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Concurrent Validity of a Custom Method for
Markerless 3D Full-Body Motion Tracking of

Children and Young Adults Based on a
Single RGB-D Camera

Nikolas Hesse , Sandra Baumgartner, Anja Gut, and Hubertus J. A. van Hedel

Abstract— Low-cost, portable RGB-D cameras with inte-
grated body tracking functionality enable easy-to-use 3D
motion analysis without requiring expensive facilities and
specialized personnel. However, the accuracy of existing
systems is insufficient for most clinical applications. In this
study, we investigated the concurrent validity of our custom
tracking method based on RGB-D images with respect to a
gold-standard marker-based system. Additionally, we ana-
lyzed the validity of the publicly available Microsoft Azure
Kinect Body Tracking (K4ABT). We recorded 23 typically
developing children and healthy young adults (aged 5 to
29 years) performing five different movement tasks using a
Microsoft Azure Kinect RGB-D camera and a marker-based
multi-camera Vicon system simultaneously. Our method
achieved a mean per joint position error over all joints
of 11.7 mm compared to the Vicon system, and 98.4% of
the estimated joint positions had an error of less than
50 mm. Pearson’s correlation coefficients r ranged from
strong (r =0.64) to almost perfect (r>0.99). K4ABT demon-
strated satisfactory accuracy most of the time but showed
short periods of tracking failures in nearly two-thirds of
all sequences limiting its use for clinical motion analysis.
In conclusion, our tracking method highly agrees with the
gold standard system. It paves the way towards a low-
cost, easy-to-use, portable 3D motion analysis system for
children and young adults.

Index Terms— Children, Kinect, 3D motion tracking,
RGB-D, Vicon.

I. INTRODUCTION

T
HE gold standard technology to perform clinical three-

dimensional motion analysis (3DMA) is marker-based

Manuscript received 6 July 2022; revised 22 November
2022 and 1 February 2023; accepted 24 February 2023. Date of
publication 2 March 2023; date of current version 10 April 2023. This
work was supported by the Anna Mueller Grocholski Foundation.
(Corresponding author: Nikolas Hesse.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by the Ethical Committee of the Canton of Zurich, Switzerland, under
Application No. BASEC-Nr. PB_2016-01843.

The authors are with Swiss Children’s Rehab, University
Children’s Hospital Zurich, 8910 Affoltern am Albis, Switzerland,
and also with the Children’s Research Center, University Children’s
Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
(e-mail: Nikolas.hesse@kispi.uzh.ch; sandra.baumgartner@kispi.
uzh.ch; anja.gut@kispi.uzh.ch; Hubertus.vanhedel@kispi.uzh.ch).

Code will be made available at https://github.com/nh236/smplify-kids
This article has supplementary downloadable material available at

https://doi.org/10.1109/TNSRE.2023.3251440, provided by the authors.
Digital Object Identifier 10.1109/TNSRE.2023.3251440

multi-camera systems, which track the 3D positions of reflec-

tive markers with highest accuracy [1] and transfer their

movements onto a biomechanical model. In combination with

force plates and electromyographic recordings, 3DMA is rou-

tinely applied to collect spatiotemporal, kinematic, kinetic,

and electromyographic data for gait analysis. These data are

needed to identify and understand the underlying impairments

and support the management of gait deviations in children with

cerebral palsy [2]. Some studies have demonstrated benefits of

3DMA also for other motor tasks [3] like upper limb function

[5, 4] or trunk control [6].

However, marker-based multi-camera systems are bulky,

non-portable, costly, and require regular calibration before use.

In preparation for 3DMA recordings, trained personnel must

precisely place reflective markers on predefined anatomical

locations while patients should cooperate and keep still. This

procedure can be challenging for therapists and patients, espe-

cially for children with cognitive impairments, who might not

tolerate such lengthy procedures. Furthermore, post-processing

requires time, e.g., filling gaps in marker trajectories in case

of occlusions. Finally, a high level of expertise is needed to

interpret the findings. These requirements have precluded the

adoption of 3DMA for routinely applied assessments of motor

function, except for 3D gait analysis, as mentioned above.

