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Abstract

Risk parity portfolio optimization, using expected shortfall as the risk measure, is investi-

gated when asset returns are fat-tailed and heteroscedastic. The conditional return distribution

is modeled by an elliptical multivariate generalized hyperbolic distribution, allowing for fast pa-

rameter estimation, via an expectation-maximization algorithm and a semi-closed form of the risk

contributions. The efficient computation of non-Gaussian risk parity weights sidesteps the need for

numerical simulations or Cornish-Fisher-type approximations. Accounting for fat-tailed returns,

the risk parity allocation is less sensitive to volatility shocks, thereby generating lower portfolio

turnover, in particular during market turmoils such as the global financial crisis. Although risk

parity portfolios are surprisingly robust to the misuse of the Gaussian distribution, a more realistic

model for conditional returns and time-varying volatilies can improve risk-adjusted returns, reduces

turnover during periods of market stress and enables the use of a holistic risk model for portfolio

and risk management.
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1 Introduction

The seminal mean-variance portfolio of Markowitz (1952, 1959) is known to suffer when the unknown

population parameters are replaced by statistical estimates, see, among other, the works of Barry (1974),

Best and Grauer (1991), Frankfurter et al. (1971), Frost and Savarino (1986, 1988), and Michaud

(1989). Small estimation errors can translate into large deviations of the estimated portfolio weights

from the true, optimal ones, ultimately leading to mediocre performance. This fragility makes real

world applications of the mean-variance portfolio delicate. Various approaches have been proposed to

improve the quality and stability of optimized mean-variance portfolios. Among them are constraining

the portfolio weights (DeMiguel et al., 2009a; Frost and Savarino, 1988; Jagannathan and Ma, 2003);

robust optimization (Goldfarb and Iyengar, 2003; Tütüncü and Koenig, 2004); resampling methods

(Michaud and Michaud, 2008a,b); Bayesian methods (Frost and Savarino, 1986; Pástor and Stambaugh,

2000; Polson and Tew, 2000), as well as shrinkage estimation of the covariance matrix (Engle et al.,

2017; De Nard et al., 2022; Ledoit and Wolf, 2003, 2004a,b, 2020).

A drastic but successful solution to the precarious estimation of expected returns is to forego it com-

pletely and to focus on minimizing the portfolio risk. The minimum-variance (short: min-var) solution

constitutes the only portfolio on the efficient frontier that does not require the imputation of expected

returns. In addition to avoiding a tricky estimation problem, interest in low-risk strategies has increased

over the years due to their attractive ex-post risk-return profile; see, e.g., Ang et al. (2006), Ang (2014),

Baker et al. (2011), Clarke et al. (2006), Haugen and Baker (1996), and Frazzini and Pedersen (2014).

Despite this track record of high risk-adjusted returns, min-var optimization also faces criticism. Firstly,

the portfolio weights still exhibit considerable sensitivity to changes in the covariance estimates, this

problem often being addressed by imposing constraints in the solution space of the optimization prob-

lem. When no such ex-ante bounds are imposed on the weights, the min-var portfolio can exhibit large

concentration in single assets that might not be acceptable for investors (Maillard et al., 2010). This

issue becomes most pressing in times of financial distress, when asset correlations increase and diver-

sification potential disappears. An unconstrained min-var portfolio then simply selects a small set of

stocks with the lowest volatility. Secondly, a related limitation of mean- and min-variance portfolios, as

noted in Paolella et al. (2021), is that when the portfolio is rebalanced, the variation in weights due to

updated data often causes excessive turnover and intolerably high transaction costs.

In light of these challenges, other more robust objective functions have been proposed for portfolio

optimization. One such approach, the concept of risk parity portfolio allocation, has been proposed in

Maillard et al. (2010) and Qian (2005) as an allocation scheme less sensitive to estimation errors. The

fundamental idea behind risk parity is to allocate risk across assets rather than capital, i.e., the goal is

a portfolio allocation in which all assets contribute equally to the overall risk. Hence the strategy is also

called equal risk contribution. In its simplest form, risk parity weighs each asset proportionally to the

inverse of its volatility. While giving larger weights to less risky assets has been applied since decades

by investors as a tool for position sizing and risk management, the risk parity approach has gained

popularity in both the academic literature and among practitioners since the global financial crisis, see,

e.g., Roncalli (2013), Unger (2014), and Qian (2011, 2016). When applied to multiple asset classes, such

as stocks, bonds and commodities, risk parity has become a widely popular multi-asset strategy that

offers an alternative to classical allocation rules, such as the simple 60/40 equity-bond portfolio.

One reason for the popularity of risk parity-based investment solutions is that this approach to forming a

portfolio allocation is supposed to perform well in various market environments, notably during financial

market crashes, such as the global financial crisis (Hurst et al., 2010). Against this backdrop, it might

be surprising that the majority of studies on risk parity make use of the standard deviation as the risk

measure and the multivariate normal distribution for modeling asset returns. These overly simplistic
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assumptions are violatead by the stylized facts of asset returns—in particular the exponentially decaying

tails are too thin to adequately capture the occurrence of large price movements. Building a portfolio

to provide protection during financial turmoil on the restrictive normality assumption might not be

optimal. Therefore, the incorporation of a heavy-tailed distribution and the focus on an adequate tail

risk measure when constructing the risk parity portfolio is a crucial task.

Studies that investigate risk parity under non-Gaussian return distributions are, among others, Mercuri

and Rroji (2014), using the mixed tempered stable distribution class, and Stefanovits (2010), using

the multivariate symmetric Student-t distribution to account for excess kurtosis. As a coherent and

homogeneous tail risk measure (Acerbi and Tasche, 2002; Tasche, 2002), expected shortfall (short: ES,

also known as CVaR) can be incorporated in the risk parity optimization framework, as is investigated,

among others, in Cesarone and Colucci (2018), Jurczenko and Teiletche (2019), and Roncalli (2013).

However, these studies rely on historical simulation, making the computation of optimal risk parity

weights cumbersome or even infeasible in high dimensions. A Cornish-Fisher type approximation of ES

is used in Boudt et al. (2012), whereas Mausser and Romanko (2018) present an efficient method to

compute risk parity allocations in the case of a discrete scenario distribution. Recently, tail risk parity

under a generalized Pareto distribution with a Vine-copula has been proposed in Gava et al. (2021).

Again, the authors use Monte-Carlo simulation in computing the risk parity allocation and only consider

a low-dimensional set of asset returns.

We propose to use a powerful parametric model that can capture the most important stylized facts of

asset returns for risk parity optimization. Hence, we employ the COMFORT model of Paolella and Polak

(2015a) for conditional return modeling under semi-heavy tails and time-varying volatility. As shown

by these authors, this model class achieves superior predictive ability in forecasting the multivariate

distribution of future returns, leading to improvements in risk prediction and tail-risk based portfolio

optimization. The model is estimated via an iterative expectation-maximization (EM) algorithm that

enables us to estimate the correlation structure on filtered, Gaussian data, thereby, ultimately, providing

a more accurate and robust risk parity allocation.

The application of non-Gaussian distributions and tail risk measures in risk parity portfolios crucially

hinges on the computational costs of determining the risk contributions. Numerical optimization of the

objective function requires computing the risk contributions of each asset in every possible candidate

portfolio, making this object the computational bottleneck. For non-Gaussian distributions, compu-

tation of the ES is often done by simulation and the calculation of risk contributions requires costly

numerical gradient approximations. A major contribution of our work is an improved method to deter-

mine the optimal risk parity portfolio weights when the returns are modeled by an elliptical multivariate

generalized hyperbolic distribution. By exploiting a closed form gradient expression together with a nu-

merical Hessian approximation and a formula for fast evaluation of the ES from Paolella and Polak

(2015b), the risk contributions and risk parity weights can be computed almost instantaneously, giving

way to a highly efficient algorithm for non-Gaussian risk parity portfolio construction.

