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Socioeconomic inequalities in early 
adulthood disrupt the immune 
transcriptomic landscape 
via upstream regulators
Sudharshan Ravi 1*, Michael J. Shanahan 1,2, Brandt Levitt 3, Kathleen Mullan Harris 3,4 & 
Steven W. Cole 5

Disparities in socio-economic status (SES) predict many immune system-related diseases, and 
previous research documents relationships between SES and the immune cell transcriptome. Drawing 
on a bioinformatically-informed network approach, we situate these findings in a broader molecular 
framework by examining the upstream regulators of SES-associated transcriptional alterations. Data 
come from the National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally 
representative sample of 4543 adults in the United States. Results reveal a network—of differentially 
expressed genes, transcription factors, and protein neighbors of transcription factors—that shows 
widespread SES-related dysregulation of the immune system. Mediational models suggest that body 
mass index (BMI) plays a key role in accounting for many of these associations. Overall, the results 
reveal the central role of upstream regulators in socioeconomic differences in the molecular basis of 
immunity, which propagate to increase risk of chronic health conditions in later-life.

A considerable body of evidence suggests that disparities in SES—reflecting education, income, occupational 
prestige, and subjective status—play a critical role in shaping the health trajectories of people, with lower SES 
associated with elevated morbidity and mortality  rates1–6. Many of these diseases—including, for example, 
 asthma7, atopic  dermatitis8, food  allergies9, systemic lupus  erythematosus10, and periodontal  disease11—vary 
widely in their pathologies but share a common etiological pathway involving immune dysregulation, and they 
are more common in lower socioeconomic strata than among people with higher  SES12. Three strands of evidence 
also document associations between SES and biomarkers of the immune system. First, many studies report asso-
ciations between childhood SES and pro-inflammatory markers in circulating peripheral blood (such as interleu-
kin-6 and C-reactive protein (CRP)13) that, if chronically activated, presage a wide-range of diseases including, 
for example, diabetes type 2, some cancers, and cardiovascular disease. Second, studies have also examined white 
blood cell composition, finding that low SES is associated with increased development and circulation of pro-
inflammatory immune cells (monocytes and  neutrophils14), whereas parental education is positively associated 
with the proportion of lymphocytes and negatively associated with the proportion of neutrophils and, among 
older adults, that SES is related to shifts in cell composition indicative of  immunosenescence15–18. And finally, a 
limited number of studies have examined functional assays of immune response, sometimes ex-vivo, and show 
that, once again, childhood socioeconomic status is a risk factor for immune dysregulation, possibly more so 
among  boys19–22. Nevertheless, despite the abundance of evidence connecting socioeconomic inequalities to 
immune-related diseases and biomarkers, the molecular etiology of SES-mediated immune alterations remains 
less explored.

A growing number of studies have examined SES and transcriptional patterns indicative of immune function-
ing. Research consistently shows people from low SES backgrounds have greater proinflammatory  activity14,22–26. 
Additionally, SES is associated with the expression of genes regulated by the glucocorticoid receptor and inter-
feron response factors, suggesting a suppression of adaptive immunity and innate antiviral  immunity22,27. This sig-
nature pattern—involving the upregulation of proinflammatory genes and the downregulation of type I interferon 
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innate antiviral response genes among the lower strata of status, called the “Conserved Transcriptional Response 
to Adversity” (CTRA)—has been observed in numerous populations with a range of research designs. Essen-
tially, SES is associated with CTRA activation, which in turn is associated with the molecular underpinnings of 
immune-related and inflammatory  diseases22,28–30.

