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A B S T R A C T   

Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome 
through germline infections and insertions during evolution. They have repeatedly been implicated in the 
aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous 
system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a 
growing number of studies links the induction and expression of these retroviral elements with the onset and 
severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall 
disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all 
of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and 
inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including 
initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and condi-
tions in which epigenetic silencing of ERV elements is disrupted.   

1. Introduction 

Endogenous retroviruses (ERVs) are inherited genetic elements 
derived from exogenous retroviral infections occurring throughout the 
evolution of the genome. In general, ERVs belong to a retrotransposon 
subgroup of mobile genomic elements and comprise 5–8 % of the human 
genome (Lander et al., 2001). In other mammalian genomes, ERVs are 
similarly abundant and comprise, for example, approximately 10 % of 
the mouse genome (Stocking & Kozak, 2008). It is thought that multiple 
independent infectious events generated a unique genomic ERV content 
in different species, with additional genetic recombination leading to 
more than 100.000 ERV loci known in humans with extensive interin-
dividual variations (Nellaker et al., 2012; Thomas et al., 2018). 

ERVs are traditionally classified into three classes (I, II and III), based 
on relatedness to the exogenous Gammaretrovirus, Betaretrovirus and 

Spumaretrovirus, respectively. Within this classification individual ERV 
lineages are referred to as “families”, and comprise groups of ERVs that 
are assumed to derive from a single germline invasion event (Gifford 
et al., 2018). 

While human ERVs are often regarded as genomic parasites, their 
ancestorial embedding in our genomes suggests a certain degree of 
domestication and symbiosis (Küry et al., 2018). An illustrative example 
of positive evolutionary selection are syncytin 1 and 2, which represent 
envelope (Env) genes of the ERVW-1 and ERVFRD-1, respectively. The 
encoded proteins play an important role in placentogenesis and might 
also be involved in foetal-maternal immune tolerance (Xiang & Liang, 
2021). A similar functional domestication emerged for ERV-encoded 
group specific antigens (GAGs), some of which pertain to key pro-
cesses of memory consolidation in the mammalian brain, including long- 
term potentiation and long-term depression (Pastuzyn et al., 2018). 
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Whereas most human ERVs (HERVs) appear to be inherently inac-
tivated, multiple studies revealed activation of some of these elements in 
neurodevelopmental disorders such as autism spectrum disorder (ASD) 
or attention deficit hyperactivity disorder (ADHD), psychiatric disorders 
such as schizophrenia (SZ) and bipolar disorder (BD), and neuro-
inflammatory/neurodegenerative disorders such as multiple sclerosis 
(MS) and amyotrophic lateral sclerosis (ALS). While all these clinical 
conditions differ in terms of overall disease pathology and causalities, a 
common feature is that they are all associated with different degrees of 
(subclinical) chronic inflammation. Based on these commonalities, we 
aim at discussing the potential relationships between ERV activation and 
expression along the induction of inflammatory processes, thereby 
examining whether a direct sequence of events can be deduced. 

2. Human endogenous retroviruses as a central element of 
neurodevelopmental, psychiatric and neuroinflammatory 
disorders 

2.1. Neurodevelopmental disorders 

Autism spectrum disorder (ASD) was one of the first neuro-
developmental disorders in which abnormal retroviral activity was 
identified. It is a pervasive developmental disorder, affecting 1 in every 
160 children worldwide, characterized by three main core symptoms, 
namely impairments in social interaction, deficits in verbal and non- 
verbal communication, and presence of restricted and repetitive be-
haviours (Santos et al., 2022). It was shown to involve immunological 
dysfunction with several ASD risk genes encoding components of the 
immune system (Meltzer & Van de Water, 2017). Signs of microglia 
activation and increased production of inflammatory cytokines and 
chemokines, including interferon (IFN)-γ, interleukin (IL)-1β, IL-6, IL- 
12p40, tumor necrosis factor-α (TNF-α) and chemokine C–C motif 
ligand (CCL)-2, in the brain parenchyma and cerebral spinal fluid (CSF) 
were described (Onore et al., 2012). Furthermore, elevated levels of pro- 
inflammatory cytokines in plasma were identified in medication-free 
ASD patients from the ages of 2 to 5 compared to age-matched, nor-
mally developing and healthy control children and to children with 
other developmental disabilities (Ashwood et al., 2011). The over-
production of peripheral cytokines in ASD children was further associ-
ated with impaired communication skills and aberrant behaviours 
(Ashwood et al., 2011). 

Env gene expression of HERV-H, HERV-K, HERV-W and HEMO 
(different subtypes of human ERVs) was investigated in peripheral blood 
mononuclear cells (PBMCs) from ASD children, their parents and from 
corresponding healthy controls. ASD patients showed significantly 
higher HERV-H Env transcript levels as compared to healthy children 
(Balestrieri et al., 2019). Intriguingly, PBMCs from mothers of ASD 
children also showed significantly higher levels of HERV-H Env tran-
scripts in comparison to mothers of the control group (Balestrieri et al., 
2019). Similar findings were obtained for HERV-K and HEMO Env gene 
expression. On the contrary, the transcriptional activity of HERV-W Env 
was significantly lower in ASD children as compared to healthy controls, 
but significantly higher in their mothers and fathers compared to the 
corresponding control group (Balestrieri et al., 2019). 

Abnormally high expression levels of ERV components were also 
reported in two distinct mouse models of ASD (Cipriani et al., 2018b). 
The first mouse model involved BTBR T + tf/J inbred mice, which 
corresponds to an idiopathic ASD model capturing several ASD-related 
behavioural traits, including impairments in social interaction, 
communication, and cognitive flexibility, as well as high levels of re-
petitive behaviours. The second model was based on CD-1 outbred mice 
which were prenatally treated with the anticonvulsant and histone 
deacetylase inhibitor valproic acid (VPA). These animals show ASD-like 
behavioural alterations, including early motor hyperactivity, social 
deficits, and cognitive impairments. Both models showed consistently 
increased transcriptional activity of several ERV families in whole 

embryos, as well as in postnatal blood and brain samples (Cipriani et al., 
2018b). Moreover, expression levels of pro-inflammatory cytokines and 
toll like receptors (TLRs) were also significantly elevated after prenatal 
VPA treatment (Cipriani et al., 2018b). 

