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ABSTRACT

Wepresent anovel andeasy-to-usemethod for calibratingerror-ratebasedconfidence intervals toevidence-
based support intervals. Support intervals are obtained from inverting Bayes factors based on a parameter
estimate and its standard error. A k support interval can be interpreted as “the observed data are at least k
timesmore likely under the included parameter values than under a specified alternative.”Support intervals
depend on the specification of prior distributions for the parameter under the alternative, and we present
several types that allow different forms of external knowledge to be encoded. We also show how prior
specification can to someextent be avoidedby considering a class of prior distributions and then computing
so-called minimum support intervals which, for a given class of priors, have a one-to-one mapping with
confidence intervals. We also illustrate how the sample size of a future study can be determined based on
the concept of support. Finally, we show how the bound for the Type I error rate of Bayes factors leads to a
bound for the coverageof support intervals. Anapplication todata fromaclinical trial illustrates howsupport
intervals can lead to inferences that are both intuitive and informative.

ARTICLE HISTORY

Received January 2023
Accepted May 2023

KEYWORDS

Bayes factor; Coverage;
Evidence; Support interval;
Universal bound

1. Introduction

A pervasive problem in data analysis is to draw inferences about
unknown parameters of statistical models. For instance, data
analysts are often interested in identifying a set of parameter
values which are relatively compatible with the observed data.
Here we focus on a particular method for doing so—the support
set—that arguably represents a natural evidential answer to the
problem both from a likelihoodist (Edwards 1971; Royall 1997;
Blume 2002) and a Bayesian (Wagenmakers et al. 2022) point
of view. In either paradigm, statistical evidence may be defined
via the Law of Likelihood (Hacking 1965), that is, data constitute
evidence for one parameter value over an alternative parameter
value if the likelihood of the data under that parameter value is
larger thanunder the alternative parameter value. The likelihood
ratio (or Bayes factor) measures the strength of evidence, and it
plays also a central role in the construction of support sets, as we
will explain in the following.

Let f (x | θ) denote the likelihood of the observed data x. Let
θ be an unknown parameter and denote by

BF01(x; θ0) = f (x |H0)

f (x |H1)
= f (x | θ0)

∫

f (x | θ) f (θ |H1) dθ
(1)

the Bayes factor quantifying the strength of evidence which
the observed data x provide for the simple null hypothesis
H0 : θ = θ0 relative to a (possibly composite) alternative
hypothesis H1 : θ �= θ0, with f (x |H1) the marginal likeli-
hood of x obtained from integrating the likelihood f (x | θ) with
respect to the prior density of the parameter f (θ |H1) under

CONTACT Samuel Pawel samuel.pawel@uzh.ch Department of Biostatistics, University of Zurich, Zurich, Switzerland.

the alternative H1 (Jeffreys 1961; Kass and Raftery 1995). For
constructing a support interval, one views the Bayes factor (1) as
a function of the null value θ0 for fixed data x. A k support set for
θ is then given by the set of parameter values for which the data
are k times more likely than under the alternative hypothesisH1

(Wagenmakers et al. 2022), that is,

SIk =
{

θ0 : BF01(x; θ0) ≥ k
}

. (2)

The support set thus includes the parameter values for which the
observed data provide statistical evidence of at least level k.

Figure 1 illustrates different support sets (in this case inter-
vals) for a log hazard ratio parameter θ quantifying the effect
of the drug dexamethasone on the mortality of hospital-
ized patients with Covid-19 enrolled in the RECOVERY trial
(RECOVERY Collaborative Group 2021). Shown is also the
Bayes factor for testingH0 : θ = θ0 versusH1 : θ �= θ0 viewed as
a function of the null value θ0. A k support set is obtained from
“cutting” this function at height k, and taking the parameter
values with a Bayes factor value larger than k as part of the set. In
practice, it is not clear which value of k should be chosen. One
possibility is to select k based on conventional classifications of
Bayes factors or likelihood ratios. Table 1 lists three of them. For
instance, using the classification from Jeffreys (1961, Appendix
B), the k = 10 support interval ranging from −0.27 to −0.1
can be interpreted to contain log hazard ratios that are strongly
supported by the data, whereas the k = 1/10 support interval
ranging from−0.37 to 0 can be interpreted to contain log hazard
ratios that are at least not strongly contradicted by the data.

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
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Figure 1. The RECOVERY trial (RECOVERY Collaborative Group 2021) found that dexamethasone treatment reducedmortality compared to usual care in hospitalized Covid-

19 patients (estimated log hazard ratio θ̂ = −0.19 with standard error σ = 0.05 and 95% confidence interval from −0.29 to −0.07). Assuming a normal likelihood

θ̂ | θ ∼ N(θ , σ 2), the Bayes factor for contrasting H0 : θ = θ0 to H1 : θ �= θ0 is shown as a function of the null value θ0 . A unit-information normal distribution

θ |H1 ∼ N(μθ = −0.22, σ 2
θ

= 4) centered around the clinically relevant log hazard ratio is used as prior for θ underH1 . Support intervals for different support levels k
indicate the range of log hazard ratios supported by the data.

Table 1. Classifications of evidence forH0 provided by Bayes factors BF01 = k.

k Jeffreys (1961) k Royall (1997) k Fisher (1956)

> 100 Decisive > 64 Quite strong indeed 1/2 to 1 Good
30 to 100 Very strong 32 to 64 Quite strong 1/5 to 1/2 Fair
10 to 30 Strong 8 to 32 Strong 1/15 to 1/5 Poor
3 to 10 Substantial 4 to 8 Weak < 1/15 Open to grave suspicion
1 to 3 Bare mention

NOTE: The cutoffs from Jeffreys are slightly adjusted from powers of
√
10, as suggested by Held and Ott (2018). Royall and Fisher defined their classifications only for

likelihood ratios, that is, Bayes factors with simple hypothesesH0 : θ = θ0 versusH1 : θ = θ1 . While Royall placed no restrictions on θ1 , Fisher used the maximum

likelihood estimate θ1 = θ̂ . He named only the k < 1/15 category.

