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Automated analysis of a large‑scale 
paediatric dataset illustrates 
the interdependent relationship 
between epilepsy and sleep
Jelena Skorucak 1,2, Bigna K. Bölsterli 2,3,4, Sarah Storz 1,2,3, Sven Leach 1,2, 
Bernhard Schmitt 2,3, Georgia Ramantani 2,3 & Reto Huber 1,2,5*

Slow waves are an electrophysiological characteristic of non‑rapid eye movement sleep and a marker 
of the restorative function of sleep. In certain pathological conditions, such as different types of 
epilepsy, slow‑wave sleep is affected by epileptiform discharges forming so‑called “spike‑waves”. 
Previous evidence shows that the overnight change in slope of slow waves during sleep is impaired 
under these conditions. However, these past studies were performed in a small number of patients, 
considering only short segments of the recording night. Here, we screened a clinical data set of 
39′179 pediatric EEG recordings acquired in the past 25 years (1994–2019) at the University Children’s 
Hospital Zurich and identified 413 recordings of interest. We applied an automated approach based on 
machine learning to investigate the relationship between sleep and epileptic spikes in this large‑scale 
data set. Our findings show that the overnight change in the slope of slow waves was correlated with 
the spike‑wave index, indicating that the impairment of the net reduction in synaptic strength during 
sleep is spike dependent.

Sleep plays a vital role in many physiological functions, such as memory  consolidation1, synaptic  plasticity2–4, 
and brain metabolic waste  clearance5,6. These functions are presumably underlying the fact that sleep is closely 
related to behavioral performance: insufficient sleep restoration during the night will lead to behavioral deficits 
during the following  day7. Importantly, only sleep can revert these performance deficits. Non-rapid eye-move-
ment (NREM) sleep including deep sleep is essential for the restorative functions of  sleep8–11. Although the 
mechanisms underlying the restorative function of sleep are still not fully understood, according to the synaptic 
homeostasis hypothesis (SHY), sleep plays a role in synaptic plasticity: Synaptic strength needs to be reduced 
during sleep to renormalize the experience-dependent increases that occur during  wakefulness12. Human, animal 
and modelling data shows that the slope of slow-waves is the most direct EEG measure for synaptic  strength13–15. 
As expected based on the predictions of SHY, numerous studies have shown an overnight decrease in the slope 
of slow  waves15–17, which is reflective of an overnight reduction in synaptic strength. In childhood epilepsies with 
a spike-wave activation during sleep, epileptic spikes invade NREM sleep. For decades it has been postulated 
that these spikes are the origin of cognitive and behavioral deficits these patients suffer  from18–20. These impair-
ments can be as dramatic as loss of language abilities or a global developmental  regression20,21. Recent studies 
provide compelling evidence that the overnight decrease in slope is critically dampened in childhood epilepsies 
with spike-wave activation during  sleep22–25. Interestingly, these same patient group shows significant deficits in 
sleep-dependent memory  consolidation26. It is tempting to assume that impaired consolidation of newly learned 
information might lead with time to the patient’s behavioral and cognitive deficits. One of the key limiting fac-
tor for this research topic is the fact that so far sleep and epilepsy in pediatric patients has been investigated in 
only small-size  datasets22–25. Investigating the effect of spikes on sleep in large-scale datasets is only feasible by 
implementing an automated approach. Furthermore, if cognitive impairment in epilepsy can be linked to both 
compromised overnight decrease in slow wave slope and spikes in sleep, other disorders may also benefit from 
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this approach. This automated pipeline can be implemented to investigate sleep- and/or spike-related deficits 
in disorders with increased incidences for epileptic spikes, such as Alzheimer’s disease (memory deficit), or 
attention-deficit hyperactivity disorder (ADHD, attention deficit)27,28. The identification of specific sleep- and/or 
spike-related deficits in these disorders can help to disentangle their underlying pathomechanisms. Ultimately, 
an automated pipeline for sleep and spike detection may be incorporated into clinical diagnostics providing new 
and easily accessible information to clinicians. The implementation of this novel tool can support developing and 
establishing new and emerging treatment options, such as the increasingly popular acoustic stimulation during 
sleep that has shown promising results in patients with  epilepsy29.

