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ABSTRACT 

Identifying cell types based on expression profiles 

is a pillar of single cell analysis. Existing machine- 

learning methods identify predictive features from 

annotated training data, which are often not available 

in early-stage studies. This can lead to overfitting 

and inferior performance when applied to new data. 

To address these challenges we present scROSHI, 

which utilizes pre viousl y obtained cell type-specific 

gene lists and does not require training or the ex- 

istence of annotated data. By respecting the hierar- 

chical nature of cell type relationships and assign- 

ing cells consecutively to more specialized identi- 

ties, excellent prediction performance is achieved. 

In a benchmark based on publicly available PBMC 

data sets, scR OSHI outperf orms competing meth- 

ods when training data are limited or the diversity 

between experiments is large. 

INTRODUCTION 

After more than two decades of technological de v elopment 
from its earliest attempts ( 1 , 2 ), single cell transcriptomics 
studies have come of age and are widely used for basic 
as well as translational r esear ch ( 3–5 ). This is best show- 
cased by the recent explosion of single cell atlases of vari- 
ous organs and organisms ( 6–9 ), as well as the use of sin- 
gle cell transcriptomics for disease investigation ( 10 ). The 
term ‘atlas’ describes the result of identifying each and ev- 
ery cell type in the analyzed tissue sample for known cell 
types and disco vering no vel cell types defined by their tran- 
scriptomic phenotype. Performing such cell type annotation 

manually is often a labor-intensi v e process requiring expert 
field knowledge, in particular in the presence of closely re- 

lated, unknown, or novel cell types such as developing or 
precursor cells. 
In recent years, a large number of tools have been de v el- 

oped to automate cell type identification with varying per- 
formance, as summarized in a recent benchmark study ( 11 ). 
The common theme of these tools is that the expression pro- 
file of a target cell is compared to known expression pro- 
files of particular cell types, possibly limited to a subset of 
genes that are relati v ely stab le and highly e xpressed. In or- 
der to deri v e e xpr ession featur es pr edicti v e for a cell type, it 
is commonplace to use unsupervised clustering of a single 
cell data set and assign the cluster labels to cell types based 

on biological interpretation. In the next step, this cell type 
label is interpreted as the ground truth to build a machine 
learning model that finds the features relevant for cell type 
prediction. 
Howe v er, as will be shown in the course of this work, 

learning features and performing the classification on the 
same data can lead to overfitting even if separate training 
and test data are used, provided they both were acquired un- 
der the same experimental condition. As a consequence, the 
cell type classification uncertainty is underestimated during 
validation and the true misclassification rate in the test situ- 
ation is unexpectedly large. In other words, in practice often 

featur es (i.e. expr ession levels) learned in one study are ap- 
plied to other studies, e.g. of the same tissue type, with the 
assumption that the same features enable a robust classifica- 
tion across studies. Howe v er, e xpression values can largely 
vary between experiments, and thus this assumption can be 
violated in which case features should not be used across 
studies. As a consequence, methods dependent on training 
data are again prone to an increased misclassification rate 
w hen a pplied to new data. 
Another challenge in cell type classification is that some- 

times the number of possible candidate cell types is large, 
which tends to increase the misclassification rate. Howe v er, 
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mostly the cell types are related because they are the prod- 
uct of dif ferentia tion from a smaller number of precursor 
cell types. 
To address these challenges, we present s ingle c ell 

RO bust S upervised H ierarchical I dentification of cell types 
(scROSHI), which utilizes a-priori defined cell type-specific 
gene list and does not r equir e training or the existence of 
annota ted da ta. scROSHI is independent of an y inf orma- 
tion on expression levels of the cell type-specific gene lists, 
and thus less prone to overfitting to any particular data 
set. In addition, scROSHI respects the hierarchical nature 
of cell type relationships due to differentiation within a 
lineage and it assigns cells consecuti v ely to more special- 
ized identities. This allows to distinguish e v en closely re- 
lated and expression-wise similar cell types. Taken together, 
scROSHI achie v es e xcellent prediction performance, which 

we show case b y comparing the performance of scROSHI 
with three existing tools that scored among the best in a re- 
cent benchmark study ( 11 ). To capture a realistic scenario, 
we utilize three annota ted da tasets and a ppl y methods 
across those data, i.e. cell typing is performed on a dataset 
different from the training set. We show that scROSHI 
outperforms the competing methods when the training 
da taset dif fers from the da ta tha t is evalua ted for cell 
typing. 
Taken together, scROSHI is a transpar ent, interpr etable, 

and robust cell type classification a pproach particularl y use- 
ful when previous knowledge about cell type-specific genes 
is available but annotated training data is scarce. scROSHI 
is available as an R package and can thus be seamlessly in- 
tegrated into single cell analysis workflows. 