The construction of support sets thus parallels the construc-
tion of frequentist confidence sets: A (1−α)100% confidence set
corresponds to the set of parameter values which are not rejected
by a null hypothesis significance test at level α. It can equally
be displayed and obtained from a so-called p-value function,
which is the p-value of the data viewed as a function of the
null value (Fraser 2019; Rafi andGreenland 2020). Despite these
similarities, the interpretation of support and confidence sets is
rather different; support sets contain parameter values for which
there is at least a certain amount of statistical evidence, whereas
confidence sets are defined through the long-run frequency of
including the unknown parameter θ with probability equal to
their confidence level. The parameter values in a confidence
sets are typically interpreted as being “compatible” with a par-
ticular dataset, but this is debatable as the confidence level is
concerned with the confidence set as a procedure over multiple
replications.

Although support sets are conceptually simple and intuitive,
they have not been applied to many problems. It is also unclear
how they relate to the more widely used confidence sets. In this
article we thus shed light on the connection between support
and confidence sets. Specifically, we provide methods for cal-
ibrating approximate confidence sets to approximate support
sets and vice versa in the important case when the data consists
of an estimate of a univariate parameter θ with approximate
normal likelihood (Section 2). To do so, we derive novel and

easy-to-use formulas for computing support intervals that only
require summary statistics typically reported in research articles,
for example, point estimates, standard errors, or confidence
intervals. This scenario is highly relevant as a large part of
commonly used estimators satisfy the approximate normality
assumption, and also because one often does not have access
to the raw data but only the summary statistics. Computing a
support interval requires the specification of a prior distribution
for θ under the alternativeH1, and we compare several classes of
distributions. We also show how bounding the evidence against
the null hypothesis for a certain class of prior distributions leads
to the novel concept of a minimum support set. Our minimum
support sets are directly related to well-known bounds of Bayes
factors (Berger and Sellke 1987; Sellke, Bayarri, and Berger 2001;
Held and Ott 2018). In Section 3, we show how minimum
support sets provide confidence sets an evidential interpretation
with respect to certain classes of priors. We then illustrate how
the sample size of a future study can be determined based on
support, which provides a novel alternative to the conventional
approaches based on either power or precision of an interval
estimator (Section 5). Finally, we show how the universal bound
for theType I error rate of Bayes factors can be used for bounding
the coverage of support sets, even under sequential analyses with
optional stopping (Section 6). As a running example, we use data
from the RECOVERY trial (RECOVERY Collaborative Group
2021), as already introduced in Figure 1.
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2. Support Intervals under Normality

Denote by θ̂ an asymptotically normal estimator of an unknown
univariate parameter θ , possibly the maximum likelihood
estimator (MLE). Suppose its squared standard error σ 2 is an
estimate of the asymptotic variance of θ̂ , so that an approximate

normal likelihood θ̂ | θ ∼ N(θ , σ 2) is justifiable. For example, θ̂
could be an estimated regression coefficient from a generalized
linear model and σ its standard error. In many simple settings,
the standard error is of the form σ = λ/

√
n, where λ2 is

the variance corresponding to one effective unit and n is the
effective sample size, for example, the number of measurements
or the number of events (Spiegelhalter, Abrams, andMyles 2004,
sec. 2.4), see also Berger, Bayarri, and Pericchi (2013) for a
generalization of effective sample size to more complex settings
with dependent data. An approximate (1 − α)100% confidence
interval for θ is given by

θ̂ ± σ × �−1(1 − α/2) (3)

with �−1(·) the quantile function of the standard normal dis-
tribution. The confidence level (1 − α)100% represents the
long run frequency with which the true parameter is included
in the confidence interval (assuming that the sampling model
is correct). Note that the interval (3) also corresponds to the
(1−α)100% posterior credible interval based on an (improper)
uniform prior for θ , corresponding to Jeffreys’s transformation
invariant prior (Jeffreys 1961; Ly et al. 2017) and thus also
representing the default interval estimate for θ from a Bayesian
estimation perspective. We will now contrast the confidence
interval (3) to several types of support intervals.

2.1. Normal Prior Under the Alternative

To construct a support interval for θ using the data sum-

mary θ̂ with θ̂ | θ ∼ N(θ , σ 2), specification of a prior for θ

under the alternative H1 is required. Specifying a normal prior
θ |H1 ∼ N(μθ , σ

2
θ ) results in the Bayes factor

BF01(θ̂ ; θ0) =

√

1 +
σ 2

θ

σ 2
exp

[

−1

2

{

(θ̂ − θ0)
2

σ 2
− (θ̂ − μθ )

2

σ 2 + σ 2
θ

}]

. (4)

Now, fixing the Bayes factor (4) to k and solving for θ0 leads to
the k support interval

θ̂ ± σ ×

√

log

(

1 +
σ 2

θ

σ 2

)

+ (θ̂ − μθ )2

σ 2 + σ 2
θ

− 2 log k. (5)

Similar to the confidence interval (3), the support interval (5)
is centered around the parameter estimate θ̂ . However, while the
width of the confidence interval is only determined through the
confidence level (1 − α)100% and standard error σ , the width
of the support interval also depends on the specified prior for θ

under H1. Moreover, for k > 1 it may happen that the support
interval is empty, as the term below the square root in (5) may
become negative for too large k > 1. This means that in order
to find the desired level of support k > 1, the data have to
be sufficiently informative (relative to the prior), that is, the
squared standard error σ 2 has to be sufficiently small relative
to the prior variance σ 2

θ .