RGB-D cameras provide a simpler, inexpensive alternative

for capturing motion in 3D. Their integrated body tracking

functionality produces estimates of 3D body joint positions

in each video frame. Extracted kinematics from sensors like

the Microsoft Kinect v1 and v2 or the recently released Azure

Kinect Developer Kit (AKDK) have been evaluated for clinical

motion analysis [7], [8], [9]. While some spatiotemporal

variables, like gait speed, step length, and stride time, agree

highly with those derived from gold standard systems [10,

11, 12], the accuracy of the kinematics obtained with the

Kinect v1 and v2 appears to be limited [13], [14], [15], with

questionable validity and reliability [16] and too inconsistent

for clinical use [10]. Although direct comparisons between

the body tracking software associated with the more recent

depth sensor AKDK (termed Azure Kinect Body Tracking,

or, in short, K4ABT) and gold standard 3DMA systems have

been performed [8], [17], these results have to be interpreted

with caution. The reflective markers of the reference systems

distort the depth data and lead to more frequent tracking
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failures [9]. While Yeung et al. reported superior body tracking

performance of K4ABT compared to Kinect V2 during gait,

it should be noted that they did not compare the same gait

cycles but instead recorded leg joint angles during different

bouts of treadmill walking [9].

We are therefore convinced that the tracking methods of the

Kinect v1 and v2 do not provide the accuracy and reliability

required for clinical full-body motion analysis, and that further

investigation of K4ABT is necessary. This is especially true

for children, for whom the accuracy of approaches trained

primarily on adult data generally decreases [18].

RGB-D cameras provide body tracking capabilities and

grant access to raw color (RGB) and depth (D) images, thus

allowing the development of custom 3D body tracking meth-

ods. However, while motion tracking from RGB-D data is an

active area of research [19], [20], [21], [22], current methods

cannot track the motions of (smaller) children. In addition,

these methods have not been compared to a gold standard

system.

In this study, we adapted an existing method that was

developed to track infants from RGB-D sequences [22] to

work with humans of all sizes, i.e., for children and adults,

and evaluated its concurrent validity with respect to a gold

standard system.

Our first aim was to determine the accuracy of our method

against a marker-based Vicon system on a data set derived

from typically developing children (TDC) and young adults

performing five tasks. Our second aim was to determine the

validity of tracking results of the publicly available method

K4ABT in the same group of children and young adults.

II. METHOD

A. Participants

We included TDC (from the age of 5 years) and young

adults (<30 years) utilizing purposive sampling to cover a

broad range of ages and body sizes. The TDC were children of

employees of the Swiss Children’s Rehab and colleagues. The

young adults worked at the rehabilitation center. Participants

were excluded if they had a neurological, musculoskeletal,

or cardiovascular diagnosis. All participants, and the parents

of participants aged less than 18 years, were informed verbally

and in writing about the study. All participants had to provide

verbal agreement to participate. Children aged 14 years and

older and adults also had to provide written informed consent.

Each participant could withdraw from the study at any time.

The Ethical Committee of the Canton of Zurich approved the

study (BASEC-Nr. PB_2016-01843).

B. Movement Tasks

We selected five tasks that we adopted from clinical assess-

ments of motor performance, e.g., from assessing trunk con-

trol [23] or gross motor functions [24], or pose challenges for

tracking systems due to (self-)occlusions or high movement

velocity. Each task was explained verbally and demonstrated

once. The starting position for all tasks was upright standing

while facing the camera with arms hanging down. The tasks

were performed in the same order and defined as follows:

• Reach to the other side. Participant reaches with one hand

across the body to the other side, roughly at shoulder

height, then repeats the task with the other hand.

• Trunk bending. Participant bends the trunk to the left, the

right, forward, and backward.

• Standing straight leg raise. The participant raises one

straight leg to the front, holds for three seconds, and

returns to the starting position, then repeats the task with

the other leg. We chose this task despite the fact that

most children with motor impairments would not be able

to execute it, because it contains a balance component

and the raised leg causes self-occlusions, which makes

the motion more difficult to track.

• Squats. The participant performs three squats.

• Jumping jacks. The participant performs jumping jacks

three times. While most children with motor impairments

cannot perform this task, we included it because the fast

motions are challenging to track.

The experiments took place in our gait lab. Preparing the

participants was time-consuming, i.e., placing the reflective

markers, performing the body measurements, and collecting

patient information (30 minutes). In contrast, executing the five

motor tasks took less than 5 minutes. We recorded the partic-

ipants with an AKDK RGB-D camera and a marker-based

Vicon system simultaneously. At the end of each session,

we removed the markers, and the participants repeated the

five tasks, this time recorded only with the AKDK.

III. DATA PROCESSING

A. Setup

The Vicon system consisted of 12 Vero V2.2 cameras to

capture the marker set of the Conventional Gait Model (CGM)

2.5 [25], which consists of 51 markers. More detailed marker

models for the upper body exist, but the CGM provided a

good trade-off between accuracy and usability for our evalu-

ation, including young children. We recorded data at 120 Hz,

except for two participants, who were recorded at 90 Hz. The

diameter of the markers was 16 mm. The marker data was

post-processed with Vicon Nexus 2.10 for filling small gaps

in marker trajectories and calculating joint centers from the

marker positions.

