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Abstract

Comparative simulation studies are workhorse tools for benchmarking statisti-

cal methods. As with other empirical studies, the success of simulation studies

hinges on the quality of their design, execution, and reporting. If not conducted

carefully and transparently, their conclusions may be misleading. In this paper,

we discuss various questionable research practices, which may impact the valid-

ity of simulation studies, some of which cannot be detected or prevented by

the current publication process in statistics journals. To illustrate our point,

we invent a novel prediction method with no expected performance gain and

benchmark it in a preregistered comparative simulation study. We show how

easy it is to make the method appear superior over well-established competi-

tor methods if questionable research practices are employed. Finally, we provide

concrete suggestions for researchers, reviewers, and other academic stakehold-

ers for improving the methodological quality of comparative simulation studies,

such as preregistering simulation protocols, incentivizing neutral simulation

studies, and code and data sharing.

KEYWORDS

benchmarking studies, Monte Carlo experiments, overoptimism, replicability, reproducibility,

transparency

1 INTRODUCTION

Simulation studies are to a statistician what experiments are to a scientist (Hoaglin &Andrews, 1975). They have become a

ubiquitous tool for the evaluation of statistical methods, mainly because simulation can be used for studying the statistical

properties of methods under conditions that would be difficult or impossible to study theoretically. In this paper, we focus

on simulation studies where the objective is to compare the performance of two or more statistical methods (comparative

simulation studies). Such studies are needed to ensure that previously proposed methods work as expected under various

conditions, and to identify conditions under which they fail. Moreover, evidence from comparative simulation studies

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.

© 2023 The Authors. Biometrical Journal published by Wiley-VCH GmbH.

Biometrical Journal. 2024;66:2200091. www.biometrical-journal.com 1 of 19

https://doi.org/10.1002/bimj.202200091



2 of 19 PAWEL et al.

F IGURE 1 Schematic illustration of a comparative simulation study for evaluating performance of methods for predicting binary

outcomes, such as the example study in Section 3. Questionable research practices (in gray) can affect all aspects of the study.

is often the only guidance available to data analysts for choosing from the plethora of available methods (Boulesteix

et al., 2013, 2017). Proper design and execution of comparative simulation studies is therefore important, and results of

methodologically flawed studies may lead to misinformed decisions in scientific and medical practice.

Figure 1 shows a schematic illustration of an example comparative simulation study. We see that, just like non-

simulation-based studies, comparative simulation studies require many decisions to be made, for instance: How will the

data be generated? How often will a simulation condition be repeated? Which statistical methods will be compared and

how are their parameters specified? Howwill the performance of themethods be evaluated? The degree of flexibility, how-

ever, is much higher for simulation studies than for non-simulation-based studies as they can often be rapidly repeated

under different conditions at practically no additional cost. This is why numerous recommendations and best practices

for design, execution, and reporting of simulation studies have been proposed (Boulesteix et al., 2020; Burton et al., 2006;

Chipman and Bingham, 2022; Elofsson et al., 2019; Hoaglin & Andrews, 1975; Holford et al., 2000; Monks et al., 2018;

Morris et al., 2019; O’Kelly et al., 2016; Smith &Marshall, 2010). We recommendMorris et al. (2019) for an introduction to

state-of-the-art simulation study methodology.

Despite wide availability of such guidelines, statistics articles often provide too little detail about the reported simulation

studies to enable quality assessment and replication (see the literature reviews in Burton et al., 2006; Morris et al., 2019).

Journal policies sometimes require the computer code to reproduce the results, but they rarely require or promote rigorous

simulationmethodology (for instance, the preparation of a simulation protocol). This leaves researchers with considerable

flexibility in how they conduct and present simulations studies. As a consequence, readers of statistics papers can rarely

be sure of the quality of evidence that a simulation study provides.

Unfortunately, there are many questionable research practices (QRPs), which may undermine the validity of compara-

tive simulations studies and which can easily go undetected under current publishing standards. Figure 1 shows several

QRPs that may occur in the exemplary simulation study. There is often a fine line between QRPs and legitimate research

practices. For instance, a researcher may choose to selectively report the most relevant simulation conditions, methods,

and outcomes in order to streamline the results for the reader. These practices only become questionable when they serve

to confirm the hopes and beliefs of researchers regarding a particular method. For instance, if only conditions and out-

comes are reported where the researcher’s favored method appears superior over competitor methods. Consequently, the

results and conclusions of the study will be biased in favor of this method (Nießl et al., 2021).

The aim of this paper is to raise awareness about the issue of QRPs in comparative simulation studies, and to highlight

the need for the adoption of higher standards. While researchers may make decisions that can make the conclusions of

simulation studies misleading, we are not accusing them of doing so intentionally or maliciously. Instead, we highlight

how QRPs can occur and possibly be prevented. External pressures, for example, to publish novel and superior methods

(Boulesteix et al., 2015) or to concisely report large amounts of simulation results, may also lead honest researchers to

(unknowingly) employ QRPs. As we will argue, it is not only up to the researchers but also other academic stakeholders

to improve on these issues.

This paper is structured as follows: We first give an illustrative list of QRPs related to comparative simulation studies

(Section 2). With an exemplary simulation study, we then show how easy it is to present a novel, made-up method as an

improvement over others if QRPs are employed and a priori simulation plans remain undisclosed (Section 3). The main
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TABLE 1 Types of questionable research practices (QRPs) in comparative simulation studies at different stages of the research process. A

QRP becomes more problematic if combined with a related QRP, especially a reporting QRP.

Tag Related Type of QRP

Design

D1 E1, R1 Not/vaguely defining objectives of simulation study

D2 E2, R1 Not/vaguely defining data-generating process

D3 E3, E4, R1 Not/vaguely defining which methods will be compared and how their parameters are specified

D4 E1, E5, R1 Not/vaguely defining estimands of interest

D5 E1, E5, R1 Not/vaguely defining evaluation criteria

D6 E6, R1 Not/vaguely defining how to handle missing values (e.g., due to nonconvergence of methods)

D7 E7, E8, R3 Not justifying number of simulations

Execution

E1 D1, R2 Changing objective of the study to achieve desired outcomes

E2 D2, R2 Adapting data-generating process to achieve desired outcomes

E3 D3, R2 Adding/removing comparison methods to achieve desired outcomes

E4 D3, R2 Selective tuning of method hyperparameters to achieve desired outcomes

E5 D4, D5, R2 Choosing evaluation criteria to achieve desired outcomes

E6 D6, R2 Adapting inclusion/exclusion/imputation rules to achieve desired outcomes

E7 D7, R3 Choosing number of simulations to achieve desired outcomes

E8 D7, R3 Choosing random number generator seed to achieve desired outcomes

Reporting

R1 D1–D6 Justifying design decisions which lead to desired outcomes post hoc

R2 E1–E6 Selective reporting of results from simulations that lead to desired outcomes

R3 D7, E7, E8 Failing to report Monte Carlo uncertainty

R4 Failing to assure computational reproducibility (for example, not sharing code and sufficient details

about computing environment)

R5 Failing to assure replicability (e.g., not sufficiently reporting design and execution methodology)

inspiration for this work is drawn from similar illustrative studies, which have been conducted by Yousefi et al. (2009) and

Jelizarow et al. (2010) for benchmarking studies, and by Simmons et al. (2011) in the context of 𝑝-hacking in psychological

research. Recently, Nießl et al. (2021) andUllmann et al. (2022) expanded onQRPs in benchmarking studies with the latter

also including simulation studies. In Section 4, we then provide concrete suggestions for researchers, reviewers, editors,

and funding bodies to alleviate the issues of QRPs and improve the methodological quality of comparative simulation

studies. Section 5 closes with limitations and concluding remarks.

2 QRPs IN COMPARATIVE SIMULATION STUDIES

There are various QRPs, which threaten the validity of comparative simulation studies (see Table 1 for an overview). QRPs

can be categorized with respect to the stage of research at which they can occur and which other QRPs they are related to

(Wicherts et al., 2016). Typically, QRPs become more problematic if they are combined with related QRPs. For example,

adapting the data-generating process to achieve a desired outcome (E2) is more problematic when the results based on

the adapted process are selectively reported (R2) compared to reporting the results based on both the original and the

adapted process. In the following, we describe QRPs from all phases of a simulation study, namely, design, execution,

and reporting.

