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ABSTRACT

Neural networks that process the raw eye-tracking signal can out-

perform traditional methods that operate on scanpaths prepro-

cessed into fixations and saccades. However, the scarcity of such

data poses a major challenge. We, therefore, present SP-EyeGAN,

a neural network that generates synthetic raw eye-tracking data.

SP-EyeGAN consists of Generative Adversarial Networks; it pro-

duces a sequence of gaze angles indistinguishable from human

micro- and macro-movements. We demonstrate how the generated

synthetic data can be used to pre-train a model using contrastive

learning. This model is fine-tuned on labeled human data for the

task of interest. We show that for the task of predicting reading

comprehension from eye movements, this approach outperforms

the previous state-of-the-art.
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1 INTRODUCTION

Eye tracking data has a wide range of applications, including the

assessment of linguistic and cognitive skills [Reich et al. 2022],

the detection of conditions such as dyslexia [Haller et al. 2022]

or attention deficit hyperactivity disorder [Deng et al. 2022], and

even identifying individuals based on their unique patterns of eye

movements [Lohr and Komogortsev 2022; Makowski et al. 2021]. In

the context of biometric identification, using the raw eye-tracking

signal of yaw and pitch angles at the tracker’s sampling rate as

input to a deep neural network instead of preprocessed and possibly

aggregated scanpaths of saccades and fixations has been shown to

improve performance by an order of magnitude and enable the use

of shorter input sequences [Jäger et al. 2020].

However, data scarcity is a major challenge for developing such

neural networks; collecting eye-tracking data is costly in terms of

labor and equipment. There is also a risk that personal information

such as gender, identity, or ethnicity may be extracted from eye

movements, creating a major privacy concern. These problems

could potentially be mitigated by using synthetic instead of real-

world data to train (or pre-train) machine-learning models. Existing

approaches to generating synthetic eye-tracking data are limited

in their ability to create realistic data; most known approaches

only generate fixation positions and durations [Engbert et al. 2005;

Kümmerer and Bethge 2021; Reichle et al. 2003] or use statistical

models [Campbell et al. 2014; Duchowski et al. 2016; Fuhl and

Kasneci 2018].

In computer vision, biometrics, and other fields, the development

of generative adversarial networks (GANs) to generate synthetic

data has shown promising results [Bowles et al. 2018]. In this paper,

we develop SP-EyeGAN (a model to create Scan Paths for Eye-

tracking data using a GAN), a system consisting of two GANs

that are capable of generating synthetic eye-tracking data that

closely mimics real-world data, and that can be used to overcome
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the challenges of data scarcity and privacy. We further provide a

proof-of-concept study to demonstrate how the synthetic data gen-

erated by SP-EyeGAN can be used to pre-train any neural network

architecture that operates on raw eye-tracking data for an arbitrary

downstream task. To this end, we train two different neural net-

work architectures that have led to the above mentioned advances

in eye-tracking based biometrics. We employ these architectures

and investigate whether pre-training them on synthetic data allows

us to reach similar advances in other downstream tasks which to

date have been proven quite challenging, namely general reading

comprehension, text comprehension, text difficulty and nativeness

of a reader.

The rest of the paper is structured as follows. In Section 2, we dis-

cuss relatedwork. Afterwards, in Section 3, we describe SP-EyeGAN

and the usability of SP-EyeGAN for contrastive pre-training. Sec-

tion 4 details our experimental results, which are examined for

limitations in Section 5. In Section 6, we provide a more extensive

analysis and interpretation of these results, followed by a conclu-

sion in Section 7.

2 RELATED WORK

Existing methods for generating human-like eye-tracking data can

be divided into training-free statistical models and trained machine-

learning models.

Statistical models. Lee et al. [2002] and Duchowski and Jörg

[2015] presented statistical approaches that generate eye move-

ments for rendered, animated faces. Ma and Deng [2009] have

developed a method that synthesizes natural eye gaze, given a head-

motion sequence as input, by statistically modeling the relationship

between gaze and head movements. Le et al. [2012] generate realis-

tic head motion, eye gaze, and eyelid motion simultaneously based

on speech input. Wood et al. [2015] present a method that generates

eye crops together with gaze vectors. Yeo et al. [2012] proposed a

statistical model that generates an eye-tracking sequence of sac-

cades and smooth pursuits for an agent catching a ball. All of these

approaches aim at making rendered faces more realistic rather than

creating realistic eye-tracking data that include micro- and macro-

movements as well as a noise component. An approach of Campbell

et al. [2014] creates realistic eye-tracking data based on a statistical

model of jointly estimated dynamic properties of eye movements

for a known saliency map of the stimulus. Duchowski et al. [2016,

2015] add micro-saccadic jitter, noise, simulated measurement error

and pupil unrest to a previously generated eye-tracking sequence.

