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ABSTRACT

Recent work in XAI for eye tracking data has evaluated the suit-
ability of feature attribution methods to explain the output of deep
neural sequence models for the task of oculomotric biometric iden-
tification. These methods provide saliency maps to highlight impor-
tant input features of a specific eye gaze sequence. However, to date,
its localization analysis has been lacking a quantitative approach
across entire datasets. In this work, we employ established gaze
event detection algorithms for fixations and saccades and quanti-
tatively evaluate the impact of these events by determining their
concept influence. Input features that belong to saccades are shown
to be substantially more important than features that belong to
fixations. By dissecting saccade events into sub-events, we are able
to show that gaze samples that are close to the saccadic peak veloc-
ity are most influential. We further investigate the effect of event
properties like saccadic amplitude or fixational dispersion on the
resulting concept influence.
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· Human-centered computing → Scientific visualization; ·
Computing methodologies → Machine learning; · Applied
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1 INTRODUCTION & RELATED WORK

Deep neural networks led to considerable advances in the do-
mains of computer vision [Voulodimos et al. 2018], speech recogni-
tion [Nassif et al. 2019], time series analysis [Fawaz et al. 2019] and
gaze analysis [Jäger et al. 2019]. It has been widely observed that
end-to-end training of deep neural networks, that is, using unpro-
cessed data as input to the network and let the model learn internal
representations, typically outperforms approaches that use aggre-
gated data and engineered features as model input [Krizhevsky et al.
2012]. We observe this trend also in gaze analysis, where several
network architectures have been presented over the last years that
improved on the state-of-the-art by using the non-aggregated gaze
velocity time series as input. Breakthroughs were especially made
on the task of oculomotoric biometric identification, where large
improvements in performance were observed that even went along
with a decrease in the required duration of input sequence length
for successful identification [Jäger et al. 2019; Lohr et al. 2021; Lohr
and Komogortsev 2022; Makowski et al. 2021].

The downside of these complex neural networks is their black
box nature as they are generally not interpretable. This issue is
particularly acute for the vast amount of potential medical appli-
cations of gaze analysis, such as the detection of autism [Alcañiz
et al. 2021; Jiang and Zhao 2017], ADHD [Deng et al. 2023] or de-
velopmental language disorders [Key et al. 2020; Raatikainen et al.
2021], as medical applications typically require explainable model
predictions.

To provide explanations alongside model predictions, local post-
hoc feature attribution methods have been developed to provide
saliency maps of the relevance of each input feature [Bach et al.
2015; Shrikumar et al. 2016; Sundararajan et al. 2017]. This way
we can visualize the positive and negative impact of the input and
point to the most important parts of the input that led to a specific
model decision. These methods are local in the sense that they are
computed for a single data instance, and they are post-hoc as they
are applied to an existing trained model [Molnar 2022].

However, in the context of end-to-end trained neural networks
without explicit feature engineering we also have an input space
that is much less interpretable than engineered features. That leads
to feature attribution methods coming short in interpretability as
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Figure 1: The overall process for evaluating the concept influences of distinct types of gaze events.

saliency maps lack semantic concepts in complex input spaces.
Moreover, global insights across whole datasets are desired to ex-
plain the intertwined system of data and trained model. To over-
come this limitation, we can evaluate the impact of the occurence
of particular semantic concepts in the input signal, a method named
concept influence [Theiner et al. 2022].

Alternative methods to evaluate the impact of semantic concepts
on the model output include the inpainting or masking of specific
concepts and quantifying the change of output of the neural net-
work [Williford et al. 2020]. Moreover, internal representations of
neural networks can be harnessed to generate concept activation
vectors [Kim et al. 2017].

Gaze events like fixations and saccades are main descriptive
concepts of eye tracking research [Holmqvist et al. 2011] and thus
are natural candidates for semantic concepts in gaze signals. By
evaluating the concept influence of these gaze concepts across entire
datasets we generate insights on both model and data. Prior eye
gaze related research either uses descriptive input features on ma-
chine learning models [Rigas et al. 2016] or is limited to statistical
analysis [Holland and Komogortsev 2013; Rigas et al. 2018] to gain
insights on the impact of semantic concepts. First studies on the
interpretability of models in the eye tracking domain are carried
out by Kumar et al. [2020] and feature a PCA analysis of the embed-
ding layer of a neural network. Further, Krakowczyk et al. [2022]
evaluate several feature attribution methods which are applied in
the context of oculomotoric biometric identification.