2.1 QRPs in the design of comparative simulation studies

The a priori specification of research hypotheses, study design, and analytic choices is what separates confirmatory from

exploratory research. Evidence from confirmatory research is typically considered more robust because study hypotheses,

 1
5

2
1

4
0

3
6

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/b

im
j.2

0
2

2
0

0
0

9
1

 b
y

 S
ch

w
eizerisch

e A
k

ad
em

ie D
er, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



4 of 19 PAWEL et al.

design, and analysis are independent of the observed data (Tukey, 1980). The line between the two types of research is,

however, blurry in simulation studies since they are often iteratively conducted, with each iteration including newly sim-

ulated data and building on the results of the previous study. The first simulation study in a sequence of studies may thus

be exploratory whereas the subsequent studiesmay be confirmatory. Yet, onemay argue that inmany cases a single confir-

matory simulation study, which is carefully designed and whose design is justified based on external knowledge, provides

more relevant evidence than a sequence of simulation studies, which are iteratively tweaked based on previous results.

To allow readers to distinguish between confirmatory and exploratory research, many nonmethodological journals

require preregistration of study design and analysis protocols. For instance, preregistration is common practice in ran-

domized controlled clinical trials (Angelis et al., 2004), and increasingly adopted in experimental psychology (Nosek et al.,

2018) and epidemiology (Lawlor, 2007; Loder et al., 2010). It is also generally recommended to write and preregister sim-

ulation protocols in simulation studies (Morris et al., 2019). Well-defined study aims and methodology are arguably at

least as important in simulation studies compared to non-simulation-based studies because the space of possible design

and analysis choices is typically much larger (Hoffmann et al., 2021). If researchers are vague or fail to define the study

goals (D1), the data-generating process (D2), the methods under investigation (D3), the estimands of interest (D4), the

evaluation metrics (D5), or how missing values should be handled (D6) a priori a high number of researcher degrees of

freedom (Simmons et al., 2011) are left open. Researchers can then generate a multiplicity of possible results, which may

foster overoptimistic impressions if they report only the subset of results aligning with their hopes and beliefs (R2), and

for which they can find plausible justifications post hoc (R1).

Another crucial part of rigorous design is simulation size calculation (see section 5.3 in Morris et al., 2019, for an

overview). While an arbitrarily chosen, often too small, number of simulations can be executed faster, they yield noisier

results. The additional noise is not necessarily problematic if one is only concerned with estimation. However, if the goal

is to establish method superiority through statistical tests (for instance, through a confidence interval for the difference in

method performance excluding zero), simulation studies with too few repetitions come with undesirable properties, just

as any other study with an insufficiently large sample size. For instance, “true” differences in method performance are

more likely to remain undetected (increased Type II errors), detected differences are more likely to be in the wrong direc-

tion (increased “Type S” errors, see Gelman & Tuerlinckx, 2000), and their magnitude is more likely to be overestimated

(increased “Type M” errors, see van Zwet & Cator, 2021). Additionally, a researcher may start with a small simulation

size and continue to add newly simulated data until superiority is established (optional stopping). This is similar to early

stopping of a trial without correction for the interim analysis. Without specialized corrections, optional stopping leads to

biased estimates and increased Type I error rates (Robertson et al., 2022). These biases may also occur when the entire

simulation study is rerun with a larger sample size and the seed of the random number generator is left unchanged. The

simulated data will be the same up to the additional data (provided the simulation runs deterministically conditional on

a seed). From this perspective, researchers should thus change the seed if they want to rerun the study and increase the

simulation size adaptively.

2.2 QRPs in the execution of comparative simulation studies

During the execution of a simulation study, researchers may (often unknowingly) engage in various QRPs that can lead

to overoptimism. For instance, the objective of the simulation study may be changed depending on the outcome (E1). For

example, an initial comparison of predictive performance may be changed to comparing estimation performance if the

results suggest that the favored method performs better at estimation tasks rather than prediction. The data-generating

process may also be adapted until conditions are found in which the favored method appears superior (E2). For example,

the noise levels, the number of covariates, or the effect sizes could be changed. Competitor methods that are superior to

the proposed method may also be excluded from the comparison altogether, or methods that perform worse under the

(adapted) data-generating process may be added (E3). The methods under comparison may come with hyperparameters

(for instance, regularization parameters in penalized regression models). In this case, the hyperparameters of a favored

method may be tuned until the method appears superior, or the hyperparameters of competitor methods may be tuned

selectively, for example, left at their default values (E4). Finally, the evaluation criteria for comparing the performance of

the investigated methods may also be changed to make a particular method look better than the others (E5). For example,

even though the original aim of the study may have been to compare predictive performance among methods using the

Brier score, the evaluation criterion of the simulation study may be switched to area under the curve if the results suggest

that the favored method performs better with respect to the latter metric. This QRP parallels the well-known outcome-
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switching problem in clinical trials (Altman et al., 2017). It is usually not difficult to find reasonable justification for such

modifications and then present them as if they were specified during the planning of the study (R1). As emphasized

earlier, iteratively changing simulation goals, conditions, methods under comparison, and evaluation criteria can be part

of finding out how a method works. These practices become mostly problematic if only the simulations in line with the

researchers hopes and beliefs are reported (R2).

There are, however, practices that are considerablymore problematic on their own. For instance, in some simulations, a

methodmay fail to converge and thus producemissing values in the estimates. If it is not prespecified how these situations

will be handled, different inclusion/exclusion or imputation strategies may be tried out until a favored method appears

superior (E6). Choosing an inadequate strategy can result in systematic bias and misleading conclusions. If no a priori

simulation size calculation was conducted, the simulation size may also be changed until favorable results are obtained

(E7). If in that case the number of simulations is too small, true performance differences are more likely to be missed,

their estimated direction is more likely to be incorrect, and their magnitude is more likely overestimated, as explained

previously. Finally, if only few simulations are conducted (for instance, because themethods under investigation are com-

putationally very expensive), the initializing seed for generating random numbers may have a substantial impact on the

result. A particularly questionable practice in this situation is to tune the seed until a value is found for which a preferred

method seems superior (E8).

2.3 QRPs in the reporting of comparative simulation studies

In the reporting stage, researchers are faced with the challenge of reporting the design, results, and analyses of their

simulation study in a digestiblemanner. Various QRPs can occur at this stage. For instance, reportingmay focus on results

in which the method of interest performs best (R2). Failing to mention conditions in which the method was inferior (or

at least not superior) to competitors creates overoptimistic impressions, and may lead readers to think that the method

uniformly outperforms competitors. Similarly, presenting simulation conditions which were added based on the observed

results as preplanned and justified (R1) fosters overconfidence in the results.

Another crucial aspect of reporting is to adequately show the uncertainty related to the simulation results (Hoaglin &

Andrews, 1975; Van der Bles et al., 2019). Failing to report Monte Carlo uncertainty (R3), such as error bars or confidence

intervals reflecting uncertainty in the simulation, hampers the readers’ ability to assess the accuracy of the results from

the simulation study and it allows one to present random differences in performance as if they were systematic.

Finally, by failing to assure computational reproducibility of the simulation study (R4), for example, by not sharing

code and software versions to run the simulation, it is more likely that coding errors remain undetected. By not reporting

the design and execution of the study in enough detail (R5), other researchers are unable to replicate and expand on the

simulation study. Unclear reporting also makes it harder for readers to identify potentially overoptimistic statements. For

instance, if it is reported that all but one method are left at their default parameters, readers can better contextualize this

method’s apparent superior performance.

3 EMPIRICAL STUDY: THE ADAPTIVE IMPORTANCE ELASTIC NET (AINET)

To illustrate the application of QRPs from Table 1, we conducted a simulation study. The objective of the study was to

evaluate the predictive performance of a made-up regression method termed the adaptive importance elastic net (AINET).

The main idea of AINET is to use variable importance measures from a random forest for a weighted penalization of the

variables in an elastic net regression model. The hope is that this ad hoc modification of the elastic net model improves

predictive performance in clinical prediction modeling settings where penalized regression models are frequently used.

Superficially, AINET may seem sensible, however, for the data-generating process considered in our simulation study no

advantage over the classical elastic net is expected. For more details on the method, we refer the reader to the simulation

protocol (see the Appendix). We report the preregistered1 simulation study results in the Supporting Information. As

expected, the performance of AINETwas virtually identical to standard elastic net regression. AINET also did not yield any

improvements over logistic regression for the data-generating process that we considered sensible a priori (i.e., specified

based on typical conditions in clinical prediction modeling and simulation studies from other researchers).