Fuhl and Kasneci [2018] and Fuhl et al. [2018] simulate saccadic

movements by gamma distributions and smooth pursuit onsets with

the sigmoid function. EyeSyn [Lan et al. 2022] generates fixational

movement using Gaussian and pink noise. These two statistical

models are used as reference models in our evaluation.

Machine-learning models. Simon et al. [2016] employ a convolu-

tional neural network (CNN) and long short-term memory (LSTM)

modules to generate synthetic eye-tracking data; this model is lim-

ited to generating eye-tracking data for static images. Assens et al.

[2018] proposed a GAN that consumes images as input and gen-

erates fixation points but is unable to model saccadic movements.

Fuhl and Kasneci [2022] use a hierarchical 𝑘-means algorithm, HPC-

Gen, that generates eye-tracking data. HPCGen generates random

eye-tracking data points not following a specific stimulus with no

constant sampling rate, which is not suitable to generate micro-

movements and fixations. Fuhl et al. [2021] devised a variational

autoencoder (VAE) that generates eye-tracking data, but not for a

specific stimulus. We use this model as one of the baselines in our

evaluation.

3 METHOD

This section introduces our proposed method SP-EyeGAN that

generates synthetic eye movement data, and a contrastive pre-

training framework to use the generated data to pre-train a neural

embedding for eye movement sequences.

3.1 SP-EyeGAN

SP-EyeGAN is composed of two independent, structurally identical

generative adversarial networks (GANs) [Goodfellow et al. 2014]

for generating fixations (FixGAN) and saccades (SacGAN), respec-

tively, and a module that assembles the generated fixations and

saccades into a gaze sequence (see Figure 1, top right). SP-EyeGAN

requires a sequence of fixation positions as input. The fixation po-

sitions depend on the stimulus and can either be sampled from

a saliency map or distribution over word positions [Rayner and

McConkie 1976] for text stimuli; or they can be obtained from a cog-

nitive model that generates fixation positions on an image or video

frame [Nuthmann et al. 2010] or on a textual stimulus [Engbert et al.

2005; Kümmerer and Bethge 2021; Reichle et al. 2003]. Both GANs

use the same architecture shown in the red box in Figure 1 and use

the x- and y-velocities of fixations and saccades, respectively, as

input. The FixGAN simulates the small (micro-)movements during

fixations, while the SacGAN simulates the fast movements within

saccades. Both GANs consist of a generative model and a discrimi-

native model. While the generator is used to create synthetic eye

movements, the discriminator is trained to distinguish between real

and synthetic data. Each GAN is trained by alternating the follow-

ing steps: In the first step the generator creates some synthetic data.

This data is used to train the discriminator using backpropagation

with the cross entropy loss. The loss for the generated data points

is then used in a backpropagation step to adjust the weights in the

generator.

The generator creates a synthetic eye movement sequence by

projecting a noise vector into a higher dimension using a fully

connected layer followed by batch normalization and a LeakyReLU

activation. This output is then reshaped to match the required

sequence length (100 ms for fixations and 30 ms for saccades). The

reshaping layer is followed by 3 deconvolutional blocks. Each block

consists of a deconvolution (filter size 𝑓 , kernel size 𝑘) followed by

batch normalization and an optional LeakyReLU activation.

The discriminator consumes a sequence of eye movement data

and decides whether a sequence originates from real recorded eye

movements or was generated by one of the generators. It consists

of three convolutional blocks. Each convolutional block consists

of a convolution (filter size 𝑓 , kernel size 𝑘) followed by batch

normalization and a LeakyReLU activation. The output of the last

convolutional block is flattened and is fed into a fully connected
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Figure 1: SP-EyeGAN overview. This figure shows the complete pipeline to train models to generate fixations and saccades

(step 1) that are used to create synthetic data (step 3). Steps 5 and 6 depict the contrastive pre-training. The GANs from step

1 are trained with batch size 𝑏𝑠 and consist of fully connected layers (denoted as FC), batch normalization (denoted as BN),

convolutional/deconvolutional layers (denoted as Conv/DeConv with filter size 𝑓 , kernel size 𝑘 and dilation 𝑑), and the leaky

rectified linear unit (LeakyReLU) activation function. Numbers in brackets show the dimensions of the data after each layer.

layer, followed by a sigmoid activation to create the output (the

distinction between real and generated sequences).