This work in turn puts forward the following contributions for
evaluating deep neural sequence models:

• Evaluation of concept influence of the basic event types sac-
cades and fixations;

• Dissection of saccades into sub-events and evaluation of
their concept influences;

• Investigation of the relationship between event properties
and the resulting concept influence.

2 PROBLEM SETTING

We investigate the explainability of models which get eye gaze
velocity time-series data as input and which are trained in a biomet-
ric identification setting. We choose this specific task for its most

striking performance benefits over traditional feature engineering
approaches.

Given eye gaze time-series data 𝑋 ⊂ R𝑁×𝐷×𝐿 with 𝑁 instances,
𝐷 channels and a sequence length of 𝐿, and a one-hot coded par-

ticipant labeling 𝑌 ∈ {0, 1}𝑁×𝐾 with 𝐾 labels, we can train a bio-

metric model 𝜙 : R𝐷×𝐿 → R
𝐾 in both a multiclass and a metric

learning setting to output the presumed identity of a recorded par-
ticipant [Lohr and Komogortsev 2022]. We can further create a
local post-hoc feature attribution function 𝑓 (x, 𝜙) which attributes
a relevance to each input feature of any instance x in regard to the
output of the actual model 𝜙 [Krakowczyk et al. 2022].

For image-data these feature attributions are often called pixel-
wise explanations [Bach et al. 2015], and although referred to as
explanations, they can nevertheless lack interpretability as single
pixels are not inherently interpretable by default [Theiner et al.
2022]. This problem can intensify with multi-channel time-series
data, as the input space is potentially visually less interpretable.

By measuring the overlap of the highest attributed input features
and an interpretable segmentation that refers to a specific concept,
we can compute the concept influence of this concept [Theiner et al.
2022]. Whereas in the image-domain, segmentations are sets of
pixels that are associated with detected objects like houses, streets,
persons or the sky, in the time-series domain, segmentations refer
to events delimited by their on- and offsets. In the case of eye track-
ing data, gaze events suggest themselves as interpretable concepts
for our study, as their function and underlying neuro-biological pro-
cesses have been extensively researched over the past decades [En-
gbert and Kliegl 2003; Martinez-Conde et al. 2004, 2006; Rayner
et al. 2004; Rayner and Pollatsek 1983], and there also exist a vast
amount of methods to automatically detect them [Andersson et al.
2016; Startsev and Zemblys 2022].

When investigating which parts of the input sequence are most
relevant for the output of deep neural sequence models, we can
make use of the established concepts of distinct gaze events and
evaluate which ones of these exhibit the highest influence on the
model output.

3 MATERIALS AND METHODS

This section is structured alongside Figure 1, where we illustrate
the overall evaluation process. We start out by presenting the used
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datasets in Subsection 3.1 and subsequently describe our data pre-
processing steps in Subsection 3.2. We continue by introducing the
employed algorithms for gaze event detection in Subsection 3.3 and
detail the method for dissecting a saccadic event into sub-events
in Subsection 3.4. Subsection 3.5 briefly covers the biometric task
and model under investigation, whereas Subsection 3.6 gives an
overview of the employed attribution methods. We delineate the
term concept influence in Subsection 3.7. The overall evaluation
protocol is detailed in Subsection 3.8.

3.1 Dataset

Wemake use of the three publicly available datasets GazeBase [Grif-
fith et al. 2021], JuDo1000 [Makowski et al. 2020] and the Pots-

dam Textbook Corpus (PoTeC) [Jäger et al. 2021]. All datasets are
recorded at a sampling rate of 1000Hz. Only JuDo1000 contains
binocular recordings. We have reduced the GazeBase dataset to the
first 4 rounds where most subjects participated in. We use all of the
available stimuli for evaluation. Table 1 in the Appendix provides a
brief summary of dataset properties.

3.2 Data Preprocessing

Based on the preprocessing pipeline of Lohr and Komogortsev
[2022], we apply the Savitzky-Golay differentiation filter [Savitzky
and Golay 1964] with a window size of 7 and an order of 2 to
transform positional data into gaze velocity data. We construct
subsequences by a non-overlapping rolling window with a window
size of 5 s for GazeBase and 1 s for JuDo1000 and PoTeC. We clamp
velocities to ±1000 °/s and exclude all subsequences which would
need padding or comprise more than 50% missing values. We finally
apply z-score normalization and replace all missing values with
0. We leverage the pymovements package for these preprocessing
steps [Krakowczyk et al. 2023].

