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Abstract

Human gaze data offer cognitive information

that reflects natural language comprehension.

Indeed, augmenting language models with hu-

man scanpaths has proven beneficial for a range

of NLP tasks, including language understand-

ing. However, the applicability of this approach

is hampered because the abundance of text cor-

pora is contrasted by a scarcity of gaze data.

Although models for the generation of human-

like scanpaths during reading have been devel-

oped, the potential of synthetic gaze data across

NLP tasks remains largely unexplored. We

develop a model that integrates synthetic scan-

path generation with a scanpath-augmented lan-

guage model, eliminating the need for human

gaze data. Since the model’s error gradient

can be propagated throughout all parts of the

model, the scanpath generator can be fine-tuned

to downstream tasks. We find that the proposed

model not only outperforms the underlying lan-

guage model, but achieves a performance that

is comparable to a language model augmented

with real human gaze data. Our code is publicly

available.1

1 Introduction and Related Work

When humans read, they naturally engage in the

cognitive process of comprehending language,

which, in turn, is reflected in their gaze behav-

ior (Just and Carpenter, 1980). In a nutshell, a

scanpath (i.e., sequence of consecutive fixations)

on a stimulus text approximates the reader’s at-

tention, which can be exploited to inform Natural

Language Processing (NLP) tasks.

Gaze data has been shown to be beneficial in vari-

ous NLP tasks, such as part-of-speech-tagging (Bar-

rett et al., 2016), named entity recognition (Hol-

lenstein and Zhang, 2019), generating image cap-

tions (Takmaz et al., 2020) and question answer-

ing (Sood et al., 2021). Researchers have explored

1
https://github.com/aeye-lab/

EMNLP-SyntheticScanpaths-NLU-PretrainedLM.
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Figure 1: Synthetic scanpath-augmented language

model: the Scanpath Generation Model predicts a se-

quence of fixations for an input sentence; token embed-

dings are rearranged according to the order of fixations.

the use of aggregated word-level gaze features

to regularize neural attention mechanisms (Bar-

rett et al., 2018; Sood et al., 2020). Moreover,

non-aggregated scanpaths, which capture the com-

plete sequential ordering of the reader’s gaze be-

havior, have also demonstrated promise in NLP

tasks (Mishra et al., 2017, 2018a; Yang and Hollen-

stein, 2023).

However, collecting gaze data is a resource-

intensive endeavor, even for very small text corpora.

Hence, human gaze data is scarce, and NLP task-

specific gaze recordings are even scarcer. More-

over, applying a language model that additionally

consumes gaze data requires gaze data to be avail-

able for the input text at deployment time—which

is unrealistic for most use cases. To overcome these

limitations, researchers have proposed a multi-task

learning approach for NLP tasks such as sentence

compression (Klerke et al., 2016), sentiment analy-

sis (Mishra et al., 2018b), and predicting text read-

ability (González-Garduño and Søgaard, 2017). In

this approach, labeled data for the specific NLP

task is used as the primary task, while a separate

eye-tracking corpus is utilized as an auxiliary task.

While this approach helps mitigate the need for

task-specific gaze data during training and testing,

the problem of general scarcity of gaze samples
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remains and hinders effective supervision for data-

intensive architectures.

In this paper, we propose an alternative approach

by using synthetic gaze data, which can be gener-

ated easily for any given text, to provide cogni-

tive signals across NLP tasks. The seminal work

of Sood et al. (2020), which integrates eye move-

ment data generated by a computational cognitive

model of eye-movement-control-during-reading for

tasks such as sentence compression and paraphrase

generation, demonstrated the potential of synthetic

eye-gaze data. Khurana et al. (2023) explored a

proof-of-concept model that integrated synthetic

gaze data across multiple NLP tasks, but their re-

sults did not reach the performance of a fine-tuned

BERT model (Devlin et al., 2019) without eye gaze

on the General Language Understanding Evalua-

tion (GLUE) benchmark. In our work, we build

on recent advances in the development of machine-

learning models for generating human-like scan-

paths during reading (Deng et al., 2023; Bolliger

et al., 2023; Khurana et al., 2023; Nilsson and

Nivre, 2011).

We develop a model that combines synthetic

scanpath generation with a scanpath-augmented

language model, eliminating the need for human

gaze data. The model allows for fine-tuning the

scanpath generator to downstream tasks by propa-

gating the error gradient through the entire model.