The AKDK camera was mounted on a tripod, facing the

participant frontally at a distance at which the entire body was

visible (between 1.5 and 2.9 meters). We recorded in “NFOV

unbinned” mode at a depth resolution of 640 × 576 and color

image resolution of 1920 × 1080. The depth and RGB images

were registered, and 3D point clouds were computed using the

camera calibration, using methods from the Microsoft Sensor

SDK [26].

B. Interference Between AKDK and Vicon

The AKDK relies on the Time-of-Flight principle, where

the camera emits infrared light pulses and measures the time

it takes the light to bounce back from the scene to the

sensor [27]. The active illumination of the Vicon system,

which also operates in the infrared spectrum, interfered with

the AKDK depth measurements. To avoid this effect and at

the same time acquire temporally aligned measurements with

the AKDK, we used the Vicon’s synchronization pulse and
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Fig. 1. 3D point cloud captured with AKDK and tracking results. For
anonymization, we do not color the point cloud with the RGB information,
but instead use a color coding where points close to the camera are
red, and points further away blue. Top: frontal view, bottom: side view.
a) Point cloud of standing child with attached reflective markers. Note
how the markers cause missing points (small white dots) and spherical
bumps. b) Processed point cloud with reduced marker noise based on
segmentation of color image. Noise besides the body is removed, but
not the bumps on the frontal side of the body. c) Point cloud with aligned
body model (tracking result), d) model with underlying skeleton, and
e) model and skeleton without point cloud.

added an offset of less than one millisecond. The AKDK

recorded 30 frames per second, and we selected the Vicon

measurements with timestamps closest to those of the AKDK

to get joint positions at the same frame rate and account for

dropped frames.

As reported in previous literature, even without the active

illumination of the Vicon system, the strong reflectivity of

the markers creates significant amounts of noise in the depth

data solely from the illumination of the AKDK [9]. This

noise manifested itself as holes in the 3D point cloud at the

position of the markers, surrounded by spherical disturbances,

as shown in (Fig. 1, a). To make the data more similar to

the actual (markerless) use case, we reduced the quantity of

noise at the sides of the body by applying a method for

semantic segmentation, deeplabv3 [28], to identify the person’s

silhouette in the color image, and crop the depth image to the

segmentation mask (Fig. 1, b). We applied this to all except

the jumping jacks sequences since the motion blur in the color

images led to poor segmentation results.

C. Our Method

Our tracking method is based on a parametric model of the

3D body surface, termed SMPL-H [29]. Such a virtual body

aims at simulating real humans in that it can realistically vary

its shape, i.e., body characteristics like height and volume, and

pose, i.e., joint angles of an underlying skeleton.

The input to our method is a 3D point cloud computed

from an RGB-D image, and the output is an SMPL-H body

that matches the body in the 3D point cloud (Fig. 1, c-e). From

this virtual body, kinematic variables like joint positions and

angles can be extracted as a proxy for the real body.

To obtain the shape and pose parameters of the parametric

body model from RGB-D data, we adapted the method of

Hesse et al. [22], which estimated the pose and shape of

infants from sequences of 3D point clouds. The pose and

shape parameters of the infant body model, termed SMIL, are

automatically adjusted by iteratively minimizing an objective

function until the model surface matches that of the body in

the point cloud, as is standard practice [20], [22], [30].

Both models SMIL and SMPL-H are not able to properly

represent bodies outside the learned populations, i.e., infants

and adults (see Supplementary material). Our main modifica-

tion of the method by Hesse et al. is the extension of the body

model to work for humans of all sizes by adding a parameter

α that determines the interpolation between infant and adult

shapes, similar to Patel et al. [31]. The parameter α lies in

the range of 0 and 1, with 0 representing an infant shape,

and 1 an adult shape, and is automatically adapted during the

optimization, particularly in the initialization stage.

In the original SMIL model, the hands are shaped as fists,

while the adult SMPL-H model has open hands. This leads

to distorted hands during interpolation, making hand/finger

tracking impossible. For this reason, we created a new infant

template with open hands. We extracted an infant mesh with

open hands from the open-source software MakeHuman [32],

transferred it to SMIL topology similar to [22], and replaced

the hand vertices of the SMIL template with those of the new

mesh. This allows us to track finger motions.

We optimize the objective function for the shape and pose

parameters, β and θ , and the interpolation parameter α:

E(β, θ, α) =Edata + Eprior + Etemporal

Edata consists of the point-to-plane distances between the 3D

point cloud and the model, and the distance between estimated

2D joint positions (body and hand) and model joints projected

to 2D. It includes a penalty for model points penetrating

the (estimated) ground plane and a gravity term to pull

model points near the ground plane toward it. The computed

distances are processed with a robust Geman-McClure error

function [33] to avoid fitting to noise/outliers. We additionally

use an interpenetration term, similar to [30], to penalize self-

intersections. Eprior contains a regularization term to keep

pose and shape plausible. Instead of using the infant pose

prior from [22], we used one trained on adult data from [34].

