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Abstract

The social intelligence hypothesis holds that complex social relationships are the major selective force underlying the evo-

lution of large brain size and intelligence. Complex social relationships are exemplified by coalitions and alliances that are 

mediated by affiliative behavior, resulting in differentiated but shifting relationships. Male Indo-Pacific bottlenose dolphins 

in Shark Bay, Australia, form three alliance levels or ‘orders’, primarily among non-relatives. Strategic alliance formation has 

been documented within both first- and second-order alliances and between second-order alliances (‘third-order alliances’), 

revealing that the formation of strategic inter-group alliances is not limited to humans. Here we conducted a fine-scale study 

on 22 adult males over a 6-year period to determine if third-order alliance relationships are differentiated, and mediated by 

affiliative interactions. We found third-order alliance relationships were strongly differentiated, with key individuals playing 

a disproportionate role in maintaining alliances. Nonetheless, affiliative interactions occurred broadly between third-order 

allies, indicating males maintain bonds with third-order allies of varying strength. We also documented a shift in relation-

ships and formation of a new third-order alliance. These findings further our understanding of dolphin alliance dynamics 

and provide evidence that strategic alliance formation is found in all three alliance levels, a phenomenon with no peer among 

non-human animals.

Keywords Affiliative behavior · Coalitions · Differentiated relationships · Social complexity · Strategic alliances · 

Bottlenose dolphins

Introduction

The social intelligence hypothesis (SIH) posits that the 

complexities of social relationships provided the selection 

pressure for the evolution of intelligence and large brain 

size (Jolly 1966; Humphrey 1976; Alexander 1979, 1989; 

Byrne and Whiten 1988; Dunbar 1992, 1998). Alliances and 

coalitions, defined as two or more individuals cooperating 

against conspecifics, repeatedly so in the case of alliances, 

are often singled out as exemplifying complex relationships 

(e.g.Chapais 1995; Connor 2007; Harcourt and de Waal 

1992). Alliances demonstrate relational complexity to the 
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extent that they are strategic, meaning that individuals have 

options to choose or compete for different possible allies 

and that those choices carry risk (Connor 2007; Lukas and 

Clutton-Brock 2018). If potential alliance partners are equiv-

alent, then there is little risk in making the wrong choice, but 

increasing the number of options, and variance in the fitness 

consequences of those options, should increase selection for 

social intelligence (Connor 2007).

The importance of options in alliance formation can be 

illustrated with the two alliance levels found in many pri-

mate species: those formed within social groups and those 

against other groups. The greatest strategic challenges are 

found within groups, where individuals may have multiple 

options, and rivals compete for the same allies using a com-

bination of aggression against rivals and affiliative interac-

tions with preferred partners (e.g. Bray and Gilby 2020; de 

Waal 1982; Silk et al. 2004). Especially among non-kin pri-

mates, individuals are free to shift allies, demonstrating what 

Nishida (1983) called ‘allegiance fickleness’. These strategic 

options are reduced when alliances are primarily based on 

kin, a phenomenon typical of cercopithecine primates (Con-

nor 2007; Cords 2012; Lukas and Clutton-Brock 2018).

Under the SIH, selection should favor cognitive abilities 

to assess different options, such as recognition of third-party 

relationships (Harcourt and de Waal 1992) and, at least in 

the case of humans, social scenario building (Alexander 

1989). Risk is enhanced when there is uncertainty in the 

status of third-party relationships (Connor 2007; Aureli 

et al. 2008; Ramos-Fernandez et al. 2018). For example, 

the decision to attack an opponent defeated previously may 

be a mistake if, in the interim, that individual has developed 

new, powerful allies.

Inter-group interactions are generally hostile (but see 

Furuichi 2020) and may be risky, e.g., chimpanzee killing 

(Wrangham et al. 2006). Further, more dangerous inter-

group conflicts may increase mutual dependence among 

group members and increase the fitness consequences of 

within-group social decisions (Alexander 1979; Connor 

2007). However, the options available in inter-group encoun-

ters are typically limited to the decision to participate or 

not (e.g., lion ‘laggards’, Heinsohn and Packer 1995; Wil-

lems et al. 2013). Chimpanzees are more likely to join an 

inter-group conflict when the number of participants is larger 

and includes maternal kin or social partners (Samuni et al. 

2022). This indicates a greater willingness to take risks to 

support key within-group allies. Inter-group interactions in 

primates might approach the complexity of within-group 

interactions if they included more options, such as forming 

alliance bonds with either of two neighboring groups for 

the purpose of attacking the other. However, such strate-

gic ‘alliances of alliances’ have been found only in humans 

(Alexander 1989; Chapais 2013; Macfarlan et al. 2014) and 

a population of Indo-Pacific bottlenose dolphins (Tursiops 

aduncus) in Western Australia (Connor et al. 1992a, 2011, 

2022; Connor 2007).