The remaining part of the paper is structured as follows. Section 2 introduces the COMFORT framework

for conditional return modeling. Section 3 reviews the definition of risk contributions and the risk parity

portfolio optimization problem. Next, Section 4 outlines the fast computation of the expected shortfall

and the risk contributions under elliptical distributions, and how the numerical optimization of the

risk parity objective function can be accelerated. Finally, Section 5 presents our empirical out-of-

sample portfolio optimization analysis, whereas Section 6 concludes this work. Two Appendices gather

technical details and further information on computational speed and accuracy.
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2 Fat-Tailed Conditional Returns with Regime-Switching Con-

ditional Correlations

Risk parity optimization under a symmetric Student-t distribution is investigated in Stefanovits (2010),

showing favorable properties of this distribution for risk parity modeling. Our analysis extends the

case to the more general class of elliptical multivariate generalized hyperbolic (MGHyp) distributions,

which includes not just the aforementioned multivariate Student-t distribution but also the Laplace (or

Variance Gamma) and the normal inverse Gaussian (NIG) distributions, both often used in modeling

financial asset returns; see Eberlein and Keller (1995) and McNeil et al. (2015). Moreover, instead

of assuming returns to be ı.i.d., we employ a powerful model for conditional returns with allows for

conditional heteroskedasticity via a multivariate GARCH model as in Paolella and Polak (2015a).

2.1 Multivariate Generalized Hyperbolic Distributions

A random vector Y = (Y1, . . . , Yn)
′ has a MGHyp distribution, if it is a normal mean-variance mixture

of the form

Y
d
= µ+ γG+

√
GAZ, (1)

where µ,γ ∈ Rn; A ∈ Rn×n is a matrix of positive scalars; Z
iid∼ N(0, In); and G ∼ GIG (λ, χ, ψ) is

a univariate mixing random variable independent of Z and has a generalized inverse Gaussian (GIG)

density given by

fG (x;λ, χ, ψ) =
χ−λ

(√
χψ
)λ

2Kλ

(√
χψ
) xλ−1 exp

(
−1

2

(
χx−1 + ψx

))
, x > 0,

with constants χ > 0, ψ ≥ 0 if λ < 0; χ > 0, ψ > 0 if λ = 0; and χ ≥ 0, ψ > 0 if λ > 0. Here Kλ (x) is

the modified Bessel function of the third kind, given by

Kλ (x) =
1

2

∫ ∞

0

tλ−1 exp
(
−x
2

(
t+ t−1

))
dt, x > 0.

We denote the distribution by Y ∼ MGHyp(λ, χ, ψ,µ,γ,Σ), where Σ = AA′ is the dispersion matrix.

Due to the normal mixture characterization, the conditional distribution of Y given G is multivariate

normal,

Y | (G = g) ∼ MN(µ+ γg, gΣ).

This property makes the MGHyp distribution suitable for fast parameter estimation by algorithms of

the expectation-maximization (EM) type; see McNeil et al. (2015), Protassov (2004), and the references

therein.

2.2 Elliptical Distributions

Another general class of distributions that allow for excess kurtosis are elliptical probability distributions;

see Fang et al. (1990), McNeil et al. (2015), and Paolella (2019, App. C) for general references. First, a

random vector Z = (Z1, . . . , Zn)
′ is said to have a spherical distribution if, for every orthogonal matrix

U ∈ Rn×n, it holds UZ
d
= Z. This is equivalent to Z having characteristic function

φZ(t) = E(exp(it′Z)) = ψ(t′t) = ψ(t21 + · · ·+ t2n), t ∈ Rn,

for a scalar function ψ called the generator of Z. We write Z ∼ Sn(ψ). Then, a random vector

Y = (Y1, . . . , Yn)
′ is called elliptically distributed if it is a multivariate affine transformation of a
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spherically distributed random vector Z, i.e.

Y
d
= µ+AZ,

where µ ∈ Rn, A ∈ Rn×n and Z ∼ Sn(ψ). The characteristic function of Y is of the form

φY (t) = E(exp(it′Y )) = E(exp(it′(µ+AZ)) = exp(it′µ)ψ(t′Σt),

for Σ = AA′ and we write Z ∼ En(µ,Σ, ψ). The class of elliptical distributions is closed under linear

combinations and all univariate marginal distributions are symmetric around their mean.

For γ = 0, the MGHyp distribution in (2) is elliptical. In particular, all marginal distributions are

symmetric in this case. The univariate generalized hyperbolic distribution GHyp(λ, χ, ψ, µ, γ, σ), pop-

ular for modeling univariate asset returns, is attained for n = 1. Several special cases of the MGHyp

distribution can be obtained when some of the GIG parameters are fixed prior to estimation. For λ = 1,

ψ > 0 and χ = 0, we get the multivariate asymmetric Laplace (MALap) distribution; for λ = −ν/2,
χ = ν, and ψ = 0, we have the asymmetric or skewed t-distribution (MAt) with ν degrees of freedom;

and for λ = −1/2 and ψ = 1, the distribution is called normal inverse Gaussian (NIG). The symmetric

variants are abbreviated MLap, Mt, and SNIG, respectively.

2.3 The COMFORT-CCC Model

Let Yt = (Yt,1, Yt,2, . . . , Yt,K)′ denote a return vector of K financial assets at time t, for t = 1, 2, . . . , T .

The equally spaced realization of the return vector is denoted Y = [Y1 | Y2 | · · · | YT ] and the infor-

mation set at time t, defined as the sigma algebra generated by the history of returns {Y1, . . . ,Yt}, is
denoted Φt. In what follows, we assume that Yt has a time varying conditional distribution with the

COMFORT representation, from Paolella and Polak (2015a), given by

Yt | Φt−1
d
= µ+ γGt + εt, with

εt = H
1/2
t

√
GtZt,

(2)

where µ = (µ1, . . . , µK)
′
and γ = (γ1, . . . , γK)

′
are column vectors in RK ; Ht is a symmetric, positive

definite dispersion matrix of order K; Zt
iid∼ N(0, IK) is a sequence of independent and identically

distributed (i.i.d.) normal random variables; and Gt ∼ GIG (λ, χ, ψ) is an i.i.d. mixing random variable,

independent of Zt, with the generalized inverse Gaussian (GIG) density given by

fG (x;λ, χ, ψ) =
χ−λ

(√
χψ
)λ

2Kλ

(√
χψ
) xλ−1 exp

(
−1

2

(
χx−1 + ψx

))
, x > 0;

Kλ (x) is the modified Bessel function of the third kind, given by

Kλ (x) =
1

2

∫ ∞

0

tλ−1 exp
(
−x
2

(
t+ t−1

))
dt, x > 0;

and χ > 0, ψ ≥ 0 if λ < 0; χ > 0, ψ > 0 if λ = 0; and χ ≥ 0, ψ > 0 if λ > 0. The same

MGHyp distribution arises from the parameter constellation (λ, χ/c, cψ,µ, cHt, cγ) for any c > 0;

hence for identification purposes, we fix either χ or ψ. The model assumes µ = (µ1, . . . , µK)
′
and

γ = (γ1, . . . , γK)
′
, as well as the GIG parameters (λ, χ, ψ) to be time invariant. For the GIG distribution

to be well defined, E [Gt | Φt−1] and E
[
G2

t | Φt−1

]
have to be positive (Paolella and Polak, 2015a).