Etemporal supports temporal smoothness by keeping the model

close to the fitting result of the previous frame. Each of

the terms in the objective function has an associated weight

that we determined experimentally. Note that while each of

the terms influences the result, the weights are chosen to

not restrain the model from completely obeying one of the

constraints. If the data term shows clear evidence of where

the model should go, this will likely overrule the prior term,

e.g., in the case of “unhealthy” poses.

During initialization, we run multiple rounds of fitting,

starting with high weights for the pose and shape prior and

lower weights for the data terms, and moving towards high

weights for data terms and lower weights for the priors. More

details can be found in the supplementary material.

For the optimization of the objective function, we use an

LBFGS optimizer with strong Wolfe line search [35]. Our

implementation is based on the publicly available code of

SMPLify-X [30] and is implemented in Python using the



1946 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

packages pytorch and pytorch3d [36]. We performed the

processing on a Desktop PC with a NVIDIA GeForce RTX

2080 GPU with 8 GB RAM. Fitting took between 0.5 and

5 seconds per frame. We used the male version of SMPL-H

for children and male adults, and the female version for female

adult participants.

D. K4ABT

We extracted 3D joint positions from the same RGB-D

sequences that were input to our method using the publicly

available Azure Kinect Body Tracking SDK (K4ABT), version

1.1.2, with standard settings [37].

E. Joints

For our analysis, we selected body joints from SMPL-H

and K4ABT that correspond to joint centers derived from

the Vicon system, namely the head, shoulders, elbows, wrists,

hips, knees, ankles, and feet. We transformed the body joint

positions from the AKDK coordinate frame and the Vicon

system to the same reference coordinate frame. We found

that skeleton definitions differ between SMPL-H and Vicon,

i.e., that joint centers are defined in different locations with

respect to the body surface. For this reason, we did not apply

a rigid transformation to the entire skeleton but to each joint

separately. The intuition behind this was that we intend to

analyze movements, i.e., how a point moves over time instead

of its global position in space. We assume that points close

to each other move similarly, allowing us to compensate for

differences in skeleton definition by bringing joint trajectories

into correspondence. We used Singular Value Decomposition

(SVD) to find the rotation and translation to map between two

sets of corresponding joint positions [38]. However, SVD is

sensitive to outliers and noise. Therefore, we implemented a

RANSAC scheme [39] by repeatedly sampling a third of the

joint positions at random. We found the transformation using

SVD and selected the rotation and translation with the highest

percentage of inliers (distance between pairs of corresponding

joints < 10 mm). For a comparison of sequences captured

without markers, the transformation from K4ABT joints to

the SMPL-H skeleton was calculated similarly. We did not

apply smoothing to any of the joint positions. All evaluations

are based on joint positions that were transformed with this

procedure.

F. Evaluation Metrics and Statistics

We evaluated multiple metrics because a single metric

cannot capture all relevant aspects of tracking accuracy for

motion analysis.

We computed the mean per joint position error (MPJPE),

i.e., the mean Euclidean distance between Vicon joint positions

and those predicted by our method. MPJPE calculates the

mean value of the complete sequence, which is why sporadic

tracking failures, i.e., large differences between estimated and

reference joint positions, only have a relatively small effect on

the MPJPE value but may negatively impact motion analysis.

Hence, we computed the percentage of correct keypoints

(PCK), which is the fraction of estimated joint positions within

a distance to the reference system that is smaller than a

threshold τ , which we chose to range from 5 to 200 mm.

The agreement of the movement signals over time is an

important property for motion analysis, which we evaluate

using Pearson’s correlation coefficient (r). A small amount of

noise is inherent to depth data, which is why correlations will

be low in cases where joints are stationary, e.g., in the lower

limbs during trunk bending or reaching. Instead of presenting

the average r -value over all joints, we examined the influence

of movement magnitude by evaluating r with respect to the

amount of motion present in a joint, which we represented

using the standard deviation (SD) over joint positions in a

sequence, arranged in 5 categories. For each joint in each

sequence, the SD value was calculated from the reference

system in 3 dimensions (X: medio-lateral, Y: vertical, and

Z: anterior-posterior). Then, the r value of each dimension

was assigned to a category according to the SD value. The

total number of items that were categorized is #sequences ×

#joints × #dimensions. Finally, we calculated the average of

all r -values in each category per dimension. We additionally

computed the percentage of items per category to show the

distribution of joints with different movement magnitudes.