The male bottlenose dolphins in Shark Bay participate 

in up to three levels or orders of alliances in a large, open 

society of resident dolphins with a dynamic fission–fusion 

grouping pattern (Connor and Krützen 2015; Gerber et al. 

2020, 2021; King et al. 2021). Males have larger ranges than 

females but retain their natal range in their adult home range 

(Connor et al. 2000; Krützen et al. 2004; Tsai and Mann 

2013) and both sexes exhibit a continuous mosaic of overlap-

ping home ranges (Watson-Capps 2005; Randić et al. 2012; 

O’Brien et al. 2020). Second-order alliances contain 4–14 

males, may endure for decades, and are considered the core 

unit of male social organization in Shark Bay. First-order 

alliances consist of pairs or trios of adult males from within 

the second-order alliance. Third-order alliances are com-

prised of two second-order alliances (Connor and Krützen 

2015).

Alliances are defined both by quantitative measures of 

association, as well as functional behaviors. Males in all 

three levels of alliance associate preferentially as demon-

strated by cluster analysis and permutation tests (Connor 

et al. 1992a, 2011; King et al. 2021). The functions of the 

three levels of male alliance formation in Shark Bay are well 

established. Males in first-order alliances work together to 

sequester and consort single estrus females (Connor et al. 

1992a, b). Second- and third-order alliances are functionally 

identical; cooperation to attack and defend against other alli-

ances in contests over female consorts (Connor et al. 1992a, 

b, 2011). The strength of a male’s connection with his third-

order allies significantly influences the maximum duration of 

his consortships; where third-order allies provide important 

‘backup’ given that second-order alliances vary in size and 

members are often dispersed over a wide area (Connor et al. 

2022).

The distinction between second- and third-order alliances 

is based on cluster analysis of association data, the nearly 

exclusive use of second-order allies to form first-order alli-

ances, the exclusive and stable membership of second-order 

alliances, the uniformly stronger response of males to sig-

nature whistle (i.e., identity signal) playbacks of second- vs 

third-order allies (independently of dyadic bond strength), 

and the higher rate of signature whistle exchanges between 

second-order allies (King et al. 2021; Chereskin et al. 2022; 

Connor et al. 2022). Finally, males are rarely observed with 

third-order allies without the presence of second-order allies 

(Connor et al. 2022).

Several markers of strategic within-group coalition and 

alliance formation typical of primates are present in first- 

and second-order dolphin alliance interactions. Males in 

first- and second-order alliances use affiliative interactions to 

mediate alliance bonds, which develop among mostly unre-

lated adolescent males of similar age (Connor et al. 2006; 
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Gerber et al. 2020, 2021; Chereskin et al. 2022). Relation-

ships between first- and second-order alliance partners are 

strongly differentiated but may shift. For example, males 

often change first-order alliance partners, and rare but con-

sequential changes occur in second-order alliance member-

ship (Connor et al. 1992b, 2001; Connor and Mann 2006; 

Connor and Krützen 2015). Competition among allies is 

implied by variation in consortship and paternity success 

within second-order alliances; and has also been observed 

in situ within and between first-order alliances (Connor et al. 

1992a; Connor and Mann 2006; Connor and Krützen 2015; 

Gerber et al. 2022).

The finding that allied male dolphins form strategic 

inter-group alliances (i.e., third-order alliances), similar to 

humans (Connor et al. 2022), raises intriguing questions 

about how these between-group cooperative relationships 

are formed and maintained. Here, we investigated how two 

second-order alliances maintained their third-order alliance 

through association and the use of affiliative interactions. 

Further, in a remarkable case of serendipity during the study, 

one of these second-order alliances began a new association 

with another second-order alliance, allowing us to document 

the formation of a new third-order alliance.

As with first- and second- order alliances, we hypoth-

esized that third-order alliances are maintained by affilia-

tive interactions between individuals belonging to different 

second-order alliances. If such affiliative interactions occur, 

how are they distributed? While differentiated relationships 

are considered a hallmark of social relationship complexity 

(Freeberg et al. 2012; Bergman and Beehner 2015; Fischer 

et al. 2017), less relational complexity would be indicated 

if third-order alliances were, for example, maintained by 

just 2–3 males in each second-order alliance. If so, affilia-

tive interactions should be restricted to that subset of males. 