In this study, we aimed to investigate the relationship between sleep and epilepsy in a large-scale pediatric 
dataset acquired in the past 25 years at the University Children’s Hospital Zurich. In order to achieve that we 
developed a fully automated analysis pipeline for spike detection and the assessment of changes in slow wave 
slope as a marker for the overnight reduction in synaptic strength (SOMNIDEX; Synaptic renOrMalizatioN 
InDEX).

Methods
In a first step, the automated methods for sleep and epileptic spike detection were developed based on a small-
scale dataset, carefully scored by clinical neurophysiology experts. In a next step, these automated methods 
were applied to a large-scale dataset, not scored by experts. This was a retrospective study, approved by Zurich 
Cantonal Ethics Committee BASEC-Nr. 2019–00,165. Informed consent was present for all subjects from their 
legal guardians. All methods were carried out in accordance with relevant Swiss guidelines and regulations.

Small‑scale dataset. A dataset pooled from several previous  studies22–24,30 included 39 pediatric patients 
with epilepsies with a spike-wave activation during sleep was used for the development and testing of the algo-
rithms for automatic sleep and spike detection. Sleep was scored by an expert in 20-s epochs during the entire 
recording night according to AASM  criteria31. Spikes were marked by an expert (SS) in a 10-min EEG segment 
for each patient, starting after first sleep stage 2. Further, in order to estimate inter-rater variability, 1-min EEG 
segments were marked by 2 experts (SS and BS) in 20 recordings. Automated methods for spike and sleep detec-
tion were developed in this dataset and then applied to the large-scale dataset.

Large‑scale dataset. A data set containing 39′179 EEG recordings performed at the University Children’s 
Hospital Zurich in 1994–2019 was available for analysis (Fig. 1, available recordings). These EEG recordings 
did not contain systematic annotations of sleep or spikes. In the first step, we considered recordings with dura-
tion ≥ 4 h (candidate recordings), since these were more likely to contain sleep episodes. Of 1′553 candidate 
recordings, 695 recordings included sleep recordings of ≥ 4 h. Other than sleep duration, no other exclusion 
criteria were applied. Random exclusion of repeat recordings from the same patient, resulted in 413 recordings 
(each from a single patient) included for slope of slow waves analysis. Exclusion of patients with age and diag-
nosis which were not electronically accessible in an automated fashion resulted in 357 patients included for age 
analysis and 296 for diagnosis analysis.

EEG recordings and data pre‑processing. EEG electrodes were placed according to the international 
10–20 system. Recordings were performed at a 128 or 256 sampling rate by the  Deltamed® (Paris, France) EEG 

Figure 1.  The number of recordings that were available and the number of patients that were considered for 
analysis.
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system. Data were exported to the European Data Format (EDF) and further processed in MATLAB R2020a 
(The Math Works Inc., Natick, MA). The following filters were applied: a bandpass 0.3–40  Hz, and a notch 
filter at 50 Hz. EEG data were re-referenced to the contralateral mastoids, and downsampled to 128 Hz, where 
applicable.

Classifiers. We developed two classifiers: (1) an automatic epileptic spike detector, and (2) an automatic 
sleep detector. For both classifiers we applied a long short-term memory (LSTM) recurrent neural network. 
We used recurrent neural networks as they are taking the temporal structure into account and therefore have a 
good performance for time series  data32. The small-scale dataset, used for classifier development, was divided 
into a training (27 patients), validation (6 patients), and testing dataset (6 patients). Models were optimized by 
manual tuning of (1) the number of neurons in the hidden layer, (2) the number of hidden layers, and (3) the 
inclusion and probability of dropout layers. The best performing model was then used for the test set applied to 
the large-scale dataset.

Epileptic spike detector. The epileptic spike detector was developed based on expert scoring and raw data. 
The structure of our LSTM was as follows: an input layer (1 neuron), two LSTM layers (128 neurons each) each 
followed by a dropout layer (dropout probability 0.1), followed by a fully connected layer (2 neurons), a softmax 
layer, and a classification output layer. Six training epochs were applied, i.e., the entire training data were passed 
through the neural network six times. The adaptive moment estimation optimization algorithm (Adam) was 
used to update network weights during  training33. The input of the LSTM consisted of a moving time window of 
1/16 s (16 samples; step 125 ms).