ERVs also seem to be implicated in attention deficit hyperactivity 
disorder (ADHD), a neurodevelopmental condition usually detected 
before the onset of late adolescence or early adulthood. ADHD is char-
acterized to a varying degree by difficulties in maintaining sustained 
attention and executive functions, motor hyperactivity, and impulsivity 
(American Psychiatric Association, 2013). As the majority of children 
with ADHD have a high prevalence of allergic diseases, it is likely that 
immune- and inflammation responses are involved in the aetiology of 
this disorder (Tsai et al., 2013). When PBMCs of 30 subjects with ADHD 
and 30 healthy controls were analysed, increased expression of HERV-H 
was found in PBMCs of ADHD subjects, with Env transcript levels 
correlating positively with inattention and hyperactivity (Balestrieri 
et al., 2014). Furthermore, drug-naive ADHD patients showed a reduc-
tion in HERV-H Env mRNA levels in response to administration of 
methylphenidate, a commonly used drug for treating ADHD symptoms 
(Cipriani et al., 2018a). 

2.2. Psychiatric disorders 

Abnormal ERV expression was also identified in schizophrenia (SZ), 
a major psychiatric disorder affecting up to 1 % of the world’s popula-
tion (Charlson et al., 2018). It is characterized by varying degrees of 
cognitive impairments, emotional aberrations, and behavioural anom-
alies, which together undermine basic processes of perception, 
reasoning, and judgment. Typically, the onset of full-blown SZ is in early 
adulthood and includes a myriad of symptoms. These symptoms can be 
referred to as positive symptoms (e.g. visual and/or auditory halluci-
nations, delusions, paranoia, psychomotor agitation), negative symp-
toms (e.g. social withdrawal, apathy, deficits in motivation and reward- 
related functions), and cognitive symptoms (e.g. deficits in executive 
functioning, working memory, and attention) (Owen et al., 2016). 

Increasing evidence suggests that the immune system is involved in 
the pathogenesis and pathophysiology of SZ. Support for this notion 
includes epidemiological findings of increased risk of SZ following early- 
life exposure to infectious pathogens or inflammatory stimuli (Brown & 
Meyer, 2018), along with post-mortem and imaging studies demon-
strating glial anomalies and increased expression of cytokines and other 
mediators of inflammation in the brain and periphery in people with SZ 
(Miller et al., 2011; Trepanier et al., 2016). Noticeable inflammatory 
abnormalities, however, are evident only in a subgroup of SZ cases 
(Fillman et al., 2013; Fillman et al., 2016; Purves-Tyson et al., 2021) and 
may predict poorer clinical outcomes and treatment responses (Hoang 
et al., 2022; Mondelli et al., 2015). 

Furthermore, it was recently demonstrated that patients with SZ or 
bipolar disorder (BD) can be stratified into subgroups with differing 
inflammatory and clinical profiles based on HERV-W Env protein anti-
genemia and cytokines (Tamouza et al., 2021). In this study, two main 
clusters of patients were identified which were best predicted by the 
presence or absence of the HERV-W Env protein. HERV-W expression 
was associated with increased serum levels of inflammatory cytokines 
and higher childhood maltreatment scores. Furthermore, patients with 
SZ expressing the HERV-W Env protein showed more manic symptoms 
and higher daily chlorpromazine equivalents. These findings add to a 
previous study identifying retroviral polymerase gene sequences of the 
HERV-W family in the CSF of 29 % of individuals with recent-onset SZ or 
schizoaffective disorder (Karlsson et al., 2001). Transcripts from HERV- 
W family genes were also found to be upregulated in the frontal cortex of 
brains from individuals with SZ (Karlsson et al., 2001). A more recent 
publication found that patients with first-episode psychosis displayed 
lower levels DNA methylation at HERV-K loci, whereas chronic patients 
with SZ did not differ from matched controls with regards to HERV-H 
methylation (Mak et al., 2019). In addition, it was found that HERV-K 
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methylation levels correlated positively with the chlorpromazine 
equivalents, indicating that antipsychotic medications may contribute to 
the normalization of aberrant HERV-H methylation patterns along the 
clinical course of schizophrenia (Mak et al., 2019). 

Abnormal ERV expression was found in BD, a heterogeneous psy-
chiatric disorder characterized by fluctuating symptoms involving epi-
sodes of mania and depression and intermittent periods of euthymia. 
The number of episodes and duration of each state varies markedly 
between individuals. Manic episodes typically include a reduced need 
for sleep, increased energy, rapid speech, increased libido, reckless 
behaviour, grandiose thoughts, and elevations in mood. In severe epi-
sodes, psychotic symptoms such as delusions and hallucinations may 
also be present. While the precise etiopathology of BD is still ill-defined 
(Harrison et al., 2018), several studies indicate that it involves changes 
in the innate and adaptive immune system including inflammation. For 
example, patients with BD often show increased serum concentrations of 
interleukins and C-reactive protein (CRP), a protein which rises in 
response to inflammation. Moreover, inflammatory alterations have 
been detected in the brain parenchyma of patients with BD (Harrison 
et al., 2018). Similarly to SZ, HERV-W transcripts and proteins were 
repeatedly found to be elevated in the blood, CSF and brains of patients 
with BD (Li et al., 2019; Perron et al., 2012; Tamouza et al., 2021). 
Intriguingly, a recent study showed that patients with BD who were 
positive for HERV-W Env protein had increased serum levels of IL-1β and 
an earlier disease onset as compared to patients were negative for HERV- 
W Env protein (Tamouza et al., 2021), suggesting that differential 
HERV-W activity may define distinct subgroups in bipolar disorder. 