3.3 Gaze Event Detection Algorithms

We limit our study to the investigation of fixations and saccades
as these two event types are the main ones investigated in the
literature. Further candidates would have been post-saccadic oscil-
lations, smooth pursuit and blinks, but also micromovements like
drift and tremor. Note that we do not distinguish between saccades
and microsaccades in this work and include microsaccades in the
set of saccades. For binocular data we solely use the right eye for
event detection.

We use distinct detection algorithms for fixations and saccades
as suggested by Andersson et al. [Andersson et al. 2016]. We use
the I-VT algorithm [Salvucci and Goldberg 2000] to detect fixations
and the algorithm of Engbert and Kliegl [2003] to detect saccades.
Table 2 in the Appendix lists all parameters used in the event de-
tection process. Although the I-VT algorithm originally just uses a
single parameter for its fixation velocity threshold, we make use
of an additional minimum fixation duration and maximum fixa-
tion dispersion threshold to avoid misclassifications. Fixations that
exceed these values will be simply excluded from evaluation.

The main parameter of the employed saccade detection algo-
rithm is the threshold factor which is multiplied with the adaptively
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Figure 2: Illustration of the saccade event dissection algorithm. The

saccade event, depicted as the brown horizontal bar at the bottom,

is detected by the saccade detection algorithm [Engbert and Kliegl

2003]. All samples in a saccade that reach at least 80% of its peak

velocity are associated with the peak phase (green bar). The rise

phase lasts from saccade onset to peak onset, the fall phase lasts

from peak offset to saccade offset (orange bars). Finally we add a

pre and post phase at the beginning and the end of a saccade with a

duration of 1/3 of the total saccade duration (blue bars).

determined noise threshold. We further exclude saccades from eval-
uation which exceed the valid ranges for saccade duration and peak
velocity stated in Table 2 in the Appendix.

3.4 Event Dissection for Saccades

Looking at a typical velocity profile of saccadic eye movements, we
can identify distinct phases which are illustrated in Figure 2. We see
a rapid increase in velocity at the beginning and a velocity decline
at the end of a saccade, with a short phase in-between where the
gaze velocity is near saccade peak velocity. We call these sub-events
the rise, fall and peak phases. The peak phase is defined as the time
steps where the velocity is at least 80% of the peak velocity of the
respective saccade event. We further chain an additional event to
each before the beginning (pre-phase) and after the end (post-phase)
of a saccade, with a duration set to be 1/3 of the associated saccade.
Due to the neglible occurence of samples which are below 80% of
the peak velocity but are between two local peaks greater than 80%
we disregard these samples in our analysis. This way we get a total
of 5 granular events out of a single saccade event.

3.5 Biometric Model

We investigate the explainability of EyeKnowYouToo, a state-of-the-
art neural network model for oculomotoric biometric identifica-
tion developed by Lohr and Komogortsev [2022]. This model is a
convolutional network that uses multi-channel sequences of yaw
(horizontal) and pitch (vertical) angular gaze velocities as input
and that is end-to-end trained to minimize a weighted sum of cat-
egorical cross-entropy and multi-similarity loss. Instead of using
the output of the embedding layer for comparison with existing
embeddings of an enrollment database as in the original biometric
system [Lohr and Komogortsev 2022], we make use of the nodes of
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the classification layer as targets for calculating attributions of each
inference. We modified Dillon Lohr’s model implementation [Lohr
and Komogortsev 2022] in order to facilitate our application of at-
tribution methods. Changes relate to the naming and grouping and
layers while the overall model architecture and behavior during
training is left the same as in the original.

We restrict our study to this single model as it exhibits the best
performance on the given biometric task while also being smallest
in the number of model parameters. Although a comparison of
explainability metrics between state-of-the-art biometric models is
interesting, such a comparison unfortunately cannot be in scope of
our study.

3.6 Attribution Methods

Feature attribution methods attribute relevance to each input fea-
ture, such that saliency maps can be generated to visualize the
positive and negative impact of the input for a specific model pre-
diction [Bach et al. 2015; Shrikumar et al. 2016; Sundararajan et al.
2017].