Sleep detector. Since overnight change in slope of slow waves depends on NREM sleep stages 2 and  38–11, 
we limited our automated scoring to the detection of NREM sleep stages 2 and 3. Hence, we identified only two 
classes: NREM sleep stages 2 or 3, and all other stages (REM sleep, wake and NREM sleep stage 1). The classifier 
was developed based on the expert sleep scoring and engineered features. We used feature engineering to extract 
quantifiable properties of the sleep EEG, calculated from power spectral analysis of three EEG channels: F3-M2, 
C3-M2, and O1-M2 as: power in alpha (8–12 Hz), sigma (i.e., spindle range; 12–16 Hz), delta (i.e. slow wave 
activity, SWA, 0.75–4.5 Hz), and artifact range (30–40 Hz). Spectral analysis of EEG channels was performed 
on consecutive 20 s epochs (FFT, Tukey window [r = 0.5], average of five 4-s epochs; matched with sleep stages), 
resulting in a 0.25 Hz frequency resolution. As epileptic spikes may distort the power spectra, spectral analysis 
was performed after removing epileptic spikes from the data, as detected by our spike detector. The structure of 
the LSTM classifier was as follows: an input layer (12 neurons), two LSTM layers (64 neurons each), each fol-
lowed by a dropout layer (dropout probability 0.1), followed by a fully connected layer (two neurons), a softmax 
layer, and a classification output layer. Twenty training epochs were applied. The input of the LSTM consisted of 
a moving time window of 11 sleep epochs (220 s; step: one sleep epoch or 20 s).

Assessment of classifier performance. We assessed the performance of the classifiers by determining 
specificity, sensitivity, precision, accuracy, and the Cohen’s kappa  coefficient34–37. We focused on Cohen’s kappa 
coefficient, as it is a robust measure, accounting for the possibility of the agreement occurring by  chance36. 
We interpreted the performance results for Cohen’s kappa using Landis and Koch levels [60]: < 0.00—poor; 
0.00–0.20—slight; 0.21–0.40—fair; 0.41–0.60—moderate; 0.61–0.80—substantial; 0.81–1.00—almost perfect 
 identification38. Overall performance measures across all patients (pooled data) and mean values across patients 
were reported.

Assessment of inter‑scorer variability for spike detection. Out of 39 patient recordings, 20 were 
scored independently by 2 different experts. These records were randomly selected. One minute of EEG was 
scored for epileptic spikes. Performance measures were calculated in the same way as for the classification algo-
rithms.

Estimation of SOMNIDEX. SOMNIDEX was estimated by calculating overnight change in the slope of 
slow waves during NREM sleep. Numerous studies have shown that the slope of slow waves best reflects sleep-
dependent changes in neuronal network activity, presumably underlying the reduction in synaptic strength dur-
ing  sleep13–15,39.

Slow-wave detection was performed in line with Riedner et al.15 First, the signal was band-pass filtered 
(0.5–4.0 Hz, stopband 0.1 and 10 Hz, Chebyshev Type II filter). Negative deflections between two zero-crossings 
were identified as slow-waves if they were separated by 0.25–1.0 s. The ascending slope of slow waves was deter-
mined by calculating the amplitude divided by the time from the most negative peak to the second zero-crossing 
(Figure 3A). As it is unknown if slow waves directly associated with epileptic spikes, so called spike-wave com-
plexes, contribute to sleep homeostasis, all slow waves occurring in a window of 0.5 s after the epileptic spike 
were excluded from further analyses, in line with previous  studies22–24,30. The slope of slow waves was calculated 
in the first hour (FH) and last hour (LH) of sleep. Instead of taking into account a fixed time period, in order to 
achieve a fair comparison across patients and between first and last hour of sleep, fixed amounts of NREM sleep 
stages 2 and 3 epochs was taken into account for this calculation, i.e. the first and last 180 20-s epochs. To account 
for differences in slopes due to the overnight difference in amplitude, slow waves were matched by amplitude in 
the first and last hour of sleep, as proposed by Jaramillo et al.17 In case there were less than 250 matched waves 
remaining after the amplitude matching procedure, this patient was excluded from the analysis (13 patients). The 



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12882  | https://doi.org/10.1038/s41598-023-39984-9

www.nature.com/scientificreports/

overnight change in the slope of slow waves reflecting SOMNIDEX was calculated as (LH-FH)/FH. Therefore, a 
negative overnight change indicates the expected slope decline across sleep, while no negative overnight change 
or a positive change indicates a pathological condition.

All analyses were performed on one EEG channel which was automatically selected as the focus of the epi-
lepsy. The focus channel was determined as the channel with the highest spike wave index (SWI; number of 
spikes per 10-s time interval).