The current study seeks to expand on these findings by providing a broader mapping of associations between 
SES and the molecular signaling pathways that regulate immunity. Understanding the impact of socioeconomic 
status on immune gene expression requires a systems-oriented approach that extends beyond the functional 
examination of individually differentially expressed genes and includes the network of upstream regulators. 
Furthermore, traditional transcription factor binding motif enrichment analysis suffers from the lack of tissue 
specificity. We aim to address these drawbacks in this paper by detailing upstream tissue-specific transcrip-
tional factors and protein-protein interactors as a networked system, along with differentially regulated genes, 
that responds to SES. Such an approach offers a comprehensive understanding of how SES is associated with 
the molecular mechanisms that drive biological processes such as gene expression, cell signaling, and cell fate, 
which ultimately lead to disease in individuals of lower  SES31,32. Significantly, we leverage the comprehensive 
resource of human tissue-specific gene regulatory network of Marbach et al.33 to isolate transcription factors that 
could play a pivotal role in modulating the expression of SES—differentially expressed genes in whole blood. 
Additionally, by incorporating direct protein-protein interactors, we create a broad, inclusive and holistic set 
of genes and proteins that act as a networked system in disrupting essential biological processes. Our approach 
reveals the decisive role of transcription factors in driving SES—associated dysregulation that previously would 
be attributed to SES—differentially expressed genes.

Emerging evidence points to the intricate interplay between low socioeconomic position and high body mass 
index (BMI)34,35. Recent meta-analyses have consistently linked lowered socioeconomic status and elevated 
inflammatory biomarkers largely via  obesity36,37. Although BMI is an imperfect indicator of obesity as it does 
not distinguish fat from fat-free mass, Liu et al.38 observed a likely strong mediation of BMI in the negative rela-
tionship between childhood SES and adulthood inflammatory marker C reactive protein (CRP). Additionally, 
previous systematic reviews have shown that improved indicators of fat and obesity follow a similar pattern of 
health disparity to those seen with  BMI37. Thus, we examine the potential mediation of BMI, as an indicator of 
obesity, along with other common social and behavioral mediators of SES, and the entire system of differentially 
expressed genes, upstream transcription factors and protein-protein interactors that drive immune dysregulation 
as a result of lowered SES.

We focus on American adults in their late 1930s, who are ostensibly healthy but nevertheless at-risk for later 
health challenges. We leverage the mRNA data from 4543 early adults participating in the National Longitudinal 
Study of Adolescent Health (Add Health)39. First, we identify cell functional pathways and their directionality in 
SES-related dysregulation of the immune system. To this end, we capitalize on publicly available pathway ontolo-
gies to functionally annotate genes that show changes in expression and that cluster together. Second, we identify 
upstream modulators and regulators of the differentially expressed genes to provide a systems perspective on SES 
and immunity. Such a view also isolates potential targets for remediation. Finally, we consider the behavioral and 
health-related factors that may explain associations between SES and the immune cell transcriptome. Results 
reveal that SES is associated with widespread dysregulation of immunity involving intricately interrelated dif-
ferentially expressed genes, transcription factors, and protein-protein regulators. Furthermore, BMI is a likely, 
potent mechanism driving these patterns.

Methods and materials
Add health and differential gene expression
The National Longitudinal Study of Adolescent to Adult Health (Add Health) is a representative study of ado-
lescents in the Unites States who were followed into adulthood over five waves of data  collection39. Study par-
ticipants provided informed written consent with respect to all aspects of the Add Health study in accordance 
with the University of North Carolina School of Public Health Institution Review Board (IRB). Transcriptomic 
profiles of the consenting participants were collected during Wave V of the Add Health Study (2016–2017) via 
an intravenous blood draw (age of subjects range from 33 to 43 years). The access to restricted use Add Health 
transcriptomic data was obtained by completing a contractual and data use agreement. Additional detailed 
information on the study design, interview procedures, consent procedures, demographic assessments, collec-
tion, sequencing and quality control of the blood sample, and derivation of the analytical samples is reported in 
Supplementary Methods and in previous  studies40–42. Furthermore, the data analysis and all methods presented 
in this work were carried out in accordance with the relevant ethical guidelines and regulations. We draw on 
the mRNA-seq data of 4015 subjects with complete information on the models’ variables. Socioeconomic status 
composite scores were calculated using the sum of standardized indicators of education, income, occupation, 
and subjective socioeconomic status of the early adult  subjects42–44.