Our approach not only outperforms the underlying

language model in multiple tasks on the GLUE, es-

pecially in low-resource settings, but even reaches a

performance comparable to an eye-gaze augmented

model that uses real, rather than synthetic, eye

movement data in sentiment classification.

2 Model

We develop a model that combines a scanpath gen-

eration model with a scanpath-augmented language

model to perform NLP downstream tasks. Figure 1

depicts the proposed model architecture.

Scanpath Generation Model We adopt Eyetten-

tion (Deng et al., 2023), an open-source state-of-

the-art model for scanpath generation over text.

Eyettention predicts consecutive fixation locations,

represented as word indices, based on a stimulus

sentence and the preceding fixations. It consists

of two encoders, one for embedding the stimulus

sentence, and the other for embedding the scanpath

history. A cross-attention layer aligns the outputs

of the two encoders, and a decoder produces a

probability distribution over saccade ranges at each

timestep. The next fixated word index is deter-

mined by sampling from this distribution.

Scanpath-Augmented Language Model We

adopt the PLM-AS framework (Yang and Hollen-

stein, 2023), which augments pre-trained language

models with human scanpaths for sentiment classi-

fication. This framework uses a language model to

extract token embeddings for a sentence, associat-

ing each embedding with its position index. By uti-

lizing a human scanpath (fixation index sequence)

as input, the model rearranges the token embedding

sequence based on the order in which the words are

fixated by the reader. The transformed sequence is

then fed into a scanpath encoder, implemented as

a layer of gated recurrent units (GRU), where the

output of the last step is used as the final feature for

sentiment classification. This framework allows for

the use of different language models and achieves

high performance through fine-tuning. In this work,

we employ BERTBASE
2 (Devlin et al., 2019) as the

language model, following Yang and Hollenstein

(2023).

Joint Modeling for NLP Tasks To eliminate the

need for human gaze data, we integrate the syn-

thetic scanpath generated by the Eyettention model

consisting of a fixation index sequence into the

PLM-AS framework. Before integration, the word

index sequence generated by Eyettention is con-

verted into a token index sequence. During train-

ing, the error gradient of the scanpath-augmented

language model can be back-propagated through

the Eyettention model, allowing its parameters to

be adapted for a specific NLP task. To handle the

non-differentiable sampling from a categorical dis-

tribution involved in scanpath generation, we em-

ploy the Gumbel-softmax distribution (Jang et al.,

2017) as a fully differentiable approximation. The

training process consists of two phases. First, we

pre-train the Eyettention model on a natural read-

ing task. Second, we train the entire model, which

includes fine-tuning the language model and the

Eyettention model, as well as training the scanpath

encoder from scratch. For the Eyettention model,

we add residual connections in both encoders to

enhance its performance.

2Note that BERT can be substituted with other advanced
pre-trained language models, potentially leading to further
enhancements in task performance.
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3 Experiments

In this section, we describe the data and present the

evaluation results of our model for a wide range of

NLP tasks. Further details about training and hyper-

parameter tuning can be found in Appendix B.

3.1 Data Sets

CELER (Berzak et al., 2022): We pre-train the

scanpath generation model Eyettention on the L1

subset of CELER, which contains eye-tracking

recordings collected from 69 native speakers of

English during natural reading of 5,456 sentences.

ETSA (Mishra et al., 2016) contains task-

specific gaze recordings for sentiment classifica-

tion of 7 subjects who each read 383 positive and

611 negative sentences, including sarcastic quotes,

short movie reviews, and tweets.

GLUE (Wang et al., 2018) includes sentiment

analysis (SST-2), linguistic acceptability (CoLA),

similarity and paraphrase tasks (MRPC, STS-B,

QQP), and natural language inference tasks (MNLI,

QNLI, RTE). No gaze data are available.

3.2 Sentiment Classification

Table 1 presents the results of our model on the

sentiment classification task ETSA (Mishra et al.,

2016), in comparison to BERT and previous state-

of-the-art eye-gaze augmented models. We follow

a 10-fold cross-validation regime. In each iteration,

BERT is fine-tuned on the training portion of the

ETSA text corpus, and PLM-AS is fine-tuned on

the training portion of the ETSA text corpus and

gaze data. Our model is fine-tuned on the training

portion of the ETSA text corpus and, instead of the

ETSA gaze data, synthetic gaze data generated by

Eyettention. Since each sentence is associated with

multiple scanpaths, we compute the final predic-

tion by averaging the pre-softmax logits obtained

from the models across all scanpaths for the PLM-

AS baseline. Our model averages equally many

synthetic scanpaths. We make multiple notable ob-

servations in Table 1:

(a) Our model outperforms both BERT and the

state-of-the-art ScanTextGAN (Khurana et al.,

2023) augmented with gaze data.