Variables are described as mean and standard deviation of the mean, and median with interquartile range.

Correlation analysis. Correlations were performed using Spearman’s correlation coefficient.

Results
We created an automated pipeline for data processing, where all calculations, including pre-processing, spike 
detection, sleep detection, and SOMNIDEX calculation, were performed in a computerized manner, without 
any user dependencies.

Spike and sleep classifiers performance. Two classifiers were developed: an automatic detector of epi-
leptic spikes, and an automatic detector of sleep (NREM sleep stages 2 and 3). As exemplified in the EEG trace 
including epileptic activity (Fig. 2A) there was a good overlap between expert and automated spike detection. 
The time–frequency plot of an exemplary night (Fig. 2B) shows a similarly good overlap between the expert and 
automated NREM sleep stages 2 and 3 classification. When quantifying these overlaps (Supplementary Table), 
both the automatic detection of epileptic spikes and the automatic detection of sleep showed good performance, 
with a Cohen’s kappa coefficient of 0.72 and 0.80, and an accuracy of 92.3% and 90.3% respectively. On a valida-
tion dataset, Cohen’s kappa coefficient was 0.73 for spike detection and 0.71 for sleep detection, while accuracy 
was 93.7% and 86.4%. Cohen’s kappa of inter-scorer reliability calculated in 1-min EEG segments of 20 patients 
was 0.71 for the spike detection, indicating similar agreement between two experts as between one expert and 
the algorithm.

Slope of slow waves decreases across age in children. The slope of slow waves was calculated for the 
first and last hour of NREM sleep, as illustrated in Fig. 3. As an indirect validation of our methods, we investi-
gated whether we could replicate previous findings in healthy  children17. We assessed the correlation between 
the age of our patients (6.94 ± 5.11; 6.61[1.81–11.13] years) and the slow wave slopes in the first (446.08 ± 193.11; 
414.78[301.53–546.54] µV/s), the last hour of NREM sleep (429.61 ± 203.46; 393.62[281.69–518.80] µV/s), and 
the overnight change in slope (− 3.72 ± 14.95; − 5.84[− 10.88–1.07] %). The slopes both in the first and last hour 
of sleep were negatively correlated with age (R =  − 0.39, p = 3.3 ×  10−14 and R =  − 0.37, p = 4.5 ×  10−13 respectively), 
and the overnight change in slope did not show a correlation with age (R =  − 0.05, p = 0.34).

SOMNIDEX is impaired in children with epilepsy. Finally, we investigated sleep aspects in our patient 
cohort (Fig. 4) by assessing SOMNIDEX: changes in the slope of slow waves from the first (mean ± standard 
deviation: 441.96 ± 190.92  µV/s; median and interquartile range: 413.01 [297.85–538.01]  µV/s) to the last 
hour of NREM sleep (424.29 ± 199.53; 391.87 [281.47–510.38]  µV/s). In the healthy population a decline in 
slope from the first to the last hour is  expected17,22. We found no significant change of the slope of slow waves 
(− 4.04 ± 14.16; − 5.86 [− 11.29–0.78]%) in our cohort (Wilcoxon rank sum test, U = 176,791, z = 1.75, p = 0.08, 
CI = [− 0.06, 0.22], Cohen’s d = 0.09), indicating impaired synaptic renormalization during sleep. Specifically, 
54% of children showed the expected overnight decrease in the slope of slow waves, but one-third (33%) of 

Figure 2.  Spike detection (top, ten-second EEG trace with epileptic activity) and sleep detection (bottom, 
spectrogram of a 10-h night EEG recording with frequency at the y-axis and time at x-axis, and warmer colors 
representing higher power values) of a patient with spike-wave epilepsy. Expert scoring is depicted in blue and 
automatic detection (LSTM) in red, below the respective graph.
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Figure 3.  Slope of slow waves. (A) 10-s EEG trace with epileptic spikes in shaded gray, and slow waves in dark 
red, as identified by our automated methods. Note that slow waves occurring 0.5 s after the spike were not 
considered for analysis. Also, only slow waves that were matched in the amplitude matching procedure between 
the first and last hour of NREM sleep were further analyzed. The slope was calculated as the ascending slope of 
slow waves from the negative peak to the zero crossing. (B) Correlation between age and slope of slow waves 
in the first hour (FH; R =  − 0.39, p < 0.001), in the last hour of sleep (LH; R =  − 0.37, p < 0.001), and overnight 
change in slope (not significant). N = 357.