In the following, we will discuss how different prior means
μθ and variances σ 2

θ affect the resulting support intervals.When
the prior variance decreases (σ 2

θ ↓ 0), the prior approaches a
point mass at μθ . The width of the support interval is then fully
determined by the difference between the parameter estimate

θ̂ and the prior mean μθ divided by the standard error σ . A

smaller difference between θ̂ and μθ leads to a tighter support
interval. In contrast, for priors that become increasingly diffuse
(σ 2

θ → ∞), the k ≥ 1 support interval (5) extends to the
entire real line, indicating that all values θ ∈ R receive more
support from the data than the diffuse alternative, regardless of

the data, that is, the observed estimate θ̂ , standard error σ , and
the location of the prior mean μθ . This particular behavior pro-
vides another perspective on the well-known Jeffreys-Lindley
paradox (Wagenmakers and Ly 2023); the confidence interval
from (3) only spans a finite range around the parameter estimate

θ̂ , so that the corresponding null hypothesis significance tests
would reject the parameter values outside, whereas for the same
values the Bayes factor would indicate evidence for the null
hypothesis. Finally, centering the prior around the parameter

estimate (μθ = θ̂) and setting the prior variance equal to the
variance of one effective observation (σ 2

θ = n × σ 2 with n the
effective sample size), produces the support interval for Jeffreys’s
approximate Bayes factor (Wagenmakers 2022) which is equal
to the well-known approximation of the Bayes factor based on
the Bayesian information criterion (Raftery 1999). In this case,
the standard error multiplier has a particularly simple form
M = √{log(1 + n) − 2 log k}, showing that at least n ≥ k2 − 1
effective observations are required for the respective support
interval with k ≥ 1 to be nonempty.

2.2. Local Normal Prior Under the Alternative

The support interval based on the normal prior (5) depends on
the specification of a prior mean and prior variance. A different
approach is to use a so-called local prior, that is, a unimodal and
symmetric prior centered around the null value θ0 (Berger and
Delampady 1987). Choosing a local normal prior with variance
σ 2

θ corresponds to setting μθ = θ0 in (4), which leads to the
Bayes factor

BF01(θ̂ ; θ0) =

√

1 +
σ 2

θ

σ 2
exp

{

−1

2

(θ̂ − θ0)
2

σ 2(1 + σ 2/σ 2
θ )

}

. (6)

The k support interval based on the Bayes factor (6) is then given
by

θ̂ ± σ ×
√

{

log

(

1 +
σ 2

θ

σ 2

)

− 2 log k

}(

1 + σ 2

σ 2
θ

)

. (7)

While the Bayes factor (6) is a special case of the Bayes
factor (4), the support interval (7) is not a special case of the
support interval (5). This is because the prior for θ under H1

is different for each null value θ0, whereas it is always the
same under the two-parameter normal prior approach. To fully
specify the support interval (7), the prior variance σ 2

θ needs to be
chosen. One standard choice is to set it equal to the variance of
a single observation (σ 2

θ = n× σ 2), known as unit-information
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prior (Kass and Wasserman 1995). This approach leads to the k
support interval

θ̂ ± σ ×
√

{

log (1 + n) − 2 log k
}

(1 + 1/n). (8)

For this type of support interval, the standard error multiplier
M = √[{log(1 + n) − 2 log k}(1 + 1/n)] is wider than for the
Jeffreys’s approximate Bayes factor by a factor of

√
(1+ 1/n) but

the condition n ≥ k2 − 1 for the k ≥ 1 support interval to be
nonempty is the same.

2.3. Nonlocal NormalMoment Prior Under the Alternative

Another attractive class of priors for θ under the alternative is
given by so-called nonlocal priors. These priors are characterized
by having zero density at the null value θ0, thereby leading to
a faster accumulation of evidence than local priors when the
null hypothesis is actually true (Johnson and Rossell 2010). One
popular type of nonlocal priors is given by normal moment
priors θ ∼ NM(θ0, σθ ), with symmetry point θ0 and spread σθ

which have density f (θ | θ0, σθ ) = N(θ ; θ0, σ
2
θ ) × (θ − θ0)

2/σ 2
θ

where N(· ; θ0, σ
2
θ ) denotes the density function of a normal

distribution with mean θ0 and variance σ 2
θ . The Bayes factor

employing a prior θ |H1 ∼ NM(θ0, σθ ) is then given by

BF01(θ̂ ; θ0) =
(

1 +
σ 2

θ

σ 2

)3/2

× exp

{

−1

2

(θ̂ − θ0)
2

σ 2(1 + σ 2/σ 2
θ )

} {

1 + (θ̂ − θ0)
2

σ 2(1 + σ 2/σ 2
θ )

}−1

fromwhich the corresponding k support interval can be derived
to be

θ̂ ± σ ×
√

[

2W0

{

(1 + σ 2
θ /σ 2)3/2

√
e

2k

}

− 1

] (

1 + σ 2

σ 2
θ

)

(9)

with W0(·) denoting the principal branch of the Lambert W
function. The LambertW function is the (complex)multivalued
function W(·) satisfying W(x) exp{W(x)} = x. For real x,
it is defined for x ∈ [−1/e,∞). For x ≥ 0 the function
has a unique value, whereas in the interval x ∈ (−1/e, 0),
the function has two branches: W0(x) > −1 for all x ∈
(−1/e, 0) termed the principal branch, and W−1(x) < −1 for
all x ∈ (−1/e, 0), see Corless et al. (1996) for more details.
It is possible that the support interval (9) is empty, as for the
other two types of support intervals. This happens when the
Lambert W term is smaller than one half so that the square
root is undefined. Since W0(0.82) ≈ 1/2, this situations occurs
when (1 + σ 2

θ /σ 2)3/2 < 0.82 × 2k
√
e, meaning that the stan-

dard error σ has to be sufficiently small relative to the prior
spread parameter σθ and the support level k, so that the interval
is nonempty.