1We use the term preregistered throughout to refer to simulation analyses conducted as prespecified in the protocol.
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We now show how application of QRPs changes the above preregistered conclusions. Figure 2 illustrates different types

of QRPs sequentially applied to simulation-based evaluation of AINET. The top row depicts the preregistered differences

in Brier score (horizontal axis) between AINET and competitor methods (vertical axis) for a representative subset of the

simulation conditions. A negative difference indicates superior performance of AINET. In the second row, the arrows

depict the change in the preregistered results after changing the data-generating process (E2). The third row shows the

result after removal of the elastic net competitor (E3). Finally, the bottom row shows the end result where selective report-

ing of simulation conditions and competitor methods (R2) is applied to give a more favorable impression of AINET. We

will now discuss these QRPs in more detail.

Altering the data-generating process (E2)
We could not detect a systematic performance benefit of AINET over standard logistic regression, elastic net regression,

or random forest for the scenarios specified in the protocol. For this reason, we tweaked the data-generating process by

adding different sparsity conditions and a nonlinear effect. We then found that AINET outperforms logistic regression

under the following conditions: only few variables being associated with the outcome (sparsity), a nonlinear effect and

a low number of events per variable (EPV). Figure 2 (second row) shows the changes in Brier score difference between

the preregistered and the tweaked simulation. As can be seen, the tweaked data-generating process leads to AINET being

superior to competitors in some conditions, and at least not inferior in others.

Removing competitor methods (E3)
Despite the adapted data-generating process, we still observed onlyminor (if any) improvements of AINET over the elastic

net. In order to present AINET in a better light, we could omit the comparisons with the elastic net (E3), as shown in

Figure 2 (third row). This could be justified, for example, by arguing that for neutral comparison, it is sufficient to compare

a less flexible method (logistic regression, which has no tuning parameters and captures linear effects), a more flexible

method (random forest, which has tuning parameters and captures nonlinear relationships), and a comparably flexible

method (adaptive elastic net, which has the same tuning parameters as AINET, but differs in the way the penalization

weights are chosen).

Selective reporting of simulation results (R2)
After the removal of the competitor elastic net, there are still some simulation conditions under which AINET is not

superior to the remaining competitors. Tomake AINET appear more favorable, we thus report only simulation conditions

with low EPV, as shown in Figure 2 (fourth row). This could be justified by the fact that journals require authors to be

concise in their reporting. Otherwise, further conditions with low EPV values could be simulated tomake the results seem

more exhaustive. Focusing primarily on low EPV settings could be justified in hindsight by framing AINET as a method

designed for high-dimensional data (low sample size relative to the number of variables).

4 RECOMMENDATIONS

The previous sections painted a rather negative picture of how undisclosed changes in simulation design, analysis,

and reporting may lead to overoptimistic conclusions. In the following, we summarize what we consider to be practi-

cal recommendations for improving the methodological quality of simulation studies; see Table 2 for an overview. Our

recommendations are grouped with regard to which stakeholder they concern.

4.1 Recommendations for researchers

Adopting preregistered simulation protocols is an importantmeasure that researchers can take to prevent themselves from

subconsciously engaging in QRPs. Preregistration enables readers to distinguish between confirmatory and exploratory

findings, and it lowers the risk of potentially flawedmethods being promoted as an improvement over competitors. While

preregistered simulation protocols may at first seem disadvantageous due to the additional work and possibly lower

chance of publication, they provide researchers with the means to differentiate their high-quality simulation studies from

the numerous unregistered and possibly less trustworthy simulation studies in the literature. Platforms such as GitHub

(https://github.com/), OSF (https://osf.io/), or Zenodo (https://zenodo.org/) can be used for archiving and time-stamping
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F IGURE 2 Differences in Brier score with 95% adjusted confidence intervals between AINET and random forest (RF), logistic regression

(GLM), elastic net (EN), and adaptive elastic net (AEN) are shown for representative simulation conditions (correlated covariates 𝜌 = 0.95,

prevalence prev = 0.05, a range of sample sizes 𝑛 and events per variable (EPV), in each simulation the Brier score is computed for 10,000 test

observations; for details see the Appendix). The top row depicts the preregistered results in which AINET does not outperform any competitor

uniformly, except AEN. In the second row, we apply QRP E2: Altering the data-generating process by adding a nonlinear effect and sparsity.

The gray arrows point from the preregistered result to the results under the tweaked simulation. In the third row, QRP E3 is applied: EN is

removed as a competitor. In the bottom row, selective reporting R2 is applied: Only low EPV settings are reported to give a more favorable

impression for AINET. Arrows are depicted only for nonoverlapping confidence intervals.
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TABLE 2 Recommendations for improving quality of comparative simulation studies and preventing QRPs.

Researchers

– Write (and possibly preregister) simulation protocols

– Adopt good computational practices (code review, packaging, unit tests)

– Share code and data (possibly in intermediate/summary form to enable secondary analysis)

– Report the process of the simulation study fully and transparently (for instance, time-stamped protocol amendments to disclose pilot

studies and post hoc modifications)

– Perform simulation analysis in a blinded manner

– Collaborate with other research groups (possibly familiar with “competing” methods)

– Disclose multiplicity and uncertainty of results (for example, with sensitivity analyses)

– Teach simulation study methodology in statistics (post)graduate courses

Editors and reviewers

– Encourage exploration of conditions where methods should be inferior or break down

– Encourage (preregistered) simulation protocols

– Provide enough space for description of simulation methodology

Journals and funding bodies

– Provide incentives for rigorous simulation methodology (such as badges on papers)

– Require code and data

– Promote standardized reporting

– Adopt reproducibility checks

– Promote/fund research and software to improve simulation study methodology

– Shift focus away from outperforming state-of-the-art methods

documents. Moreover, preregistration can also save researchers from some work later on. For instance, large parts of the

methodology description can usually be copied from the protocol to the final manuscript.

When preregistering and conducting simulation studies, we recommend using a robust computational workflow. Such

a workflow encompasses packaging the software, writing unit tests, and reviewing code (see Schwab &Held, 2021). Other

researchers and the authors themselves then benefit from improved computational reproducibility and less error-prone

code. Of course, there are also certain practical limits to computational reproducibility. For instance, if a simulation

study requires high performance computing and/or several weeks of running time, the authors should not expect review-

ers and journals to replicate their simulation study from scratch. The authors should nevertheless provide the code to

run the simulation and, if possible, they should also provide intermediate simulation results (for instance, fitted model

objects) so that the simulation study can at least be partially reproduced. Similarly, authors can share the simulated data,

either in raw and/or some summarized form (e.g., sharing simulated data sets and parameter estimates of fitted mod-

els). This allows interested readers and reviewers to do additional analyses. Unlike experiments with human subjects,

there are no privacy concerns for sharing simulation data. Furthermore, online tools, such as INTEREST (INteractive

Tool for Exploring REsults from Simulation sTudies; Gasparini et al., 2021), can be used for interactive exploration of the

data set.

While planning a simulation study, it is impossible to think of all potential weaknesses or problems that may arise

when conducting the planned simulations. In turn, researchers may be reluctant to tie their hands in a preregistered

protocol. However, a transparently conducted and reported preliminary simulation can obviate most of these problems.

We recommend researchers to disclose preliminary results and any resulting changes to the protocol, for example, in a

revised and time-stamped version of the protocol. This approach is similar to conducting a small pilot study, as is often done

in non-simulation-based research. Even if researchers realize that further changes are required after the main simulation

study has begun, transparent reporting of when and why post hoc modifications were made allows the reader to better

assess the quality of evidence provided by the study. Researchers designing simulation studies may draw inspiration from

clinical trials by tracking their protocol modifications and time-stamping versions of their protocol.

A different approach for making post hoc changes to the protocol is to use blinding in the analysis of the simulation

results (Dutilh et al., 2019). Blinded analysis is a standard procedure in particle physics to prevent data analysts from

biasing their result toward their own beliefs (Klein & Roodman, 2005), and it lends legitimacy to post hoc modifications
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of the simulation study. For instance, researchers might shuffle the method labels and only unblind themselves after

the necessary analysis pipelines are set in place. An alternative blinding approach is to carry out data generation and

analysis by different researchers. For instance, the study from Kreutz et al. (2020) involved two independent research

groups, one who simulated and one who analyzed the data. A related way for improving simulation studies is to collab-

orate with other researchers, possibly ones familiar with “competing” methods. This helps to design simulation studies,

which are more objective and whose results are more useful for making a decision about which method to choose under

which circumstances.