SP-EyeGAN, shown in Algorithm 1 generates a complete eye

movement sequence 𝑆 of fixations and saccades by sampling fix-

ations and saccades using the trained FixGAN/SacGAN. The al-

gorithm creates a synthetic eye movement sequence given the

mean 𝜇𝑓 𝑖𝑥 and standard deviation 𝜎𝑓 𝑖𝑥 for fixation durations, the

mean 𝜇𝑠𝑎𝑐 and standard deviation 𝜎𝑠𝑎𝑐 for saccade durations and 𝑛

fixation locations 𝐹 = 𝑙1 . . . 𝑙𝑛 as shown in Figure 1 (top right). Each

sequence starts with a fixation on the first fixation location created

using the FixGAN clipped to the sampled fixation duration 𝑑𝑓 𝑖𝑥
(lines 4, 6). Each fixation is added to the generated sequence 𝑆 after

its generation (line 7). The amplitude of the preceding saccade at

iteration 𝑖 is determined by the distance between the two fixation
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locations 𝑙𝑖 and 𝑙𝑖+1 (line 3). In the next step, the algorithm samples

a saccade matching the amplitude and the saccade duration 𝑑𝑠𝑎𝑐
(lines 5, 8). This saccade can point to another direction and there-

fore has to be rotated accordingly (line 9) before being added to the

sequence.

Algorithm 1 The SP-EyeGAN algorithm generates a synthetic

eye-movement sequence for given fixation locations.

Require: 𝜇𝑓 𝑖𝑥 , 𝜎𝑓 𝑖𝑥 , 𝜇𝑠𝑎𝑐 , 𝜎𝑠𝑎𝑐 , FixGAN, SacGAN, fixation loca-

tions 𝐹 = 𝑙1, . . . , 𝑙𝑛
Ensure: Synthetic eye movement sequence 𝑆 = 𝑠1, . . . , 𝑠𝑚
1: 𝑆 = 𝑙1 ⊲ start location is first fixation location

2: for 𝑖 ∈ [1 . . . 𝑛 − 1] do

3: 𝑎𝑠𝑎𝑐 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑎𝑐𝑐𝑎𝑑𝑒𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑙𝑖 , 𝑙𝑖+1) ⊲ compute

saccade amplitude for jump from 𝑙𝑖 to 𝑙𝑖+1
4: 𝑑𝑓 𝑖𝑥 = N(𝜇𝑓 𝑖𝑥 , 𝜎𝑓 𝑖𝑥 ) ⊲ sample duration for next fixation

5: 𝑑𝑠𝑎𝑐 = N(𝜇𝑠𝑎𝑐 , 𝜎𝑠𝑎𝑐 ) ⊲ sample duration for next saccade

6: 𝐺 𝑓 𝑖𝑥 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛(FixGAN, 𝑑𝑓 𝑖𝑥 ) ⊲ generate

fixation [◦/𝑠] with duration 𝑑𝑓 𝑖𝑥
7: 𝑆 = 𝑆 + 𝑑𝑣𝑎(𝐺 𝑓 𝑖𝑥 ) ⊲ add fixation converted to degrees of

visual angle to sequence

8: 𝐺𝑠𝑎𝑐 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑎𝑐𝑐𝑎𝑑𝑒 (SacGAN, 𝑑𝑠𝑎𝑐 , 𝑎𝑠𝑎𝑐 ) ⊲ generate

saccade [◦/𝑠] with duration 𝑑𝑠𝑎𝑐 and amplitude 𝑎𝑠𝑎𝑐
9: 𝐺𝑟𝑜𝑡

𝑠𝑎𝑐 = 𝑟𝑜𝑡𝑎𝑡𝑒𝑆𝑎𝑐𝑐𝑎𝑑𝑒 (𝐺𝑠𝑎𝑐 , 𝑆 [−1], 𝑙𝑖+1) ⊲ rotate generated

saccade to end at new fixation location 𝑙𝑖+1
10: 𝑆 = 𝑆 + 𝑑𝑣𝑎(𝐺𝑟𝑜𝑡

𝑠𝑎𝑐 ) ⊲ convert rotated saccade to degrees of

visual angle and add to eye movement sequence

11: end for

3.2 Contrastive Learning

We further evaluate the usefulness of synthetic data for pre-training.