2.3. Neurological disorders 

Human ERVs have long been speculated to be involved in the aeti-
ology and pathophysiology of neurological disorders, especially in 
multiple sclerosis (MS) (Perron et al., 1989). MS is characterized by a 
primary attack to oligodendrocytes, the myelinating glial cells of the 
central nervous system (CNS), and by the subsequent demyelination of 
axons and axonal degeneration. These neurodegenerative processes 
eventually result in irreversible loss of sensory, motor, and cognitive 
functions. Infiltrating lymphocytes, monocytes/macrophages, activated 
astrocytes and microglia represent some of the key pathological features 
of MS, whereas their contribution varies between acute, relapsing/ 
remitting and chronic, progressive disease stages (Matthews, 2019). 
Nevertheless, despite the plethora of studies conducted over the last 
decades, the precise aetiology of MS remains elusive. 

Since the initial discovery of retroviral elements in the leptomenigeal 
cells of MS patients (Perron et al., 1989), MS has been repeatedly 
associated with human retroviral elements in general, and with the 
HERV-W Env gene in particular. These associations further involved pro- 
inflammatory effects on innate and adaptive immune cells, impacts on 
endothelial cells of the blood–brain-barrier (BBB), impaired regenera-
tive responses of remyelinating oligodendroglial precursor cells, as well 
as activation and polarisation of microglial towards an axon-damaging 
phenotype (Küry et al., 2018). Hence, there is converging evidence 
suggesting a broad impact of ERV activation and expression in the 
development and progression of MS. A pathological involvement of the 
HERV-W Env protein in the aetiology of MS has recently been confirmed 
by a clinical trial, in which a therapeutic Env-neutralizing antibody was 
administered to MS patients. The clinical outcome revealed reduced 
brain atrophy rates as well as stabilized radiological markers of white 
matter integrity thus an impact on neurodegeneration as well as on 
repair activities (Hartung et al., 2022). 

Following the thread of neurological disease associated with the 
expression of human ERVs, we find amyotrophic lateral sclerosis (ALS) 
with an estimated prevalence of 4 to 8 cases per 100.000 persons 
(Longinetti & Fang, 2019). This disease is characterized by a progressive 
loss of cortical and spinal motor neurons, resulting in motor dysfunction 
and motor cortex volume loss (Li et al., 2015a; Mathis et al., 2017). On 

the immunological aspect, ALS involves microglia and astrocyte acti-
vation as well as T cell infiltration and inflammatory cytokine over-
production (Liu and Wang, 2017). 

A study conducted among 23 ALS patients and 21 patients suffering 
from other neurological diseases serving as controls, found the presence 
of reverse transcriptase (RT) activity in the sera of 56 % of the ALS 
patients versus in 19 % of the control group (MacGowan et al., 2007). It 
was furthermore observed that non-symptomatic blood relatives of ALS 
patients also had increased RT activity in comparison to the ALS pa-
tient’s spouses, which served as control group (Steele et al., 2005). These 
findings thus support the notion that the RT proteins derive from an 
endogenous origin rather than from an exogenous viral infection. 
Furthermore, all major genetic components of the HERV-K genome, i.e., 
Gag, Pol and Env, were found to be elevated in post-mortem brain 
samples from ALS patients (Li et al., 2015b). While the detection and 
involvement of HERV-K in ALS is still debated, studies on cultured 
neurons showed that both, the entire genome and the Env gene caused a 
similar decrease in cell numbers and retraction of neurites in a dose- 
dependent manner. Likewise, transgenic overexpression of the HERV- 
K Env protein in motor neurons provided strong evidence that this 
leads to pathological hallmarks of ALS, including progressive motor 
dysfunction and motor cortex volume loss (Li et al., 2015b). Moreover, 
24 weeks of antiretroviral therapy on 29 ALS patients resulted in a 
progressive decrease of copy numbers of HML-2 (subtype of HERV-K) 
and the majority of participants (82 %) revealed to be “responders“. 
Among the responders, respiratory function and motor neuron 
dysfunction was ameliorated, indicating a slower progression of the 
disease. This outcome supports a possible role for HERV-K in the clinical 
course of the disease (Garcia-Montojo et al., 2021). 

Taking together, an intricate interaction between endogenous 
retroviral elements and inflammation-related immune responses appear 
to play a role in the onset and/or progression of these neurological 
conditions. However, it is currently unclear to what degree endogenous 
retroviruses act in a unified way in all these disorder and whether 
inflammation acts as a trigger of ERV activation or, the other way round, 
whether immune processes are specifically initiated and supported by 
ERVs. These questions are addresses in the subsequent section, where 
the relationship between epigenetic control mechanisms, ERV expres-
sion and inflammation are discussed in more detail. 

3. (Re-)Awakening of endogenous retroviruses 

Under physiological conditions, the majority of endogenous retro-
viruses, particularly those with primarily pathological functions, are 
thought to be in a dormant state and suppressed by molecular mecha-
nisms of epigenetic silencing. Upon certain events, however, such 
epigenetic repression can break down, leading to a (re)activation of 
these retroviral entities, possibly initiating disease onsets and/or or 
accelerating disease progression. We therefore aim at summarizing the 
current knowledge regarding the epigenetic mechanisms that maintain 
repression and facilitate activation of pathological ERVs. 

Based on the current state of evidence, it appears that various 
epigenetic processes are relevant for controlling ERV expression, 
including localisation of proviruses in the heterochromatin, blocking 
long terminal repeat (LTR) access, CpG methylation and histone 
deacetylation. The predominant view is that these epigenetic processes 
assure overall ERV silencing, whereas small leakages at transcription 
levels can still occur (Leung & Lorincz, 2012). 