We also recommend researchers to disclose the multiplicity and uncertainty inherent to the design and analysis of their

simulation studies (Hoffmann et al., 2021). For instance, researchers can report sensitivity analyses that show how the

study results change for different analysis decisions (e.g., Table 4 in van Smeden et al., 2016, shows how the evaluation

metrics for different estimators change depending onhow convergence of amethod is defined).Methods frommultivariate

statistics can be used for visualizing the influence of different design choices, such as the multidimensional unfolding

approach in Nießl et al. (2021).

One reason for the low standards of simulation studies in the statistics literature may be that rigorous simulation

methodology is usually not taught in graduate or postgraduate courses (with a few exceptions, such as the course “Using

simulation studies to evaluate statistical methods” from the Medical Research Council Clinical Trials Unit). To improve

training of current and future generations of statisticians, researchers who are involved in teaching should therefore also

include simulation study methodology in their curricula. The standards of simulation studies in many statistics related

fields (for instance, machine learning, psychometrics, econometrics, or ecology) are arguably not much different. One

possible avenue for future research is thus to also promote education and adaptation of simulation study methodology for

the special needs in these fields.

4.2 Recommendations for editors and reviewers

Peer review is an important tool for identifying QRPs in research results submitted to methodological journals. For

instance, reviewers may demand researchers to include competitor methods, which are not part of their comparison

yet (or which might have been excluded from the comparison). However, reviewers can only identify a subset of all

QRPs since some types are impossible to spot if no preregistered simulation protocol is in place (e.g., a reviewer can-

not knowwhether the evaluation criterion was switched). Even QRPs that can be detected by peer reviewmay be difficult

to spot in practice. It is thus important that reviewers and editors promote that authors make simulation protocols and

computer code available alongside the manuscript. Moreover, by providing enough space and encouraging authors to

provide detailed descriptions of their simulation studies, replicability of the simulation studies can be improved. Finally,

reviewers should not be satisfied withmanuscripts showing that a method is uniformly superior; they should also encour-

age authors to explore conditions in which their method is expected to be inferior to other methods or to break down

entirely.

4.3 Recommendations for journals and funding bodies

Journals and funding bodies can improve on the status quo by either actively requiring or passively incentivizing more

rigorous and neutral simulation study methodology. Actively, journals can make (preregistered) simulation protocols

mandatory for all articles featuring a simulation study. Amore passive and less extrememeasure would be to indicate with

a badge whether an article contains a preregistered simulation study, or to introduce article types dedicated to neutral

comparison studies. Such an approach rewards researchers who take the extra effort. Similar initiatives have led to a large

increase in the adoption of preregistered study protocols in the field of psychology (Kidwell et al., 2016). Another measure

could be to require standardized reporting of simulation studies, for example, the “ADEMP” reporting structure proposed

by Morris et al. (2019). Journals may also employ reproducibility checks to ensure computational reproducibility of the

published simulation studies. This is already done, for example, by the Journal of Open Source Software or the Journal

of Statistical Software. Moreover, journals and funding bodies can promote or fund research and software to improve

simulation study methodology. For instance, a journal might have special calls for papers on simulation methodology.

Similarly, a funding body could have special grants dedicated to software development that facilitates sound design,
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execution, and reporting of simulation studies (as Chalmers & Adkins, 2020; Gasparini, 2018; White, 2010). Finally,

journals and funding bodies often exert a strong incentive on researchers to publish novel and superior methods. This

may lead to articles with nonsystematic simulation studies that mainly highlight settings beneficial to the proposed

methods. We believe that the above recommendations can shift the incentive structure toward more transparent and

neutral simulation studies, and away from the “one method fits all data sets” philosophy (Strobl & Leisch, 2022).

5 CONCLUSIONS

Simulation studies should be viewed and treated analogously to (empirical) experiments from other fields of science.

Transparent reporting of methodology and results is essential to contextualize the outcome of such a study. As in other

empirical sciences, QRPs in simulation studies can obfuscate the usefulness of a novel method and lead to misleading and

nonreplicable results.

By deliberately using several QRPs, we were able to present a method with no expected benefits and little theoreti-

cal justification—invented solely for this paper—as an improvement over theoretically and empirically well-established

competitors. While such intentional engagement in these practices is far from the norm, unintentional QRPs may have

the same detrimental effect. We hope that our illustration will increase awareness about the fragility of findings from

simulation studies and the need for higher standards.

While this paper focuses on comparative simulation studies, many of the issues and recommendations also apply to

neutral comparison studies with real data sets as discussed in Nießl et al. (2021). Some of the noted problems even exist

in theoretical research; due to the incentive to publish positive results, researchers often selectively study optimality

conditions of methods rather than conditions under which they fail.

Again, it is imperative to note that researchers rarely engage in QRPs withmalicious intent but because humans tend to

interpret ambiguous information self-servingly, and because they are good at finding reasonable justifications that match

their expectations and desires (Simmons et al., 2011). As in other domains of science, it is easier to publish positive results

inmethodological research, that is, novel and superiormethods (Boulesteix et al., 2015). Thus, methodological researchers

will typically desire to show the superiority of a method rather than to neutrally disclose its strengths and weaknesses.

We provide several recommendations involving various stakeholders in the research community, which we believe

may help incentivize researchers to performwell-designed simulation studies. Most importantly, we think that reviewers,

journals, and funders should raise the standards for simulation studies by promoting preregistered simulation protocols

and rewarding researchers who invest the extra effort. Although there is evidence for the effectiveness of protocols in

preventing QRPs in other fields, it is unclear whether this effect translates to simulation studies. Indeed, there are many

reasons to believe that simulation studies will not benefit in a similar way as studies with human or animal subjects, due

to the nature of simulations studies. For instance, requiring preregistered protocols cannot prevent researchers engag-

ing in QRPs until they find their desired results and only then writing and registering a protocol. In addition, there is

currently no tradition of preregistration in simulation studies, no best-practices guidance and no dedicated platform to

publish protocols. For example, Kipruto and Sauerbrei (2022) published the preregistration of their simulation protocol as

a journal article, whereas the preregistration of the protocol from our study was uploaded to GitHub. Both protocols use

the ADEMP reporting structure from Morris et al. (2019), yet the field could benefit from reporting guidelines developed

by a consortium of simulation experts similar to the guidelines for health research promoted by the EQUATOR Network

(Altman et al., 2008). Similarly, the field could benefit from a centralized preregistration platform tailored to simulation

studies (similar to https://clinicaltrials.gov for clinical trials). Regardless of the (unknown) effectiveness of preregistered

simulation protocols, we personally think that they are an important step toward improving simulation studies since they

promote a minimum degree of transparency and credibility. For this reason, we think that they are especially important

for “late-stage” methodological studies (Heinze et al., 2022) where the objective is to neutrally compare different methods

and generate robust evidence.

ACKNOWLEDGMENTS

We thank Eva Furrer, Malgorzata Roos, and Torsten Hothorn for helpful discussion and comments on the simulation

protocol and drafts of the paper. We also thank the anonymous referees and the associate editor for constructive and

valuable comments that improved the paper substantially. Our acknowledgment of these individuals does not imply their

endorsement of this paper. The authors declare that they do not have any conflicts of interest. SP acknowledges financial

 1
5

2
1

4
0

3
6

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/b

im
j.2

0
2

2
0

0
0

9
1

 b
y

 S
ch

w
eizerisch

e A
k

ad
em

ie D
er, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



PAWEL et al. 11 of 19

support from the Swiss National Science Foundation (Project #189295). The funder had no role in study design, data

collection, data analysis, data interpretation, decision to publish, or preparation of the paper.

Open access funding is provided by the University of Zurich.

CONFL ICT OF INTEREST STATEMENT

The authors have declared no conflict of interest.

DATA AVAILAB IL ITY STATEMENT

All code and data to reproduce the results from the study are publicly available at https://github.com/SamCH93/SimPaper

and https://github.com/LucasKook/ainet. A snapshot of the repository is archived at https://doi.org/10.5281/zenodo.

6364574. The simulation study was conducted in the R language for statistical computing (R Core Team, 2020) using

version 4.1.1. The method AINET is implemented in the ainet package and available on GitHub (https://github.com/

ucasKook/ainet). We used pROC version 1.18.0 to compute the AUC (Robin et al., 2011). Random forests were fitted using

ranger version 0.13.1 (Wright & Ziegler, 2017). For penalized likelihood methods, we used glmnet version 4.1.2 (Friedman

et al., 2010; Simon et al., 2011). The SimDesign package version 2.7.1 was used to set up simulation scenarios (Chalmers &

Adkins, 2020). We provide scripts for reproducing the different simulation studies in the Supporting Information. Due to

the computational overhead, we also provide the resulting data so that the analyses can be conducted without rerunning

the simulations.