Figure 4.  (A) Slope of slow waves in the first and last hour of NREM sleep (N = 413). Black line represents the 
average value. There was no significant difference between the slope in the first and in the last hour of sleep 
(two-sided Wilcoxon rank sum test, p > 0.05). (B) Overnight change in slope (higher values represent higher 
impairment in synaptic renormalization during sleep, i.e., positive values represent overnight increase in slope). 
(C) Spike wave index, a clinical marker of severity of epilepsy. (D) Correlation between the overnight change in 
slope and spike wave index (R = 0.17, p < 0.001). (E) Correlation between overnight change in slope and spike 
wave index for Lennox Gastaut patients (N = 13).
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children showed no change, and 13% of children showed an overnight increase (Figs. 4A and 4B). The patients 
showing an overnight increase in the slope may represent a clinically relevant population, as their overnight 
change in slope is severely impaired.

Further, we calculated the spike wave index (SWI; 17.60 ± 20.34; 9.43[2.26–26.82]%), a clinically relevant 
marker of the severity of epilepsy (Fig. 4C). Similar to our observation regarding overnight slope changes, 52% 
of children showed low rates of spike activity, while 42% showed high, and 6% very high rates of spike activity. 
Interestingly, the change in the slope of slow waves was positively correlated with the SWI (R = 0.17, p < 0.001), 
i.e., the more spikes, the stronger the impairment in synaptic renormalization during sleep. Finally, we identified 
Lennox Gastaut patients as the patient group showing the highest correlation between these two parameters 
(R = 0.65, p = 0.018).

Discussion
Both classifiers showed good performance, indicating that reliable computerized detection of epileptic spikes and 
sleep is feasible. Similar performance in the validation and testing datasets indicate that there was no overfitting 
of the training model. Importantly, the spike detection model achieved the same performance as the inter-rater 
variability, indicating that our spike detector achieved expert level of performance. Inter-scorer agreement for 
sleep scoring has been previously reported in the literature, and it was not assessed in the scope of the current 
study. Our classification performance is in the range of previously reported classifiers in healthy volunteers and 
 patients40,41, and in line with the observed inter-rater agreement for the AASM standard (0.76 as overall Cohen’s 
kappa coefficient)42,43.

The entire data analysis pipeline in this study was performed in an automated manner. We analyzed approxi-
mately 50 years of EEG data (1553 candidate recordings, 19 EEG derivations), which would take approximately 
90 years for an expert to annotate. To the best of our knowledge, this is the first study to investigate the rela-
tionship between sleep and epilepsy with automated methods in such a large-scale pediatric dataset. The fully 
automated approach has the obvious advantage of not requiring intermediate checking steps, manual tuning 
of parameters, or similar. This automation facilitates fast and efficient data analysis and enables the otherwise 
unfeasible processing of large-scale datasets. Moreover, as spike detection algorithm derives spike counts for 
each individual EEG channel, this approach may also permit the topographical analysis of epileptic spikes, i.e., 
the comparison of the SWI within various epileptic foci against the rest of the brain. This topographical map-
ping may also allow for an automated detection of the epileptic focus. Further, this automatic approach together 
with our SOMNIDEX findings are of importance for the clinical diagnostics as the entire night recording can be 
considered, and there may be some variability across a sleep episode. Finally, our approach allows an assessment 
of sleep aspects, which are currently not considered in clinical practice, and may provide important additional 
information about the pathophysiology of the disorder. Of course, the applicability to medical diagnostic still 
needs to be proven with the potential benefit of faster and more standardized diagnostics. Furthermore, auto-
mated methods in conjunction with mobile EEG devices open doors for hospital-at-home applications.