The symmetric, positive definite, conditional dispersion matrix Ht is decomposed as

Ht = StΓSt, (3)
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where St is a diagonal matrix holding the strictly positive conditional scale terms sk,t, k = 1, . . . ,K,

and Γ is a positive definite dependency matrix. The univariate scale terms sk,t are each modeled by a

GARCH-type process. To describe the volatility clustering we use the GARCH(1,1) model defined by

s2k,t = ωk + αkε
2
k,t−1 + βks

2
k,t−1, (4)

where εk,t = yk,t − µk − γkGt, is the kth element of the εt vector in (2), and ωk > 0, αk ≥ 0, βk ≥ 0,

for k = 1, 2, . . . ,K.

In the COMFORT-CCC model, µ and Ht are the location vector and the dispersion matrix of the

conditional distribution of Yt, respectively, while the mean and the covariance matrix are given by

E [Yt | Φt−1] = µ+ E [Gt | Φt−1]γ,

Cov (Yt | Φt−1) = E [Gt | Φt−1]Ht + V (Gt | Φt−1)γγ
′,

where V (Gt | Φt−1) = E
[
G2

t | Φt−1

]
−(E [Gt | Φt−1])

2
. Furthermore, by definition of the mean-variance

mixture distribution of Yt | Φt−1, the matrix Γ is a correlation matrix, conditionally on the realization

of the mixing process Gt. For convenience and to make the analogy to the Gaussian literature, we use

the names dependency matrix and correlation matrix interchangeably for Γ.

3 Risk Parity Portfolio Optimization

The main concept of risk parity portfolio allocation is to distribute risk budgets, instead of capital

budgets, equally across different assets or asset classes. For this purpose a total risk budget, quantified

using a given risk measure, is split equally between the assets. The risk measure has to satisfy the

assumptions of Euler’s decomposition theorem, i.e., must be a continuously differentiable, homogeneous

function of degree one, in order to ensure that the sum of risk contributions of all assets equals the

total portfolio risk. Two popular such risk measures are the variance and expected shortfall (ES). In

practice, the volatility is almost exclusively used. However, using a tail risk measure such as ES, might

be preferable in order to focus on the relevant tails of the return distribution. Applications of ES in

risk parity portfolio construction are given, e.g., in Cesarone and Colucci (2018) and Roncalli (2013).

While we focus on ES in our analysis, we state the problem of risk parity optimization for a general risk

measure R.

3.1 Risk Contributions

The construction of the risk parity portfolio requires that the overall risk can be split into the sum of

the so-called risk contributions of the individual assets. If the risk measure R fulfills the assumptions

of the Euler theorem, then the decomposition

R(x) =
n∑

i=1

xi
∂R(x)

∂xi
=

n∑
i=1

RCi(x), RCi(x) := xi
∂R(x)

∂xi

holds, where RCi(x), i = 1, . . . , n, is the so-called risk contribution of asset i to the portfolio with asset

weights x = (x1, . . . , xn). The risk contribution RCi(x) therefore measures the marginal contribution

of asset i to the total risk R(x) of the portfolio, multiplied by its weight. We consider only linear

portfolios, so that, for a vector of log-returns Y = (Y1, . . . , Yn)
′ and a weight vector x = (x1, . . . , xn)

′,

the profit or loss of the portfolio is given by P (x) := P := x′Y .

In the special case of a multivariate normal return distribution with mean vector µ and covariance

matrix Σ, the risk contributions are given in closed form as

RCi(x) = xi
∂σ(x)

∂xi
=
xi(Σx)i
σ(x)

, (5)
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whereR(x) = σ(x) =
√
x′Σx is the portfolio volatility and (Σx)i is the covariance between the portfolio

return and the return on asset i.

3.2 Risk Parity Portfolios

The risk parity portfolio xRP is then defined by having equal risk contributions from all assets, i.e., the

risk contributions must satisfy

RCi(xRP) = RCj(xRP), i, j = 1, . . . , n. (6)

In the Gaussian case with risk contributions (5), the risk parity portfolio must thus fulfill

xi(Σx)i = xj(Σx)j , i, j = 1, . . . , n,

with the conditions xi ≥ 0 and
∑n

i=1 xi = 1 encoding the no-shortselling and the fully-invested con-

straints. If the covariance matrix Σ is positive definite, then the Gaussian risk parity problem has a

unique solution x∗
RP; see Maillard et al. (2010) and Spinu (2013).

Remarks:

1. An analytical solution of the risk parity weights is known only in the special case of a Gaussian

distribution with all assets having identical correlations, i.e., ρij = ρ for all i, j = 1, . . . , n. As

shown in Maillard et al. (2010), the unique risk parity weights are then given by

x∗
RP,i =

σ−1
i∑n

j=1 σ
−1
j

, i = 1, . . . , n. (7)

In this simple case (also called naive risk parity), the allocation to each asset is proportional to

its volatility. Incorporation of arbitrary distributions or other risk measures in naive risk parity is

straightforward and fast as it does not require any numerical optimization.

2. Furthermore, it is shown in Maillard et al. (2010) that the risk parity portfolio is mean-variance

efficient, only if in addition to the assumptions above, all assets have identical Sharpe ratios; see

also Lee (2011). As these restrictive assumptions are not fulfilled in most real world applications,

the risk parity allocation will usually not be an efficient portfolio.

By contrast, computing the optimal risk parity weights in the more general case requires optimization

methods so that numerical efficiency is pivotal for large-dimensional asset universes. Furthermore,

the existence and uniqueness of the risk parity portfolio is often not guaranteed, e.g., when deviating

from the multivariate normal distribution or when the no-shortselling constraint is relaxed—see Kolm

et al. (2014). In this case, one can find an approximate risk parity portfolio that fulfills the risk parity

conditions more or less closely (Maillard et al., 2010; Roncalli, 2013). Such an approximation is attained

by solving the optimization problem

min
x∈Rn

+:|x|=1
f(x), (8)

where f : Rn 7→ R is an auxiliary objective function that has a global minimum in xRP. A numerical

solution of problem (8) delivers an approximate risk parity portfolio whose risk contributions are close

to parity. Two popular choices for the auxiliary function f(x) are

f1(x) =
n∑

i,j=1

(RCi(x)− RCj(x))
2
, (9)
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and

f2(x) =
n∑

i=1

(
RCi(x)−

ESα(x)

n

)2

, (10)

see Maillard et al. (2010) and Roncalli (2013) for a discussion, as well as Cesarone and Colucci (2018)

and Kolm et al. (2014) for further choices of the objective function. In the following, we use the objec-

tive f1(x) because of slightly faster convergence of the optimization routine. Solving this constrained

non-linear optimization problem can be done, among other methods, with a sequential quadratic pro-

gramming (SQP) algorithm because the objective function and the constraints are twice continuously

differentiable. Nevertheless, the computations quickly become demanding when the risk contributions

are expensive to evaluate and the dimension n is not small. For this reason, the fast computation of

risk contributions is pivotal and limits the choice of non-Gaussian distributions for modeling returns in

a risk parity strategy.

In the following Section 4, we consider elliptical distributions for which the risk contributions are given

in closed form. Since elliptical MGHyp distributions offer a good trade-off between statistical flexibility

and computational ease, we will consider this distributional setting for our analysis below.

4 Fast Computation of Tail Risk Parity Portfolio under Ellip-

tical Distributions

4.1 Tail Risk Contributions under Elliptical Returns

We now turn to the computation of the risk contributions using ES as the risk measure. Denote by

Pi := xiYi the return due to the i-th asset of portfolio x = (x1, . . . , xn). In Tasche (2002) an expression

for RCi(x) under ES is given when the asset returns are continuously distributed. For any portfolio

vector x it holds

RCi(x) = E(Pi | P (x) ≤ VaRα(x)). (11)

This result is intuitive as it states that the risk contribution of asset i is given by the asset’s expected loss

in the event that the portfolio return is below the VaR. Using the linearity of conditional expectations,

we can easily check that

n∑
i=1

E(Pi | P (x) ≤ VaRα(x)) = E(P (x) | P (x) ≤ VaRα(x)) = ESα(x) = R(x).