Genes with low counts were excluded from the analysis (see Supplementary Methods). After normalizing 
the raw mRNA-seq counts using a weighted trimmed mean of log expression ratios (TMM normalization)45 
using the edgeR46 package in R, we analyzed genes whose expression varied significantly by the early adulthood 
socioeconomic composite score using a linear model  analysis47,48. We controlled for covariates that could influ-
ence mRNA abundance levels: sex, self-described race, age, pregnancy status, sample analysis plate, number 
of hours fasting prior to blood sample collection, use of anti-inflammatory medication (e.g., NSAIDS, COX-2 
inhibitors, inhaled corticosteroids), instances of common subclinical symptoms (e.g., colds, flu), and common 
infectious or inflammatory diseases (e.g., infection, allergies) in the 4 weeks prior to blood sample collection. 
We also corrected for batch effects using the ComBat function in the sva  package49 in R.
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Our overall analytic strategy is to (1) estimate clusters of genes across the whole genome and, within these 
clusters, identify genes that differentially expressed (DE) by SES (hereafter, SES–DEG); (2) characterize the 
biological function of these DE genes and gene clusters that are likely to have DE genes; (3) identify transcrip-
tion factors and their protein neighbors that are associated with these DE genes and act as a networked system; 
(4) determine the relative functional relevance of SES–DEG and upstream regulators in manifesting immune 
dysregulation, and, finally, (5) identify behavioral mediators that may account for associations between SES and 
DE genes and their upstream regulators.

Whole-genome clusters and cluster-SES relationship
Processed gene expression data from 14,251 transcripts in 4015 individuals were subject to unsupervised cluster-
ing using Weighted Gene Coexpression Network Analysis (WGCNA)50. We identified a total of 19 clusters and 
the number of genes in each cluster and the clusters’ overlaps with the SES–DEG are shown in Supplementary 
Fig. S1. To identify the clusters that have a significant relationship to SES, we modelled the cluster eigengenes (a 
summarized expression vector of each cluster) as a linear function of SES as in the differential expression analy-
sis. Additionally, we performed a Fisher exact test to identify clusters that show an enrichment for SES–DEG. 
Together, the two tests resulted in clusters that, (1) have a significant cluster-SES relationship and (2) are enriched 
for SES—up or downregulated genes (see Supplementary Fig. S2). Four clusters (Cluster 7, 11, 13 and 17) had 
eigengenes that are significantly differentially expressed by SES. Of the 4 clusters, Cluster 11 showed an over-
representation for SES—downregulated genes, while Clusters 7, 13 and 17 showed overrepresentation of by 
SES—upregulated genes. In this context, upregulation refers to a positive association between SES and mRNA 
abundance levels.

Functional enrichment analysis of the differentially expressed genes and significant clusters
Functional enrichment analysis for the SES–DEG (see Supplementary Fig. S3 and Supplementary Dataset S1) 
and WGCNA identified cluster genes (see Supplementary Fig. S4 and Supplementary Dataset S2) was performed 
using R Bioconductor package ReactomePA51 to identify the biological function of the genes (FDR p < 0.05). The 
Reactome results are organized in a hierarchical structure of biological pathways with each biological pathway 
being a node that shows parent–child  relationships52. We relied on this parent–child relational database to pool 
together multiple pathways under the same parent node in order to better understand the large-scale changes 
(up to 3 hierarchical levels). The significance of the parent node was determined by its most significant child.

Functional enrichment analysis of the SES–DEG and the upstream regulators was performed using the 
 ClueGO53 plugin in  Cytoscape54. This plugin allows for the combined analysis of multiple gene lists using a 
preselected ontology. We analyzed the SES–DEG (up- and downregulated gene lists) along with their upstream 
regulators (transcription factors and protein neighbors) with the Reactome ontology.