For better interpretability of the SD metric, some exemplary

SD values for a five-year-old child during the reach task: the

average SD over lower limbs, which were standing still during

the whole sequence, computed from the Vicon system was 5,

1, and 5 mm in X, Y, and Z dimension, respectively. The

average SD in upper limbs was 70, 58, and 69 mm for X,

Y, and Z dimensions, with a maximum for the wrist joints at

126, 111, and 89 mm.

As mentioned above, Vicon markers interfere with the

AKDK recordings. This not only influences the depth images

but heavily affects the tracking quality of K4ABT, leading

to repeated tracking failures when markers are present on a

person’s body [9]. Hence, we refrained from a direct compar-

ison between K4ABT and Vicon since this does not reflect

the actual capabilities of K4ABT. Without the Vicon system

as a reference, the question remained how to reasonably

analyze the K4ABT tracking results. The lack of ground truth

prevented a detailed evaluation of the accuracy. Therefore,

we focused on significant tracking errors. First, we analyzed

the percentage of complete tracking failures for recordings

with and without markers, i.e., the fraction of frames in which

K4ABT did not detect a body. This was a fair compari-

son, as no reference system was required. Second, we used

our method as reference system to evaluate K4ABT on the

sequences recorded without markers (and the Vicon system).

We restricted our evaluation to metrics that corresponded

(almost) perfectly to the Vicon system. To avoid biasing the

results to the disadvantage of K4ABT, we visually verified

the correctness of our method’s predictions, and excluded few

cases in which our method did not produce satisfactory results

from the evaluation of K4ABT.

IV. RESULTS

Eighteen TDC and five young adults (14 females, 9 males)

aged 5 to 29 years (mean: 13.2 years), with a body height

between 110 and 189 cm (mean 148.4 cm), body weight

between 19 and 77 kg (mean 43.7 kg), and BMI between
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13.8 and 26.0 (mean 18.9) participated. Each participant

performed the five movement tasks, with and without markers,

giving a total of 115 recordings per condition. Due to technical

problems, we had to exclude eight recordings with markers

from three participants, resulting in 107 recordings. For two

subjects, no recordings without markers were performed, leav-

ing 105 recordings without markers. The movement tasks are

displayed in Fig. 2 and the supplementary video.

A. Evaluation of Our Method

We present results for the MPJPE per motion task in Table I

and the PCK, i.e., the percentage of estimated body joints with

errors below the threshold τ , in Table II. In Table III, we dis-

play Pearson’s correlation coefficients r for three dimensions,

categorized for the amount of motion per joint and sequence.

Average MPJPE values per joint ranged from 8.8 mm to

15.5 mm, at an average of 11.7 mm over all joints and

all motion tasks. Regarding the PCK metric, 63.8% of the

estimated joint positions were within 10 mm of the gold

standard joint positions, 98.5% of joints were assessed with an

error of less than 50 mm, and hardly any estimations exceeded

the error limit of 100 mm. The more motion was present in

a joint, the higher r was, ranging from 0.5-0.7 for joints that

were not moving at all (SD < 10 mm), over 0.95 for joints

that were slightly moving (SD 10-30 mm) to near perfect

correspondence > 0.99 for joints that moved a lot (SD >

100 mm). All but a few items of the stationary group had

p-values < 0.0001.

During leg raise and squats, we observed slightly increased

MPJPE values for the hip and knee, and elbow and shoulder,

respectively. These occurred when limbs pointed directly at

the camera, and the foot or hand occluded most of the leg or

arm, leading to small inaccuracies, as seen in Fig. 2.

The task containing very fast movements of all body parts,

jumping jacks, showed a comparatively high average MPJPE

of 17 mm over all joints. The fast motions led to missing

points in the depth image (cf. Fig. 2, bottom row, and the

supplementary video), making pose detection very difficult.

Despite the flawed data, we experienced very few inaccurate

results (0.025 % of joint positions with error > 100 mm, see

Table II, column jump), concerning exclusively wrist joints

in 4 of 23 sequences, and no complete tracking failures

(PCK = 100% for τ = 200 mm). The MPJPE for feet is

high because the noise introduced by markers sometimes led

to an outside foot rotation during landing to match the 3D

points. The lack of stationary joints is illustrated by the low

PCK value for errors smaller than 5 mm (8.2%). As mentioned

previously, the more motion was present in a joint, the higher

its correlation with the gold standard system, with r values

exceeding 0.99 for SD values of more than 100 mm (see

Table III, last row).