2.4. Comparison of Priors

To better understand the advantages and disadvantages of the
previously discussed priors, the resulting support intervals can
be compared in terms of their width as a function of the sample
size n (Figure 2 top). For small sample sizes, the normal prior
with mean equal to the observed parameter estimate produces
the narrowest k = 1 support intervals, followed by the local nor-
mal prior, the normal prior with mean one standard deviation
away from the observed estimate, and lastly the nonlocal normal

Figure 2. Comparison of prior distributions for the parameter θ under the alternativeH1 in terms of the resulting support interval width and the highest level for which

it is nonempty. A data model θ̂ | θ ∼ N(θ , λ2/n = 4/n) is assumed in all cases. The prior scale/spread parameter is set to σθ = 2. The normal prior (correct mean) has a

mean equal to the parameter estimate θ̂ , while the normal prior (wrong mean) has a mean one standard deviation λ = 2 away from θ̂ .
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moment prior. Thus, a well-chosen normal prior can increase
the precision of support inference, whereas a poorly chosen
normal prior can decrease precision. However, the differences
in width between the priors mostly disappear with increasing
sample size. In the realistic range between 10 and a few hundred
samples, the local normal prior seems to be a reasonable default
choice, as it leads to support intervals almost as narrow as the
normal (correctmean) prior, without the need to specify amean.

Another aspect in which the priors can be compared is the
highest support level k for which the resulting support intervals
are nonempty (Figure 2 bottom). We see that for the same
sample size n, the highest support levels from the normal and
local normal priors are similar and show the same growth
rates. In contrast, the highest support level from the nonlocal
moment prior is higher and grows much faster. This is expected
because nonlocal priors are designed to produce Bayes factors
with faster accumulation of evidence for the null hypothesis.
Thus, although nonlocal moment priors result in wider support
intervals than the other priors, for small sample sizes they may
be the only type of prior that can produce a support interval at,
say, Jeffreys’s strong evidence level k = 10.

3. Support Intervals based on Bayes Factor Bounds

In some situations it is clear which prior for θ should be chosen
under the alternative H1, for example, when a parameter esti-
mate from a previous dataset is available. In other situations it is
less clear and different priors may produce drastically different
results. To provide a more objective assessment of evidence in
the latter situation, several authors have proposed to instead
specify only a class of prior distributions and then select the
one prior among them that leads to the Bayes factor providing
the strongest possible evidence against the null hypothesis H0

(Edwards, Lindman, and Savage 1963; Berger and Sellke 1987;
Sellke, Bayarri, and Berger 2001; Held and Ott 2018). Here we
refer to these Bayes factor bounds asminimum Bayes factors for
the null H0 over the alternative H1, as we are interested in the
support for null values θ0.

We will now show how minimum Bayes factors can be used
for obtaining so-called minimum support sets. Specifically, a k
minimum support set is given by

minSIk = {θ0 : minBF01(x; θ0) ≥ k} , (10)

where minBF01(x; θ0) is the smallest possible Bayes factor for
testing H0 : θ = θ0 versus H1 : θ �= θ0 that can be obtained
from a class of prior distributions for θ under the alternative
H1. That is, given the data, for each θ0 the prior for θ under
H1 is cherry-picked from a class of priors to obtain the lowest
evidence for H0 : θ = θ0 possible. Minimum support intervals
thus provide a Bayes/non-Bayes compromise (Good 1992) as
they do not require specification of a specific prior distribution
but still allow for an evidential interpretation of the resulting
interval.

One property of minimum Bayes factors is that they can
only be used to asses the maximum evidence against the null
hypothesis but not for it. Minimum support sets inherit this
property, meaning that they can only be obtained for support
levels k ≤ 1. For instance a k = 1/3 minimum support set

includes the parameter values under which the observed data
are at most 3 times less likely compared to under all priors from
the specified class of alternative. Being unable to obtain support
intervals with k > 1 is the price that needs to be paid for having
to only specify a class of prior distributions but not a specific
prior itself. We will now discuss minimum support intervals
from several important classes of distributions.

3.1. Class of All Distributions Under the Alternative

Among the class of all possible priors underH1, the prior which
is most favorable toward the alternative is a point mass at the
observed effect estimate H1 : θ = θ̂ (Edwards, Lindman, and
Savage 1963). The resulting minimum Bayes factor is given by

minBF01(θ̂ ; θ0) = exp

{

−1

2

(θ̂ − θ0)
2

σ 2

}

, (11)

for which twice the negative log equals the standard likelihood

ratio test statistic when θ̂ is the MLE. Inverting (11) for θ0 leads
to the kminimum support interval

θ̂ ± σ ×
√

−2 log k. (12)