Alternatively, widespread affiliative contact between mem-

bers of both second-order alliances would suggest that males 

maintain bonds with all third-order allies even though bond 

strengths can vary (King et al. 2021); an indicator of greater 

relational complexity. Dynamic shifts in alliance relation-

ships further evince the complex social landscape formed 

and maintained by the Shark Bay dolphins, and illuminate 

the kinds of cognitive demands imposed on individuals oper-

ating within this social system.

Methods

Location and subjects

Data for this study were collected during 2009–2014 in the 

eastern gulf of Shark Bay, Western Australia, where our 

research on Indo-Pacific bottlenose dolphins has been ongo-

ing since 1982. We examined associations and behavioral 

interactions among 24 adult males (aged 19–37 when the 

study commenced; Supplementary Table S1) from three fre-

quently sighted second-order alliances (KS, PD, and RR), 

whose members matured and began consorting females 

between 1995 and 2004 (Connor and Mann 2006; King et al. 

2021). By 2009, the KS alliance had dropped from a peak 

of 14 to 12 members, the RR alliance from 7 to 5 members, 

while the PD alliance had remained at 7 members since their 

formation in the mid-1990s (Connor and Mann 2006; King 

et al. 2021). Members of these alliances associated as juve-

niles (Gerber et al. 2020). The third-order alliance between 

KS and PD, based on preferential association and coopera-

tion in conflict against other alliances, has endured for over 

20 years, from at least 2001 when KS members matured 

and began consorting females (Connor et al. 2011; King 

et al. 2021).

Data collection

For association analyses, we used data from group surveys 

taken when dolphins are sighted. A survey is a minimum 

5-min snapshot of dolphin group composition (defined by 

the 10 m chain rule; Smolker et al. 1992) and predominant 

group activity. Only association data recorded in the first 

5 mins of a survey were used to ensure association measures 

were comparable across surveys. Individuals were identi-

fied based on distinctive dorsal fin characteristics, and all 

in situ identifications made by trained observers were later 

confirmed via photo-identification (Würsig and Würsig 

1977; Smolker et al. 1992). To avoid cases where males 

were together because they were attracted to the same food 

sources, we only used surveys where the predominant group 

activity was resting, travelling, or socializing. Same day 

resights (ESM) of groups were excluded, as were sightings 

of large inter-group conflicts. We restricted all surveys to 

the period of August–December, aligning with overlaps in 

mating season and field seasons. Surveys were considered 

‘third-order associations’ if they contained at least one indi-

vidual from two different second-order alliances known to 

associate as a third-order alliance.

During 2013–2014, we combined aerial and side-video 

during focal group follows to detect affiliative interactions 

involving petting, rubbing, and synchrony. Aerial video was 

recorded using a 2.3 m diameter Allsopp Helikite with a 

GoPro Hero3 HD video camera (see ESM). Boat-based side-

video was recorded using a Canon Vixia HF11 camcorder.

Associations and confirmation of alliance 
membership

Associations among individuals were estimated by cal-

culating pairwise half-weight indices (HWI) (Cairns 

and Schwager 1987; Whitehead 2008) to maintain 
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comparability with prior studies. Alliance membership 

was confirmed using the average-linkage agglomerative 

method of cluster analysis using the software programs 

SOCPROG (Whitehead 2009) and UCINET (Borgatti et al. 

2002). This method imposes a hierarchical model onto a 

social group, and the appropriateness of this model can be 

tested by calculating a cophenetic clustering coefficient 

(CCC), which is the correlation between the dyadic associ-

ation indices and the level at which the dyads are joined on 

the dendrogram. A CCC greater than 0.8 indicates that the 

hierarchical model provides a good representation of the 

social network (Whitehead 2008). Significant groupings 

within the hierarchical model are detected by calculating 

a modularity score (Q) for each partition of the network.

Bond strength within‑ and between‑ second‑order 
alliances

To determine how well-connected individual males were 

within and between their alliances, we calculated the 

individual level social network metric ‘strength’ (also 

known as ‘weighted degree’) using half-weight indices. 

We calculated within- and between-alliance strength val-

ues, wStrength and bStrength respectively, for all indi-

viduals. Due to the influence of network size on these two 

measures, we scaled the strength vales between 0 and 1 

by dividing each individual’s within- or between-strength 

by the maximum strength value in that network, e.g., the 

maximum strength value in their second-order alliance. 

Normalized within-alliance strength (wStrength_N), there-

fore, represents how well-connected males are within their 

second-order alliance, and normalized between-alliance 

strength (bStrength_N) represents how well-connected 

males are to third-order allies compared to other members 

of their second-order alliance.