Based on the findings of Krakowczyk et al. [2022], we limit this
study to the three best performing methods: DeepLIFT (DL) [Shriku-
mar et al. 2017], Integrated Gradients (IG) [Sundararajan et al. 2017]
and Layer-wise Relevance Propagation (LRP) [Bach et al. 2015;
Montavon et al. 2017, 2018]. We use the Zennit library [Anders
et al. 2021] for the implementation of LRP rules and the Captum
library [Kokhlikyan et al. 2020] for its DeepLIFT and IG implemen-
tations.

All three methods are backpropagation-based in the way that
they propagate the relevance of the model output back to each
input feature [Ancona et al. 2017]. DeepLIFT and IG additionally
require a baseline reference input which is desired to generate
neutral model output and supposed to have low relevance across
all input features. We set this baseline to zero in concordance with
predominant usage [Sturmfels et al. 2020].

IG attributes relevance by computing the gradients of a model
with respect to each input feature. Input features are step-wise lin-
early interpolated from the reference baseline into the given input
instance. The integral of the gradients along this interpolatation
path is multiplied by the difference between reference baseline and
given input instance [Sundararajan et al. 2017].

LRP attributions are computed by backpropagating the model
output layer by layer. Depending on the product of activations
and weights of the incoming connections, relevance of each unit is
passed down to the preceding layer.We limit this study to the vanilla
LRP-𝜀 rule [Kohlbrenner et al. 2020] and set 𝜀 = 0.25 [Montavon
et al. 2019].

DeepLIFT [Shrikumar et al. 2017] is similar to the former layer-
wise backpropagation method but uses the reference baseline to
calculate activation reference points for each unit. Activation differ-
ences to the reference points are then backpropagated as relevance.

3.7 Concept Influence

As stated in the problem setting in Section 2, the drawback of pixel-
wise feature attributions is that pixels are usually not inherently
interpretable on their own. When we ask which parts of the input

have the biggest impact on the output of the model under investiga-
tion, we usually expect the explanation to be given in interpretable
high-level concepts instead of a simple saliency map. We further do
not want to be limited to local attributions computed for individual
data instances only, but aim at global inferences about the dataset
and model as a whole.

The concept influence method proposed by Theiner et al. [2022]
which is originally developed for image data, tackles this issue by
quantifying the overlap between given concepts and the highest
attributions. To this end, each concept is represented as a binary

segmentation 𝑆 ∈ {0, 1}𝐿 , where 𝑆𝑖 = 1 encodes the presence of the
respective concept at the specific step 𝑖 in the sequence of length 𝐿.
We refer to the segmentation 𝑆 as the concept segmentation, with

its size |𝑆 | being defined as
∑
𝐿

𝑖=1 𝑆𝑖 given the sequence length 𝐿.

We further create a second segmentation 𝑇 ∈ {0, 1}𝐿 from the
top-𝑘 highest feature attribution values, after squashing multi-
channel feature attributions to a single channel by taking the step-
wise maximum. As in the original work by Theiner et al. [2022] we
set 𝑘 to be 2 % of the input size (20 for an 𝐿 of 1000, 100 for an 𝐿 of
5000).

To measure the influence of a specific concept, we take the size
of the intersection of the concept segmentation 𝑆 and the top-𝑘
attribution segmentation 𝑇 . This intermediate result is called the
top-𝑘 intersection [Theiner et al. 2022]. To account for the fact
that the size of the concept segmentation has an impact on the
resulting intersection, we perform a weighting by dividing the top-
k intersection by the size of the segmentation |𝑆 | relative to the
sequence length 𝐿 as defined in Equation 1.

c =
𝐿

|𝑆 |

1

𝑘

𝐿∑︁

𝑖=1

𝑆𝑖 ∧𝑇𝑖 (1)

The resulting value 𝑐 is the concept influence for the respective
concept and ranges between 0 and 𝐿 / |𝑆 |. A concept influence
above 1 is regarded as highly influential [Theiner et al. 2022].

3.8 Evaluation Protocol

We train model weights and subsequently generate attributions by
applying a k-fold cross-validation protocol which splits data into
training and test sets. We use different schemes for each dataset
to split data into folds: leave-one-round-out for GazeBase (𝑘 = 4),
leave-one-session-out for JuDo1000 (𝑘 = 4), and leave-one-text-out
for PoTeC (𝑘 = 12). We compute attributions on the test set and set
the predicted class as the target class for relevance computation.