We performed several analyses to support the validity and significance of our approach:
First, we found a negative correlation between slow wave slopes and age, in line with previous studies in 

healthy children and adults aged 8–26  years17, but found no correlation between age and overnight change 
in slow wave slope, in contrast to these  studies17,44. The lack of correlation between overnight changes in slow 
wave slope and age in our study may be attributed to the impaired overnight change in slope we observed in 
our cohort, since higher variability in impairment may have masked the effect of age in our dataset. Several 
hypotheses about the function of sleep associate sleep restoration to processes critical for learning and memory, 
i.e., memory  consolidation1, synaptic  plasticity2–4, and the brain metabolic waste  clearance5,6. In the scope of this 
paper, an overnight change in the slope of slow waves was calculated. The slope of slow waves is hypothesized to 
represent an electrophysiological marker of synaptic strength, and an overnight decline in slope indicates synaptic 
down-selection, a critical process for sleep dependent learning and memory consolidation  processes45,46. Hence, 
impaired overnight change in slope may reflect these fundamental processes of sleep restoration. It is thus no sur-
prise that patients suffering from severe forms of sleep-associated spike wave epilepsies show impaired memory 
 consolidation30,44. Moreover, it is speculated that the cognitive deficits of these patients may be a consequence of 
impaired sleep  functions20. When we applied arbitrary cutoffs to SOMNIDEX, the overnight change in the slope 
of slow waves, 13% of patients had severely impaired overnight change in slope, 33% of patients showed moder-
ately impaired overnight change in slope, and 54% of patients had normal overnight change in slope. This vari-
ability in our patient group is in line with a previous study in a small-scale dataset (N = 9)22 where an increased 
overnight slope change (severe impairment) was observed in two patients, a reduced overnight slope decline 
(moderate impairment) was observed in four, and an overnight slope decrease in three patients. In contrast, 
healthy children exhibit on average a 15% overnight decrease in the slope of slow  waves17. Although healthy popu-
lations show some variability in the overnight change in slope, none of the included study participants showed 
an overnight increase in the slope of slow  waves17,22. Therefore, we can consider an overnight increase in slope 
pathological, and we propose this sleep restoration marker as an additional parameter in clinical diagnostics.

Second, we analyzed an important clinical parameter—the SWI. When applying arbitrary cutoffs to our 
clinical marker, 6% of patients had a very high SWI (> 60%), 43% showed a SWI over 10% (but under 60%), 
and half (52%) of the patients had a low SWI (< 10%). The variability in SWI is in line with previous  studies30 
observing SWI in the range of 9 to 98% in 14 patients with self-limited focal epilepsies of  childhood45. In a ret-
rospective  review47 of 102 children with continuous spike waves during sleep, those with SWI > 50% were more 
likely to present with global developmental problems, while those with SWI < 50% were more likely to manifest 
specific forms of neurological impairment.  However46, the latest position paper of the International league 
against epilepsy (ILAE) Task Force on Nosology and  Definitions48 proposes the term developmental and epileptic 
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encephalopathy with continuous spike waves during sleep without any specification regarding a minimum SWI 
but rather the causal relation between epileptic activity and developmental regression. Nevertheless, the SWI is 
an objective marker for the risk to develop cognitive deficits, and we propose that the SOMNIDEX linked to the 
restorative function of sleep might be an additional marker more tightly linked to the pathomechanisms behind 
these cognitive impairments.

Third, we assessed the relationship between net reduction in synaptic strength during sleep and SWI. In line 
with previous  results24 we observed a correlation between these two markers: The higher the SWI, the higher the 
impairment in the SOMNIDEX during sleep. This correlation was highest for Lennox Gastaut patients. Although 
no studies have investigated the association between SWI and overnight slope of slow waves in Lennox Gastaut 
patients, it should be noted that this patient group is characterized by a strong increase of spike waves during 
sleep, multiple seizure types, and cognitive  impairment49. In the scope of the current study, SOMNIDEX was 
correlated to SWI only, however, it would be important to test the relevance of SOMNIDEX by correlating it to 
other clinical markers in future studies.

In conclusion, investigating sleep restoration parameters in clinical populations may provide new information 
about the underlying mechanisms of the disease. In this study, our methodology has been applied to patients with 
childhood epilepsy, but the proposed methods are applicable to any disorder related to sleep or spike alterations 
(e.g., Alzheimer’s, Parkinson’s, autism, ADHD). A better understanding of the underlying pathology has become 
increasingly important in recent years, due to the rise of new technologies enabling us to manipulate sleep, such 
as acoustic  stimulation50, which may lead to new treatment options for these disorders.

Data availability
Patient data used in the scope of this study cannot be made publicly available to protect patients ‘ privacy. Data 
can be accessed by investigators upon reasonable request and proof of adequate ethical approval to Prof. Reto 
Huber.

Code availability
The code can be accessed by investigators upon a reasonable request to the authors.
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