Temporal changes in bond strength

During the 6-year study, four of the focal males who had 

been regularly sighted for 10–15 years disappeared and are 

presumed to have died. Two males from the KS alliance 

disappeared between the end of the 2010 field season and 

the start of the 2011 season. Two males from the PD alliance 

disappeared between the end of the 2012 field season and 

the start of the 2013 field season. To examine the resulting 

dynamics of the alliance network, we used a discrete snap-

shot approach (de Silva et al. 2011; Pinter-Wollman et al. 

2014) of three 2-year intervals during which group compo-

sitions were stable: (T1: 2009–2010, T2: 2011–2012, T3: 

2013–2014).

Social interactions during inter‑alliance fusions

Inter-alliance fusions occurred when members of differ-

ent second-order alliances joined each other within 10 m 

or less. We used overhead and side-video to detect affili-

ative contact behaviors during group fusions, a common 

context for affiliative interactions in mammals (Nishida 

1970; Aureli and Schaffner 2007; Smith et al. 2010; Poole 

2011; Luef and Pika 2017). We captured 10 fusion events 

between two first-order alliances from different second-

order alliances. Videos were reviewed by the first author 

(W.R.F.) for occurrences of affiliative, aggressive, and socio-

sexual interactions between second- and third-order allies 

(Cohen’s kappa = 0.73 between W.R.F. and three trained 

coders). Affiliative behaviors recorded between individuals 

included gentle contact behaviors, such as ‘petting’ (contact 

between the pectoral fin of one individual and any part of 

the body of another) and ‘rubbing’ (an individual rubs part 

of its body against the body of another). We also recorded 

cases where two individuals were close enough to be touch-

ing (<1/3 m) but we could not discern actual contact on the 

video. ‘Synchs’ were scored when two or three individuals, 

swimming side-by-side less than 2 m apart and with a stag-

ger no greater than 1 m, surfaced or dived synchronously 

(Connor et al. 2006; McCue et al. 2020). The few recorded 

instances of aggressive behavior during these events provide 

interesting context and are discussed in the ESM. In all 10 

observed third-order fusion events, one or both first-order 

alliances were consorting a female. We therefore also exam-

ined video for instances where males from one first-order 

alliance interacted with the consorted female who arrived 

with the other first-order alliance.

Results

From 2009 to 2014, 282 surveys included males from the 

KS, PD and/or RR alliances in rest, travel, or social con-

texts. Of these, 39 surveys captured third-order associations 

among KS, PD, and RR males (KS and PD = 26, KS and 

RR = 11, PD and RR = 2). The third-order KS–PD alli-

ance was persistent throughout the study period; 12% of all 

surveys in which any KS or PD males were recorded were 

third-order associations between the KS and PD males. An 

additional 14 surveys (not included in our analysis) captured 

these third-order groups in foraging, unknown, and competi-

tive contexts.

Hierarchical clustering analysis of half-weight associa-

tion indices (HWI) among the 22 of 24 males present for 

more than two of the 6 years detected the same three com-

munities (max Q = 0.40 at HWI = 0.20), which had been 

identified as second-order alliances in the field, i.e., males 

determined to be in the same second-order alliance through 
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average-linkage hierarchical clustering are the same males 

we observe consorting females together and defending them 

from rivals (Connor et al. 2011; Randić et al. 2012; King 

et al. 2018, 2021; Gerber et al. 2020). The model had a 

very high cophenetic correlation coefficient (CCC) of 0.98, 

indicating a good representation of the relationships among 

these individuals. Alliance membership and network struc-

ture is shown in Fig. 1.

Within and between group strength

In the first two time periods, one trio in each second-order 

alliance had higher bStrength_N values than other males: 

indicating these trios played a greater role in maintaining 

the third-order alliance (these individuals have larger node 

size and are more central between alliances in Fig. 2a, b). 

All individuals in this social network participated in some 

third-order associations, although four individuals (REA, 

LAN, BAR, KRO) had particularly low bStrength_N values 

(Fig. 2a–c). Interestingly, these differences in bStrength_N 

values in the PD and KS alliances diminished in the third 

period, with the development of the KS–RR third-order alli-

ance (Figs 2 and 3); and coincident with the loss of a central 

PD member.

Temporal changes

T1: 2009–2010

During T1 (Fig. 2), the third-order alliance between the 

7-member PD and 12-member KS alliances was already 

present (Q = 0.352 at HWI = 0.279; CCC = 0.966). RR 

males were not found in associations with PD or KS 

males during this period despite broadly overlapping 

ranges (Randić et al. 2012), and regular surveys (n = 14 RR 

surveys). Three males within the PD group, PRI, WAB, 

and NAT, showed the highest bStrength values, indicat-

ing their key role in maintaining the third-order alliance 

with KS (Fig. 2a; Supplementary Table S2). Within the 

KS alliance, MID, PON and QUA showed the highest 

bStrength values (Fig. 2a; Supplementary Table S2). The 

males in these two respective trios associated at high levels 

(HWI > 0.90; Supplementary Table S4) and were observed 

in multiple consortships, so were considered stable first-

order alliances. The within-alliance relationships for all 

three second-order alliances are shown in Fig. 2d.