OPEN RESEARCH BADGES

This article has earned an Open Data badge for making publicly available the digitally-shareable data necessary to

reproduce the reported results. The data is available in the Supporting Information section.

This article has earned an open data badge “Reproducible Research” for making publicly available the code necessary

to reproduce the reported results. The results reported in this article could fully be reproduced.

ORCID

Samuel Pawel https://orcid.org/0000-0003-2779-320X

LucasKook https://orcid.org/0000-0002-7546-7356

KellyReeve https://orcid.org/0000-0001-9325-6467

REFERENCES

Algamal, Z. Y., & Lee, M. H. (2015). Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer

classification. Expert Systems with Applications, 42(23), 9326–9332. https://doi.org/10.1016/J.ESWA.2015.08.016

Altman, D. G., Moher, D., & Schulz, K. F. (2017). Harms of outcome switching in reports of randomised trials: CONSORT perspective. BMJ, 356,

j396. https://doi.org/10.1136/bmj.j396

Altman, D. G., Simera, I., Hoey, J., Moher, D., & Schulz, K. (2008). EQUATOR: Reporting guidelines for health research. The Lancet, 371(9619),

1149–1150. https://doi.org/10.1016/s0140-6736(08)60505-x

Angelis, C. D., Drazen, J. M., Frizelle, F. A., Haug, C., Hoey, J., Horton, R., Kotzin, S., Laine, C., Marusic, A., Overbeke, A. J. P., Schroeder, T. V.,

Sox, H. C., &Weyden, M. B. V. D. (2004). Clinical trial registration: A statement from the international committee of medical journal editors.

New England Journal of Medicine, 351(12), 1250–1251. https://doi.org/10.1056/nejme048225

Boulesteix, A.-L., Binder, H., Abrahamowicz, M., & Sauerbrei, W. (2017). On the necessity and design of studies comparing statistical methods.

Biometrical Journal, 60(1), 216–218. https://doi.org/10.1002/bimj.201700129

Boulesteix, A.-L., Groenwold, R. H., Abrahamowicz, M., Binder, H., Briel, M., Hornung, R., Morris, T. P., Rahnenführer, J., & Sauerbrei, W.

(2020). Introduction to statistical simulations in health research. BMJ Open, 10(12), e039921. https://doi.org/10.1136/bmjopen-2020-039921

Boulesteix, A.-L., Lauer, S., & Eugster, M. J. A. (2013). A plea for neutral comparison studies in computational sciences. PLOSONE, 8(4), e61562.

https://doi.org/10.1371/journal.pone.0061562

Boulesteix, A.-L., Stierle, V., & Hapfelmeier, A. (2015). Publication bias in methodological computational research. Cancer Informatics, 14s5,

CIN.S30747. https://doi.org/10.4137/cin.s30747

Bradley, A. A., Schwartz, S. S., & Hashino, T. (2008). Sampling uncertainty and confidence intervals for the Brier score and Brier skill score.

Weather and Forecasting, 23(5), 992–1006. https://doi.org/10.1175/2007waf2007049.1

Breiman, L. (2001). Random forests.Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324

Burton, A., Altman, D. G., Royston, P., & Holder, R. L. (2006). The design of simulation studies in medical statistics. Statistics in Medicine,

25(24), 4279–4292. https://doi.org/10.1002/sim.2673

 1
5

2
1

4
0

3
6

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/b

im
j.2

0
2

2
0

0
0

9
1

 b
y

 S
ch

w
eizerisch

e A
k

ad
em

ie D
er, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



12 of 19 PAWEL et al.

Chalmers, R. P., & Adkins, M. C. (2020). Writing effective and reliable Monte Carlo simulations with the SimDesign package. The Quantitative

Methods for Psychology, 16(4), 248–280. https://doi.org/10.20982/tqmp.16.4.p248

Chipman, H., & Bingham, D. (2022). Let’s practice what we preach: Planning and interpreting simulation studies with design and analysis of

experiments. Canadian Journal of Statistics, 50(4), 1228–1249. https://doi.org/10.1002/cjs.11719

Damen, J. A. A. G., Hooft, L., Schuit, E., Debray, T. P. A., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C. M., Chiocchia, V., Roberts,

C., Schlüssel, M. M., Gerry, S., Black, J. A., Heus, P., van der Schouw, Y. T., Peelen, L. M., & Moons, K. G. M. (2016). Prediction models for

cardiovascular disease risk in the general population: Systematic review. BMJ, 353, i2416. https://doi.org/10.1136/bmj.i2416

Dutilh, G., Sarafoglou, A., & Wagenmakers, E.-J. (2021). Flexible yet fair: Blinding analyses in experimental psychology. Synthese, 198(Suppl

23), 574–55772. https://doi.org/10.1007/s11229-019-02456-7

Elofsson, A., Hess, B., Lindahl, E., Onufriev, A., van der Spoel, D., & Wallqvist, A. (2019). Ten simple rules on how to create open access and

reproduciblemolecular simulations of biological systems. PLOSComputational Biology, 15(1), e1006649. https://doi.org/10.1371/journal.pcbi.

1006649

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical

Software, 33(1), 1–22. https://doi.org/10.18637/jss.v033.i01

Gasparini, A. (2018). rsimsum: Summarise results from Monte Carlo simulation studies. Journal of Open Source Software, 3(26), 739. https://

doi.org/10.21105/joss.00739

Gasparini, A., Morris, T. P., & Crowther, M. J. (2021). INTEREST: INteractive tool for exploring REsults from simulation sTudies. Journal of

Data Science, Statistics, and Visualisation, 1(4). https://doi.org/10.52933/jdssv.v1i4.9

Gelman, A., & Tuerlinckx, F. (2000). Type S error rates for classical and Bayesian single and multiple comparison procedures. Computational

Statistics, 15(3), 373–390. https://doi.org/10.1007/s001800000040

Gneiting, T. (2008). Editorial: Probabilistic forecasting. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171(2), 319–321.

https://doi.org/10.1111/j.1467-985x.2007.00522.x

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association,

102(477), 359–378. https://doi.org/10.1198/016214506000001437

Heinze, G., Boulesteix, A.-L., Kammer, M., Morris, T. P., &White, I. R. (2022). Phases of methodological research in biostatistics—Building the

evidence base for new methods. Biometrical Journal, e2200222. https://doi.org/10.1002/bimj.202200222

Hoaglin, D. C., & Andrews, D. F. (1975). The reporting of computation-based results in statistics. The American Statistician, 29(3), 122–126.

https://doi.org/10.1080/00031305.1975.10477393

Hoffmann, S., Schönbrodt, F., Elsas, R., Wilson, R., Strasser, U., & Boulesteix, A.-L. (2021). The multiplicity of analysis strategies jeopardizes

replicability: Lessons learned across disciplines. Royal Society Open Science, 8(4), 201925. https://doi.org/10.1098/rsos.201925

Holford, N. H. G., Kimko, H. C., Monteleone, J. P. R., & Peck, C. C. (2000). Simulation of clinical trials. Annual Review of Pharmacology and

Toxicology, 40(1), 209–234. https://doi.org/10.1146/annurev.pharmtox.40.1.209

Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. https://

doi.org/10.1002/bimj.200810425

Jelizarow, M., Guillemot, V., Tenenhaus, A., Strimmer, K., & Boulesteix, A.-L. (2010). Over-optimism in bioinformatics: An illustration.