Identifying key controllers of genes exhibiting differential expression by SES
Upstream regulators of the SES–DEG (Set A; see Supplementary Fig. S5) were categorized into (1) transcription 
factors that are themselves differentially expressed (Set B; see Supplementary Fig. S5), (2) protein neighbors of 
the differentially expressed transcription factors (Set C; see Supplementary Fig. S5), and (3) transcription fac-
tors that putatively modulate the expression of differentially expressed genes (Set D; see Supplementary Fig. S5). 
Marbach et al.33 constructed tissue-specific regulatory networks that linked transcription factors and genes 
with a score based on a curated collection of sequence binding motifs. Those transcription factors that had a 
medium or greater confidence (> 0.4) of modulating the expression of the differentially expressed genes in blood 
tissue were included in the set of upstream regulators (Sets B and D). A total of 643 transcription factors were 
identified in the blood tissue-specific gene regulatory network. 304 transcription factors had gene interactions 
with at least a medium confidence score. Protein neighbors of differentially regulated transcription factors were 
obtained using the STRING  database55. Each protein-protein interaction (PPI) in STRING is annotated with 
a score that indicates the confidence of the interaction. Only neighbors with scores of at least high confidence 
(> 0.7) were included in the set of upstream regulators (Set C). Thus, Set A represents the DE genes and Sets B, 
C and D together constitute their upstream regulators. The 304 tissue-specific transcription factors had interac-
tions with 8543 unique protein-protein neighbors. 1750 neighbors exceeded the confidence threshold for PPI.

Possible mediators of SES and DE genes and upstream regulators
We examined behavioral and psychobiological process that might mediate associations between Wave V early 
adulthood SES and the expression of the genes and upstream regulators using a counterfactual mediational 
 framework56. The mediators included Body Mass Index (BMI), perceived stress (based on Cohen’s Perceived 
Stress  Scale57), current self-reported smoking status, consumption of alcoholic drinks (days drank over past 
30 days; categorized as 0 drinks, 1–2 drinks, 3–5 drinks, and more than 5 drinks per occasion), financial stress 
(self-reported difficulty in paying bills), and access to health insurance. We also compared the mediation of BMI 
with the mediation observed for waist circumference, which has been reported to be a more accurate measure 
of  fatness58.

Randomization test of differentially expressed genes and upstream regulators
We quantified the statistical significance of the observed results by performing randomization tests based on 1000 
randomly generated sets of differentially expressed genes. Random samples were drawn from the entire genome 
to obtain a set of genes equal in number to Set A (see Supplementary Fig. S5). Sets B, C, and D were derived 
from every randomly generated Set A using the same procedure used with the SES–DEG. We then computed 
the significance (empirical p-value) of every actual gene in Set A (DE genes) and Sets B, C, and D (upstream 
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regulators)59 by comparing them to their respective sets from the 1000 randomly generated sets. We obtained 
p-values for each of the sets of genes by combining the p-values of every gene in the set using Fisher’s method.

Results
Transcriptional alterations with SES are characterized by organism wide dysregulation
We performed a differential gene expression analysis followed by an enrichment analysis of the resulting 
SES–DEG (see Supplementary Dataset S2 and Supplementary Fig. S3). Upregulated genes indicate a significant 
association between high SES and high expression (i.e., a positive association). Functional enrichment of the 
SES–DEG (423 upregulated genes and 389 downregulated genes) showed a majority upregulated for pathways 
involving metabolism, signal transduction and cellular response to stress by a core of ribosomal and translational 
genes. Interestingly, these cytosolic ribosomal genes (RPL- and RPS-genes) were found to be downregulated 
with aging in an analysis of the human peripheral blood and previously linked with  SES42. Indeed, a combined 
WGCNA and SES—differential expression analysis (see Fig. 1) showed a tight clustering of the ribosomal and 
transcriptional activity genes (Cluster 11 in Fig. 1) that are responsible for the SES-upregulated pathways. One 
cluster of SES-DEGs (Cluster 7) displayed dysregulation in immune system and response, hemostasis and cell 
death that were predominantly driven by downregulated genes, while another cluster (Cluster 11), largely com-
prising upregulated ribosomal genes, affected transcriptional events in several cellular functions. Cluster 13 
consisted of genes involved in cell division and cell cycle control dysregulating a relatively small number of 
pathways in signal transduction and immune system, while Cluster 17 comprised too few genes for a meaning-
ful enrichment interpretation.