B. Effect of Markers on K4ABT

K4ABT did not detect any body at all in 44 of

107 sequences with markers. For the reach task, 10 sequences

were affected, of which 1.7% to 64.1% of the frames were

without detected body. Seven of the trunk sequences (0.9%-

48.8% of frames), two of the leg raise sequences (16.7%-30%

of frames), 8 of the squats sequences (1.5%-58.3% of frames),

Fig. 2. 3D point clouds with estimated joint positions for different motion
tasks. Yellow: Vicon, blue: our method, pink: K4ABT. Front and side view.
Left: Vicon vs our method (recordings with markers). Right: Our method
vs K4ABT (recordings without markers). Images for same task (in same
row) are taken from sequences of the same participant.

and 17 of the jumping jacks sequences (0.6%-79.9% of frames)

were affected. The failures mainly occurred in sequences of

children. In contrast, sequences of adults only showed sporadic

failures (overall in 3 sequences: one trunk sequence with 2.3%

of frames and two jumping jacks sequences with 0.6% and

1.4% of frames without detected body). For sequences without

markers, only 11 of 105 sequences contained frames in which

no body was detected. Apart from one reach sequence with

0.6% of missing detections, these failures appeared exclusively

in the jumping jacks task, affecting between 0.5% and 11.1%

of frames in the sequences of mostly younger children.

C. Evaluation of K4ABT

The influence of markers on K4ABT tracking quality

was reflected in the MPJPE of K4ABT with respect to our
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TABLE I

MEAN PER JOINT POSITION ERROR (MPJPE) PER TASK

TABLE II

PERCENTAGE OF CORRECT KEYPOINTS (PCK) PER TASK

TABLE III

AVERAGE PEARSON’S CORRELATION COEFFICIENTS r

method, at an average MPJPE over all joints of 45.7 mm

for recordings with markers. We verified this result with

Vicon as a reference at an average MPJPE over all joints of

45.1 mm for K4ABT. For recordings without markers and our

method as the reference, the average MPJPE over all joints

for K4ABT was 26.9 mm.

Regarding tracking failures, we also evaluated PCK values

for which our method yielded close to perfect results. For

sequences with markers, K4ABT achieved a PCK for τ =

200 mm of 96.4% with our method as reference (same value

with Vicon as reference) and a PCK for τ = 100 mm of

89.8% (89.9% with Vicon as reference). Without markers and

with our method as the reference, the PCK for τ = 200 mm

was 98.2% and 95.5% for τ = 100 mm.

Considering the above results, we concentrated on the

recordings without markers for the evaluation of K4ABT and

used our method as the reference for those metrics in which

our method reaches close-to-perfect agreement with the Vicon

system. Additionally, we visually verified the results of our

method and excluded a few failure cases from the evaluation

to not influence the results to the disadvantage of K4ABT.

Regarding the PCK metric, 95.5% of the K4ABT joint

positions were estimated within 100 mm of ours (i.e., 4.5%

> 100 mm), and 98.2% with errors smaller than 200 mm,

meaning that 1.8% of the estimated joints were failure cases.

These were distributed across 67 of 105 sequences (19 reach,

6 trunk, 13 leg raise, 12 squats, 17 jumping jacks). We display

examples of failure cases in Fig. 2, right. In the reach task,

the arm was repeatedly lost when the arm crossed the body

midline (PCK with τ = 200 mm: 97.7% for elbows, 94.9%

for wrists). K4ABT was relatively stable during trunk bending,

and we observed only few erroneous joint positions. Errors

occurred more commonly when the limbs pointed directly at
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the camera, e.g., legs during leg raise (PCK with τ = 200 mm:

96.5% for knees, 86.2% for ankles, 87.0% for feet) and arms

during squats (PCK with τ = 200 mm: 94.8% for elbows,

91.8% for wrists). In the jumping jacks sequences, short series

of errors frequently occurred when the arms were lifted above

the head, or the fast movements caused complete tracking

failures at times without detecting any body at all. We did

not include frames without K4ABT body detections in the

calculation of any error metric.

Pearson’s correlation coefficient r for joint positions with a

large amount of motion (SD > 100 mm) was very high, with

an average value over all dimensions of 0.95 (SD 0.1).

In summary, reflective markers negatively impacted K4ABT,

but movement signals of K4ABT and our method agreed

most of the time. Nevertheless, K4ABT demonstrated repeated

tracking failures of short periods in nearly two-thirds of all

sequences.

V. DISCUSSION AND LIMITATIONS

The primary aim of this study was to evaluate the concurrent

validity of a custom method for estimating the 3D pose of

children and young adults from RGB-D data with respect to

a gold standard system. While our method achieved accurate

results, it is not intended to replace specific applications like

the comprehensive routine gait analysis, which is required

to make clinical decisions, e.g., whether the child should

undergo surgery. Instead, we see our method as an objective

and more accurate alternative or supplement to standard motor

function assessments, i.e., assessments based on the subjective

perception of a therapist rating the children’s performance on

a coarse, relatively unresponsive, ordinal scale.

