflow, increasing
levels of stress and the likelihood of dropout from the stress man-
agement programme. Here, the provision of personalised insights into
the predictions using SHAP values, and the scheduling of personalised
ML model retraining procedures are possible avenues to improve the
performance of stress detection in the long run. In addition to iML-
based explanations, the provision of context information (e.g., location
or current activity) could also support potential users with evaluating
and understanding stress-level predictions [93].

Finally, in office employees might not be constantly interacting with
a computer throughout their workday. Therefore, when designing ML
models detecting stress levels it may be necessary to consider the use
of multiple feature modalities, and introduce an appropriate logic for
the management of time intervals without computer interactions. We
propose the combination of HRV, mouse and keyboard data for this
purpose, which we believe to be well-suited for stress detection in
office environments in terms of both obtrusiveness and safe-guarding
of privacy. Lastly, we note that typing recordings may pose a certain

security or privacy risk in a real-world work environment. However,
this issue might easily be overcome by relying only on features which
do not allow inference of the typed content—such as the ones we have
used in this work, and by generating any features directly on local
machines.

6.6. Limitations of our work

This work used data generated in a single session experiment with a
simulated office environment, artificial stressors and participants that
were healthy and predominantly young, Caucasian University students.
Clearly, in a laboratory experiment we could only approximate real-
life conditions up to a certain degree, especially as participants were
asked to follow a hypothetical scenario which might differ significantly
from their own reality and which lasted only a couple of hours. While
the experimental software and tasks were designed to be reflective
of typical menial office clerk work—engaging but straight-forward,
participants did not have any prior experience with the experiment soft-
ware before the study. In a real office, employees naturally complete
a much wider array of tasks of varying complexities, and they might
have years of experience with them. The Firstbeat Bodyguard 2 devices
used in this study are two-electrode ECG devices allowing for high
quality collection of cardiac activity data. However, electrode-based
devices are too cumbersome and obtrusive to be worn continuously
during working hours. Although these devices might not offer the same
level of data quality, future field studies should consider using less
obtrusive PPG devices that can be worn on the arm or wrist to collect
physiological data. While the data set in our study is larger than those
used in many comparable studies, 6776 observations are still relatively
few for ML modelling purposes with data-intensive methods. Finally,
although we derived different behavioural features based on previous
literature, we were limited by the software used to record mouse and
keyboard inputs.

7. Conclusion

In this work, we propose an ML-based methodology for the auto-
mated detection of a stress measures that relies on mouse, keyboard
and HRV data. The data were generated in a laboratory experiment re-
flecting a realistic group office environment with 90 participants, where
both the baseline workload and the stress eliciting procedures were
designed to emulate real office situations. We find that a Light gradient
boosting algorithm achieves the best performance for the detection
of perceived stress, arousal and valence states from a combination
of mouse and keyboard features. The use of iML methods, namely
SHAP values, reveals a number of behavioural patterns associated
to low and high perceived stress, low and high arousal, and negative
and positive valence levels. Our study fills different methodological
gaps in the research on the automated detection of stress with ML
methods, namely the closer approximation of real office conditions
in a laboratory experiment, the conjoint use of mouse and keyboard
features as well as the combination of both physiological and be-
havioural data modalities, advanced boosting algorithms and extensive
hyperparameter tuning, and the interpretation of resulting models with
SHAP values. In the future, field studies are needed to confirm the
results from the simulated laboratory environment at scale in real-
life conditions with actual employees, in order to further advance the
research on automated, personalised, continuous detection of stress
levels in office environments and to ultimately enable the development
of JITAI programmes for stress management at the workplace.
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