(b) Our model, augmented with synthetic scanpaths,

achieves comparable performance to the PLM-AS

model augmented with human scanpaths, eliminat-

ing the need for human scanpaths.

(c) Ablation experiments (bottom two rows) show

that when the Eyettention model is frozen or

Model Scanpath (#) F1 AUC
BERT⋆ - 82.932.26 92.421.62
ScanTextGAN real 83.34 -
ScanTextGAN synthetic 84.77 -
PLM-AS⋆ real (7) 85.811.16 94.791.02
Ours⋆ synthetic (7) 85.351.77 94.900.94

Eyettention (frozen)⋆ synthetic (7) 84.521.79 94.501.03
Eyettention (scratch)⋆ synthetic (7) 85.031.6 94.771.03

Table 1: Results for sentiment classification on ETSA,

with standard errors indicated as subscript. Results ob-

tained from our experiments are marked with ⋆; other

results are from the respective papers for recapitulation.

1 3 5 7 9 11 13 15 17 19
# Scanpaths

80

82

84

86

F1

BERT
PLM-AS w/ human scanpaths
Ours w/ synthetic scanpaths

Figure 2: Sentiment classification performance on

ETSA with varying numbers of scanpaths at training

and application time. Error bars show the standard error.

not pre-trained, the performance decreases. This

demonstrates the importance of both pre-training

and task-specific fine-tuning of the scanpath gener-

ator.

Varying the number of scanpaths We analyze

the impact of the number of scanpaths sampled

both at training and at application time on model

performance. Figure 2 shows the F1 score as a

function of the number of scanpaths used by BERT

without eye gaze, PLM-AS with human scanpaths,

and our model with synthetic scanpaths. We ob-

serve that the performance of scanpath-augmented

models improves as the number of scanpaths in-

creases, reaching its peak at seven scanpaths.3 Im-

portantly, our model outperforms BERT and, when

being augmented with five or more synthetic scan-

paths, approaches the performance of PLM-AS

augmented with human scanpaths.

Low-Resource Performance We hypothesize

that eye gaze might be most beneficial in low-

resource settings. To test this hypothesis, we sam-

ple a small subset of the training sentences K =

{200, 400, 600} from the total number of around

800 training instances, and evaluate the perfor-

mance of our model augmented with seven syn-

3The optimal number of scanpaths to be used by the model
is considered a hyperparameter for the subsequent experi-
ments.
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MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
K Model Gaze 392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -

2
0

0 BERT × 42.901.51 57.422.03 73.070.16 78.781.10 16.952.74 79.430.69 81.180.04 54.301.50 60.50
Ours ✓ 48.970.83 61.631.78 70.460.62 80.760.74 24.083.55 74.941.20 81.850.17 59.351.47 62.75

5
0

0 BERT × 52.091.05 65.130.37 77.040.19 82.550.47 35.611.74 83.140.41 81.530.29 60.720.61 67.23
Ours ✓ 56.480.38 67.810.23 77.600.26 84.630.50 36.411.39 81.990.58 82.320.52 61.881.24 68.64

1
0

0
0 BERT × 58.970.58 67.350.49 78.880.36 85.800.55 39.891.64 85.420.21 84.181.00 63.390.99 70.49

Ours ✓ 61.280.25 70.650.14 80.740.10 86.060.29 41.190.50 85.130.43 84.610.68 64.551.18 71.78

al
l BERT × 82.9 69.7 90.1 93.1 53.9 84.8 87.7 66.1 78.54

Ours ✓ 83.6 69.6 90.1 93.8 50.2 85.8 87.7 67.3 78.51

Table 2: Results on the GLUE benchmark with K = {200, 500, 1000, all} training samples. Below each task, the

total number of training samples for each dataset is indicated. We use F1 for QQP and MRPC, Spearman correlation

for STS-B, Matthews correlation for CoLA, and accuracy for the remaining tasks. The standard error is indicated as

the subscript.