Most CpG islands are found to be methylated throughout the human 
genome, including those encompassing ERVs (CGIs) (Deaton et al., 
2011). In this regard, a genome-wide microarray approach identified 
human ERV families to be heavily methylated in healthy tissues (Szpa-
kowski et al., 2009). Furthermore, differences in silencing modes were 
associated with the evolutionary age of ERV insertions. Indeed, evolu-
tionary “young” LTRs are CpG rich and amenable to DNA methylation, 
whereas the expression of evolutionary “old” ERVs appear to be 
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controlled mostly via histone modifications (Ohtani et al., 2018). This 
distinction was confirmed by a study showing a correlation between 
HERV-K (HML-2) 5’ LTR methylation and transcriptional suppression of 
its provirus in the Tera-1 cell line (Lavie et al., 2005). 

Histone acetylation blocks the positive charges on lysine residues, 
which destabilises chromatin and favours transcriptional activation. 
Thus, histone deacetylation represents another epigenetic silencing 
mechanism with relevance to ERVs (Bannister & Kouzarides, 2011). 
Acetylation of lysine residues in histones is catalysed by histone ace-
tyltransferases (HATs) and counteracted by histone deacetylases 
(HDACs). As the use of HDAC inhibitors alone did not significantly 
induce ERV expression in humans (HERV-K [HML-2], HERV-W, HERV- 
FRD) in cell lines with the dormant HIV-1 virus or primary T cells 
infected with HIV-1 (Hurst et al., 2016), it is unlikely that histone 
deacetylation alone may be the primary epigenetic mechanism under-
ling ERV repression, but it nevertheless may act in combination with 
CpG methylation to do so. This hypothesis is supported by the obser-
vation that the combination of the HDAC inhibitor trichostatin A and the 
DNA methylation inhibitor 5′-azacytidine increased HERV-Fc1 expres-
sion in human embryonic kidney cells, whereas trichostatin A alone did 
not (Laska et al., 2012). 

In addition to histone acetylation, histone methylation appears to be 
another epigenetic mechanism relevant for controlling ERV expression. 
In support of this notion, an enrichment of repressive histone marks such 
as trimethylation of histone 3 lysine 9 (H3K9) or H4K20 was described 
for mouse ERVs (Day et al., 2010; Mikkelsen et al., 2007) and for HERV- 
K (Campos-Sánchez et al., 2016). Furthermore, during early embryonic 
development, Krüppel-associated box zinc finger proteins (KRAB-ZFP) 
are critical for establishing and maintaining histone methylation and 
heterochromatin formation. Human KRAB-ZFP binding sites are highly 
concentrated within transposons, mainly retrotransposons, including 
human ERVs. Most of these transposable elements have lost their 
transposable potential, indicating that the KRAB-ZFP has silenced them 
by curbing them in heterochromatin (Imbeault et al., 2017; Thomas & 
Schneider, 2011). Of note, LTR-containing retrotransposons seemed to 
have co-evolved with KRAB-ZFP genes, as the integration of each family 
of human ERVs coincided with a new KRAB-ZFP (Lukic et al., 2014; 
Thomas & Schneider, 2011). Binding of KRAB-ZFP to chromatin leads to 
the recruitment of other proteins via the KRAB domain, forming larger 
protein complexes that modify histones (Thomas & Schneider, 2011). 
This includes the scaffold protein TRIM28/KAP1, DNA methyl-
transferases (DNMT)-1 and DNMT3a/b, as well as the histone lysine 
methyltransferase SETDB1. The latter was found to be critical for global 
repression of ERVs, as supported by findings in SETDB1 knock-out mice 
showing increased ERV expression in B-lymphocytes as compared to 
wild-type mice (Collins et al., 2015). 

Finally, nucleosome positioning has been hypothesised by some 
authors to regulate ERV transcription (Fuchs et al., 2011). The binding 
of transcription factors, specificity protein (Sp)1 and Sp3 Sp1 to the LTR, 
would free the transcription starting sites from nucleosomes, allowing 
the genetic expression. HERV-K (HML-2) sequences were described to 
lack the classical TATA box element of common RNA polymerase II 
promoters, necessary for transcriptional initiation. These authors found 
that HERV-K LTR sequences contain alternative transcription starting 
sites. They showed that Sp1 and Sp3 have three binding sites within the 
LTRs of HERV-K proviruses and when knocked down, the promoter 
activity was significantly reduced (Fuchs et al., 2011). 

Thus, while various molecular mechanisms mediating epigenetic 
silencing of ERVs have been identified, there are also several processes 
that can re-awake these retroviral elements from their dormant state. 
For example, ultraviolet (UV) radiation exposure, which is known to be 
associated with epigenetic modifications such as alterations in DNA 
methylation, DNA methyltransferase activities and histone acetylation, 
was shown to lead to transcriptional activation of the HERV-K pol gene 
as well as to enhance expression of Env protein in melanoma cells 
(Schanab et al., 2011). Likewise, several nutritional factors have been 

shown to affect human ERV repression. One example is В-carotene, 
which was shown to increase DNA methylation of HERV-W (Bollati 
et al., 2014). Furthermore, vitamin C was identified to be an important 
cofactor for DNA methyltransferase inhibitors (DNMTis) in treating 
neoplasia. Combined application of DNMTi and vitamin C resulted in 
diminished ERV DNA methylation and subsequent increases in ERV 
expression (Liu et al., 2016). 