Interestingly, defining a support interval relative to the likeli-
hood of the data under the MLE has already been suggested by
Fisher (1956). Table 1 shows Fisher’s classification of evidence
for this type of interval. Also Royall made use of the minimum
support interval (12), usually with support levels k = 1/8 and
k = 1/32. He noted: “The 1/8 and 1/32 likelihood intervals
are not confidence intervals, in general, but they truly repre-
sent what confidence intervals are often mistaken to represent,
namely parameter values that the sample does not represent
evidence against, that is, values that are ‘consistent with the
observations.’ We can speak in this way, asserting that there is
not strong evidence against a point inside the interval, without
reference to an alternative value, because the statement is true for
all alternatives. Every point inside the 1/8 interval is consistent
with the observations in the strong sense that there is no other
possible value of the parameter that is better supported by a
factor as large as 8” (Royall 1997, p. 101). While we agree that
the support interval (12) is a useful bound, it is important to
note that from a Bayesian perspective it represents the most
blatantly biased assessment of support in the sense that assigning
a point prior at the observed parameter estimate hardly reflects
prior knowledge about θ but can rather be considered cheating
(Berger and Sellke 1987). This is reflected by the fact that for a
given estimate (i.e., dataset) and fixed support level k, the inter-
val represents the narrowest support interval among all possible
support intervals. When minimizing over the class of all two-
parameter normal priors, that is, the Bayes factor (4), we also
obtain the same minimum Bayes factor (11) and consequently
the same minimum support interval (12).

3.2. Class of Local Normal Alternatives

When the class of priors for θ under the alternative H1 is
given by normal distributions centered around the null value θ0,

choosing its variance to be σ 2
θ = max{(θ̂ − θ0)

2 − σ 2, 0} max-
imizes the marginal likelihood of the data under H1. Plugging
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this variance in the Bayes factor (6) leads to the minimum Bayes
factor over the class of local normal priors

minBF01(θ̂ ; θ0) (13)

=

⎧

⎪

⎨

⎪

⎩

|θ̂ − θ0|
σ

exp

{

− (θ̂ − θ0)
2

2σ 2

}

√
e if

|θ̂ − θ0|
σ

> 1

1 else

as first shown by Edwards, Lindman, and Savage (1963). Equat-
ing (13) to k and solving for θ0 leads then to the k minimum
support interval

θ̂ ± σ ×
√

−W−1(−k2/e), (14)

withW−1(·) the branch of the LambertW function that satisfies
W(y) < −1 for y ∈ (−e−1, 0). For k = 1, the standard error
multiplier becomes M =

√

−W−1(−1/e) = 1. Hence, the data
provide support for all parameter values within one standard
error around the observed parameter estimate θ̂ when the class
of priors for the parameter is given by local normal alternatives.

3.3. Class of p-based Alternatives

Vovk (1993) and Sellke, Bayarri, and Berger (2001) proposed a
minimum Bayes factor where the data are summarized through
a p-value. The idea is that under the null hypothesisH0 : θ = θ0,
a p-value should be uniformly distributed, whereas under the
alternative it should have a monotonically decreasing density
characterized by the class of Beta(ξ , 1) distributions (with ξ ≤ 1).
Choosing ξ such that the marginal likelihood of the data under
H1 is maximized, leads to well-known “−ep log p” minimum
Bayes factor

minBF01(p; θ0) =
{

−ep log p if p ≤ e−1

1 else
(15)

with p = 2{1 − �(|θ̂ − θ0|/σ)}. Equating (15) to k and solving
for θ0, leads to the kminimum support interval

θ̂ ± σ × �−1

[

1 − exp {W−1(−k/e)}
2

]

. (16)

For k = 1, the standard error multiplier is given by
M = �−1[1 − exp{W−1(−1/e)}/2] = �−1[1 − 1/(2e)] ≈ 0.90,
so the k = 1 minimum support interval is just slightly tighter
than the one based on local normal alternatives.

3.4. Mapping between Confidence andMinimum Support

Levels

For all types of minimum support intervals discussed so far,
there is a one-to-one mapping between their minimum support
level k and the confidence level (1−α)100% of the approximate
confidence interval (3), see Figure 3. The conventional default
level of 95% corresponds to a k = 1/6.8 support level for the
class of all priors under the alternative, a k = 1/2.5 support level
for the −ep log p, and a k = 1/2.1 support level for the local
normal prior calibration. Conversely, the k = 1/10 minimum
support interval corresponds to the 96.81% confidence interval
for the class of all priors, the 99.25% confidence interval for
−ep log p, and the 99.43% confidence intervals for the local
normal prior calibration. Similar to themappings between Bayes
factor bounds and p-values (Held and Ott 2018), the mappings
displayed in Figure 3 provide confidence intervals an evidential
interpretation. Specifically, they enhance their long-term fre-
quency interpretation with an interpretation that directly relates
to the minimum support that the observed data provide for the
parameter values in the interval.

4. Example RECOVERY trial

We now compute the above (minimum) support intervals for
the data from the RECOVERY trial (RECOVERY Collabora-
tive Group 2021). With the standard error σ known, the min-
imum support intervals are fully specified and can be read-
ily computed. For the normal, local normal, and the nonlocal
normal moment prior we choose their parameters as follows.
The trial steering committee determined the sample size of the
trial based on an assumed clinically relevant log hazard ratio
of log 0.8 = −0.22. This effect size can be used to inform the
normal prior under the alternative H1, that is, we specify the
mean μθ = −0.22 along with the unit-information variance
σ 2

θ = 4 for a log hazard ratio (Spiegelhalter, Abrams, and Myles
2004, sec. 2.4.2). Likewise, we use the unit-information variance
σ 2

θ = 4 as the variance of the local normal prior. The spread
parameter of the nonlocal moment prior σθ is elicited with a
similar approach as in Pramanik and Johnson (2022); The value
σθ = 0.28 is selected so that 90% probability mass is assigned to
log hazard ratios between θ0 − log 2 and θ0 + log 2, representing

Figure 3. Mapping between confidence level (1 − α)100% and minimum support level k for different types of minimum support intervals.
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Figure 4. Different support intervals for the data from the RECOVERY trial. The normal prior is centered aroundμθ = −0.22 and has unit varianceσ 2
θ

= 4. The local normal

prior also has unit variance σ 2
θ

= 4. The spread parameter of the nonlocal normal moment prior is σθ = 0.28.

effect sizes that at most half or double the mortality hazards
relative to the null value θ0.