Fig. 1  Alliance relation-

ships. Network plot of the 

three second-order alliances 

over the entire study period 

(2009–2014), where males are 

color-coded by alliance mem-

bership (PD = blue, KS = green, 

RR = red) and thicker edges 

represent stronger bond 

strengths (HWI; Supplementary 

Table S3). Two KS members 

who disappeared after 2010 

are not included (color figure 

online)
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T2: 2011–2012

Two of the KS males (BOL and MID) were not sighted after 

the end of the 2010 field season and are presumed dead. The 

third-order alliance relationship between the now 10-mem-

ber KS and 7-member PD alliance was maintained through 

T2 (Q = 0.462 at HWI = 0.213, CCC = 0.985; Fig. 2b). The 

same three PD individuals as in T1 showed high bStrength 

values (PRI WAB NAT). Within KS, two of the males with 

the highest bStrength values from T1 (PON QUA) were 

again part of the trio with the highest bStrength values, 

and PAS moved into the role previously occupied by MID 

Fig. 2  Temporal changes within and between alliance relation-

ships shown by network plots of the three second-order alliances 

over three 2-year periods: 2009–2010 (T1), 2011–2012 (T2), and 

2013–2014 (T3). Males are color-coded by alliance member-

ship (PD = blue, KS = green, RR = red) and thicker lines represent 

stronger bond strengths (HWI; Supplementary Tables S4–S6). Circle 

size is based on an individual’s normalized between-group strength 

value (bStrength_N; panels a–c) or within-group strength value 

(wStrength_N; panels d–f); more ‘central’ individuals are larger and 

centered within each network (color figure online)

Fig. 3  Between-alliance 

relationships for a KS and 

PD and b KS and RR during 

2013–2014 (T3). Males are 

color-coded by alliance mem-

bership (PD = blue, KS = green, 

RR = red), where thicker 

lines represent stronger bond 

strengths (HWI; Supplementary 

Table S6). Circle size is based 

on an individual’s normalized 

bStrength value (color figure 

online)
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(Fig. 2b). The PD male BAR had few sightings (n = 4) with 

KS and PD males. The within-alliance associations for all 

three second-order alliances over T2 are shown in Fig. 2e. 

RR males were not found in association with PD or KS 

males during this period (n = 35 RR surveys).

T3: 2013–2014

The most notable shift among the alliances happened 

between the T2 and T3 periods. The weakly-bonded PD 

male BAR and the central PD male PRI were observed 

through 2012 but disappeared prior to the start of the 2013 

field season, leaving five PD males. From August through 

mid-November 2013, there were no surveys or follows that 

included RR males with KS or PD males other than in a 

foraging capacity, like the T1 and T2 periods (despite having 

recorded RR males in 29 surveys during the same period). 

In mid-November 2013 (aligning with the time of peak mat-

ing season), we observed a sudden inclusion of RR, with 

KS most frequently, though also with PD, in all behavioral 

contexts (Figs 2c and 3). These associations have continued 

through 2021 and 2022, the most recent field seasons (King 

et al. 2021 and unpublished data).

Modularity and hierarchical cluster analysis of this period 

assigned individuals to three clusters, corresponding to the 

KS, PD, and RR groups identified by observers (Q = 0.3112 

at HWI = 0.1296, CCC = 0.9601). The new relationship was 

primarily between KS and RR. KS and PD were sighted 

together in surveys on 9 days, KS and RR on 11 days and 

PD and RR on only 2 days. Interesting shifts occurred in 

terms of bStrength centrality: the three RR males observed 

most with the KS and PD groups showed the highest overall, 

unnormalized bStrength values (Supplementary Table S2). 

During this period, we observed the RR alliance shift from 

a five-member group to a trio, with LAN at first associating 

and participating in consortships, but eventually SMO URC 

COO becoming the most observed RR trio. The fifth RR 

member, REA, was a much older male who had joined the 

RR group in 2010 after his previous second-order allies had 

disappeared and was presumed dead after the 2014 season.