MATERIALS AND METHODS 

The key idea of scROSHI is conceptually simple: it r equir es 
a list of cell types expected in a sample, and for each of 
those cell types a list of genes expected to be cell-type spe- 
cific (or in the minimum prominently expressed in only one 
cell type). Based on this inf ormation, f or each cell and for 
each cell type scROSHI compares the expression of the cell 
type-specific genes with the expression of the genes selected 

for the other expected cell types. The assumption is that a 
single cell is 100% pure, i.e. is identified by one cell type 
or another but not a mixture. Then each cell should show 

high expression of cell type-specific genes for only one cell 
type, which will be the cell type classified by scROSHI. Pro- 
vided the observed object is indeed a single cell, this as- 
sumption can be violated in two scenarios: (i) the cell type 
of the cell is not among the list of presented cell types (or 
the quality of the cell type-specific genes is poor) and (ii) 
the genes of more than one cell type show high expression 

(e.g. because two cell types are highly similar). In the first 
scenario scROSHI will label the respecti v e cell as ‘cell type 
unknown’ to indicate that either a novel (‘unknown’) cell 
type is present and / or further investigation is warranted. 
In the second scenario scROSHI will label the cell as ‘cell 
type uncertain’, again indicating the need for further inves- 
tigation, while providing information of which cell types 
are likely candidates for classification to ease the manual 
interpretation. 

scROSHI: design considerations 

The most important design criterion for scROSHI was that 
the method should be capable of automated classification 

in the absence of labeled training data. This excluded any 
machine learning approach that would r equir e training a 
model. Instead, the method should utilize and rely on the 
vast amount of validated cell type-specific gene lists avail- 
ab le from pre vious bulk or single cell experiments, such as 
the widely acknowledged immune cell type gene lists (also 

known as ‘ lm22 ’) used by the cibersort algorithm ( 12 ) or 
the somewha t rela ted r esour ce for single cell melanoma data 
( 13 ). 
Another important design criterion was that the method 

should avoid re-training on a dataset currently under inves- 
tiga tion. W hile, in general, inclusion of training data from a 
variety of sources is advantageous, at this stage, re-training 
would lead to overfitting and ther efor e to an overestimation 

of the prediction performance. Provided the originally cho- 
sen gene list was previously validated to be robust against 
changes in the experimental condition, re-training is not 
necessary. 
This argument can be turned around to provide a strategy 

on how to arri v e at a suitab le gene list for cell types for which 

a previously validated set is not available: included as cell 
type specific genes, i.e. genes that are highly expressed in the 
target cell type, should be those genes that have this prop- 
erty independent of tissue type, sample type (i.e. cultured 

immortalized cells, cultured primary cells, tissue biopsy), 
detailed setup (culture medium, organism), or patient char- 
acteristics (gender, ethnicity, age). The larger the di v ersity 
of the test data, the more robust and broadly applicable the 
final gene list. 
Gi v en a set of cell type-specific genes and without the 

need for training a model, one possibility to assign a cell 
type from a list of candidates to a target cell is to test for 
association and choose the one that fits best. On one end 

of the spectrum when measuring association is the hyperge- 
ometric test comparing the proportion of highly expressed 

genes specific for one cell type with the proportion of highly 
expressed genes specific for all other cell types. The advan- 
tage is that it can almost always be calculated and is robust 
against expression outliers. On the one hand, it is simple to 