Figure 4 shows the corresponding k support intervals for
different values of k. The support intervals based on normal
(second row) and local normal prior (third row)mostly coincide
for all considered support levels k. The k = 10 support intervals
(blue) from both types indicate that log hazard ratios between
−0.27 and −0.1 receive strong support from the data compared
to alternative parameter values. In contrast, the k = 10 support
interval (blue) based on the nonlocal normal moment prior
(fourth row) is slightly wider, indicating that values between
−0.28 and−0.09 are strongly supported by the data. For smaller
support levels (k < 10) this trend reverses and the normal
and local normal prior support intervals are wider than the one
based on the nonlocal normal prior. Finally, each parameter
value not included in a k support interval corresponds to a point-
null hypothesis for which the respective Bayes factor is smaller
than k, similar to the relationship between confidence intervals
and p-values. For instance, one can immediately see that the
Bayes factor based on nonlocal moment priors indicates strong
evidence (BF01 < 1/10) against H0 : θ = 0 as the value is not
included in the interval, whereas this is not the case for the Bayes
factors based on normal and local normal priors.

The three bottom rows in Figure 4 show different types of
k minimum support intervals computed for the data from the
RECOVERY trial. Since minimum support intervals are only
nonempty for k ≤ 1, only such support levels are shown.
The (yellow) k = 1 minimum support interval for the class
of all priors (fifth row) is just a point at the observed effect

estimate θ̂ = −0.19. In contrast, the (yellow) k = 1 minimum
support intervals based on local normal priors (sixth row) and
the −ep log p calibration (last row) span about one standard
error around the effect estimate. Also for k = 1/3 (orange)
and k = 1/10 (red), the minimum support interval based on
the class of all priors is much narrower than the ones based on
local normal and −ep log p, yet all of them are narrower than
the ordinary support intervals. This illustrates that minimum
support intervals provide an overly pessimistic assessment of
support for parameter values, in the same way that Bayes factor
bounds provide an overly pessimistic quantification of evidence
for the null hypothesis.

5. Design of New Studies based on Support

The sample size of a future study is typically derived to achieve
(i) a targeted power of a hypothesis test, or (ii) a targeted preci-
sion of a future confidence/credible interval. Here, we provide an
alternative where the sample size of a future study is determined
to achieve a desired level of support.

Assume we wish to conduct a study and analyze the result-

ing parameter estimate θ̂ using the support interval based on
a normal prior (5). Further assume that we either specify a
reasonable prior from existing knowledge or use the prior for
Jeffreys’s approximate Bayes factor. The goal is now to determine
the sample size n such that we can identify the parameter values
which are strongly supported by the future data, for instance,
with a support level k = 10 representing “strong” support in
the classification from Jeffreys (1961). In order for the k > 1
support interval (5) to be nonempty, the standard error σ of the

parameter estimate θ̂ needs to be sufficiently small so that the
term in the square root becomes nonnegative, that is, it must
hold that

log

(

1 +
σ 2

θ

σ 2

)

+ (θ̂ − μθ )
2

σ 2 + σ 2
θ

≥ 2 log k. (17)

The sample size n can now be determined such that the standard
error σ is small enough for (17) to hold. The resulting sample
size then guarantees that parameter values with the desired level
of support will be identified. In general, this needs to be done
numerically, but for the Jeffreys’s approximate Bayes factor prior

(μθ = θ̂ and σ 2
θ = nσ 2), the simple expression n ≥ k2 − 1

mentioned earlier exists. For instance, if we want a k = 10 sup-
port interval to be nonempty, wemust take at least 102 − 1 = 99
samples.

While the previously described approach guarantees that a
k > 1 support interval is nonempty and includes at least one
parameter value θ , one may want to guarantee that the resulting
k support interval will span a desired length

ℓ = 2σ × Mk, (18)

with Mk the standard error multiplier of a k support interval.
In general, numerical methods are required for computing the n
such that (18) is satisfied, yet again for the support interval based
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on Jeffreys’s approximate Bayes factor there are explicit solutions
available

n = k2 exp

{

−W

(

−k2ℓ2

4λ2

)}

(19)

with λ2 the variance of one (effective) observation and assuming
log(1 + n)/ log(n) ≈ 1. From (19) two things are apparent: (i)
the argument toW(·) has to be larger than−1/e for the function
value to be defined, meaning that the possible width is limited
by ℓ ≤ (4λ2)/k2, (ii) since the argument to W(·) is negative,
there are always two solutions given by the two real branches of
the Lambert W function, if any exist at all. For instance, for a
standard error of σ = λ/

√
nwith λ = 2, a support level k = 10,

and a desired width ℓ = 0.2, equation (19) leads to the sample
sizes n1 = 143 and n2 = 862 (when rounded to the next larger
integer). Both lead to the k = 10 support interval spanning the
desired width ℓ = 0.2, yet for the study employing the larger
sample size n2 other support intervals with higher support levels
k can be computed compared to a study employing the smaller
sample size n1.