In addition, certain drugs are known to modulate the silencing of 
ERVs by acting on epigenetic regulators. HDAC inhibitors such as val-
proic acid (VPA) have extensively been used in the treatment of 
neurological and psychiatric disorders, and in this context, an upregu-
lation of several class I and class II human ERV elements by VPA in a 
dose-dependent manner was described in brain cell lines (Diem et al., 
2012). Moreover, upregulation of HERV-W and ERV9 transcription was 
detected in post-mortem brains of schizophrenic patients that were 
undergoing chronic VPA treatment (Diem et al., 2012). The HDAC in-
hibitor vorinostat was also found to modulate ERV expression. Elements 
belonging to the ERV-L and HERV-9 families were found to be pre-
dominantly down- and upregulated, respectively in CD4+ T cells, after 
vorinostat treatment (White et al., 2018). Furthermore, treatment with 
the DNMTi 5-aza-deoxycytidine was found to increase HERV-E mRNA 
expression in CD4 + T cells in patients with systemic lupus erythema-
tosus (Wu et al., 2015). Altered DNA methylation has also been associ-
ated in human leukaemia cell lines and hematopoietic stem cells upon 
decitabine and hydroquinone exposure, resulting in elevated ERV 
expression (Conti et al., 2016). 

A couple of recent publications have also shed light onto a different 
mechanism involving the histone variant H3.3 for the (re)awakening of 
ERVs. They showed that the loss of the histone variant H3.3 leads to a 
reduction of suppressing H3K9me3 marks at ERV elements. This in turn 
would open up binding sites for the interferon regulatory factor family of 
transcription factors (Guo et al., 2022). Furthermore, another publica-
tion described that the H3.3 chaperone death-associated protein 6 
(Daxx), alpha-thalassaemia X-linked mental retardation (Atrx) lead to 
derepression of ERVs via histone acetylation and/or methylation 
(Gerber et al., 2021). 

Of particular interest is the capability of viruses to change the 
epigenetic landscape of host cells to ensure proper replication (sum-
marized in (Tsai & Cullen, 2020)). Importantly, some viral infections 
represent a risk factor in the development of certain HERV-associated 
diseases, including for example Epstein bar virus (EBV) and human 
Herpesviridae (HHV)-6 and herpes simplex viruses (HSV)-1 in MS 
(Römer, 2021). Thus, viral exposures could be one of the environmental 
factors linking altered ERV activity/expression to neurological and 
psychiatric disorders. In support of this notion, exposure of B cells to 
EBV was found to cause a genome-wide activation of LTR sequences 
(Leung et al., 2018) in these cells. The EBV-mediated activation of LTRs 
further coincided with local DNA hypomethylation (Leung et al., 2018). 
Moreover, EBV infection is thought to change host epigenetics on the 
long-term, thereby counteracting the immune reaction and further 
unlocking endogenous retroviral elements (Buschle & Hammerschmidt, 
2020). Similar observations were made upon infection of primary 
fibroblast cells with influenza A virus, which led to the transactivation of 
the Env gene in the HERV-W locus ERVWE1 (Li et al., 2014). This in-
duction was likely triggered by an in infection-mediated decrease in the 
repressive histone mark H3K9me3 as well as by lowered SETDB1 
expression (Li et al., 2014). 

Taken together, there is strong evidence that endogenous retroviral 
elements need to be epigenetically unlocked before they can be acti-
vated. Several environmental factors, including infections, nutrition, 
and certain drugs are thought to play key roles in the process of epige-
netic unlocking. However, these processes are only partially understood 
to date, such that additional longitudinal studies are warranted to 
decipher the temporal sequences of molecular events acting on inserted 
viral elements and leading to their release – prior or concomitant to 
disease development. 
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4. Activation of ERV expression 

While epigenetic de-repression of endogenous retroviral elements 
itself can already induce mild expression levels, epigenetic mechanisms 
alone do not explain why ERVs are highly expressed in certain disorders. 
Thus, abnormally high ERV expression in some pathological contexts is 
likely to be the result of intricate interactions between epigenetic de- 
repression and other factors. As discussed below, various environ-
mental factors, such as microorganisms, nutrients, and stress, as well as 
intrinsic components, such as cytokines and hormones, have been 
identified to act on ERV expression. For example, human ERV expression 
is known to be modifiable by hormones, both under physiological and 
pathological conditions. In females, basal HERV-K fluctuates as a func-
tion of the menstrual cycle, suggesting a regulation of HERV-K by the sex 
hormones progesterone and estradiol (Mueller et al., 2018). These 
findings are corroborated by the recent publication showing that pro-
gesterone and estradiol synergistically activate HERV-K involving 
binding of progesterone receptor and the octamer-binding transcription 
factor 4 (OCT4) to HERV-K LTRs (Nguyen et al., 2019). 

While in the context of ALS strong evidence support the TDP43 
protein as activator of HERV-K expression (Li et al., 2015b) there is also 
converging evidence supporting a direct impact of systemic inflamma-
tion on ERV expression, likely also via acting on flanking LTR sequences 
(Kovalskaya et al., 2006). LTR sequences feature strong gene regulatory 
sequences and contain many binding sites for transcription factors, 
including sites for the pro-inflammatory nuclear factor kappa light chain 
enhancer of activated B-cells (NF-κB) (Manghera & Douville, 2013; 
Thompson et al., 2016). Given that NF-κB regulates various aspects of 
innate and adaptive immunity and can be activated by numerous pro- 
inflammatory cytokines such as TNFα, IL-1β, IL-6 and IFNγ, binding of 
NF-κB to flanking LTR sequences may readily provide a direct mode of 
action of how inflammation can drive human ERV transcription (Liu and 
Wang, 2017). In this context, IFNγ was shown to induce the expression 
of the HERV-K Gag-Pro-Pol polyprotein as well as of the reverse tran-
scriptase in human astrocytes and neurons (Manghera et al., 2015). In 
the same cells, however, TNFα was found to induce HERV-K transcrip-
tion through interferon regulatory factor-1 (IRF1) and NF-κB binding to 
the interferon-stimulated response elements (ISRE) (Manghera et al., 
2016). Similarly, exposure to TNFα, IFNγ, IL-6 or IL-1 was shown to 
boost the activity of the ERVWE1/syncytin promoter via NF-κB in 
human U-87MG astrocytes (Mameli et al., 2007). Moreover, TNFα also 
appears to shift the open reading frame of the HERV-K Env gene, thereby 
giving rise to the conotoxin-like protein (CTXLP). This protein is similar 
to the neurotoxic conotoxin protein of marine snails and, more impor-
tantly bears similarities to the human immunodeficiency virus (HIV) tat 
protein. CTXLP can act in a positive feedback loop via binding to ISREs 
within the HERV-K promoter, thereby further stimulating its expression. 
CTXLP was also demonstrated to enhance nuclear NF-κB p65 expression, 
which then tunes into HERV-K transcription (Curzio et al., 2020). 