We employ SP-EyeGAN to generate raw eye movement sequences

which serve as input for a neural network that is pre-trained using

the self-supervised technique contrastive learning [Bautista and

Naval 2020; Chen et al. 2020]. A major benefit of contrastive learn-

ing is its ability to be implemented without the need for labeled data,

making it a suitable approach for learning representations from

synthetic data. The goal of contrastive learning, as shown in Fig-

ure 1 (step 5), is to train the neural network to differentiate between

positive and negative pairs of sequences. In our study, we define

positive (i.e., similar) pairs as the same synthetic sequence aug-

mented with Gaussian noise, while dissimilar pairs are composed

of different sequences, also augmented with Gaussian noise. The

two sequences that constitute a (positive or negative) pair are fed

into the neural network, which computes a hidden representation

whose dimension is then reduced using two bottleneck layers. The

objective for the neural network during the contrastive-learning

process is to maximize the agreement between the hidden represen-

tations in positive pairs and minimize the agreement in negative

pairs. Following contrastive pre-training, the neural network can

then be fine-tuned for a specific downstream task using a poten-

tially small amount of real data containing the labels of interest,

see Figure 1 (green boxes in step 6).

To summarize, our method is comprised of the following steps:

(1) Adversarial training of FixGAN and SacGAN using unlabeled

human eye movement data;

(2) Selection of a model (e.g., a cognitive model) that generates

fixation locations for a given stimulus;

(3) Generation of synthetic raw eye-tracking data using SP-

EyeGAN together with the fixation location model;

(4) Development or selection of a neural network architecture

suitable to process raw eye-tracking data for the downstream

task at hand;

(5) Pre-training of the neural network on the synthetic data

using contrastive learning;

(6) Fine-tuning of the neural network with (potentially small

amounts of) labeled human data for the task.

Note that for training a given neural network on a new task, only

the last step needs to be re-done; for training a novel network archi-

tecture for any task, only the last two steps need to be performed.

4 EXPERIMENTS

This section shows the experiments we conducted to evaluate our

approach and reports on the results. All code to reproduce the re-

sults and create synthetic eye movement data can be found online1.

4.1 Metrics

In our evaluation, we use the Jensen-Shannon divergence to measure

the similarity between two probability distributions. It is used to

evaluate the quality of generated eye movement data by compar-

ing properties of generated fixations and saccades with the same

properties of human eye movement data [Manning and Schütze

1999]. For discrete probability distributions 𝑃 and 𝑄 defined on the

same sample space X the Jensen-Shannon divergence is defined as

𝐽𝑆𝐷 (𝑃 | |𝑄) = 1
2𝐾𝐿(𝑃 | |𝑀) + 1

2𝐾𝐿(𝑄 | |𝑀), where𝑀 =
1
2 (𝑃 +𝑄) and

𝐾𝐿(𝑃 | |𝑄) =
∑

𝑥∈X 𝑃 (𝑥)log2

(

𝑄 (𝑥 )
𝑃 (𝑥 )

)

.

We evaluate the performance of models trained on a downstream

task in terms of the area under the receiver operating characteristic

curve (AUC), which is a quantitative indicator of classification

performance. Independently of the class ratios, the AUC ranges

from 0.5 for random guessing to 1 for perfect separation. The ROC

curve plots the true positive rates versus false-positive rates by

varying the decision threshold for a learned model.

4.2 Data

To train SP-EyeGAN, we use eye movement data from a reading

experiment taken from the GazeBase database [Griffith et al. 2021].

GazeBase consists of gaze recordings from 322 college-aged partici-

pants recorded monocularly with an EyeLink 1000 eye tracker at a

sampling frequency of 1,000Hz. The participants were recorded in

up to nine sessions over several months, and the recordings were

taken while reading a poem. We use fixational data as training

data for FixGAN and saccadic data as training data for SacGAN,

respectively.We extract fixations and saccades using the Dispersion-

Threshold Identification algorithm [Salvucci and Goldberg 2000].