6. Error Control via the Universal Bound

The universal bound (Royall 1997, sec. 1.4) ensures that for
k < 1 and when the null hypothesis H0 : θ = θ0 is true, the
probability for finding evidence at most of level k forH0 cannot
be larger than k, that is

Pr {BF01(x; θ0) ≤ k |H0} ≤ k (20)

for any prior of θ under the alternative H1. Remarkably, the
universal bound is also valid under sequential analyses with
optional stopping as soon as a Bayes factor smaller than k is
obtained (Robbins 1970; Pace and Salvan 2020). In contrast,
frequentist tests and confidence sets typically have to be adjusted
for sequential analyses to guarantee appropriate error rates, and
the theory and applicability can become quite involved.

Lindon and Malek (2020) proved that k support sets with
k < 1 are also valid (1 − k)100% confidence sets. Their proof
and the related “safe and anytime valid inference” theory (see,
e.g., Grünwald, deHeide, andKoolen 2019) is based on relatively
technical results from martingale theory. We now briefly show
how the universal bound can also be used to derive error rate
guarantees for support intervals. Assume there is a true param-
eter θ = θ∗. For any (data-independent) prior for θ under the
alternative hypothesis H1, the coverage of the corresponding k
support set SIk with k < 1 is bounded by

Pr (SIk ∋ θ∗ | θ = θ∗) = Pr {BF01(x; θ∗) ≥ k | θ = θ∗}
= 1 − Pr {BF01(x; θ∗) < k | θ = θ∗}
≥ 1 − k (21)

where the first equality follows from the definition of a k sup-
port set (2), whereas the inequality follows from the universal
bound (20). This shows that a k support set with k < 1 is
also a valid (1 − k)100% confidence set, even under sequential
analyses with optional stopping, so that computing support
intervals based on accumulating data leads to a (1 − k)100%
confidence sequence (Lai 1976; Howard et al. 2021). Of course,

the coverage bound rests on the assumption that the data model
is correctly specified and amisspecified data model will result in
incorrect coverage. Furthermore, the bound is based on simple
null hypotheses, but it can also be shown to hold for composite
null hypotheses when special types of priors are assigned to
the nuisance parameters (Hendriksen, de Heide, and Grünwald
2021).

For the case of a univariate parameter θ as considered earlier,
construction of (1−k)100% approximate confidence interval via
the normal prior support interval from (5) corresponds to the
proposal by Pace and Salvan (2020). These authors studied this
particular case in detail and gave also frequentist motivations
for the prior distributions interpreting them as weighting func-
tions. Moreover, they found that the method is also applicable
to parameter estimates from marginal, conditional, and profile
likelihoods, and that the coverage of the intervals is controlled
even under slight model misspecifications. We refer to Pace and
Salvan (2020) for further details.

A k < 1 support interval will usually be wider than a
standard (1 − k)100% confidence interval. On the other hand,
a k < 1 support interval has at least (1 − k)100% coverage,
even under optional stopping (at least for point null hypothe-
ses as is the case here), which is not satisfied by a standard
(1 − k)100% confidence interval. Due to their property of valid
coverage based on arbitrary number of looks at the data, k < 1
support interval will also typically be wider than (1 − k)100%
confidence intervals adjusted via group sequential or adaptive
trial methodology which are more fine-tuned to specific interim
analysis strategies (Wassmer and Brannath 2016). These strate-
gies are, however, typically more restrictive and computationally
involved compared to the flexible and easily computable k < 1
support intervals which we present here.

It must be noted that the coverage bound (21) only holds
for support intervals but not for minimum support intervals.
This is because the minimum support intervals are derived
based on priors that depend on the data, which violates the
assumption of the universal bound. Minimum support intervals
are thus only useful for giving confidence intervals an evidential
interpretation, but a k minimum support interval with k < 1,
itself does not provide (1 − k)100% coverage under optional
stopping.

7. Discussion

Misinterpretations and misconceptions of confidence intervals
are common (Hoekstra et al. 2014; Greenland et al. 2016).
We showed how confidence intervals can be reinterpreted as
minimum support intervals which have an intuitive interpreta-
tion in terms of the minimum evidence that the data provide
for the included parameter values. We also obtained easy-to-
use formulas for different types of support intervals for an
unknown parameter based on an estimate and standard error
thereof. Table 2 summarizes our results, their limitation being
the reliance on the normality assumption which may be inade-
quate for small sample sizes. More appropriate support intervals
can be obtained from considering the exact likelihood of the
data instead of a normal approximation, however, typically the
support interval will not be available in closed-form anymore
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Table 2. Summary of confidence intervals (CI), support intervals (SI), and minimum support intervals (minSI) for an unknown parameter θ based on a parameter estimate

θ̂ with standard error σ .

Interval type Standard error multiplier M

(1 − α)100% CI �−1(1 − α/2)

k SI (normal prior)
√{log(1 + σ 2

θ
/σ 2) + (θ̂ − μθ )2/(σ 2 + σ 2

θ
) − 2 log k}

k SI (local normal prior)
√[{log(1 + σ 2

θ
/σ 2) − 2 log k}(1 + σ 2/σ 2

θ
)]

k SI (nonlocal normal moment prior)
√

([2W0{(1 + σ 2
θ
/σ 2)3/2/(2ke−1/2)} − 1]{1 + σ 2/σ 2

θ
})

kminSI (all priors)
√

(−2 log k)

kminSI (local normal priors)
√{−W−1(−k2/e)}

kminSI (−e p log p) �−1[1 − exp{W−1(−k/e)}/2]