Of note, a recent transcriptome study supports the notion that 
inflammation leads to ERV induction in humans, as revealed by corre-
lations between the expression of various endogenous retroviruses with 
different injuries such burn, trauma and septic shock (Mommert et al., 
2020; Tabone et al., 2018). Whereas none of these injuries are primarily 
associated with the common risk factors for developing neurological 
disorders, all of them are associated with a strong inflammatory reaction 
and a concomitant upregulation of at least five different human ERVs. 
Additional evidence supporting a primary role of inflammation in 
stimulating ERV transcription can be obtained from a clinical investi-
gation using PBMCs derived from ADHD children. As outlined above, 
children with ADHD who were treated with methylphenidate displayed 
decreased HERV-H expression in PBMCs (Cipriani et al., 2018a). 
Notably, ex vivo induction of HERV-H in drug-naïve PBMCs was then 
shown to occur in response to a T cell activation cocktail, containing IL-2 
and phytohemagglutinin, but was not observed in PBMCs from drug- 
treated ADHD children and healthy controls (Cipriani et al., 2018a). 

Besides inflammatory responses, infections with viruses, the intes-
tinal microbiota, and protozoans can also modulate ERV expression 
(Küry et al., 2018). Indeed, numerous viral infections, including HIV-1, 
the Herpesviridae HSV-1, HHV6 and EBV as well as SARS-CoV2, have 
repeatedly shown to directly induce the transcription of endogenous 
retroviral elements (summarized in (Küry et al., 2018), see also (Bales-
trieri et al., 2021)). 

One of these mentioned viral infections is the EBV infection. We 
previously mentioned that EBV is likely to overcome the epigenetic 
barriers and change the host epigenetic landscape on the long term, 
resulting in the evasion of the immune system. In vitro studies showed 
EBV glycoprotein 350 (EBVgp350) induction of the HERV-W Env 
expression in astrocytes, B cells and monocytes of MS patients. This 
process showed to be NF-κB signalling dependent (Mameli et al., 2012). 
This finding was further corroborated by a clinical study showing 
increased HERV-W expression in patients with EBV dependent mono-
nucleosis (Mameli et al., 2013). Recent reports have reinforced the 
causal involvement of EBV in MS aetiology (Bjornevik et al., 2022; Lanz 
et al., 2022), additionally supporting an active participation of HERV-W 
in the development and progression of MS. Similar effects are shown 
with respect to HERV-K18. EBV latent membrane proteins 1 and 2A, but 
also EBV itself, through interaction with its cellular receptor comple-
ment receptor 2 (CD21) induce HERV-K18 expression in resting B 
lymphocytes (Hsiao et al., 2006; Sutkowski et al., 2001). 

Following human herpes virus (HHV) 6A infection, HERV-W Env 
expression is induced through the transmembrane glycoprotein CD46, 
while no induction was observed upon exposure to HHV6B or the 
measles virus vaccine strain (Charvet et al., 2018). On the other hand, 
both subtypes HHV6A and HHV6B were found to activate HERV-K18 in 
B cells and PBMCs, respectively (Tai et al., 2009; Turcanova et al., 
2009). In this context, a recent publication discusses accumulating ev-
idence supporting the view that EBV, HHV6 and HERV-W can influence 
each other, eventually leading to dysregulation of the immune response 
(summarized in (Meier et al., 2021)). 

Although it has been proposed that ERV-inducing viruses act via 
increasing the affinity of transcription factors to LTR binding sites 
(Manghera & Douville, 2013), it is important to point out that the NF-κB 
signalling pathway can also be directly activated by viral infections 
(Santoro et al., 2003). Hence, a direct induction of ERV expression by 
viral infections is indistinguishable from an indirect activation through 
inflammatory i.e., NF-κB signalling pathways in terms of its end product. 
Furthermore, most of available studies were correlative in nature, and 
therefore, they fall short in answering the question whether infectious 
agents exert direct effects on ERV expression, or whether these effects 
are indirectly mediated by pro-inflammatory pathways and/or epige-
netic unlocking processes discussed above. Indeed, because systemic 
inflammation and viral infections share similar signalling pathways, it is 
difficult to distinguish temporally between those two ERV effectors. 
Moreover, none of the available studies ascertained the epigenetic status 
quo. Therefore, for ERV activation to occur in response to infection and/ 
or inflammation, it remains unknown whether prior epigenetic de- 
repression is a necessary step in order to turn cells susceptible to ERV 
responses. 