Within the KS alliance, the same three individuals (PON 

QUA PAS) as in T2 showed the highest bStrength values 

within their alliance, but their relative prominence was 

diminished (Figs 2c and 3). Among PD males, NAT and 

WAB, former first-order allies of PRI, showed a notable 

decrease in bStrength, while the remaining three males in 

the PD alliance increased their bStrength relative to T2 (Figs 

2b, c and 3). Within the PD alliance, additional shifts were 

apparent: overall wStrength declined for all PD males, as 

expected, due to the loss of PRI and BAR. More interest-

ingly, the average HWI between the two PD first-order alli-

ances (now a pair and a trio) declined precipitously from 

0.717 in T2 to 0.132 in T3 (Fig. 2f).

Behavioral interactions during third‑order alliance 
fusions

Affiliative contact behavior

On 9 days during T3, we captured 10 fusion events between 

two first-order alliances from different second-order alli-

ances using combined aerial and side-video (Table 1). The 

modal duration for our post-fusion analyses was 3 min; but 

we were able to observe one for nearly 10 min. Observa-

tions were terminated for a variety of reasons, including the 

groups separating or dispersing to forage, another fusion 

event occurring, or poor observation conditions. In 8 of the 

10 fusion events, both first-order alliances were consorting 

a female, in the other two only one first-order alliance was 

consorting a female. Seven fusions were between KS and 

Table 1  The number of unique 

male pairs that engaged in 

petting or rubbing interactions 

(PR pairs) and synchronous 

surfacing (Synch pairs) during 

fusion events

PR + D0 columns show the number of unique PR pairs when ‘D0’ behavior, where individuals were within 

touching distance, but actual contact could not be discerned, were included. The number of unique second-

order synch pairs observed in each alliance is included in parentheses

Event Alliances Third-order Third-order Second-order Second-order Third-order Second-order

PR pairs PR + D0 pairs PR pairs PR + D0 pairs Synch pairs Synch pairs

1 KS–RR 5 6 5 5 1 KS (1) RR (1)

2 KS–RR 0 0 0 1 0 0

3 KS–RR 0 1 0 1 0 RR (1)

4 KS–RR 5 7 5 5 0 0

5 KS–RR 0 0 0 2 0 KS (2)

6 KS–RR 1 2 0 2 1 0

7 KS–RR 1 1 2 3 0 0

8 PD–KS 2 4 1 2 0 KS (1)

9 PD–KS 4 6 2 3 1 KS (2) PD (1)

10 PD–RR 2 4 0 2 2 RR (1)
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RR members, two were between KS and PD, and one fusion 

was between PD and RR. All 5 PD, 4 of 5 RR and 8 of 

10 KS members were involved in the fusion events, seven 

of which included third-order petting or rubbing interac-

tions (Table 1). 20 unique third-order petting/rubbing pairs 

were observed, including 13 KS–RR pairs, 6 KS–PD pairs 

and 1 PD–RR pair. One of these (KS–RR) involved a KS 

male that was not part of the fusion between the two first-

order alliances, but who was in the area and appeared in the 

group during observations. During these same 10 events, we 

observed 13 intra-alliance petting or rubbing pairs (seven 

KS, four RR and two PD). The numbers of both third- and 

second-order alliance pairs is increased by including obser-

vations in which individuals were within touching distance, 

but actual contact could not be discerned (‘D0’; Table 1).

Synchrony

During the same set of fusions, we scored 22 cases of indi-

viduals surfacing or diving side-by-side synchronously 

(‘synch’; Table  1), including eight cases of synchrony 

between third-order allies comprised of five unique pairs 

(two KS–RR, two PD–RR, one PD–KS). The other 14 cases 

of synchrony were between second-order allies and com-

prised 11 unique pairs (six KS, three RR, two PD; Table 1).

Interactions with females

We observed males from one alliance interact with the 

female being consorted by their third-order allies during 5 

of the 10 fusions (three KS–RR, one PD–RR, one PD–KS). 

There were two petting or rubbing interactions: rubbing 

between a KS male and the female consorted by RR, and 

petting between an RR male and the female consorted by 

PD. First-order alliances often travel with consorted females 

in ‘formation’, a male trio side-by-side behind the female or 

a pair of males on either side and slightly behind (Connor 

et al. 1992a). During three fusions, we observed members 

of one alliance briefly in formation behind the other alli-

ance’s female consort: KS with PD’s female consort, RR 

with PD’s female consort and, in the third fusion, KS and 

RR each swam in formation behind the other group’s con-

sorted female.

Discussion

We have demonstrated that third-order alliance relationships 

among male Indo-Pacific bottlenose dolphins in Shark Bay 

exhibit three key characteristics expected of ‘strategic’ alli-

ances: they are differentiated, shift through time, and include 

affiliative interactions. Associations were not maintained 

equally by all males, but rather, certain first-order alliances 

played key roles in maintaining third-order alliances. Affili-

ative interactions did, nevertheless, occur broadly among 

third-order allies. We were fortunate to capture a third-order 

alliance forming when a trio from the RR alliance began 

associating with KS and PD; then primarily associated with 

KS. We discuss each of these phenomena below.