Earlier, Gourieroux et al. (2000) showed an analogous result when R is the VaR, in which case

RCi(x) = E(Pi | P (x) = VaRα(x)).

Expression (11) requires the computation of the expected loss of the position xi in asset i, conditional

on the event that the portfolio return falls below the threshold VaRα(x). This expression is not easy

to evaluate and usually simulation is used; see, among others, Roncalli (2013) and Stefanovits (2010).

Fortunately, analytical formulas for the risk contribution have been derived for several distributions.

Starting with the case of multivariate normality, i.e., for return vector Y = (Y1, . . . , Yn) ∼ MNn(µ,Σ)

with µ = (µ1, . . . , µn)
′, Σ = (Σij)i,j=1,...,n positive definite and a portfolio vector x = (x1, . . . , xn)

′, we

have a closed form for the portfolio ES

ESα(x) = x′µ+
√
x′Σx · ϕ(Φ

−1(1− α))

α
, (12)

8
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and computing the risk contributions amounts to differentiating this with respect to xi

RCi(x) = xi ·
∂ESα(x)

∂xi
= xi

(
µi +

(Σx)i
σ(x)

· ϕ(Φ
−1(1− α))

α

)
, (13)

with σ(x) =
√
x′Σx the portfolio volatility and (Σx)i the covariance between the return on asset i

and the portfolio x. This formula is reported, for example, in Dhaene et al. (2008, Ex. 2.5), Lands-

man and Valdez (2003), and Roncalli (2013, p. 80), with the original contribution due to Panjer (2001).

In the more flexible setting of elliptical distributions that allows for excess kurtosis there exists a

close form solution for the risk contributions, originally derived in the context of aggregating risks

within insurance firms, see Landsman and Valdez (2003). This formula is extremely useful for efficient

computation of risk parity portfolios under elliptical returns because it only requires to compute the

total ES of the portfolio, which vastly accelerates the evaluation of the objective function (8). Let

Y = (Y1, . . . , Yn) ∼ En(µ,Σ, ψ) be the vector of asset returns and x = (x1, . . . , xn)
′ the portfolio

weights, then for i = 1, . . . , n, and α ∈ (0, 1), the risk contribution can be expressed as

RCi(x) = xi

(
µi +

(Σx)i
σ2(x)

(ESα(x)− µP )

)
, (14)

where µP = x′µ is the mean of the portfolio return P = x′Y . A short and elegant proof for this result

can be found in Dhaene et al. (2008).

Remarks:

1. In case of the general MGHyp distribution, an expression of the risk contribution using the ES

is given in Hellmich and Kassberger (2011, Prop. 1). Noting that the joint distribution of asset

i and the portfolio loss P is a two-dimensional MGHyp distribution, the risk contribution for

i = 1, . . . , n and α ∈ (0, 1) can be written as

RCi(x) = − 1

1− α

∫
R

∫ GH−1
1 (1−α)

−∞
y1 · fGH2(y1, y2)dy2dy1. (15)

Unfortunately, this formula requires calculating the VaR, given by the quantile GH−1
1 (1−α) of the

univariate GHyp distribution of portfolio returns, and to numerically evaluate a two-dimensional

integral for every candidate portfolio. This is computationally demanding, making it prohibitive

to use the risk contributions under the general MGHyp distribution for risk parity portfolio opti-

mization.

2. The assumption of elliptically distributed return vectors is less restrictive than it might appear. In

an empirical analysis in McNeil et al. (2015), the elliptical special cases of the MGHyp distribution

do not deliver a statistically inferior in-sample fit for daily returns in a formal likelihood-ratio test.

Furthermore, as discussed in Paolella and Polak (2015b) and Paolella et al. (2019), the out-of-

sample forecasting ability of the elliptical MGHyp models are at par with, if not superior to,

their asymmetric counterparts due to the inherently difficult task of forecasting the asymmetry

parameter vector.

3. It is well-known that under elliptically distributed returns, the minimization of standard deviation,

ES, or any other coherent risk measure delivers the same portfolio weights; see Embrechts et al.

(2002) and Hu and Kercheval (2010). As we exclusively consider elliptical models in our empirical

section, the min-var and the min-ES portfolios always coincide, and in the remainder we use the
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general term risk minimization (RM) for this portfolio strategy. Notice that this does not imply

that the estimated optimal portfolios coincide when a Gaussian or an elliptical non-Gaussian

distribution are used because the parameter estimates of the mean vector and the covariance matrix

will generally differ under different distributional assumptions; see Hu and Kercheval (2010).

4. As shown in Stefanovits (2010), the risk parity weights under elliptically distributed returns coin-

cide for variance and ES, only if all assets have the same expected return, i.e., in the case µi = µj

for all i, j. Finally, even under the assumption of normally distributed returns, the risk parity

weights for variance and ES do not generally coincide, see Jurczenko and Teiletche (2019).

4.2 Fast Computation of the ES under Elliptical MGHyp Distributions

To combine the flexibility of modeling excess kurtosis by the MGHyp distribution with the fast compu-

tation of the risk contributions under elliptical distributions, we make use of an expression from Paolella

and Polak (2015b) for the ES under the elliptical MGHyp distribution, i.e., for γ = 0. The applica-

tion of this formula in (14) is pivotal for fast, efficient computation of the risk parity weights under a

heavy-tailed non-Gaussian distribution.

Let the portfolio return P = x′Y be univariate symmetrically generalized hyperbolical distributed

P ∼ GHyp(λ, χ, ψ, µ, 0, σ). Then, for α ∈ (0, 1), Paolella and Polak (2015b, Prop. 3.1) show

ESα(P ) = −µ+
σ

α
√
2π
C, (16)

with the constant C given by

C =
χ−λ

(√
χψ
)λ

2Kλ

(√
χψ
) 2Kλ̃

(√
χ̃ψ
)

χ̃−λ̃
(√
χ̃ψ
)λ̃ ,

where

λ̃ = λ+
1

2
, χ̃ = χ+

(VaRα(P ) + µ)2

σ2
.

Use of this formula is many times faster than standard evaluation of the expected shortfall, and hence

is subsequently used in the computation of the risk contributions (14).

Next, we outline a method to accelerate and stabilize the numerical solution of the optimization problem

(8). For solving this non-linear constrained optimization problem we use, as in Roncalli (2013) and

Stefanovits (2010), the SQP algorithm (implemented in MATLAB), a popular and efficient algorithm

for this task. It iteratively solves a sequence of subproblems that consist of optimizing quadratic

approximations of the original problem. However, this requires the gradient of the objective function,

which is numerically approximated if it is not available in closed form. As demonstrated in Appendix

B, this comes at the cost of increased computational time and lowered precision. Instead we provide a

closed expression for the gradient of the risk parity objective function in (8).

4.3 Closed Form Expression of the Gradient and Hessian approximation

We now derive the closed form expression of the gradient together with a Hessian approximation for

the objective function f1(x) used in (8). The analogous result for f2(x) is given in Appendix A. We

use general risk budgets bi ≥ 0, obtaining the risk parity case for bi = 1/n for all i = 1, . . . , n. Our risk

parity objective function is

f1(x) =
n∑

i,j=1

(
xi
bi

∂ESα(x)

∂xi
− xj
bj

∂ESα(x)

∂xj

)2

,

10
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so taking partial derivative amounts to

∂f1(x)

∂xk
= 2

n∑
i,j=1

(
xi
bi

∂ESα(x)

∂xi
− xj
bj

∂ESα(x)

∂xj

)
·

·
(
δik
bi

∂ESα(x)

∂xi
+
xi
bi

∂2ESα(x)

∂xi∂xk
− δjk

bj

∂ESα(x)

∂xj
− xj
bj

∂2ESα(x)

∂xj∂xk

)
,

where δik is the Kronecker delta. It is useful to express the partial derivatives in matrix notation; after

some algebra, it can be shown that

∇f1(x) = 4n

(
x⊙

(
∇ES(x)

b

)2
)

+ 4HES(x)

(
nm− lx

b

)
− 4l

∇ES(x)

b
,

with HES(x) the Hessian matrix of the ES function, ∇ES(x) the gradient of the ES function, and

l =
∇ES(x)

b
· x, m =

(x
b

)2
⊙∇ES(x).