200 400 600 all (804)
# Training sentence instances

55
60
65
70
75
80
85

F1

BERT
Ours w/ 7 synthetic scanpaths

Figure 3: Sentiment classification performance on

ETSA in the low-resource setting. Error bars repre-

sent the standard error.

thetic scanpaths (the best-performing configuration

from the previous experiments). The performance

comparison between our model and the baseline

model BERT is shown in Figure 3. Our model con-

sistently outperforms BERT, with larger improve-

ments observed when using less training data.

3.3 GLUE Benchmark

In contrast to the small and single task-specific

ETSA data set, we extended our evaluation to as-

sess whether gaze data could enhance language

models across different tasks, including scenarios

with substantial text data. To achieve this, we eval-

uate our model on the GLUE benchmark, a com-

prehensive collection of 8 diverse NLP tasks with a

large number of text samples. As no eye gaze data

is available for GLUE, we focus on the comparison

with the BERT baseline, and investigate both, high-

and low-resource settings.

High-Resource Performance The results of our

model on the GLUE test set using all training sam-

ples (K = all) are reported in the bottom two rows

of Table 2. The results are obtained from the GLUE

leaderboard. Our model outperforms BERT in 4

out of 8 tasks, and achieves comparable perfor-

mance in 3 tasks. However, our model’s perfor-

mance is notably poor in the CoLA task, possibly

due to the model’s emphasis on gaze sequence or-

dering, potentially overshadowing the importance

of the original word order, which is critical to de-

termine linguistic acceptability of sentences.

Low-Resource Performance We present the re-

sults on the GLUE benchmark with K = {200, 500,

1000} training samples in Table 2. We take ad-

ditional 1,000 samples from the original training

set as the development set used for early stopping.

The original development set is utilized for testing.

We perform 5 runs with different random seeds to

shuffle the data and report the average results.

Overall, our model consistently outperforms

BERT across tasks, except for the STS-B task. In

terms of average score, our model shows perfor-

mance gains of 2-4% compared to BERT.

4 Discussion and Conclusion

We developed a model that integrates synthetic

scanpath generation into a scanpath-augmented lan-

guage model. We observe that the model achieves

results that are comparable to a language model

augmented with human scanpaths, which elimi-

nates the need for human scanpaths during both

training and testing. Human gaze data are only

available for a very limited number of NLP tasks

and data sets. At application time, under any

standard use case scenario of NLP tasks, no gaze

recordings are available. Synthetic gaze data not

only open the possibility to train high-capacity

gaze-augmented models across tasks, which would

otherwise require the collection of an impractical

large volume of gaze data, but also allow for the

6503



exploitation of eye gaze signals as model input at

application time.

Using the GLUE benchmark, we observe that

gaze signals show benefits not only for sentiment

classification tasks (SST-2), as reported in previ-

ous research, but also for entailment classification

tasks (MNLI, RTE) and a sentence similarity task

(STS-B). This highlights the potential of integrat-

ing cognitive signals from eye gaze into a wider

range of NLP tasks in the future. Nevertheless, it

is evident that not all tasks derive equal benefits

from gaze data. It remains up to future research

to explore which types of tasks benefit most from

gaze signals.

Our results further show that the potential bene-

fit of augmenting language models with gaze data

is higher for low-resource settings. Hence, we be-

lieve that the augmentation with gaze data might

be particularly interesting for low-resource lan-

guages. Two ongoing multi-lab efforts to collect

large multilingual eye-tracking-while-reading cor-

pora (MECO4 and MultiplEYE5) include a range

of low-resource languages, which will allow for

training scanpath generators and augmenting lan-

guage models with synthetic eye gaze for these

languages in the near future.

Limitations

One limitation of our work is that the scanpath

generation model Eyettention was pre-trained on

eye-tracking data recorded on isolated sentences

(single sentence reading paradigm). Since the ma-

jority of tasks in the GLUE benchmark involve

two-sentence classification, future work could in-

volve pre-training the model on an eye-tracking

data set specifically designed for two-sentence read-

ing tasks to enhance its performance. Additionally,

scanpath augmentation turned out to be detrimental

to the language model’s performance for the task

of identifying linguistically acceptable sentences

(CoLA). This finding was to be expected as the

actual word order is more relevant for linguistic

acceptability of a sentence than the order in which

the words are fixated. Pre-training the scanpath

generator on an eye-tracking corpus that includes

both acceptable and unacceptable sentences may be

beneficial for improving the model’s performance.