An inspection of enriched pathways reveals that SES-upregulated pathways include interferon innate immune 
response and neutrophil degranulation (see Fig. 2). Curiously, type II interferon (IFN-γ) signaling is also upregu-
lated. Despite the lack of direct evidence for their involvement, the genes that are tied to the upregulation of type 
I and type II interferon signaling do share HLA-genes that regulate the antiviral immune response, which may 
explain the overrepresentation of both classes of immunity. Figure 2 also shows an attenuation of proinflamma-
tory pathways with higher SES (i.e., upregulation of proinflammatory pathways with low SES) via pathways in the 
proinflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and proinflammatory 
toll-like receptors (TLR).

Figure 1.  Enrichment analysis of the WGCNA clusters exhibiting significant cluster-SES relationships. 
Eigengenes from individual clusters were identified using WGCNA and then examined for significant 
associations with SES (adjusted p < 0.05). Enriched biological pathways for significant clusters (adjusted p < 0.05) 
were then examined using Reactome. Here, upregulation refers to a significant positive association between 
SES and expression. The chord diagram shows the connection between the clusters (on the left half of the chord 
diagram) and the enriched grouped pathways (right). The width of the arcs and the lines connecting WGCNA 
identifies clusters to the enriched pathways correspond to the number of pathways that are dysregulated. For 
example, Cluster 13 (identified as “III” on the left half of the chord diagram) significantly downregulates 5 
pathways. 1 pathway each in Developmental Biology and Immune system (“D” and “I” on the right half of the 
figure) respectively, and, 3 pathways in Signal Transduction (marked “N”).
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Upstream regulators structure immune dysregulation with socioeconomic disparities
The biological pathways and molecular mechanisms associated with socioeconomic disparity were also examined 
via an analysis of upstream regulators (transcriptional factors and protein partners) of the DE genes. A combined 
functional enrichment analysis of the resulting upstream regulators (239 upstream regulators of SES—upregu-
lated genes and 87 upstream regulators of SES—downregulated genes) and SES–DEG (see Fig. 3 and Supple-
mentary Dataset S3) indicates a significant role of the upstream regulators in structuring the overrepresented 
pathways in the immune system. The upstream regulators include tissue-specific transcription factors that are (1) 
differentially expressed (Set B, see Supplementary Fig. S5 and Supplementary Table S1), (2) potentially regulating 
the expression of a differentially expressed gene (Set D, see Supplementary Fig. S5 and Supplementary Table S1), 
and (3) PPI neighbors of differentially expressed transcription factors (Set C, see Supplementary Fig. S5 and Sup-
plementary Table S1). Figure 3 indicates that the immune pathways that are enriched have a larger proportion 
of upstream targets. Importantly, many of these pathways were also enriched by SES–DEG signifying that the 
patterns of immune dysregulation observed in Fig. 3 do not reflect the inclusion of upstream regulators per se, but 
rather reflect the significant mechanistic role played by these transcription factors and protein partners. Further-
more, the immune dysregulation observed in functional enrichment analysis of the upstream targets without the 

Figure 2.  Immune pathway enrichment of the differentially expressed genes by early adult SES. Significantly 
enriched Reactome pathways (with immune parent nodes reported to the right, child nodes to the left) for 
SES–DEG. The size of the circle signifies the number of genes that contribute to the significant enrichment 
in a pathway and the color of the circle indicates Cramer’s V, a measure of the magnitude of association. The 
overrepresentation analysis shows a predominantly upregulated antiviral immune response (Interferon signaling 
and neutrophil degranulation) and downregulation in proinflammatory pathways (NF-κB and toll-like receptor 
cascade) with high SES.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1255  | https://doi.org/10.1038/s41598-024-51517-6

www.nature.com/scientificreports/

inclusion of SES–DEG (see Supplementary Fig. S6) mirror those enriched by SES–DEG alone and SES–DEG with 
upstream targets, suggesting that SES–DEG are not wholly responsible for SES-associated immune dysregulation.