A. Results – Our Method

We found an average MPJPE of 11.7 mm, a PCK of over

98% for an error threshold of 50 mm, and close to perfect

correlation in all dimensions if at least some motion was

present in a joint (r values of ∼0.95 (SD > 10mm), and >

0.99 if a lot of motion was present (SD > 100mm)). The

combination of these error metrics shows that our method

can produce valid pose estimates approaching the results of

a gold-standard system. Some failures occurred when motion

blur caused the segmentation, which we applied to reduce the

influence of markers, to fail. However, as the segmentation

was only applied to reduce marker-induced noise, this is

irrelevant for our target application. Furthermore, while our

method seems generally robust to self-occlusions, e.g., hands

occluding the face or limbs pointing directly towards the

camera occluding the rest of the extremity, rare failures were

attributed to limbs being hidden entirely behind the body. This

occurred, for example, during the reach task where the non-

reaching arm disappeared behind the body when a child turned

the trunk into the reaching direction or during the leg raise task

when the trunk covered an arm during balancing. To handle

these failures, occlusions can be detected by integrating a

measure of tracking confidence proportional to the number of

3D points in close proximity to each body part, which would

be very low in the case of hidden limbs. This would allow for

an automated exclusion of these cases from subsequent motion

analysis.

Our method could be extended to use data from multiple

cameras to resolve occlusions, which is an advantage of exist-

ing commercial markerless video-based multi-camera systems,

e.g., Theia markerless [40], which has been validated for

adults during treadmill gait with respect to a marker-based

system [41]. This system’s average 3D joint position errors

range from 11 mm (wrists) to 36 mm (hips). The multi-camera

setup reduces occlusions, thus allowing more unconstrained

movements, but at the same time, increases space requirements

and effort for camera placement and calibration.

B. Related Work – Shape and Pose Estimation From

RGB-D

Other methods have been proposed for tracking the full body

shape and pose from RGB-D data. Bashirov et al. trained a

neural network to predict the shape and pose of a parametric

body model from the estimated 3D skeleton of K4ABT [42].

The average positional error of the method is reported to lie in

the range of 4 cm. However, this method relies on the output

of K4ABT and therefore is subject to its limitations. More

similar to our work, Bogo et al. used an optimization-based

method to align a parametric body model to 3D point clouds

from RGB-D sequences to extract accurate pose, shape, and

appearance, from which they created a textured avatar [20].

The focus of this work was the precise reconstruction of

body shape and appearance, and no quantitative evaluation

of pose accuracy was presented. Rempe et al. introduced an

optimization-based method that integrates a learned dynamic

motion model to predict the body shape and pose from RGB-D

sequences [43]. This approach is powerful in predicting plau-

sible poses under the influence of noise and occlusions of the

body by objects. In clinical applications, however, the focus

lies on capturing fine-grained changes in movements instead

of generating smooth and plausible poses. It is questionable

if the motion model, which was trained on data from healthy

adults, could generalize to motions of children with motor

disorders without correcting the movements to look “healthy”.

In summary, each of the methods targets tracking adults,

and none was validated with respect to a marker-based gold

standard system.

C. K4ABT Results

Our second aim was to determine the validity of K4ABT.

The negative effect of reflective markers on K4ABT tracking

quality has been described previously [9], but a quantitative

evaluation was not conducted due to the lack of a markerless

reference system. Our study approximated the amount of

disturbance of the markers to the accuracy of K4ABT. The

number of frames in which no body was detected was much

higher with markers than without markers. Missing body

detections occurred in 44 of 107 sequences with markers,

affecting up to 80% of the frames, and were not restricted

to specific tasks. Only 11 of 105 sequences without markers

were affected. Up to 11% of the frames were without detected

body. This occurred in the jumping jacks task and once in a

reach sequence. Particularly smaller children were affected,

suggesting that K4ABT is tuned towards adults and has some

difficulties recognizing children (with and without markers).
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Using our method as an imperfect reference system, the

average MPJPE over all joints and motions for K4ABT

nearly doubled from 26.9 mm without markers to 45.7 mm

with markers. Similarly, the percentage of correct keypoints

decreased by 2% for τ = 200 mm and approximately 6% for

τ = 100 mm for sequences with compared to without markers.

D. Related Work – K4ABT Validation

Despite these issues, previous studies compared the accu-

racy of K4ABT to marker-based Vicon systems. Albert et al.

analyzed K4ABT tracking accuracy during treadmill walk-

ing [8]. They reported MPJPE values of approximately 10

– 15 mm for body parts related to the trunk and head and

larger errors for the arms (elbows ∼17 mm, wrists ∼25 mm,

hands ∼50 mm) and legs (knees ∼30 mm, ankles ∼60 mm,

feet ∼60 mm). These results are similar to our findings with

markers, taking into account that our motion tasks are more

challenging to track than treadmill walking. In another study,

K4ABT was validated during lateral and forward reach tasks

and single stance balance with eyes closed [17]. The results at

MPJPE of 70 mm, 90 mm, and 47 mm, respectively, align with

our results with markers. The authors concluded that K4ABT

showed very high tracking accuracy but low tracking quality

for fast movements and a repeated loss of tracking movements

along the focal axis [17].