Differentiated alliance relationships

The number and variety of differentiated relationships are 

considered important metrics of social complexity (Free-

berg et al. 2012; Bergman and Beehner 2015; Fischer et al. 

2017). The strength of associations between males in PD and 

KS in T1 and T2 were certainly differentiated but invite a 

simpler model. Based on bStrength alone, it is possible that 

third-order alliance bonds were maintained exclusively by a 

subset of individuals in each alliance. For example, the alli-

ance between KS and PD in 2011–2012 (Fig. 2b) might have 

been based exclusively on bonds between the two relatively 

stable trios, with the other members ‘along for the ride,’ 

linked only through their second-order alliance bonds with 

these key individuals. However, this phenomenon was not 

apparent in T3 and our data on affiliative interactions did not 

support this model (below).

We have previously shown that relationships within first- 

and second-order alliances are differentiated; relatively 

stable trios often contain an ‘odd male out’ who is less fre-

quently present, and when he is, less frequently synchronous 

with the other two males (Smolker et al. 1992; Connor et al. 

2006). Males that spend more time together in second-order 

alliances engage in higher rates of affiliative contact behav-

ior (Chereskin et al. 2022). Individuals exhibit marked pref-

erences for first-order partners and individuals with more 

stable first-order associations have higher consortship rates 

(Connor et al. 2001; Connor and Krützen 2015). Overall, 

males with stronger and more homogenous bonds within 

their second-order alliance consort females more often 

and secure more paternities (Gerber et al. 2022; Connor 

et al. 2022). In Shark Bay, the alliance levels themselves, 

distinguished by association patterns and function, evince 

differentiated relationships. We previously considered the 

cognitive challenges for individuals negotiating a multi-level 

alliance system, where decisions at one level may impact 

success at others (Connor et al. 1992a; Connor 2007). Navi-

gating three levels of differentiated alliance relationships 

should further increase the cognitive burden.

Alliance shifts

If alliances and coalitions are strategic, we should see 

evidence that individuals occasionally form new alliance 

relationships, as male chimpanzees famously do when 

they compete for rank (de Waal 1982; Nishida 1983). We 
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previously documented several types of alliance shifts in 

first- and second-order alliances. The first-order alliances 

of some males are stable, while others often change part-

ners between consortships (Connor et al. 1992a, b, 2001). 

Connor et al. (1992b) documented a second-order alliance 

shift at the conclusion of a three-year competition among 

three stable first-order alliances. Individual additions and 

evictions from second-order alliances are uncommon but 

strategically important; for example, when an alliance of six 

or nine members that forms first-order trios only, loses and 

then replaces a member so all members can form trios again 

(Connor and Krützen 2015).

In this study, we documented a third-order alliance for-

mation when RR began associating with KS. RR matured 

and were consorting females from 2002 but had shown no 

sign of a third-order association with KS until 2013. This 

change occurred in conjunction with the disappearance 

of two PD and KS members and, thus, may have helped 

mitigate declining second- and third-order alliance com-

petitive ability. Two other members of RR did not join this 

new third-order alliance relationship (King et al. 2021); the 

older one died after 2014 and the other was no longer a 

member. Notably, the loss of PRI from the PD alliance was 

associated with the loss of the prominent inter-group posi-

tion for PRI’s partners WAB and NAT and a weakening of 

their within-alliance bond with the other PD trio. One might 

have predicted that the diminished RR, KS and PD alliances 

would merge into one or two second-order alliances, but 

that has not happened; PD remained a second-order alliance 

and the KS–PD–RR triangle persisted through 2021 (King 

et al. 2021).

Affiliative interactions

Affiliative interactions play a key role in social bond for-

mation and maintenance, including coalitions and alliances 

within groups (Seyfarth and Cheney 2012). We have pre-

viously documented affiliative interactions within second-

order alliances, both among members of the same and dif-

ferent first-order alliances (Connor et al. 2006; McCue et al. 

2020; Chereskin et al. 2022). Our observations here of affili-

ative interactions during third-order group fusions contradict 

a model that simplifies third-order alliance relationships to 

a subset of individuals in each group. It is striking indeed 

that we recorded affiliative interactions in so many different 

third-order pairs (22 combining physical contact and syn-

chrony) in such a small slice of the dolphins’ social lives (10 

fusions totaling 39 min of observation). Males with among 

the lowest bStrength values for each alliance are found in 

the affiliative physical contact and synchrony pairs. This 

suggests that routine bond maintenance is an important and 

ongoing feature of third-order alliance behavior among the 

majority, if not all, members of each second-order alliance.