Bioinformatics, 26(16), 1990–1998. https://doi.org/10.1093/bioinformatics/btq323

Kidwell, M. C., Lazarević, L. B., Baranski, E., Hardwicke, T. E., Piechowski, S., Falkenberg, L.-S., Kennett, C., Slowik, A., Sonnleitner, C., Hess-

Holden, C., Errington, T. M., Fiedler, S., & Nosek, B. A. (2016). Badges to acknowledge open practices: A simple, low-cost, effective method

for increasing transparency. PLOS Biology, 14(5), e1002456. https://doi.org/10.1371/journal.pbio.1002456

Kipruto, E., & Sauerbrei, W. (2022). Comparison of variable selection procedures and investigation of the role of shrinkage in linear regression-

protocol of a simulation study in low-dimensional data. PLOS ONE, 17(10), e0271240. https://doi.org/10.1371/journal.pone.0271240

Klein, J. R., & Roodman, A. (2005). Blind analysis in nuclear and particle physics. Annual Review of Nuclear and Particle Science, 55(1), 141–163.

https://doi.org/10.1146/annurev.nucl.55.090704.151521

Kreutz, C., Can, N. S., Bruening, R. S., Meyberg, R., Mérai, Z., Fernandez-Pozo, N., & Rensing, S. A. (2020). A blind and independent bench-

mark study for detecting differentiallymethylated regions in plants.Bioinformatics, 36(11), 3314–3321. https://doi.org/10.1093/bioinformatics/

btaa191

Kreuzberger, N., Damen, J., Trivella, M., Estcourt, L. J., Aldin, A., Umlauff, L., Vazquez-Montes, M., Wolff, R., Moons, K., Monsef, I., Foroutan,

F., Kreuzer, K., & Skoetz, N. (2020). Prognostic models for newly-diagnosed chronic lymphocytic leukaemia in adults: A systematic review

and meta-analysis. Cochrane Database of Systematic Reviews, 7, CD012022. https://doi.org/10.1002/14651858.CD012022.pub2

Lawlor, D. A. (2007). Quality in epidemiological research: Should we be submitting papers before we have the results and submitting more

hypothesis-generating research? International Journal of Epidemiology, 36(5), 940–943. https://doi.org/10.1093/ije/dym168

Loder, E., Groves, T., & MacAuley, D. (2010). Registration of observational studies. BMJ, 340, c950. https://doi.org/10.1136/bmj.c950

McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. Routledge.

Monks, T., Currie, C. S. M., Onggo, B. S., Robinson, S., Kunc, M., & Taylor, S. J. E. (2018). Strengthening the reporting of empirical simulation

studies: Introducing the STRESS guidelines. Journal of Simulation, 13(1), 55–67. https://doi.org/10.1080/17477778.2018.1442155

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11),

2074–2102. https://doi.org/10.1002/sim.8086

Nießl, C., Herrmann,M.,Wiedemann, C., Casalicchio, G., & Boulesteix, A.-L. (2022). Over-optimism in benchmark studies and themultiplicity

of design and analysis options when interpreting their results. InWIREs data mining and knowledge discovery, 12(2), e1441. https://doi.org/

10.1002/widm.1441

 1
5

2
1

4
0

3
6

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/b

im
j.2

0
2

2
0

0
0

9
1

 b
y

 S
ch

w
eizerisch

e A
k

ad
em

ie D
er, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



PAWEL et al. 13 of 19

Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of

Sciences, 115(11), 2600–2606. https://doi.org/10.1073/pnas.1708274114

O’Kelly, M., Anisimov, V., Campbell, C., & Hamilton, S. (2016). Proposed best practice for projects that involve modelling and simulation.

Pharmaceutical Statistics, 16(2), 107–113. https://doi.org/10.1002/pst.1789

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://

www.R-project.org/

Riley, R. D., Snell, K. I., Ensor, J., Burke, D. L., Jr, F. E. H., Moons, K. G., & Collins, G. S. (2018). Minimum sample size for developing a

multivariable prediction model: PART II—Binary and time-to-event outcomes. Statistics in Medicine, 38(7), 1276–1296. https://doi.org/10.

1002/sim.7992

Robertson, D. S., Choodari-Oskooei, B., Dimairo, M., Flight, L., Pallmann, P., & Jaki, T. (2023). Point estimation for adaptive trial designs I: A

methodological review. Statistics in Medicine, 42(2), 122–145. https://doi.org/10.1002/sim.9605

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011). pROC: An open-source package for R and S+ to

analyze and compare ROC curves. BMC Bioinformatics, 12, 77. https://doi.org/10.1186/1471-2105-12-77

Schmid, C. H., & Griffith, J. L. (2005). Multivariate classification rules: Calibration and discrimination. In P. Armitage & T. Colton (Eds.),

Encyclopedia of biostatistics (Vol. 5, 2nd ed., pp. 3491–3497). Wiley.

Schwab, S., & Held, L. (2021). Statistical programming: Small mistakes, big impacts. Significance, 18(3), 6–7. https://doi.org/10.1111/1740-9713.

01522

Seker, B. O., Reeve, K., Havla, J., Burns, J., Gosteli, M., Lutterotti, A., Schippling, S., Mansmann, U., & Held, U. (2020). Prognostic models for

predicting clinical disease progression, worsening and activity in people with multiple sclerosis. Cochrane Database of Systematic Reviews,

(5). https://doi.org/10.1002/14651858.CD013606

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows

presenting anything as significant. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632

Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2011). Regularization paths for Cox’s proportional hazards model via coordinate descent.

Journal of Statistical Software, 39(5), 1–13. https://doi.org/10.18637/jss.v039.i05

Skrondal, A. (2000). Design and analysis of Monte Carlo experiments: Attacking the conventional wisdom.Multivariate Behavioral Research,

35(2), 137–167. https://doi.org/10.1207/s15327906mbr3502_1

Smith, M. K., &Marshall, A. (2010). Importance of protocols for simulation studies in clinical drug development. Statistical Methods inMedical

Research, 20(6), 613–622. https://doi.org/10.1177/0962280210378949

Steyerberg, E. W. (2019). Clinical prediction models. Springer.

Strobl, C., & Leisch, F. (2022). Against the “one method fits all data sets” philosophy for comparison studies in methodological research.

Biometrical Journal, 1–8. https://doi.org/10.1002/bimj.202200104

Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23–25. https://doi.org/10.1080/00031305.1980.

10482706

Ullmann, T., Beer, A., Hünemörder, M., Seidl, T., & Boulesteix, A.-L. (2022). Over-optimistic evaluation and reporting of novel cluster

algorithms: An illustrative study. Advances in Data Analysis and Classification. https://doi.org/10.1007/s11634-022-00496-5

Van der Bles, A. M., Van Der Linden, S., Freeman, A. L., Mitchell, J., Galvao, A. B., Zaval, L., & Spiegelhalter, D. J. (2019). Communicating

uncertainty about facts, numbers and science. Royal Society Open Science, 6(5), 181870. https://doi.org/10.1098/rsos.181870

van Smeden, M., de Groot, J. A. H., Moons, K. G. M., Collins, G. S., Altman, D. G., Eijkemans, M. J. C., & Reitsma, J. B. (2016). No rationale for

1 variable per 10 events criterion for binary logistic regression analysis. BMCMedical Research Methodology, 16, 163. https://doi.org/10.1186/

s12874-016-0267-3

van Smeden, M., Moons, K. G., de Groot, J. A., Collins, G. S., Altman, D. G., Eijkemans, M. J., & Reitsma, J. B. (2018). Sample size for binary

logistic prediction models: Beyond events per variable criteria. Statistical Methods in Medical Research, 28(8), 2455–2474. https://doi.org/10.

1177/0962280218784726

van Zwet, E. W., & Cator, E. A. (2021). The significance filter, the winner’s curse and the need to shrink. Statistica Neerlandica, 75(4), 437–452.

https://doi.org/10.1111/stan.12241

Vidaurre, D., Bielza, C., & Larrañaga, P. (2013). A survey of 𝐿1 regression. International Statistical Review, 81(3), 361–387. https://doi.org/10.1111/

insr.12023

White, I. R. (2010). Simsum: Analyses of simulation studies including Monte Carlo error. The Stata Journal: Promoting communications on

statistics and Stata, 10(3), 369–385. https://doi.org/10.1177/1536867x1001000305

Wicherts, J. M., Veldkamp, C. L. S., Augusteijn, H. E. M., Bakker, M., van Aert, R. C. M., & van Assen, M. A. L. M. (2016). Degrees of freedom in

planning, running, analyzing, and reporting psychological studies: A checklist to avoid 𝑝-hacking. Frontiers in Psychology, 7, 1832. https://

doi.org/10.3389/fpsyg.2016.01832

Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of

Statistical Software, 77(1), 1–17. https://doi.org/10.18637/jss.v077.i01

Wynants, L., Van Calster, B., Collins, G. S., Riley, R. D., Heinze, G., Schuit, E., Albu, E., Arshi, B., Bellou, V., Bonten, M. M. J., Dahly, D. L.,

Damen, J. A., Debray, T. P. A., de Jong, V.M. T., De Vos,M., Dhiman, P., Ensor, J., Gao, S., Haller, M. C., . . . van Smeden,M. (2020). Prediction

models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ, 369, m1328. https://doi.org/10.1136/bmj.m1328

Yousefi, M. R., Hua, J., Sima, C., & Dougherty, E. R. (2009). Reporting bias when using real data sets to analyze classification performance.