Based on our evaluation of marker influence on K4ABT, the

general tracking quality of K4ABT without markers is better

than reported in studies evaluating it with markers. In our

study without markers, we observed that K4ABT worked quite

accurately most of the time. However, we encountered short

sections of severe tracking failures in many sequences, with

joint positions being relatively far from the person’s point

cloud. Failure cases in our method predominantly involved

limbs hidden behind the body not directly involved in the task.

In K4ABT, however, failure cases included body parts directly

involved in the tasks, e.g., the reaching arm during reach,

the raised leg during leg raise, or the knees during squats

(see Fig. 2 and the supplementary video). While K4ABT can

still be a valuable tool, this limits its usability for clinical

motion, as tasks should be limited to those that are relatively

easy to track, while tracking output should be verified before

further processing. Most common failure cases for K4ABT

occurred when the arms were moved across the body midline

(reach), when limbs were directed towards the camera (squats,

leg raise), or when arms were lifted above the head (jumping

jacks), and for very fast movements (jumping jacks).

E. Limitations

Regarding our study, several limitations have to be kept

in mind. One limitation of our evaluation of K4ABT is

that we compared it to our method because interference

issues hindered a direct comparison to a marker-based sys-

tem. Therefore, we need to treat these results with caution.

Nonetheless, we only studied error metrics implying severe

tracking failures, which we additionally confirmed by visual

examination. Therefore, while we are confident that our results

display the actual capabilities of K4ABT, another valuable

approach would be to compare K4ABT with commercial

markerless multi-camera systems like Theia markerless [40]

or The Captury [44].

Including only healthy participants can be considered a lim-

itation since the method will be applied to children with motor

disorders. Nevertheless, to evaluate the tracking performance,

all participants should be able to execute the movement tasks,

including the challenging high-velocity tasks.

In this study, we evaluated the accuracy of 3D joint posi-

tions. We refrained from considering angles because differ-

ences in skeleton definitions have been reported to constitute

a significant source of error for angle comparison [9], which

would hinder an appropriate validation. While differences in

skeleton definitions could also affect joint positions, we tried to

reduce this as much as possible by applying the transformation

from one skeleton to another for each joint separately instead

of using one transformation for all joints at once. However, for

clinical use, we will validate clinically more relevant parame-

ters, such as joint angles, in a subsequent step. An advantage of

our method is that it outputs the entire body surface, allowing

a more detailed analysis of hand and foot contacts or distances

to object surfaces.

Our method is based on the SMPL-H body model, which

has the inherent drawback that the underlying skeleton is not

anatomically correct. The joints of the skeleton serve as centers

of rotation for body parts so that a realistic body surface is

maintained when parts are rotated. Recent work introduced a

first step towards integrating an anatomical skeleton inside a

similar parametric body model [45].

VI. CONCLUSION

In this study, we evaluated the accuracy and concurrent

validity of a custom method for markerless 3D full-body

tracking of children and young adults from RGB-D sequences

with respect to a marker-based Vicon system. We recorded

23 children and young adults performing five movement tasks.

Our method’s tracking results closely agree with those of

the gold standard system: an average MPJPE over all joints

of 11.7 mm, a percentage of correct keypoints of 98.4%

for an error threshold of 50 mm, and very high (r > 0.95)

to nearly perfect (r > 0.99) correlations in all dimensions

if some motion or a lot of motion was present in a joint,

respectively. We observed tracking failures (errors > 100 mm)

in rare cases when segmentation failed due to motion blur

or a full limb was completely hidden behind the body. The

publicly available K4ABT tracking method showed overall

good accuracy but, at the same time, recurring tracking errors.

Therefore, we recommend restricting the clinical application of

K4ABT to movements that can be easily tracked and verifying

the correctness of kinematics.

We conclude that our method constitutes a new tool for

accurate, portable, easy-to-use, markerless 3D motion tracking

for children and adults that can enable motion analysis outside

laboratories, e.g., at the patient’s home.

We aim to integrate motion analysis based on our method

into routine clinical examinations. We are currently conduct-

ing studies in which we complement standardized clinical

assessments with our method to refine the quantification of

motor function of children with neuromotor impairments.

Consecutively, we will collect reference data on typically
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developing children to develop automated methods for the

objective, quantitative clinical assessment of motor function.
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