For the downstream tasks, we use the raw eye movement record-

ings of the Stony Brook Scholastic Assessment Test (SB-SAT )

dataset [Ahn et al. 2020]. SB-SAT consists of eye movement data

1https://github.com/aeye-lab/sp-eyegan



SP-EyeGAN: Generating Synthetic Eye Movement Data ETRA ’23, May 30–June 02, 2023, Tubingen, Germany

C
o

n
v
 (f=

3
2

,k
=

3
,d

=
1

) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 3
4

)

+

C
o

n
v
 (f=

3
2

,k
=

3
,d

=
2

) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 6
6

)

+

C
o

n
v
 (f=

3
2

,k
=

3
,d

=
4

) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 9
8

)

+

C
o

n
v
 (f=

3
2

,k
=

3
,d

=
8

) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 1
3

0
)

+

C
o

n
v
 (f=

3
2

,k
=

3
,d

=
1

6
) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 1
3

0
)

+
C

o
n

v
 (f=

3
2

,k
=

3
,d

=
3

2
) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 1
6

2
)

+

C
o

n
v
 (f=

3
2

,k
=

3
,d

=
6

4
) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 1
9

4
)

+

C
o

n
v
 (f=

3
2

,k
=

3
,d

=
1

) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 2
5

8
)

+

G
lo

b
a

lA
v
e

ra
g

e
P

o
o

lin
g

(b
s x

 2
5

8
)

C
o

n
v
 (f=

3
2

,k
=

3
,d

=
6

4
) 

(b
s x

 5
0

0
0

 x
 3

2
)

B
N

 +
 R

e
L

U
(b

s x
 5

0
0

0
 x

 2
2

6
)

+

F
C

 (1
2

8
)  

(b
s x

 1
2

8
)

Neural Network

(a) EKYT model used for downstream tasks. See Lohr and Komogortsev [2022] for more details.
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(b) CLRGaze model used for downstream tasks. See Bautista and Naval [2020] for more details.

Figure 2: Neuronal Networks used to pre-train and fine-tune a model on the downstream task. Figure 2a and2b depict the model

architectures trained with batch size 𝑏𝑠 consisting of fully connected layers (denoted as FC), batch normalization (denoted as

BN), convolutionanl layers (denoted as Conv with filter size 𝑓 , kernel size 𝑘 and dilation 𝑑), and the rectified linear unit (ReLU)

activation function. The numbers in brackets show the dimensions of the data after each layer.

from 95 undergraduate students reading SAT texts, followed by

comprehension questions recorded at a sampling rate of 1,000Hz.

Table 1 shows descriptive statistics for the datasets used in this

study.

4.3 Synthetic Data Quality

We evaluate the quality of the generated synthetic data by compar-

ing generated and real eye-movement events in terms of descriptive

features. In order to measure the quality of generated fixations, we
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Table 1: Dataset statistics. Descriptive statistics for datasets used to train and evaluate EyeGAN.

Dataset Number of participants Eye tracking device Sampling frequency

GazeBase [Griffith et al. 2021] 322 (151 female, 171 male) EyeLink 1000 1,000 Hz

SB-SAT [Ahn et al. 2020] 95 EyeLink 1000 1,000 Hz

Table 2: Quality of generated fixations in terms of the Jensen-Shannon divergence between human eye movement data and

data generated by the model. For reference, the table also shows the divergence between two different parts of human eye

movement data, denoted as real. Bold values indicate the best model.

Jensen-Shannon divergence ↓

Method Velocity Mean velocity Dispersion

Statistical model [Fuhl et al. 2018] 0.283 0.679 ś

VAE [Fuhl et al. 2021] 0.201 0.946 0.722

EyeSyn [Lan et al. 2022] 0.064 0.785 0.989

SP-EyeGAN 0.029 0.295 0.271

Real 0.0 0.026 0.045

Table 3: Quality of generated saccades in terms of the Jensen-Shannon divergence between human data and data generated by

the model. For reference, the table also shows the divergence between two different sequences of human eye movement data,

denoted as real. Bold values indicate the best model.

Jensen-Shannon divergence ↓

Method Peak velocity Mean velocity Peak acceleration Mean acceleration Amplitude

Statistical model [Fuhl et al. 2018] 0.346 0.226 0.921 0.856 ś

VAE [Fuhl et al. 2021] 0.924 0.929 0.912 0.907 0.915

SP-EyeGAN 0.33 0.23 0.263 0.22 0.214

Real 0.026 0.021 0.235 0.031 0.03

Figure 3: Generated eyemovement sequences using EyeGAN. The fixation locations are sampled using a statisticalmodel [Rayner

and McConkie 1976].

measure the Jensen-Shannon divergence between real and gener-

ated fixations in terms of velocities, mean velocities, and disper-

sion, respectively. The quality of generated saccades is determined

by comparing the peak velocity, mean velocity, peak acceleration,

mean acceleration, and the amplitude of a saccade. We compare

SP-EyeGAN to the statistical models proposed by Fuhl et al. [2018]

and Lan et al. [2022], and the neural network approach of Fuhl et al.