Bioinformatics, 26(1), 68–76. https://doi.org/10.1093/bioinformatics/btp605

 1
5

2
1

4
0

3
6

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/b

im
j.2

0
2

2
0

0
0

9
1

 b
y

 S
ch

w
eizerisch

e A
k

ad
em

ie D
er, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



14 of 19 PAWEL et al.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418–1429. https://doi.org/

10.1198/016214506000000735

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

SUPPORT ING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.
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Questionable research practices in comparative simulation studies allow for spurious claims of superiority of any
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APPENDIX: SIMULATION PROTOCOL

Below, we include an excerpt of the final version of the protocol for the simulation-based evaluation of AINET. All time-

stamped versions of the protocol are available at https://doi.org/10.5281/zenodo.6364574.

A.1 Aims

The aim of this simulation study is to systematically study the predictive performance of AINET for a binary prediction

task. The simulation conditions should resemble typical conditions found in the development of prediction models in

biomedical research. In particular, we want to evaluate the performance of AINET conditional on

∙ low- and high-dimensional covariates
∙ (un-)correlated covariates
∙ small and large sample sizes
∙ varying baseline prevalences

AINET will be compared to other (penalized) binary regression models from the literature, namely,

∙ binary logistic regression: the simplest and most popular method for binary prediction;
∙ elastic net: a generalization of LASSO and ridge regression, the most widely used penalized regression methods;
∙ adaptive elastic net: a generalization of the most popular weighted penalized regression method (adaptive LASSO);
∙ random forest: a popular, more flexible method. This method is related to AINET, see Section A.4.1.

These cover a wide range of established methods with varying flexibility and serve as a reasonable benchmark for AINET.

There are many more extensions of the adaptive elastic net in the literature (see, e.g., the review by Vidaurre et al., 2013).

However, most of these extensions focus on variable selection and estimation instead of prediction, which is why we

restrict our focus only on the four methods above.

A.2.1 Data-generating process

In each simulation 𝑏 = 1,… , 𝐵, we generate a data set consisting of 𝑛 realizations, that is, {(𝑦𝑖 , 𝒙𝑖)}
𝑛
𝑖=1
. A datum (𝑌, 𝑿)

consists of a binary outcome 𝑌 ∈ {0, 1} and 𝑝-dimensional covariate vector 𝑿 ∈ ℝ𝑝. The binary outcomes are generated

by

𝑌 ∣ 𝒙 ∼ Bernoulli
(
expit

{
𝛽0 + 𝒙

⊤𝜷
})

with expit(𝑧) = (1 + exp(−𝑧))−1 and the covariate vectors are generated by

𝑿 ∼ N𝑝 (0, Σ)
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with covariance matrix Σ that may vary across simulation conditions (see below). The baseline prevalence is

prev = expit(𝛽0). The coefficient vector 𝜷 is generated from

𝜷 ∼ N𝑝(0, Id)

once per simulation. Finally, the simulation parameters are varied fully factorially (except for the removal of some

unreasonable conditions) as described below, leading to a total of 128 scenarios.

A.2.2 Sample size

The sample size used in the development of predictions models varies widely (Damen et al., 2016). We will use

𝑛 ∈ {100, 500, 1000, 5000}, which span typical values occurring in practice. Note that previous simulation studies usu-

ally chose sample size based on the implied number of events together with the number of covariates in the model for

easier interpretation (Riley et al., 2018; van Smeden et al., 2018). We will use this approach in reverse to determine the

dimensionality of the parameters below.

A.2.3 Dimensionality

Previous simulation studies showed that EPV rather than the absolute sample size 𝑛 and dimensionality 𝑝 influences the

predictive performance of a method. We will therefore define the dimensionality 𝑝 via EPV by

𝑝 =
𝑛 ⋅ prev

EPV

and 2 ≤ 𝑝 ≤ 100. If the above formula gives noninteger values, the next larger integer will be used for 𝑝. When the formula

gives values above 100 or below 2, this simulation condition will be removed from the design. This is done because pre-

diction models are in practice only multivariable models (𝑝 ≥ 2), but at the same time the number of predictors is rarely

larger than 𝑝 ≥ 100 (Kreuzberger et al., 2020; Seker et al., 2020; Wynants et al., 2020). The exception are studies consider-

ing complex data, such as images, omics, or text data, which are not the focus here. The values EPV ∈ {20, 10, 1, 0.5} are

chosen to cover scenarios with small to large number of covariates (see van Smeden et al., 2018).

A.2.4 Collinearity in X

Wedistinguish betweenno, low,medium, andhigh collinearity. The diagonal elements ofΣ are given byΣ𝑖𝑖 = 1 and the off-

diagonal elements are set to Σ𝑖𝑗 = 𝜌, 𝜌 ∈ {0, 0.3, 0.6, 0.95}. These values cover the typical (positive) range of correlations.

A.2.5 Baseline prevalence

Different baseline prevalences expit(𝛽0) ∈ {0.01, 0.05, 0.1} are considered, reflecting a reasonable range of prevalences for

rare to common diseases/adverse events.

A.2.6 Test data

In order to test the out-of-sample predictive performance, we generate a test data set of 𝑛test = 10,000 data points in each

simulation 𝑏.

A.3 Estimands

We will estimate different quantities to evaluate overall predictive performance, calibration, and discrimination,

respectively. All methods will be evaluated on independently generated test data.

A.3.1 Primary estimand

∙ Brier score. We compute the Brier score as

BS = 𝑛−1test

𝑛test∑

𝑖=1

(𝑦𝑖 − �̂�𝑖)
2,
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where �̂� = ℙ̂(𝑌 = 1 ∣ 𝒙). Lower values indicate better predictive performance in terms of calibration and sharpness. A

prediction is well-calibrated if the observed proportion of events is close to the predicted probabilities. Sharpness refers

to how concentrated a predictive distribution is (e.g., how wide/narrow a prediction interval is), and the predictive

goal is to maximize sharpness subject to calibration (Gneiting, 2008). The Brier score is a proper scoring rule, meaning

that it is minimized if a predicted distribution is equal to the data-generating distribution (Gneiting & Raftery, 2007).

Proper scoring rules thus encourage honest predictions. The Brier score is therefore a principled choice for our primary

estimand.

A.3.2 Secondary estimands

∙ Scaled Brier score. The scaled Brier score (also known as Brier skill score) is computed as

BS
∗
= 1 − BS∕BS0

with BS0 = �̄�(1 − �̄�) and �̄� the observed prevalence in the data set. The scaled Brier score takes into account that the

prevalence varies across simulation conditions. Hence, the scaled Brier score can be compared between conditions

(Schmid & Griffith, 2005; Steyerberg et al., 2019).
∙ Log-score. We compute the log-score on independently generated test data,

LS = −𝑛−1test

𝑛test∑

𝑖=1

{𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖)},

and will use it as a secondary measure of overall predictive performance. Lower values indicate better predictive perfor-

mance in terms of calibration and sharpness. The log-score is a strictly proper scoring rule, however, it is more sensitive

to extreme predicted probabilities compared to the Brier score (Gneiting & Raftery, 2007).
∙ AUC. The AUC is the area under the receiver operating characteristic (ROC) curve (Steyerberg et al., 2019). It will

be used as a measure of discrimination and values closer to one indicate better discriminative ability. Discrimination

describes the ability of a predictionmodel to discriminate between cases and noncases. Other discriminationmeasures,

such as accuracy, sensitivity, specificity, are not considered becausewewant to evaluate predictive performance in terms

of probabilistic predictions instead of point predictions/classification.
∙ Calibration slope �̂�. The calibration slope �̂� is obtained by regressing the test data outcomes 𝑦test on the models’

predicted logits logit(�̂�), that is,

logit 𝔼[𝑌 ∣ �̂�] = 𝑎 + 𝑏 logit(�̂�).

This measure will be used to assess calibration and deviations of �̂� from one indicate miscalibration (Steyerberg et al.,

2019).
∙ Calibration in the large �̂�. We inspect calibration in the large �̂� on independently generated test data, from themodel

logit 𝔼[𝑌 ∣ �̂�] = 𝑎 + logit(�̂�).

This measure will also be used to assess calibration and deviations of �̂� from zero indicate miscalibration (Steyerberg

et al., 2019).