Here ⊙ represents the elementwise product between two vectors, division between vectors is intended

element-wise and · indicates the scalar product.

While this closed form expression is appealing, in practice it is too slow. The Hessian matrix contains n2

elements so that computing it will slow down the algorithm considerably because the gradient needs to

be called at every iteration of the optimization algorithm. To overcome this bottleneck, notice that the

Hessian only enters in the above equation when multiplied by a vector, so we can use a central difference

approximation to compute it more efficiently. Specifically, the first order Taylor approximation of the

gradient of ESα at a point x ∈ Rn is

∇ES(x+ rl) = ∇ES(x) + rHES(x)l+O(r2∥l∥2),

for arbitrary r ∈ R and l ∈ Rn, hence

HES(x)l =
∇ES(x+ rl)−∇ES(x)

r
+O(r∥l∥2).

In this work we use a central difference quotient for higher order approximation

HES(x)l =
∇ES(x+ rl)−∇ES(x− rl)

2r
+O(r2∥l∥2). (17)

Therefore, to compute the product HES(x)l we just need to compute the gradient of the ES function

twice, requiring only a linear number of calls to the ES function. Together with the closed-form ex-

pression (16) delineated above, this makes the computation of the gradient much faster than the direct

finite difference approximation.

Initializing the Algorithm

The speed and accuracy of the SQP algorithm can be further improved by a starting point in the

numerical solver that is close to the optimal solution. For the risk parity problem (8) there exist

two obvious candidate portfolios. First, one can use the 1/n portfolio weights because it has been

empirically observed that the risk parity weights are often considerably close to the equally weighted

portfolio, especially when the assets are homogeneous in their level of risk. The second approach is to

use the NRP weights, analogous to (7) but computed with the same risk measure as used for the risk

parity strategy, i.e., the ES in our setting. This approach is investigated in Cesarone and Colucci (2018)

11
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and is found to be a good approximation of the risk parity weights. The NRP vector xNRP is computed

as

xNRP,i :=
ES−1

α (ei)∑n
j=1 ES

−1
α (ej)

,

where ei is the ith unit vector and ESα(ei) is the ES of the portfolio consisting of one unit of asset

i. The NRP strategy is exceptionally fast to compute because it requires only n evaluations of the ES

function.

5 Empirical Analysis

An extensive out-of-sample portfolio analysis is performed on two different data sets. We start with

the Dow Jones 30 (DJ30) as a pure stock market data set where the risk characteristics of the various

assets are rather homogeneous. In the literature, such as Cesarone and Colucci (2018), Roncalli (2013),

and Unger (2014), the RP strategy is often regarded as an alternative to the min-var portfolio. For

this reason, we investigate the RP strategy in an asset universe that is typical for the analysis of the

min-var strategy and compare it extensively to the latter. Most real-world applications of RP strategies

consider the allocation of capital into different asset classes, as opposed to assets of one class. For this

reason we consider a data set of liquidly traded ETFs that cover multiple asset classes.

To quantify the impact of different levels of turnover on the portfolio performance, we assume pro-

portional transaction cost as in DeMiguel et al. (2009b) and compute the turnover in the same way.

Furthermore, we follow Cesarone and Colucci (2018) in ignoring portfolio rebalancing that is solely due

to intraday prices changes. Thus for the passive 1/n strategy we report a turnover of zero, although

in reality it does have some turnover. This approximation does not change the findings of our analysis

and even makes the 1/n portfolio more competitive under transaction fees.

5.1 Dow Jones 30 Data

The data set consists of the daily log-returns of the n = 30 components of the DJ30 index, spanning

the period from 03.01.1996 to 30.12.2016. We include all companies that were part of the DJ30 index

at some point in time and that were listed on the New York Stock Exchange during the entire sample

period. Using 1000 data points for parameter estimation, the out-of-sample trading period starts on

17.12.1999.

The results are presented in Table 1, with the best value for each category given in bold. For the RM

strategy the highest risk-adjusted returns are attained for the SNIG, followed by the MLap and Mt

distributions. The Gaussian model delivers the lowest Sharpe ratio and the highest turnover but still

clearly outperforms the 1/n strategy. The Sharpe ratios net of transaction costs are the highest for

the SNIG distribution under all fee levels. Even using the high value of 50bp, the RM strategy, under

all distributions, outperforms the 1/n portfolio. The latter has the highest volatility and maximum

drawdown, i.e., equal capital diversification provides an inferior loss protection.

The SNIG distribution performs best also for the RP strategy. Notably, the performance differences

between using a Gaussian and a non-Gaussian elliptical MGHyp distribution is much smaller for the

RP than for the RM portfolio. This can be interpreted as robustness of the RP portfolio towards

distributional misspecification. The RP strategy outperforms the equally weighted portfolio in terms

of returns, risk-adjusted returns, volatility and maximum drawdown. However, it must be noted that

the RP strategy is clearly outperformed by the RM strategy in all performance measures, except for

turnover, and under any distributional assumption. This supports the intuition of RP as being a trade-off

12
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Risk Minimization

Distr. Exp. Daily Ret Daily Vola Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr

SNIG 0.0254 0.9120 109.0773 35.8788 0.6395 0.4429 0.6304 0.0071

MLap 0.0254 0.9123 108.7343 36.0652 0.6651 0.4413 0.6278 0.0071

Mt 0.0252 0.9127 107.9117 36.2944 0.6806 0.4378 0.6230 0.0070

MN 0.0231 0.9092 99.2368 43.3728 0.7120 0.4041 0.5720 0.0065

1/n 0.0243 1.2075 104.2089 56.9816 0.0000 0.3196 0.4490 0.0049

Distr. 0bp 1bp 5bp 10bp 20bp 50bp

SNIG 0.4429 0.4417 0.4373 0.4317 0.4206 0.3872

MLap 0.4413 0.4402 0.4356 0.4298 0.4182 0.3835

Mt 0.4378 0.4366 0.4319 0.4260 0.4141 0.3786

MN 0.4041 0.4029 0.3979 0.3917 0.3793 0.3420

1/n 0.3196 0.3196 0.3196 0.3196 0.3196 0.3196

Risk Parity

Distr. Exp. Daily Ret Daily Vola Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr

SNIG 0.0249 1.1196 106.5539 50.4878 0.1203 0.3524 0.4954 0.0054

MLap 0.0249 1.1197 106.5536 50.5082 0.1213 0.3524 0.4954 0.0054

Mt 0.0248 1.1192 106.4459 50.4841 0.1229 0.3522 0.4951 0.0054

MN 0.0245 1.1155 105.0241 50.2743 0.1379 0.3486 0.4903 0.0054

1/n 0.0243 1.2075 104.2089 56.9816 0.0000 0.3196 0.4490 0.0049

Distr. 0bp 1bp 5bp 10bp 20bp 50bp

SNIG 0.3524 0.3522 0.3516 0.3507 0.3490 0.3439

MLap 0.3524 0.3522 0.3515 0.3507 0.3489 0.3438

Mt 0.3522 0.3520 0.3513 0.3504 0.3487 0.3435

MN 0.3486 0.3484 0.3477 0.3467 0.3447 0.3388

1/n 0.3196 0.3196 0.3196 0.3196 0.3196 0.3196

Table 1: DJ30 stocks traded from 17.12.1999 until 30.12.2016; using 1000 data points for estimation;

returns and volatilities are daily and measured in percent; Top Panel : Comparison of the RM strategy

under various distributions; Second Panel : Sharpe ratios net of transaction costs of the RM strategy

under various levels of transaction fees; Third Panel : Comparison of the RP strategy under various

distributions; Bottom Panel : Sharpe ratios net of transaction costs of the RP strategy under various

levels of transaction fees
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Figure 1: Portfolio weights of the RM strategy with DJ30 stocks; out-of-sample trading period from

17.12.1999 until 30.12.2016; MN-IID (top), MLap-IID (second), SNIG-IID (third), and Mt-IID model

(bottom).