We implement the general evaluation framework using scikit-
learn [Pedregosa et al. 2011] und use the attribution metric imple-
mentations from Quantus [Hedström et al. 2023]. Our hardware
setup comprises an AMD EPYC 7742 CPU and a NVIDIA DGX A100
GPU. The code can be found online.1

4 EXPERIMENTAL RESULTS

We present our experimental results in the following section. All
attributions are evaluated on the model described in Section 3.5.
Figure 1 in the Appendix reports accuracies of at least 90% for each
used dataset. We begin by putting forward the concept influence

1https://github.com/aeye-lab/etra-2023-bridging-the-gap
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Figure 3: Concept influences for saccades and fixations

evaluation of the basic event types in Section 4.1, whereas Sec-
tion 4.2 deals with the concept influences of saccade sub-events.
We bin fixations and saccades according to several properties and
show our results in Section 4.3.

4.1 Concept Influence of Fixations and Saccades

Out of the detected saccades and fixations from Section 3.3 we
create concept segmentations for each event type. The distribution
of segmentation sizes is depicted in Figure 2 of the Appendix. Across
all three datasets we observe a much greater segmentation size for
fixations than for saccades.

The resulting concept influences in Figure 3 demonstrate very
high values for saccades instead. In contrast, fixations rarely exceed
a concept influence of 0.1 which assesses their influence on model
prediction to be very limited. This holds true across all datasets
and attribution methods. We can conclude that according to the
chosen evaluation method, saccades have a much bigger concept
influence and thus their velocity profiles contain more information
with respect to the problem setting of biometric identification than
it is the case for fixations.

4.2 Saccade Sub-Event Dissection

We further present the results for the event dissection experiment
where we dissect saccades into sub-events as shown in Figure 4.
The distribution of the sub-event segmentation sizes can be found
in Figure 3 of the Appendix. Across all datasets and attribution
methods, we observe the highest concept influence for samples
belonging to the peak phase of the saccadic profile. The concept
influences of rise and fall phases are both about half as high as the
peak phase. We note close to no concept influence for the pre phase,
but a moderately influential post phase which can be associated
with the occurence of post-saccadic oscillations.
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Figure 4: Concept influences for saccade sub-events.

4.3 Event Property Binning

In this subsection we study the effect of different event properties
on the resulting concept influence. We select two properties for
each event type: we study the duration and amplitude of saccades
and the dispersion and velocity standard deviation of fixations. The
distribution of the segmentation sizes across these properties can
be found in Figure 4 of the Appendix.

Starting with the duration of saccades in Figure 5(a), we ob-
serve the highest concept influences for saccades with a duration
of about 20ms. We further observe a concept influence peak for
saccade amplitudes below 10◦ on the JuDo1000 and PoTeC datasets
in Figure 5(b). Regarding the GazeBase dataset the peak is much
less pronounced and is slightly higher at about 10◦. Continuing
with properties of fixation events, we mostly see flat curves and
depending on the data set we spot rare outliers on the upper bounds.
In the case of fixation dispersion in Figure 5(c), we observe concept
influences above 1 solely on high dispersion outliers of the PoTeC
dataset. In the case of the standard deviation of velocities during
fixations presented in Figure 5(d), we observe a rise in concept in-
fluence on high standard deviations, but concept influences above
1 are solely reached on the JuDo1000 dataset.

5 DISCUSSION & CONCLUSION

We have demonstrated the feasibility of evaluating the concept in-
fluence of gaze event types to gain insights on which parts of a gaze
sequence is most relevant for the classification process of a state-
of-the-art biometric model. We observed high concept influences
for saccades with the peak phase of a saccade event to be especially
influential. In contrast, fixations exhibit neglible concept influences
with the exception of fixations with a high dispersion or a high
standard deviation in velocity during fixation.
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Figure 5: Results for the event property binning experiment. The dashed gray horizontal line represents a concept influence of 1.

Although the specific results of this study are very much con-
strained to the oculomotoric biometric setting, this work serves as a
frame work for further research on the explainability of deep neural
sequence models that consume gaze time-series data. This way we
can harness the best of both worlds: top performance from neural
networks and interpretable insights from descriptive concepts.
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