It is also worth considering that the activation of ERVs could also be 
beneficial in some conditions. A certain degree of ERV expression could 
potentially contribute to inherent host defence mechanism by inducing 
resistance against superinfections (Villarreal, 2011). Indeed, such 
beneficial effects of ERVs may arise because endogenous and exogenous 
entities reveal high similarities in their protein and nucleic acid se-
quences (Grandi & Tramontano, 2017) and/or because ERV proteins 
might interact with the same receptors as the exogenous viral proteins 
(Spencer et al., 2003). This might also explain why ERV sequences have 
survived the evolutionary purge. 
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5. Induction of inflammation-related processes by ERVs 

While inflammation is one of the factors that can stimulate ERV 
expression, endogenous retroviral proteins can induce inflammatory 
responses in different cell types as well. Hence, ERVs themselves appear 
to have pro-inflammatory effects. One of the first studies supporting this 
hypothesis demonstrated that the HERV-W Env protein is capable of 
activating the TLR4 pathway in human monocytes (Rolland et al., 
2006). The authors also revealed that dendritic cells were similarly 
triggered by HERV-W Env protein, leading to the promotion of Th1 
differentiation. Additional evidence for the involvement of TLR4 sig-
nalling after HERV-W Env protein exposure was then provided using 
genetically modified HEK-Blue cells (Charvet et al., 2018). A similar pro- 
inflammatory polarisation was also shown for primary human and rat 
microglia, which displayed elevated pro-inflammatory cytokine and 
chemokine production as well as nitric oxide levels after exposure to 
HERV-W Env protein. This polarisation was further associated with an 
axon-damaging microglial phenotype (Kremer et al., 2019). Moreover, 
Env protein activated microglial cells were also shown to mediate syn-
aptic NMDA-receptor dispersal – a molecular process associated with 
psychosis (Johansson et al., 2020). 

Oligodendroglial precursors are cells with generally low immuno-
competence (Kremer et al., 2010) yet they are critically involved in the 
MS pathology. They can provide replacement of lost oligodendrocytes 
and myelin sheaths – cells and structures that represent primary targets 
of the autoimmune reaction in MS – hence they represent one of the few 
regeneration conferring cells of the adult CNS. HERV-W Env protein 
stimulation of TLR4 was shown to promote nitrosative stress generation 
in these glial cells, leading to an impaired differentiation reaction and 
reduced axonal myelination. It was therefore suggested that endogenous 
retrovirus activation is restricting naturally occurring repair activities 
(Kremer et al., 2013). Furthermore, HERV-W Env inhibition by its 
neutralizing GNbAC1/Temelimab antibody, as well as TLR4 blockage by 
different pharmaceutical TLR4 inhibitors reduced the Env-mediated 
effects, suggesting that they were indeed dependent on Env and TLR4 
(Göttle et al., 2019; Göttle et al., 2021; Kremer et al., 2015). Of note, an 
involvement of HERV-W Env in microglial axon damage as well in 
constraining myelin regeneration was later supported indirectly by the 
clinical examination of the anti-Env antibody GNbAC1/Temelimab 
(Hartung et al., 2022), adding up to the numerous effects of HERV-W in 
the context of MS the observation of an inflammatory response in 
endothelial cells upon stimulation with HERV-W Env protein. Further-
more, a weakening of the BBB was suggested, as intercellular adhesion 
molecule (ICAM)-1 was induced, a major mediator of leukocyte adhe-
sion to endothelial cells which is also associated with BBB permeability 
(Abadier et al., 2015; Duperray et al., 2015). 

Another study showed that HERV-W Env overexpression in a human 
glioma cell line increases the TNFα/IL-10 ratio, in a TLR4 dependent 
manner. Furthermore, this study describes that myeloid differentiation 
primary response–88 s (MyD88s) mRNA levels (a splice variant of 
MyD88 acting as a downstream negative regulator of TLR4) were 
decreased by HERV-W Env. When MyD88s was overexpressed however, 
the inflammatory pathway stimulated by HERV-Env was down-
regulated, counteracting the HERV-W initial effect (Xiang & Liang, 
2021). 

The expression of HERV-W Env protein showed to correlate with 
cytokine levels in PBMCs derived from patients suffering from chronic 
inflammatory demyelinating polyradiculoneuropathy (CIPD) – an 
autoimmune condition of the peripheral nervous system (PNS). Like-
wise, human Schwann cells exposed to or transfected with HERV-W Env 
presented increased IL-6 and CXCL10 expression levels (Faucard et al., 
2016), supporting that a pro-inflammatory response of immune- and 
neural cells to HERV-W Env is not restricted to the CNS. Beside the well- 
described interaction with TLR4, it is proposed that human ERVs also 
interact with and activate other receptors such TLR2, MFSD2, ASCT1/ 
Slc1a4, ASCT2/Slc1a5 and MCT-1/Slc16a1 (Antony et al., 2007; Blanco- 

Melo et al., 2017; Blond et al., 2000; Esnault et al., 2008; Reuven et al., 
2014). All of them are thought to be involved in pro-inflammatory re-
sponses but functional analyses related to potential interactions with 
ERVs are mostly missing. 

In the context of HERV-K, it was recently described that the HERV-K 
encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is 
expressed in circulating monocytes and macrophages of patients with 
pulmonary arterial hypertension. Furthermore, HERV-K dUTPase was 
shown to induce the expression of the pro-inflammatory cytokine IL-6 in 
pulmonary arterial endothelial cells (Saito et al., 2017), which was 
proposed to be also dependent on TLR4 as well as on melanoma cell 
adhesion molecule signalling pathways (Otsuki et al., 2021). Of note, as 
the human leukocyte antigen (HLA) cluster represents one of the main 
genetic risk factors for the development of autoimmune diseases, the 
observation that HERV-K9 elements are located in the proximity as a 
result of the so-called hitchhiking effect (Kulski et al., 2008), is of further 
interest. Likewise, the HLA-8.1 ancestral haplotype, which is known to 
be protective against schizophrenia, was not found to contain the HERV- 
K element as compared to other pro-inflammatory ancestral haplotypes 
(Stewart et al, 2004), providing another link between retroviral ele-
ments and inflammation in psychiatric disorders. 