NOTE: All intervals are of the form θ̂ ± σ ×M. To transform an interval from type A to type B, first subtract θ̂ from the boundaries of the interval, multiply by the ratio of the

standard error multipliers MB/MA , and add again θ̂ to the boundaries of the interval. The standard error multipliers M depend on either the confidence level (1 − α) or
the support level k. For the support intervals, the standard error multipliers M additionally depend on the parameters of the prior for θ under the alternative hypothesis:

mean μθ and variance σ 2
θ for the normal prior, variance σ 2

θ for the local normal prior, and spread σθ for the nonlocal normal moment prior. The quantile function of

the standard normal distribution is denoted by �−1(·), W0(·) denotes the principal branch of the Lambert W function, and W−1(·) denotes the branch that satisfies
W(y) < 1 for y ∈ (−1/e, 0). (Minimum) support intervals are only nonempty for support levels k for which the standard error multiplier is real-valued, that is, the term
in the square root must be nonnegative and/or the argument for W−1(·)must be in [−1/e, 0). All interval types can be computed with the R package ciCalibrate
(Appendix).

and require the raw data rather than only the point estimate and
standard error.

Which type of support interval should data analysts use
in practice? We believe that the support interval based on a
normal prior distribution is the most intuitive for encoding
external knowledge. This type should therefore be preferably
used whenever external knowledge is available. At the same
time, the support interval based on a local normal prior with
unit-information variance (Kass and Wasserman 1995) seems
to be a reasonable “default” choice in cases where no external
knowledge is available. Finally, we believe that minimum sup-
port intervals are mostly useful for giving confidence intervals
an evidential interpretation due to the one-to-one mapping
between the two.

It is also not clear which support level k should be used for
computing support intervals. If space permits, we recommend
to visualize the Bayes factor as a function of the null value as in
Figure 1. A similar approach has also been proposed by Grün-
wald (2023) under the name of E-posterior. The Bayes factor
visualization provides readers with a more gradual assessment
of support, and any desired k support interval can be read off
from it. If there are space constraints, a compromise is to report
support intervals for different levels (e.g., k ∈ {1/10, 1, 10}) or
to present a forest plot with “telescope” style support intervals
with ascending support levels stacked on top of each other, as
in Figure 4. We are hesitant to recommend a “default” support
level because any classification of support is arbitrary, just like
the 95% confidence level convention. We believe that k = 1
is perhaps the least arbitrary default level, as it represents the
tipping point at which the included parameter values begin to
receive support from the data (although not necessarily strong
support).

Other approaches for reinterpreting confidence intervals
have been proposed. For instance, Rafi and Greenland (2020)
propose to rename confidence intervals to “compatibility” inter-
vals and give their confidence level an information theoretical
interpretation. For example, a 95% confidence interval contains
parameter values with at most 4.3 bits refutational “surprisal.”
This notion of compatibility is logically weaker than the notion
of support considered in this article as a failure to refute a
parameter value cannot establish that this parameter value is

supported without reference to alternatives (Greenland 2023).
Compatibility intervals are in this sense similar to minimum
support intervals; without a specified prior under the alternative
hypothesis only the maximum surprisal/evidence against the
included parameter values can be quantified.

We also showed how the coverage of k support intervals
with k < 1 is bounded by (1 − k)100%, which holds even
under sequential analyses with optional stopping. For instance,
a k = 1/20 support interval has valid 95% coverage. Of course,
such error rate guarantees rest on the assumption that the data
model has been correctly specified, which in most real world
applications will be violated to some extent. We do not see
this as a problem for the evidential interpretation of support
intervals, which is usually of more concern to data analysts.
Evidential inference does not rely on a statistical model being
“true” in some abstract sense. Bayes factors and support intervals
simply quantify the relative predictive performance that the
combination of data model and parameter distribution yield on
out-of-sample data (Kass andRaftery 1995;O’Hagan and Forster
2004; Gneiting and Raftery 2007; Fong and Holmes 2020). Such
“descriptive inferential statistics” are especially important for
the analysis of convenience data samples which typically vio-
late assumptions of the underlying statistical model (Amrhein,
Trafimow, and Greenland 2019; Shafer 2021). In fact, even one
of the best known proponents of p-values—R.A. Fisher—noted
“For all purposes, and more particularly for the communication
of the relevant evidence supplied by a body of data, the values
of the Mathematical Likelihood are better fitted to analyze,
summarize, and communicate statistical evidence of types too
weak to supply true probability statements” (Fisher 1956, p. 70)
clearly recognizing the importance of inferential tools based on
relative likelihood for making sense out of data.

Appendix: The ciCalibrate Package

We provide an R implementation of the support intervals and under-

lying Bayes factor functions from Table 2. The package is available

at https://CRAN.R-project.org/package=ciCalibrate and can be installed

by executing install.packages("ciCalibrate") in an R

console. The following code snippet illustrates the computation and

plotting of support interval and Bayes factor function.
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## 95% CI from RECOVERY trial

logHRci <- c(-0.29, -0.07)

## compute a support interval with level k = 10

library("ciCalibrate") # install with install.packages("ciCalibrate")

si10 <- ciCalibrate(ci = logHRci, ciLevel = 0.95, siLevel = 10,

method = "SI-normal", priorMean = 0, priorSD = 2)

si10

##

## Point Estimate [95% Confidence Interval]

## -0.18 [-0.29,-0.07]

##

## Calibration Method

## Normal prior for parameter under alternative

## with mean m = 0 and standard deviation sd = 2

##

## k = 10 Support Interval

## [-0.27,-0.09]

## plot Bayes factor function with support interval

plot(si10)
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