Furthermore, in our proposed framework, the

sampling process involved in scanpath generation

4
https://meco-read.com

5
https://multipleye.eu

during training and at inference time is not con-

ducive to a high model efficiency. Future work

could explore alternative scanpath generation mod-

els that do not rely on auto-regressive architectures

to improve efficiency.

Ethics Statement

It is crucial to acknowledge potential privacy risks

in collecting, sharing, and processing human gaze

data. Since eye movements are highly individual,

it can be possible to extract a participant’s identity

from gaze data (Jäger et al., 2020; Makowski et al.,

2021). Other personal information such as gen-

der (Sammaknejad et al., 2017) and ethnicity (Blig-

naut and Wium, 2014) that can be detected to some

degree today may turn out to be extractable accu-

rately in the future, which incurs a risk of leakage

of personal information from gaze data. Synthetic

gaze data can reduce the need for large-scale ex-

periments with human subjects, even though some

amount of human gaze data is still necessary to

train generative models.
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Table 3: Optimal number of scanpaths used for our model in GLUE Benchmark with K = {200, 500, 1000, all}

training sentences.

K MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

200 5 3 3 7 3 7 3 7

500 7 5 3 3 3 7 3 7

1000 3 5 5 7 3 5 7 7

all 2 2 4 2 3 3 3 3

Appendix for Pre-Trained Language
Models Augmented with Synthetic
Scanpaths for Natural Language
Understanding

A Model Details

PLA-AS Framework For the PLM-AS frame-

work, we adhere to the design of the original pa-

per (Yang and Hollenstein, 2023). The scanpath en-

coder consists of a single-direction GRU layer (Cho

et al., 2014) with a hidden size of 768 and a dropout

rate of 0.1. We initialize the hidden state of the

scanpath encoder using the [CLS] token outputs

from the final layer of BERT.

B Training Details

We train all neural networks using the Py-

Torch (Paszke et al., 2019) library on an NVIDIA

A100-SXM4-40GB GPU using the NVIDIA

CUDA platform. For training, we use the AdamW

optimizer (Loshchilov and Hutter, 2019), and a

batch size of 32. We train 20 epochs and select

the model with the best validation performance

for evaluation. The training is early stopped if

the validation performance does not increase for

3 consecutive epochs. During the training of our

model, we employ the Gumbel-softmax distribu-

tion with a temperature hyperparameter set to 0.5.

We use the pre-trained checkpoints from the Hug-

gingFace repository (Wolf et al., 2020) for the lan-

guage model BERTBASE.

Sentiment Classification During training, each

scanpath associated with one sentence is treated

as a separate instance. However, during evalua-

tion, the pre-softmax logits obtained from multiple

scanpaths associated with the same sentence are

averaged to generate a single prediction for this sen-

tence. We use a learning rate of 1e-5 for training

all investigated models.

GLUE Benchmark We evaluate each GLUE

data set using the metric specified in the bench-

mark. We use the code provided in the Hugging-

Face repository 6 to train the BERT model and

compute the metrics.

In the high-resource setting, we fine-tune the

BERT model using the hyperparameter tuning pro-

cedure outlined in the original paper (Devlin et al.,

2019). We select the best learning rate from {5e-5,

4e-5, 3e-5, 2e-5} for each task based on the perfor-

mance on the development set. The same learning

rate is used for training our model.

Additionally, for our model, we perform a hyper-

parameter search on the development set to deter-

mine the optimal number of scanpaths to be used

by the model for each task. We explore different

numbers of scanpaths from {2, 3, 4} and select the

configuration that achieves the best performance

on the development set. The optimal configuration

for each task can be found in Table 3.

In the low-resource setting, we use the same

learning rate that was found optimal in the high-

resource setting for each task. Besides, we perform

a hyperparameter search on the development set,

investigating different numbers of scanpaths from

{3, 5, 7} to be used by our model. The optimal con-

figurations for each task can be found in Table 3.

To reduce variance, we apply shuffling to the

training data using 5 different random seeds. We

use the first K samples as the new training set,

and the subsequent 1,000 samples as the develop-

ment set. The data seeds used for shuffling are

{111,222,333,444,555}, while the seed s=42 is con-

sistently used for model training across all models.

The procedure was adapted from Mao et al. (2022).

6
https://github.com/huggingface/transformers/

tree/main/examples/pytorch/text-classification
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