14

Electronic copy available at: https://ssrn.com/abstract=4652551



Figure 2: Portfolio weights of the RP strategy with DJ30 stocks; out-of-sample trading period from

17.12.1999 until 30.12.2016; MN-IID (top), MLap-IID (second), SNIG-IID (third), and Mt-IID model

(bottom).
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Figure 3: Cumulative returns of the RM, RP and equally weighted strategies; trading DJ30 stocks;

out-of-sample trading period from 17.12.1999 until 30.12.2016; only the best performing MGHyp model

(SNIG) and the Gaussian (MN) model are plotted.

between the RM and the 1/n portfolio, but it also questions the meaningfulness of the RP approach for

the stocks-only application as it neither provides optimal downside protection nor better risk-adjusted

returns. The maximum drawdown of the RP portfolio is only slightly lower than for the 1/n, but it is

much higher than the drawdown of the RM strategy. This is of particular importance because leverage

is often applied to RP portfolio to meet return targets.

On the other hand, the turnover of the RP portfolio is vastly lower than for RM, with the lowest

amount of rebalancing attained under the SNIG distribution. The reduction in turnover appears to

be the biggest advantage of using a non-Gaussian elliptical MGHyp distribution over the Gaussian one

for RP investing. The increased stability of portfolio weights can also be seen from Figures 1 and 2.

Use of a heavy-tailed distribution leads to smoother weights for both the RM and the RP strategies.

Most notably, at the beginning of the financial crisis in fall 2008, the non-Gaussian distributions cause

less rebalancing, which can be of utmost importance during a market crash. The weights under the

SNIG, MLap and Mt distributions are almost indistinguishable. As seen from Figure 2, the RP strategy,

when applied to a set of homogeneous assets (in terms of similar risk and high correlations), leads to

an allocation is closer to the equally weighted than the RM portfolio. In particular it avoids extreme

concentrations in individual assets.

The cumulative return plots in Figure 3 shows that the RM strategy under the SNIG distribution

outperforms all other portfolios during the entire trading period. The equally weighted portfolio suffers

the heaviest losses in all market crashes, most visibly during the burst of the dotcom bubble, the turmoils

following the 9/11 attacks, the Iraq war, and the financial crisis 2008-2009. The performance of the

RP follows more closely that of the equally weighted than the RM strategy, leading to reduced loss

protection in crisis times. Furthermore, the difference between the Gaussian and the MGHyp-based RP

strategies is very small, especially compared to the case of the RM strategy.
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5.2 Multi-Asset ETF Data

We cover a spectrum of asset classes and geographic locations by using eight liquid iShares ETFs issued

by BlackRock Inc. and traded on the New York Stock Exchange. These are the MSCI BRIC ETF

(BKF) covering equity markets in BRIC countries; the MSCI Eurozone ETF (EZU) covering large- and

mid-cap equities from the Euro zone; the Core S&P Total US Stock Market ETF (ITOT) tracking a

broad-based index of US equities; the S&P GSCI Commodity-Indexed Trust ETF (GSG) tracking a

broad investment in futures contracts on energy, agriculture and industrial metals; the Gold Trust ETF

(IAU) following the price of gold; the US Real Estate ETF (IYR) investing in listed US real estate; the

1-3 Year Treasury Bond ETF (SHY) mirroring US treasury bonds with maturities between one and three

years; and similarly the 10-20 Year Treasury Bond ETF (TLH) for US treasury bonds with maturities

between ten and twenty years. The sample spans the period from 03.01.2008 until 29.12.2017. Using

750 data points for model calibration, the trading period starts on 23.12.2010. Due to the anticipated

concentration of the RM allocation in bonds, we additionally consider the mean-variance (MV) portfolio

with a required annual return of 5%.

The results are given in Table 2. The RM approach delivers again, under any return distribution, a

higher Sharpe ratio, lower volatility and lower drawdown than the RP strategy. Moreover, the risk-

adjusted return of the 1/n strategy is far below those of the RM and RP portfolios. However, the total

return under both RM and RP are very low, which is due to both portfolios being heavily invested in

short-term U.S. treasury bonds; see Figures 4 and 5. The RM approach is extremely concentrated in

this asset, while the RP portfolio also holds a significant amount of long-term U.S. bonds. Nevertheless,

also the RP approach holds only small amounts of the other six assets and the asset allocation resembles

more closely the RM approach than the equally weighted portfolio. This is due to the vastly different

risk characteristics of the assets in this investment universe. In order to elevate returns, we also consider

the MV portfolio with 5% minimum expected annual return. As seen from the last two panels of Table

2, the total returns are strongly improved and exceed those of the 1/n portfolio. The same holds true for

the risk-adjusted returns, which outperform all other strategies considered herein. The MV portfolio’s

risk estimates exceed those of the RM strategy but are much lower than for RP. As seen from Figures

5 and 6, the RP allocation resembles somewhat that of the MV portfolio but the weights are smoother

and show less sensitivity with respect to the distributional assumption.

5.3 Portfolio Optimization under Heteroskedasticity: Dow Jones 30 Data

Finally, in this section, we account for the heteroskedasticity of returns by fitting the GARCH-dynamics

of the COMFORT-CCC model, instead of the i.i.d. case. For this exampple, we return to the data

set consisting of the n = 30 components of the DJ30 index, spanning the period from 03.01.1996 to

30.12.2016. As in Section 5.1 we use 1000 data points for estimation, the out-of-sample trading period

starts on 17.12.1999.

The results are shown in Table 3. Incorporating the GARCH-CCC covariance dynamics improves the

returns, risk-adjusted returns and risk characteristics of both the RM and the RP strategies. In par-

ticular, for the RP strategy, the impact of modeling the covariance dynamics with a simple MGARCH

structure is larger than that of accounting for heavy tails with an elliptical MGHyp distribution. How-

ever, this comes at the price of vastly increased turnover. When transaction fees are taken into account,

the GARCH-CCC structure quickly becomes unfavorable because of the heavy increase in transaction

costs. The RP still exhibits lower turnover than the RM portfolio but, for both strategies, the perfor-

mance improvement of the GARCH-CCC model is already offset by higher trading costs for low and

modest levels of transaction fees.
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Risk Minimization

Distr. Exp. Daily Ret Daily Vola Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr

MLap 0.0031 0.0527 5.4776 0.7451 0.4310 0.9334 1.3703 0.0164

Mt 0.0029 0.0515 5.2061 0.7032 0.2698 0.9090 1.3268 0.0161

SNIG 0.0029 0.0525 5.1746 0.6873 0.2107 0.8854 1.2904 0.0155

MN 0.0027 0.0536 4.8385 0.7067 0.5870 0.8113 1.1824 0.0142

1/n 0.0112 0.6180 19.7273 19.2632 0.0000 0.2869 0.3944 0.0046

Distribution 0bp 1bp 5bp 10bp 20bp 50bp

MLap 0.9334 0.9207 0.8693 0.8047 0.6743 0.2812

Mt 0.9090 0.9008 0.8677 0.8261 0.7425 0.4898

SNIG 0.8854 0.8791 0.8537 0.8220 0.7581 0.5646

MN 0.8113 0.7940 0.7246 0.6377 0.4636 -0.0575

1/n 0.2869 0.2869 0.2869 0.2869 0.2869 0.2869

Risk Parity

Distr. Exp. Daily Ret Daily Vola Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr

MLap 0.0059 0.1319 10.3613 3.6663 0.1019 0.7060 1.0132 0.0130

SNIG 0.0059 0.1319 10.3369 3.6876 0.1008 0.7046 1.0110 0.0130

Mt 0.0058 0.1315 10.1723 3.7585 0.0980 0.6954 0.9972 0.0128

MN 0.0057 0.1302 10.0687 3.7827 0.1097 0.6950 0.9979 0.0127

1/n 0.0112 0.6180 19.7273 19.2632 0.0000 0.2869 0.3944 0.0046

Distribution 0bp 1bp 5bp 10bp 20bp 50bp

MLap 0.7060 0.7048 0.6999 0.6938 0.6816 0.6448

SNIG 0.7046 0.7034 0.6985 0.6925 0.6804 0.6440

Mt 0.6954 0.6942 0.6895 0.6836 0.6718 0.6363

MN 0.6950 0.6937 0.6884 0.6817 0.6684 0.6283

1/n 0.2869 0.2869 0.2869 0.2869 0.2869 0.2869

Mean-ES

Distr. Exp. Daily Ret Daily Vola Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr

Mt 0.0114 0.1448 20.0531 2.4043 0.8085 1.2445 1.8002 0.0220

MN 0.0172 0.2204 30.3970 3.2286 1.8405 1.2395 1.7967 0.0212

MLap 0.0093 0.1207 16.3966 1.9778 0.5668 1.2209 1.7700 0.0222

SNIG 0.0098 0.1276 17.3118 2.1189 0.6171 1.2196 1.7661 0.0219

1/n 0.0112 0.6180 19.7273 19.2632 0.0000 0.2869 0.3944 0.0046

Distribution 0bp 1bp 5bp 10bp 20bp 50bp

Mt 1.2445 1.2356 1.2003 1.1561 1.0677 0.8021

MN 1.2395 1.2263 1.1733 1.1071 0.9746 0.5768

MLap 1.2209 1.2135 1.1838 1.1467 1.0724 0.8488

SNIG 1.2196 1.2119 1.1814 1.1431 1.0665 0.8363

1/n 0.2869 0.2869 0.2869 0.2869 0.2869 0.2869

Table 2: Eight multi-asset, multi-country ETFs traded from 23.12.2010 until 29.12.2017; using 750 data

points for estimation; returns and volatilities are daily and measured in percent, Top Panel : Comparison

of the RM strategy under various distributions; Second Panel : Sharpe ratios net of transaction costs of

the RM strategy under various levels of transaction fees; Third Panel : Comparison of the RP strategy

under various distributions; Bottom Panel : Sharpe ratios net of transaction costs of the RP strategy

under various levels of transaction fees; Fifth Panel : Comparison of the mean-ES strategy with 5%

minimum expected annual return under various distributions; Bottom Panel : Sharpe ratios net of

transaction costs of the mean-ES strategy with 5% minimum expected annual return under various

levels of transaction fees.
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Figure 4: Portfolio weights of the RM strategy using eight multi-asset multi-country ETFs; out-of-sample

trading period from 23.12.2010 until 29.12.2017 under the MN-IID (top), the MLap-IID (second), the

SNIG-IID (third), and the Mt-IID model (bottom).
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Figure 5: Portfolio weights of the RP strategy using eight multi-asset multi-country ETFs; out-of-sample

trading period from 23.12.2010 until 29.12.2017 under the MN-IID (top), the MLap-IID (second), the

SNIG-IID (third), and the Mt-IID model (bottom).
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Figure 6: Portfolio weights of the MV strategy with 5% minimum expected annual return using eight

multi-asset multi-country ETFs; out-of-sample trading period from 23.12.2010 until 29.12.2017 under

the MN-IID (top), the MLap-IID (second), the SNIG-IID (third), and the Mt-IID model (bottom).
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Risk Minimization

Distr. Exp. Daily Ret Daily Vola Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr

MLap-CCC 0.0263 0.9061 112.7441 34.3972 12.4719 0.4608 0.6488 0.0073

Mt-CCC 0.0257 0.9063 110.0678 34.9879 12.4703 0.4497 0.6325 0.0071

SNIG-CCC 0.0253 0.9068 108.5527 35.2704 12.7526 0.4433 0.6246 0.0070

MN-CCC 0.0221 0.9071 94.6365 37.1326 16.0321 0.3863 0.5425 0.0061

1/n 0.0243 1.2075 104.2089 56.9816 0.0000 0.3196 0.4490 0.0049

Distribution 0bp 1bp 5bp 10bp 20bp 50bp

MLap-CCC 0.4608 0.4389 0.3515 0.2422 0.0236 -0.6317

Mt-CCC 0.4497 0.4279 0.3405 0.2312 0.0128 -0.6420

SNIG-CCC 0.4433 0.4210 0.3321 0.2208 -0.0016 -0.6680

MN-CCC 0.3863 0.3583 0.2460 0.1057 -0.1749 -1.0148

1/n 0.3196 0.3196 0.3196 0.3196 0.3196 0.3196

Risk Parity

Distr. Exp. Daily Ret Daily Vola Total Return Max. Drawdown Avg. Turnover Sharpe Sortino Starr

MLap-CCC 0.0255 1.1022 109.3189 49.3641 2.5488 0.3673 0.5159 0.0057

SNIG-CCC 0.0254 1.1024 108.9990 49.3930 2.5900 0.3661 0.5142 0.0057

Mt-CCC 0.0254 1.1024 108.7422 49.5167 2.6342 0.3653 0.5130 0.0057

MN-CCC 0.0247 1.0980 106.0248 50.0960 3.6627 0.3576 0.5021 0.0056

1/n 0.0243 1.2075 104.2089 56.9816 0.0000 0.3196 0.4490 0.0049

Distribution 0bp 1bp 5bp 10bp 20bp 50bp

MLap-CCC 0.3673 0.3636 0.3489 0.3306 0.2938 0.1837

SNIG-CCC 0.3661 0.3624 0.3475 0.3288 0.2915 0.1796

Mt-CCC 0.3653 0.3615 0.3463 0.3273 0.2894 0.1756

MN-CCC 0.3576 0.3523 0.3311 0.3046 0.2517 0.0928

1/n 0.3196 0.3196 0.3196 0.3196 0.3196 0.3196

Table 3: Comparison of portfolio strategies under various COMFORT-CCC models; DJ30 stocks traded

from 17.12.1999 until 30.12.2016; using 1000 data points for estimation; returns and volatilities are daily

and measured in percent; Top Panel : Comparison of the RM strategy under Gaussian- and MGHyp-

based GARCH-CCC; Second Panel : Sharpe ratios net of transaction costs of the RM strategy under

various levels of transaction fees; Third Panel : Comparison of the RP strategy under Gaussian- and

MGHyp-based GARCH-CCC; Bottom Panel : Sharpe ratios net of transaction costs of the RP strategy

under various levels of transaction fees.
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6 Conclusion

We proposed a new method for efficient computation of risk parity (RP) portfolios under heavy-tailed

returns. Modeling asset returns with an elliptical MGHyp distribution allows for both a fast estimation

of model parameters and a semi-closed form expression of the risk contributions. Further exploitation

of several numerical shortcuts, along with using a result of Paolella and Polak (2015b) for the expected

shortfall under ellipticity, leads to exceptionally fast and precise computation of the RP portfolio weights.