Figure 4 shows the upstream regulators along with the SES–DEG represented as layers (4 in total, where the 
innermost circle of genes and upstream regulators is labelled “Layer 1”, sequentially to the outermost group of 
genes and regulators labelled “Layer 4”) based on their interaction scores derived from the STRING database 
and the number of times each gene or upstream regulator is involved in functional immune pathways that are 
enriched in Fig. 3. The genes that are responsible for the enrichment of each immune pathway were identified. 
The innermost layer in Fig. 4 depicts genes and upstream regulators that are involved in more than ten functional 
pathways, whereas the outermost layer consists of genes and upstream regulators that are only involved in one 
enriched biological process. The most essential regulators involved in the dysregulation of the immune system 
related to SES disparities thus occupy the center of the diagram. Significantly, variations in early adult SES are 
prominently linked to alterations in cytokine signaling in the immune system involving interleukin and interferon 
gamma signaling, Toll-like receptor signaling cascade, and TNF pathways (Fig. 3 and innermost layer in Fig. 4).

Proteins most deeply linked to SES inequalities invariably revolve around the cyclic 3ʹ–5ʹ adenosine 
monophosphate response element-binding protein (CREB) and NF-κB pathway signaling. Variations in the 
activity of CREB and NF-κB selectively upregulate the transcription of interferon response factor family while 
simultaneously inhibiting the activity of proinflammatory interleukins in subjects with high SES. Genes and 
transcription factors (via the upstream analysis) that are central to the functional response to SES disparities in 
functional gene regulation (shown in Fig. 3) are also shown in Fig. 4. Molecules are placed in layers depending 
on their contribution (instances of enrichment of a pathway) to the functional immune enrichment. The inner 
most layer consists of transcriptional factors such as CREB1, TP53, RELA, REL, BTRC , BTK and the MAPK-
family. CREB and REL proteins, among other important functions, play a crucial role in the activation of the 
fight-or-flight signaling pathways that is directly responsible in eliciting the CTRA gene expression profiles. 
Although a large fraction of the proteins is derived from the set of upregulated genes, it is noteworthy that these 
regulators can have far reaching impact and they are not always in the expected direction. This is particularly 
true for the proinflammatory toll-like receptors (TLR) (see Fig. 3) pathways, which have a larger proportion of 
downregulated genes than upregulated genes. However, they also functionally interact with the upstream regula-
tors connected to upregulated genes. The greater influence of the upstream regulators connected to upregulated 

Figure 3.  Combined functional immune enrichment analysis of the SES–DEG and their upstream regulators. 
Reactome pathways in the immune system are represented here as circular filled nodes. Reactome pathways are 
hierarchical, and the arrow connects a parent node to its child. The significance of pathways (adjusted p < 0.05) 
for the combined analysis are computed using  ClueGO53 and represented by the size of the circular nodes. These 
nodes are filled with a pie chart which indicates the contribution of individual gene class. The size of the circular 
node signifies the adjusted p-value (larger nodes are more significant).
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genes suggests that the downregulation of certain genes could transpire as a consequence of inhibitory activity 
of the transcription factors.

Social/behavioral mediators of SES-transcriptome associations
Figure 5 reports the median percentage mediated ratio for key SES-related social/behavioral processes in every 
layer of SES-related gene regulation. Intriguingly, the inner most group of genes that are most centrally implicated 
in SES-associated dysregulation, are also mediated the least (lowest median percentage mediated ratio) by every 
behavioral risk factor. However, this could reflect the fact that the inner most group of genes are not themselves 
differentially expressed despite potentially inducing larger mediated changes in the outer layers of genes. BMI 
presented the strongest explanation of the association between the transcriptional response of the gene groups 
and SES, followed by smoking tobacco (also see Supplementary Figs. S7 and S8). No significant mediation was 
observed for financial stress or access to health insurance. Furthermore, we observed no significant differences 
between BMI and waist circumference in mediating the SES—associated immune transcriptome (see Supple-
mentary Fig. S9).