Previously, we found that males respond strongly to sig-

nature whistle playbacks of second-order allies irrespec-

tive of bond strength (King et al. 2021) and use whistle 

exchanges to maintain weaker second-order alliance bonds, 

while engaging in more affiliative contact among more 

strongly bonded second-order allies; thus alleviating the 

associated time and energy costs of petting by allowing 

males to ‘bond at a distance’ (Chereskin et al. 2022). These 

studies, combined with our finding that affiliative contact 

behaviors are widespread among third-order allies suggest 

the following generality: males maintain bonds with allies 

across three alliance levels that are strongly differentiated 

but universally valued.

The phenomenon of one male trio petting with and posi-

tioning itself in formation behind the consorted female of 

third-order allies is especially interesting, but difficult to 

interpret. The behavior could reflect dominance, except that 

it was reciprocated in one instance, or perhaps a form of 

sharing or ‘testing the bond’ (Zahavi 1977; Smuts and Wata-

nabe 1990; Perry 2011). The few observations of aggres-

sion during fusion events, and the theft between third-order 

allies (ESM), are in keeping with the concept that alliances 

are predominantly cooperative but include conflicts. Previ-

ously we documented rare thefts within second-order alli-

ances (Connor et al. 2011; Connor and Krützen 2015). It is 

notable that the single aggressive ‘tiff’ observed (ESM) was 

between second-order allies after joining third-order allies 

and the subsequent aggression was followed by an affiliative 

interaction.

The cognitive challenges of navigating three alliance lev-

els are further demonstrated by the nature and pattern of 

social behaviors observed within these brief fusion events. 

The frequency and co-occurrence of these behaviors (affili-

ative contact, synchrony, behavior towards others’ consorts) 

among many different pairs indicates concurrent forms of 

‘social grooming’ (Silk et al. 2003), social signaling (e.g., 

Bekoff 1995), and ‘bond testing’ (Zahavi 1977), within- 

and between-second-order alliances during fusion events; 

a period of potentially high uncertainty between third-order 

allies that are sometimes foes.

Dolphins, bonobos and humans

Bonobos (Pan paniscus) present a striking exception to 

our characterization of interactions between primate social 

groups as typically hostile ‘us against them’ affairs. Bonobo 

groups have overlapping home ranges with variable and, 

thus, differentiated relationships among groups (Furuichi 

2020; Samuni et al. 2022). Encounters often include affilia-

tive sexual behavior and even coalitions between individuals 

of different groups (Tokuyama et al. 2019; Furuichi 2020). 

However, inter-group bonobo coalitions were generally two 

or a few from both groups against another bonobo from 
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one of the same two groups (Tokuyama et al. 2019), rather 

than one or two groups against another group, as occurs 

in the dolphin second- and third-order alliance interactions 

(Connor et al. 2011). The three levels of strategic alliances 

among unrelated individuals in dolphins is unique outside 

humans, although the route to the evolution of ‘alliances of 

alliances’ in humans and dolphins likely differed (Connor 

et al. 2022). The evolution of between group alliances in 

humans is thought to have depended on the presence of kin 

and affines in allied groups (Chapais 2013); in the Shark Bay 

dolphins, affiliative interactions among non-relatives may 

be sufficient to establish and maintain inter-alliance bonds 

(Samuni et al. 2022; Connor et al. 2022).

Conclusion

The occurrence of three levels of strategic alliances among 

unrelated individuals is unique outside of humans. Here, 

we demonstrated that male dolphins in Shark Bay maintain 

third-order alliance relationships that are differentiated, shift 

through time, and are mediated by affiliative interactions. 

These characteristics are typical of intra-group coalitions 

between individual male primates, like chimpanzees, that 

use coalitions to compete for rank, and thus increase repro-

ductive success (Wroblewski et al. 2009; Gilby et al. 2013). 

In the dolphins, alliance behavior is associated with striking 

differences within and between second-order alliances in the 

rate that males consort females and in bond strength (Connor 

et al. 2001, 2017; Connor and Krützen 2015), which predicts 

reproductive success (Gerber et al. 2022). With this study, 

we can now state unequivocally that the same complexities 

of alliance and coalition formation that are present in one 

alliance or coalition level within some other mammalian 

social groups, are present in all three levels of male dolphin 

alliance formation. Alliances that Chapais (1995) said may 

generate “the most complex social structures in the world” 

have, outside of humans, reached a pinnacle in Shark Bay’s 

Indo-Pacific bottlenose dolphins.
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