In line with Stefanovits (2010), who uses an elliptical multivariate Student-t distribution, we find for the

different special cases of the MGHyp distribution investigated herein, that using a fat-tailed, elliptical

distribution instead of the Gaussian for computing the RP portfolio has a surprisingly small impact on

the portfolio performance.

Our empirical investigation shows that, while accounting for heavy tails in RP allocations leads only

to mild improvements of portfolio performance, the major advantage is a smoother transition of asset

weights over time and hence a reduced portfolio turnover. In the financial crisis of 2008, i.e., during

times of severe market distress, the RP portfolio under the MGHyp distribution requires significantly

less rebalancing than the Gaussian-based model as the market shocks are better captured by a return

distribution that permits excess kurtosis. While the differences between the various non-Gaussian special

cases of the MGHyp distribution are small, overall, the symmetric Laplace distribution delivers the best

portfolio results on most data sets considered and always outperforms the Student-t case which has been

studied in literature before. Notably, the negative effect of using a Gaussian return distribution, i.e.,

the potential harm of ignoring heavy tails, is smaller for the RP strategy than for the classical minimum

variance portfolio. Thus the RP method can be regarded as more robust to distributional assumptions

and ultimately less prone to model risk.

Aiming to account for the most important stylized facts of asset returns, we also consider the impact

of modeling heteroskedasticity with a GARCH-CCC model, both under Gaussian and heavy tailed

returns. The risk characteristics and realized returns are moderately improved when the covariance

matrix forecasts are generated from a GARCH-CCC structure, but this comes at the cost of increased

portfolio turnover. Further studies could investigate methods to dampen this side effect, e.g., by means of

regularization of the objective function or by use of a more robust dynamic covariance matrix framework,

such as that of Paolella et al. (2021).

Generally, we observe in our empirical analysis that the RP approach is dominated by risk minimization

(RM), not only in terms of lower risk, but also in terms of higher risk-adjusted returns. The weak

performance of RP has been reported earlier in Cesarone and Colucci (2018), Roncalli (2013), Scherer

(2014), and Unger (2014), among others. In light of the fact that the RP portfolio is mean-variance

efficient, only if all assets have identical Sharpe ratios and correlations, these empirical findings seem

consistent. Nevertheless, it should be noted that the equally weighted portfolio is outperformed by RP

in all our tests and even under realistic trading fees. This contrasts the general notion that the equally

weighted portfolio is notoriously difficult to outperform by optimized portfolios (DeMiguel et al., 2009b).

May o our surprise, the

While Roncalli (2013) highlights the robustness of asset weights and the avoidance of highly concentrated

portfolios as core strengths of RP investing, we find that this portfolio is not necessarily devoid of highly

concentrated weights. When an asset with significantly lower volatility is added to the asset universe

its weight will dominate. On our data set consisting of eight multi-asset, cross-country ETFs, more

than 80% of the capital is invested in the ETF on 1-3 year US treasury bills, because its volatility

is close to zero. The weights of the RP portfolio in this example resemble closely those of the mean-

variance portfolio. In fact, the selection of the asset universe is more crucial for RP than for min- or

mean-variance strategies, because non-negligible positions are typically held in all assets. Additionally,
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of practical interest to investors is the insight that the equally weighted allocation is most strongly

outperformed by optimized portfolios in the multi-asset case, i.e. naive diversification in a multi-asset

context is shown to be heavily suboptimal.

Regarding the risk characteristics of the various portfolios, our study suggests that the RP strategy

does not provide optimal protection against portfolio drawdowns. Even the simplest minimum-variance

portfolio under the Gaussian returns delivers a lower out-of-sample volatility and a vastly reduced

maximum drawdown than the RP strategy on the data sets considered herein.

Finally, the strengths of RP optimization arguably lie in the stability of portfolio weights and the low

portfolio turnover compared to RM and general Markowitz optimization. A contribution of our study is

to unveil that another advantage of RP is its robustness with respect to a misspecification of the return

distribution.

In future work, one could entertain a regularization method that penalizes portfolio rebalancing

with the effect that the assets weights are further stabilized and transaction costs are reduced. We

conjecture that the weights of the RM portfolio can be robustified such that the resulting portfolio

has a turnover level similar to RP, while maintaining a better risk-return profile. In the same spirit

and in line with our empirical results, Bai et al. (2016) calls the RP allocation approach a compromise

between risk minimization and the equally weighted portfolio. This raises the question whether one could

build simple combinations of the minimum-variance and the static 1/n portfolio weights, similar to Suh

(2016) and Tu and Zhou (2011), such that largely homogeneous risk contributions and low turnover are

achieved, while still retaining parts of the increased risk-adjusted returns of the RM approach. Further

studies could investigate this question.

Appendices

A Gradient Expression for the Risk Parity Objective Function f2(x)

We presented the closed-form gradient expression for objective function f1(x) in Section 4.3. We now

consider the other specification of the risk parity objective function, namely f2(x), given by

f2(x) =

n∑
i=1

(
xi
∂ESα(x)

∂xi
− biESα(x)

)2

.

Taking the partial derivative with respect to xk gives

∂f2(x)

∂xk
= 2

n∑
i=1

(
xi
∂ESα(x)

∂xi
− biESα(x)

)(
−bi

∂ESα(x)

∂xk
+ xi

∂2ESα(x)

∂xk∂xi
+ δik

∂ESα(x)

∂xi

)
.

This can be written in matrix form as

∇f2(x) = 2HES(x)(x⊙m) + (l + y)∇ES(x) + 2∇ES(x)⊙m,

where HES(x) is the hessian matrix of the ES and

m = x⊙∇ES(x)− ESα(x)b, l = −2

n∑
k=1

xkbk
∂ESα(x)

∂xk
, y = 2ESα(x)

n∑
k=1

b2k.

We observe a slightly slower convergence of the numerical optimization under this objective function

than for f1(x) and therefore used the latter in our empirical analysis.
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Figure 7: Computational time and approximation error of the closed-form versus numerical gradient

approximation for Gaussian- and MGHyp-based risk parity portfolios for varying number of assets
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B Computational Speed

The closed-form gradient expression of Section 4.3 delivers a major reduction of computational time

compared to brute-force numerical approximation. In Figure 7, we report for both methods the compu-

tational time and the differences in numerical optima of the risk parity objective function, for varying

numbers of assets and based on simulated asset returns. Our closed-form gradient expression, together

with the Hessian approximation, becomes much faster than the basic numerical approximation when

the number of assets grows. At the same time, the precision of our method is on par with the numerical

approximation method. The reduction in computational time is most pronounced for the case of a

non-Gaussian MGHyp distribution.
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Tütüncü, R. H. and Koenig, M. (2004). Robust Asset Allocation. Annals of Operations Research, 132(1-4):157–

187.

Unger, A. (2014). The Use of Risk Budgets in Portfolio Optimization. Springer.

29

Electronic copy available at: https://ssrn.com/abstract=4652551


	Introduction
	Fat-Tailed Conditional Returns with Regime-Switching Conditional Correlations
	Multivariate Generalized Hyperbolic Distributions
	Elliptical Distributions
	The COMFORT-CCC Model

	Risk Parity Portfolio Optimization
	Risk Contributions
	Risk Parity Portfolios

	Fast Computation of Tail Risk Parity Portfolio under Elliptical Distributions
	Tail Risk Contributions under Elliptical Returns
	Fast Computation of the ES under Elliptical MGHyp Distributions
	Closed Form Expression of the Gradient and Hessian approximation

	Empirical Analysis
	Dow Jones 30 Data
	Multi-Asset ETF Data
	Portfolio Optimization under Heteroskedasticity: Dow Jones 30 Data

	Conclusion
	Appendices
	Gradient Expression for the Risk Parity Objective Function f2(bold0mu mumu xxxxxx)
	Computational Speed 