Figure 4.  Relative importance of SES–DEG and upstream regulators to the immune dysregulation. The figure 
shows the upstream regulators along with the SES–DEG represented as layers (4 in total). The innermost layer 
represents genes and upstream regulators that are involved in the enrichment of more than 10 functional 
pathways (in Fig. 3) and thus they are pivotal in immune dysregulation, whereas the outermost layer consists of 
genes and upstream regulators that are only involved in 1 enriched biological process.
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Discussions
The present analyses expand the scope of prior studies of SES-related alteration in transcriptomic profiles of 
human immune response genes by identifying new genomic functional impacts (e.g., ribosomal biology) and 
new features of the gene regulatory architecture of SES (e.g., TP53, BTRC , BTK and MAPK transcriptional con-
trol pathways). Consistent with prior research, we find that SES is negatively associated with pro-inflammatory 
pathways in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and proinflammatory 
toll-like receptors (TLR). Our findings also link high SES to elevated type II interferon (IFN-γ) signaling and 
identify a related upregulation of HLA- genes, which may underpin both type I and type II interferon effects.

The analyses extend previous research by mapping networks of upstream blood-specific transcriptional fac-
tors and protein interactions that could play a vital role in structuring the observed transcriptional landscape. 
The complexity of the impact of socioeconomic inequalities on the immune system and its association with 
diseases with widely varying pathologies warrants a systems-oriented approach to comprehensively analyze the 
SES-related perturbations in the immune transcriptome. To our knowledge, most prior research on SES focuses 
solely on transcriptomic alterations with a particular focus on pro-inflammatory  action30. Here, we include the 
upstream regulators to depict an enhanced view of dysregulation with SES, shedding light on a tightly knit group 
of transcription factors that play a central role in modulating the transcriptomic alterations.

Our findings map a central network of upstream regulators that vary as a function of early adult SES (central 
positions in Fig. 4). Given the lack of change in the expression of the genes that encode these transcriptional fac-
tors, receptor-mediated post-transcriptional modification of these transcriptional factors (e.g., receptor-mediated 
phosphorylation of CREB1, TP53, RELA, REL, BTRC , BTK and MAPK) might modulate the expression of their 
downstream targets.

Despite the congruence between our results and the CTRA model in terms of dysregulated pathways, the 
findings show that SES disparities in early adulthood, interestingly, do not alter the same set of genes identified in 
previous studies of CTRA. For example, the attenuated interferon innate responses in the CTRA model is possible 
through the direct suppression of INFA and INFB. Here, we observed upregulated HLA-genes that additionally 
regulate the antiviral innate response. These findings call for a for further study in SES-modulated genes in the 
immune system beyond the signaling pathways already implicated in structuring the conserved transcriptional 
response to adversity (CTRA) RNA  profile60.

Figure 5.  Mediation analysis for common behavioral risk factors and the layers of upstream regulators of 
SES-associated immune system dysfunction. The median percent mediated ratio (Average casual mediated 
effect (ACME)/total effect) is shown for mediational models for the risk factors and the layers of SES–DEG and 
upstream regulators in Fig. 4. All the mediational models were significant (aggregated adjusted p-value < 0.05) 
(also see Supplementary Figs. S6 and S7). Negative ratios suggest a pattern of suppression.
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The observed SES-related transcriptional perturbations are associated with both up- and downregulated 
functional pathways in the immune system. Social stress-induced gene alterations in humans are associated with 
diseases that include both upregulation of the immune system as well as suppressed immune responsiveness 
with lowered social status. This seemingly perplexing pattern has been explained by the selective characteristics 
of the immune transcriptome, i.e., the increase in expression of certain pro-inflammatory genes and the repres-
sion of groups of antiviral immune response  genes40,61–63. It is, therefore, unsurprising that a similar pattern of 
dysregulated immune pathways is emergent in the blood transcriptomic landscape of subjects in Add Health 
with contributions of enrichment from both up- and downregulated gene clusters. Such a finding calls for addi-
tional research that moves beyond the initial general finding that stressors upregulate proinflammatory genes 
and downregulate antiviral genes.