[2021].

Table 2 compares generated fixations. Note that the statistical

model only creates velocities without directions so we can not com-

pute the dispersions. We can conclude that the fixation profiles
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generated by SP-EyeGAN are more similar to real human eye-

movement sequences than fixations generated by baseline methods.

The results for comparing model generated saccades can be seen

in Table 3. We are not able to compute saccade amplitudes for the

statistical model proposed by [Fuhl et al. 2018], because it only cre-

ates velocities without directions. From the results we can conclude

that SP-EyeGAN creates saccades that are more similar to human

saccades than the baseline methods. The statistical model beats

SP-EyeGAN when investigating the mean velocities for saccades,

but performs worse comparing the other attributes of a saccade.

Figure 3 shows four different synthetic eye movement sequences

generated using SP-EyeGAN that look like eye movement data

generated by humans while reading a text.

4.4 Exemplary Downstream Tasks

In order to quantify the benefit of pre-training a model on synthetic

data generated by SP-EyeGAN, we investigate four downstream

tasks that have proven quite challenging [Ahn et al. 2020; Berzak

et al. 2018; Reich et al. 2022]: The prediction of i) general read-

ing comprehension skills, ii) text comprehension, iii) experienced

text difficulty and iv) whether the reader is a native speaker. We

compare the performance of deep neural models [Bautista and

Naval 2020; Lohr and Komogortsev 2022] that are able to process

raw eye-tracking data, and work exceptionally well for biometric

identification, on these four exemplary downstream tasks in two

settings: when being trained from scratch on human data only and

when being first pre-trained on synthetic eye movement sequences

generated by SP-EyeGAN and then fine-tuned on the human data.

The labels extracted for each task are: overall comprehension score

across all passages (General Reading Comprehension), text-based

comprehension accuracy (Text Comprehension), a subjective diffi-

culty rating (Text Difficulty), and whether the presented text was

the first language of the reader (Native Reader).

4.4.1 Results for Downstream Tasks. We evaluate the effect of con-

trastive pre-training with SP-EyeGAN-generated synthetic data

on two neural network models that are designed to process raw

eye movement data: CLRGaze [Bautista and Naval 2020] and

EKYT [Lohr and Komogortsev 2022] (see Figure 2). All models

are compared to the current state-of-the-art BEyeLSTM [Reich et al.

2022] (which is not able to process raw data, but only preprocessed

fixations). We apply 5-fold cross-validation splitting the training

and test data by reader, that is, only readers not seen during training

are used for testing. Note that splitting by readers rather than by

texts has been found to be the more challenging evaluation setting

since it assesses the models’ ability to generalize to novel readers

[Makowski et al. 2019; Reich et al. 2022].

An overview of the results can be found in Table 4. We find

that contrastive pre-training significantly improves performance

compared to models trained from scratch in three cases and appears

to improve the performance in the remaining five cases. For three

out of four downstream tasks, our approach establishes a new

state-of-the-art. For the fourth downstream task, BEyeLSTMÐthat

processes engineered features of the fixated text which our models

have no access toÐremains the state of the art.

5 LIMITATIONS

Although SP-EyeGAN shows promising results in generating syn-

thetic scanpaths, there are still limitations to consider.

First, while our model is able to generate eye movements (raw

samples) during fixations and saccades, it does not generate fixation

and saccade durations directly, but rather complements any model

that generates fixation locations and durations. In our approach,

we sample the durations using a statistical model. Future research

is needed to explore the integration of duration information into

our model.

Second, our model was only tested on a single data set and a

relatively homogenous sample of participants - predicting reading

comprehension of US college students. Therefore, its generalizabil-

ity to other eye-tracking data sets or populations is unknown. Our

model’s performance on other tasks and different data sets and

populations remains to be evaluated in future work.