Immune dysregulation and the modulated immune cell polarization 
present yet other mechanisms through which endogenous retroviruses 
can foster a pro-inflammatory environment. In this context, Super-
antigens (Sag) are known as inflammatory triggers that can stimulate 
much larger numbers of T cells than ordinary antigens. On that account, 
they become of specific interest in the context of autoimmune diseases 
such as MS. A large number of studies indeed describe HERV-K18 
dependent Sag effects (Hsiao et al., 2006; Tai et al., 2009). Although 
not in that detail, similar effects are described for other ERVs such as 
HERV-Fc1, mouse mammary tumor virus (MMTV) and HERV-W (Gröger 
et al., 2020; Perron et al., 2001; Xu et al., 1996). In the context of SAGs, 
it was shown that viral HERV-W particles isolated from MS derived cells 
or via application of recombinant HERV-W Env protein, can induce 
polyclonal Vβ16 T-lymphocyte activation (Perron et al., 2001). Similar 
effects are described for HERV-K18, as it was shown that HERV-K18 Sags 
induce Vβ7 T cell activation (Stauffer et al., 2001). 

More general evidence for a functional implication of ERVs in im-
mune dysregulation can be deduced from observations on the HERV-W 
Env protein acting as an adjuvant and thereby activating CNS auto- 
inflammation (experimental autoimmune encephalomyelitis). In this 
context, a direct involvement of the encoded Env protein was shown, 
given the observed rescue effect upon application of the neutralising 
antibody termed GNbAC1/Temelimab (Perron et al., 2013). 

An indirect scenario is suggested, upon the discovery of the epige-
netic de-repression of IFNγ, a Th1 related gene. This gene becomes 
transcriptionally active once its endogenous retroviral neighbour be-
comes transcriptionally active too. This transactivation leads to changes 
in the expression profiles of differentiated Th2 cells, rendering them 
transcriptionally similar to Th1 cells (Adoue et al., 2019). Of note, in 
physiological conditions upon Th2 differentiation, Th1 related genes 
become epigenetically silenced and vice versa (Sanders, 2006). Similar 
effects were identified by a transcriptome study, showing an activation 
of the HERV-neighbouring gene CD55 in monocytes and neutrophils of 
patients with various injuries such as burn, trauma and septic shock 
(Mommert et al., 2020; Tabone et al., 2018). CD55 encodes a glyco-
protein involved in the regulation of the complement cascade, suggest-
ing a modulatory role of human ERVs in the immune response during an 
ongoing inflammatory process. 

Beyond traditional, mainly MS-related inflammatory scenarios, 
emerging observations in the context of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV2) have further corroborated the 
concept of ERVs fostering inflammatory processes. HERV-W was found 
to be specifically induced in a cohort of 30 COVID-19 patients, with 
peripheral HERV-W Env protein levels even exceeding increased levels, 
which have been previously observed in MS patients (Balestrieri et al., 
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2021). Interestingly, as opposed to myeloid cells being main producers 
of HERV-W Env in MS, lymphocytes were identified to express HERV-W 
Env in these COVID-19 patients. In parallel, using an ex vivo healthy 
donor PBMC stimulation approach, a temporal correlation between in-
flammatory markers and the ERV expression was established. This study 
revealed that the induction of Env expression by SARS-CoV-2 spike 
protein occurs prior to the expression of IL-6 (3 h and 24 h, respectively), 
with IL-6 representing a key marker of the inflammatory response, 
which eventually can amount to cytokine storms. Hence, it was 
concluded that HERV-W induction might indeed contribute to critical, 
overshooting immune reactions and therefore lead to more severe dis-
ease courses in COVID-19 patients. Likewise, such a scenario might also 
account for chronic low inflammation in sub-acute patients suffering 
from long-term consequences of COVID-19 (Balestrieri et al., 2021). 

6. Concluding remarks 

Although endogenous retroviral elements have long been detected 
and described in health and disease, ERV research is still at infancy when 
it comes to the evaluation of their precise etiopathological role in in 
neurological, neurodevelopmental, neurodegenerative, or psychiatric 
disorders. The presence of abnormal ERV expression in multiple brain 
disorders suggests that abnormal activation of endogenous retroviral 
elements may reflect a common mechanism for shared pathologies, 
including (but possibly not limited to) inflammation. Recent studies 

aiming at neutralizing ERV proteins in pathological contexts such as MS 
provide initial evidence that ERVs are not simply incidental phenomena, 
but instead they are pathologically relevant. The current view is that 
ERVs can trigger inflammatory processes through multiple pathways of 
the innate and adaptive arms of the immune system. At the same time, 
inflammatory signals may drive the (re-)activation and/or maintain the 
expression of ERVs, leading to a sequence of reciprocal cause and effect 
(Fig. 1). Based on the current state of research, it is likely that the 
numerous entry points to this reciprocal sequence of events exist, 
including initial infections with ERV-activating pathogens, exposure to 
non-infectious inflammatory stimuli such as trauma or burn, and con-
ditions in which epigenetic silencing of ERV elements are disrupted. 
With regards to the latter, epigenetic factors may be crucial for deter-
mining the susceptibility towards developing ERV-associated pathol-
ogies, and therefore, determining epigenetic factors interacting with 
endogenous retroviral elements should become a research priority. In 
addition, more longitudinal and mechanistic studies are warranted in 
order to further corroborate the pathological relevance of ERV expres-
sion in neurological and psychiatric disorders. 
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Fig. 1. Relationship between ERV activation, inflammation, infection and epigenetic processes. Multiple processes such as inflammation, epigenetic unlocking as 
well as exposure to certain infections can lead to the activation of ERVs. Upon ERV activation, feedback signals can amplify inflammatory processes and alter 
epigenetic programs. The figure summarizes some of the molecular factors and processes involved in each of these relationships. 
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Kremer, D., Forster, M., Schichel, T., Göttle, P., Hartung, H.P., Perron, H., Küry, P., 2015. 
The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated 
oligodendroglial maturation blockade. Mult. Scler. 21 (9), 1200–1203. https://doi. 
org/10.1177/1352458514560926. 

Kremer, D., Gruchot, J., Weyers, V., Oldemeier, L., Göttle, P., Healy, L., Ho Jang, J., 
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