Lastly, among the common mediating (or possible explanatory) mechanisms studied here, BMI consistently 
emerged as a plausible mediator of the SES associations with immune cell gene regulation. Smoking also appears 
to play a significant role in the SES-related transcriptional alterations. These results underscore the importance 
of gene regulatory network approach in formulating a comprehensive understanding of psychosocial stressors 
and their impact on biological mechanisms early in life. Studies have already established that changes caused 
by socioeconomic disparities in early adulthood could have far-reaching implications for chronic conditions in 
later adulthood. Identification of novel regulators of such perturbations is an important step in formulating a 
mitigating strategy.

We used tissue-specific regulatory networks to link transcription factors to differentially expressed genes, and 
subsequently the STRING database to find protein interaction partners. There were 643 transcription factors 
identified in the gene regulatory network, with an even a smaller number (304) having a confidence score that 
is above the threshold used (0.4). High confidence (threshold > 0.7) protein-protein neighbors derived from the 
whole network of 643 transcription factors numbered 3051 (18,875 total protein-protein neighbors), of which 
1750 were pruned for the 304 transcription factors. Given the central role of many of the transcription factors 
and protein partners, one could argue that the set of upstream regulators found from the SES–DEG could be 
equal to a set of upstream regulators derived from a random set of genes. To examine this possibility, we per-
formed randomized trials by starting with randomly selected sets of “DE” genes to then derive these upstream 
regulators of the random sets. We subsequently compared the upstream regulators of each random set of “DE” 
genes to our observed results (see Supplementary Figs. S10 and S11). While some of the individual transcription 
factors may not reach statistical significance (Supplementary Fig. S10), the entire set of the upstream regulators 
is highly significant (Supplementary Fig. S11).

Limitations
Several limitations are noteworthy. First, the hypotheses and the subsequent results are driven by the mRNA 
abundance data collected once from every participating subject. The repeated collection of transcriptomic data 
would be essential to address their highly transient nature, which is likely associated with considerable noise. 
Second, the identification of upstream transcriptional regulators of gene expression is performed with the aid 
of tissue-specific gene regulatory networks. These networks link genes to transcription factors based on experi-
mental evidence and assign a confidence score to every identified transcription factor. It is, therefore, possible 
that transcription factors that play a central role in cell maintenance and cell cycle may be implicated without 
having a substantive role in the etiology or progression of dysfunction. We tried to account for such effects using 
a randomization experiment. However, direct measurements of protein abundance are required to concretely 
determine the role of every transcription factor. In the absence of proteomic assay data, inferring transcription 
factor abundance from publicly available chromatin immunoprecipitation followed by sequencing (ChIP-seq) 
data sources that have similar gene expression alterations as those observed with lowered SES, could offer valu-
able insights and presents an important extension of the current work. Finally, because the design is not experi-
mental, the findings cannot be interpreted as casual relationships. This limitation is especially salient for the 
casual identification of social and behavioral mediators of SES-related immune dysregulation. Future research 
could usefully examine them and other mediators in a casual framework to disentangle expected tissue repair 
response to stress induced by these risk factors (e.g., obesity, smoking) and global immune system dysfunction.

Nevertheless, results suggest that a network of transcription factors and protein partners play a pivotal role 
in modulating the SES-related transcriptional response that precipitates dysregulated immune system response 
in terms of inflammation and interferon innate immunity. These central actors are important targets for future 
research connecting health disparities and socioeconomic inequalities. The results highlight the need for system-
oriented analyses to comprehensively map the biological impact of SES disparities and they represent an essential 
step forward in identifying targets for possible prevention and intervention.

Data availability
Add Health data are available at https:// www. cpc. unc. edu/ proje cts/ addhe alth/ docum entat ion/. All the data used 
in these analyses, except for the transcriptomic data are not restricted. The mRNA-seq data is available via a 
restricted data contract. Additional information and application for the restricted-use data can be accessed 
through the Carolina Population Center (CPC) data portal at https:// data. cpc. unc. edu/ proje cts/2/ view. The 
Cytoscape sessions, supplemental datasets and R codes used in these analyses are available at https:// github. 
com/ socia lgnome/ Immune- SES.
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