Another limitation of our model is that it is currently not able

to process the viewed stimulus as input and hence does not take

it into account for the generation of the scan path. While the ad-

vantage of this approach is the model’s ability to generalize across

stimulus types, the pay-off is that the model is not optimized for

specific tasks where stimulus content is a crucial factor affecting

the characteristics of the fixational and saccadic dynamics. In order

to alleviate this short-coming, in future work, we plan to explore

ways to incorporate stimulus information into our model.

Finally, our model does not account for smooth pursuits, which

are an important oculomotor event that occurs while viewing a

moving stimulus. Given training data containing smooth pursuits,

it is straight forward to extend our model to include smooth pursuit

movements.

Despite these limitations, our model represents a significant step

forward in using machine learning to generate synthetic raw eye-

tracking data. Future studies can build on our work to address these

limitations and further improve the accuracy and generalizability

of models generating eye movement data.

6 DISCUSSION

We have introduced SP-EyeGAN, a method that generates real-

istic raw eye-tracking data. Fixational micro-movements can be

generated around fixation locations taken from any model of eye

movement controlÐbe it a statistical model, a machine-learning

based model, or a cognitive model. SP-EyeGAN connects these fix-

ations with realistic saccadic movements. The synthetic raw eye

gaze sequences can be used to pre-train neural networks that are de-

signed to process raw eye movement data for any downstream task.

In this pre-training step, the downstream neural network learns

to compute informative neural representations of eye movement

sequencesÐat first, independently of the downstream task. In a final

step, the neural network is fine-tuned with human eye-tracking

data for any downstream task of the researcher’s choice.

As a proof of concept, we have investigated four downstream pre-

diction tasks that have recently attracted attention in eye-tracking-

while-reading research. Although we used neural network architec-

tures that were originally developed for other tasks, we found that

pre-training on SP-EyeGAN-generated synthetic data improved

their performance significantly in some and appeared to improve
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Table 4: AUC ± standard error reported for 5-fold CV. Contrastively pre-trained models are indicated by (CP), all others are

trained from scratch. A star denotes models with a performance significantly better than random guessing and a pre-trained

model marked with a † indicates a model that is significantly better than its variant trained from scratch.

Task

Method
General Reading

Text Comprehension Text Difficulty Native Reader
Comprehension

BEyeLSTM 0.608±0.037* 0.542±0.015* 0.710±0.017* 0.670±0.025*
EKYT 0.585±0.015* 0.566±0.020* 0.494±0.021 0.550±0.014*
EKYT (CP) 0.622±0.029* 0.574±0.024* 0.545±0.006*† 0.721±0.061*†

CLRGaze 0.569±0.065 0.560±0.055 0.516±0.034 0.528±0.046
CLRGaze (CP) 0.577±0.033 0.592±0.032* 0.566±0.018* 0.704±0.050*†

their performance in other cases. For three of the four downstream
tasks, our approach establishes a new reference performance.

To date, most researchers focus on methods that operate on
preprocessed scanpaths of fixations and saccades, often using en-
gineered fixational and saccadic features. Recent research in eye-
tracking-based biometrics [Jäger et al. 2020], however, has shown
that the raw eye-tracking signal contains valuable information that
is lost by preprocessing. Since neural networks that are designed to
process raw eye-tracking data typically have even more parameters,
data scarcity is a major obstacle. Our proposed approach opens the
possibility to develop deep neural networks with large numbers of
parameters since potentially infinite amounts of synthetic data are
available for (pre)-training.

Besides our approach’s advantages for training neural networks,
it has also important advantages for privacy. In recent years, it has
been shown that in many cases, it is possible to reconstruct the
training data from a neural network’s final parameters [Carlini et al.
2021], which can violate the privacy of donors of training data: it
may be possible to infer the training users’ identity, gender or other
sensitive attributes [Lahey and Oxley 2021; Lohr and Komogortsev
2022; Makowski et al. 2021]. The inclusion of synthetic training
data dilutes any potentially identifiable traits.

7 CONCLUSION

We have developed and evaluated an approach for generating syn-
thetic raw eye movement data that outperforms previous statis-
tical and machine-learning based approaches in terms of the sta-
tistical likeness of the generated data with human eye-tracking
data. We have further found that using these synthetic data for
contrastive pre-training of neural networks that process raw eye-
tracking data for downstream tasks in many cases improves the
performance on these downstream tasks, often establishing new
performance benchmarks. Thereby, our approach paves the way to
training better-performing, higher-capacity models for a wealth of
eye-tracking-related problems.
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