To facilitate comparison between simulation conditions, all estimands will also be corrected by the oracle version of

the estimand, for example, the Brier score will be computed from the ground truth parameters and the simulated data 𝒙,

subsequently the oracle Brier score will be subtracted from the estimated Brier score.

A.4 Methods

A.4.1 AINET

Wenowpresent themock-method and give a superficialmotivationwhy it could lead to improved predictive performance:

Choosing the vector of penalization weights in the adaptive LASSO becomes difficult in high-dimensional settings. For

 1
5

2
1

4
0

3
6

, 2
0

2
4

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/b

im
j.2

0
2

2
0

0
0

9
1

 b
y

 S
ch

w
eizerisch

e A
k

ad
em

ie D
er, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



PAWEL et al. 17 of 19

instance, using absolute LASSO estimates as penalizationweights omits the importance of several predictors by not select-

ing them, especially in the case of highly correlated predictors (Algamal&Lee, 2015). TheAINET circumvents this problem

by employing a random forest to estimate the penalization weights via an a priori chosen variable importance measure.

In this way, the importance of all variables enter the penalization weights simultaneously.

The penalized log-likelihood for AINET for a single observation (𝑦, 𝒙) is defined as

𝓁AINET(𝛽0, 𝜷; 𝑦, 𝒙, 𝛼, 𝜆,𝒘) = 𝓁(𝛽0, 𝜷; 𝑦, 𝒙) + 𝜆

(

𝛼

𝑝∑

𝑗=1

𝑤𝑗|𝛽𝑗| +
1

2
(1 − 𝛼)

𝑝∑

𝑗=1

𝑤𝑗𝛽
2
𝑗

)

,

where

𝓁(𝛽0, 𝜷; 𝑦, 𝒙) = 𝑦 log
(
expit

{
𝛽0 + 𝒙

⊤𝜷
})
+ (1 − 𝑦) log

(
1 − expit

{
𝛽0 + 𝒙

⊤𝜷
})

denotes the log-likelihood of a binomial generalized linear model (GLM) and𝒘 is derived from a random forest variable

importance measure ĨMP as

𝑤𝑗 = 1 −

(
IMP𝑗

∑𝑝

𝑘=1 IMP𝑘

)𝛾

,

where we transform IMP to be nonnegative via

IMP𝑗 = max{0, ĨMP𝑗}

and 𝛾 is a hyperparameter for the influence of the weights similar to 𝛾 hyperparameter of the adaptive elastic net. AINET

is fitted by maximizing its penalized log-likelihood assuming i.i.d. observations {(𝑦𝑖 , 𝒙𝑖)}
𝑛
𝑖=1
, that is,

argmax
𝛽0,𝜷

𝑛∑

𝑖=1

𝓁AINET(𝛽0, 𝜷; 𝑦𝑖 , 𝒙𝑖 , 𝛼, 𝜆,𝒘).

Per default, we choose mean decrease in the Gini coefficient for ĨMP. Hyperparameters of the random forest are not

tuned, but kept at their default values (e.g., mtry, ntree). The hyperparameter 𝛾 = 1will stay constant for all simulations.

AINET is supposed to seem like a reasonable method at first glance. However, AINET cannot be expected to share

desirable theoretical properties with the usual adaptive LASSO, such as oracle estimation (Zou, 2006). This is because

the penalization weights 𝒘 do not meet the required consistency assumption. Also in terms of prediction performance,

AINET is not expected to outperform methods of comparable complexity.

A.4.2 Benchmark methods

∙ Binary logistic regression (McCullagh &Nelder, 2019) with and without ridge penalty for high- and low-dimensional

settings, respectively. In case a ridge penalty is needed, it is tuned via fivefold cross-validation by following the “one

standard error” rule as implemented in glmnet (Friedman et al., 2010).
∙ Elastic net (Zou & Hastie, 2005), for which the penalized log-likelihood is given by

𝓁EN(𝛽0, 𝜷; 𝑦, 𝒙, 𝛼, 𝜆) = 𝓁(𝛽0, 𝜷; 𝑦, 𝒙) + 𝜆

(

𝛼

𝑝∑

𝑗=1

|𝛽𝑗| +
1

2
(1 − 𝛼)

𝑝∑

𝑗=1

𝛽2
𝑗

)

.

Here, 𝛼 and 𝜆 are tuned via fivefold cross-validation by following the “one standard error” rule.
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∙ Adaptive elastic net (Zou, 2006), with penalized loss function

𝓁adaptive(𝛽0, 𝜷; 𝑦, 𝒙, 𝛼, 𝜆,𝒘) = 𝓁(𝛽0, 𝜷; 𝑦, 𝒙) + 𝜆

(

𝛼

𝑝∑

𝑗=1

𝑤𝑗|𝛽𝑗| +
1

2
(1 − 𝛼)

𝑝∑

𝑗=1

𝑤𝑗𝛽
2
𝑗

)

.

Here, the penalty weights𝒘 are inverse coefficient estimates from a binary logistic regression

�̂�𝑗 = |�̂�𝑗|−𝛾,

where 𝜆 and 𝛼 are tuned via fivefold cross-validation by following the “one standard error” rule. The hyperparameter

𝛾 = 1 will stay constant for all simulations. In case 𝑝 > 𝑛, we estimate the penalty weights using a ridge penalty, tuned

via an additional nested fivefold cross-validation by following the “one standard error” rule.
∙ Random forests (Breiman, 2001) for binary outcomes without hyperparameter tuning. The default parameters of

ranger will be used (Wright & Ziegler, 2017).

A.5 Performance measures

The distribution of all estimands from Section A.3 will be assessed visually with box- and violin-plots that are stratified by

method and simulation conditions. We will also compute mean, median, standard deviation, interquartile range, and 95%

confidence intervals for each of the estimands. Moreover, instead of “eye-balling” differences in predictive performance

across methods and conditions, we will formally assess them by regressing the estimands on the method and simulation

conditions (cf. Skrondal, 2000). To do so, we will use a fully interacted model with the interaction between the methods

and the 128 simulations conditions, that is, in R notation: estimand ∼ 0 + method:scenario. We will rank pairwise

comparison between two methods within a single condition by their 𝑝-values, to more easily identify conditions where

methods show differences in predictive performance. The choice of a significance level at which a method is deemed

superior will be determined based on preliminary simulations. We set this level to 5%, where 𝑝-values will be adjusted

using the single-step method (Hothorn et al., 2008) within a single simulation condition for comparisons between AINET

and any other method.

A.6 Determining the number of simulations

We determine the number of simulation 𝐵 such that the Monte Carlo standard error of the primary estimand, the mean

Brier score BS∕𝐵, is sufficiently small. The variance of BS∕𝐵 is given by

Var
(
BS∕𝐵

)
=
Var

{
(𝑦 − �̂�)2

}

𝐵 ⋅ 𝑛test

and Var{(𝑦𝑖𝑏 − �̂�𝑖𝑏)
2} could be decomposed further (Bradley et al., 2008). However, the resulting expression is difficult

to evaluate for our data-generating process as it depends on several of the simulation parameters. We therefore follow a

similar approach as in Morris et al. (2019) and estimate V̂ar{(𝑦𝑖𝑏 − �̂�𝑖𝑏)
2} < 7 from an initial small simulation run with

100 simulations per condition to get an upper bound7 for worst-case variance across all simulation conditions. Therefore,

the number of simulations is then given by

𝐵 =
7

𝑛test Var
(
BS

) .

Since BS ∈ [0, 1], we decide that we require the Monte Carlo standard error of BS to be lower than four significant digits,

0.0001. The initial simulation run led to an estimated worst case variance of 7̂ = 0.2. Therefore, we compute that

𝐵 = 0.2∕(10000 × 0.00012) = 2000

replications are required to obtain Brier score estimates with the desired precision.
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A.7 Handling exceptions

It is inevitable that convergence issues and other problems will arise in the simulation study. We will handle them as

follows:

∙ If a method fails to converge, the simulation will be excluded from the analysis. The failing simulations will not be

replaced with new simulations that successfully converge as convergence may be impossible for some scenarios.
∙ Wewill report the proportion of simulations with convergence issues for eachmethod and discuss the potential reasons

for their emergence.
∙ In case of severe convergence issues or other problems (more than 10% of the simulations failing within a setting), we

may adjust the simulation parameters post hoc. This will be indicated in the discussion of the results.
∙ Convergence may be possible for certain tuning parameters of a method (e.g., cross-validation of LASSO may fail for

some values 𝜆 while it could work for others). In this case, we will choose a parameter value where the method still

converges, as one would usually do with a real data set.
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