use because the cell type-specific r efer ence does not have to 

be known quantitati v ely in the form of an expression pro- 
file. On the other hand, it is relati v ely insensiti v e because 
it completely ignores the quantitati v e nature of the expres- 
sion profile of the target cell, which is typically available. 
On the other end of the spectrum when measuring associa- 
tion one can quantitati v ely match the expression profile of 
a known cell type to the expression profile of the target cell, 
for instance, using Spearman’s correla tion. W hile this ap- 
pr oach is r ob ust a gainst expression outliers, it is relati v ely 
e xpensi v e in data availability, i.e. it r equir es knowledge of 
the gene expression profile of the reference. We chose to fol- 
low an intermediate path by performing a quantitati v e and 

robust test, the Mann-Whitney rank sum test, to compare 
the expression ranks of the genes specific for one cell type 
with the ranks of the genes specific for all other cell types. 
The negati v e log of the test’s p-value is then a measure of 
the association strength between the target cell and this cell 
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type. It can be interpreted as a score for how well the target 
cell matches the cell type at hand. 

Like in most classification problems it is assumed here 
that each cell belongs to exactly one class of a gi v en set of 
candidates. Howe v er, scROSHI goes one step further and 

allows for the introduction of two additional classes, un- 
kno wn and uncer tain , to deal with the unavoidable classi- 
fication uncertainty. 

Another step to improve the classification efficiency is to 

utilize the hierarchical tree structure that is inherent to cell 
types due to de v elopmental specialization and ther efor e ap- 
ply a hierarchical classification approach. Instead of classi- 
fying all cell types at once, target cells are first assigned to a 
smaller number of major cell types and then consecuti v ely 
to more specialized classes. This way, relati v ely similar cell 
types can be distinguished provided they belong to different 
branches in the tree. 

The scROSHI workflow 

1. Find out which cell types to expect from field knowledge. 
2. Obtain validated cell type-specific gene lists from the lit- 

erature or learn cell type specific genes based on other 
datasets. Importantl y, onl y the gene names, not the ex- 
pression, is relevant. 

3. Optional: Obtain a hierarchical tree structure to define 
cell type parent–kin relationships. 

4. For each cell i and each cell type j in the first hierarchical 
le v el, compare the e xpression of the genes specific for this 
cell type with the expression of the genes selected for the 
other expected cell types: determine the P -value of a one- 
sided Mann-Whitney test of the Null hypothesis that the 
expression rank sum of the genes specific for this cell type 
j is the same as or smaller than the rank sum of the genes 
specific for any other cell type in the list. 

H 
i j 

0 : 
∑ 

g k 

R ank ( g k = j ) ≤
∑ 

g k 

R ank ( g k�= j ) 

The alternati v e hypothesis is that the rank sum of the 
genes specific for this cell type is larger. 

5. Compute the normalized negati v e log of the P -value for 
each cell i and each cell type j , respecti v ely. 

s i j = 
−log 10 ( p i j ) ∑ 

i j −log 10 ( p i j ) 

Interpret the result as a score for how well the cell 
ma tches tha t cell type. 

6. Assign the cell type label with the highest score to the 
cell. 

7. If none of the scores is above a certain threshold, do not 
assign a cell type label to the cell but assign it to the class 
‘unknown’. 

8. If the ratio between the largest and the second largest 
score is below a certain threshold, do not assign a cell 
type label to the cell but assign it to the class ‘uncertain’. 

9. Repeat 4 to 7 for the second hierarchical le v el, and so 

on. Cells that have been classified as ‘unknown’ or ‘un- 
certain’ in the first iteration are included in the next iter- 
ation to allow classification into next level cell types. 

scROSHI takes as input the gene x cell count matrix, ei- 
ther with raw or normalized counts (Figure 1 A). scROSHI 
is robust to the choice of normalization and / or transforma- 
tion method, because the cell type score is based on ranks 
rather than on the actual values. In our studies we typically 
use sctransform ( 14 ), which corrects unwanted biases us- 
ing regularized negati v e binomial regression. In general, it 
is advised that the scale of the input data matches the scale 
at which the cell type-specific gene lists were generated. 

The second ingredient required for cell type classifica- 
tion is a collection of cell type-specific gene lists (Figure 
1 B). The selection of cell types to expect will depend on the 
nature of the sample. It is recommended to adapt the cell 
type selection to keep classification specificity high when- 
e v er possib le: having closely related cell types in the candi- 
date list may sometimes be r equir ed but should be avoided if 
possible. 
Ther e ar e a number of r esour ces available containing cu- 

rated r efer ence datasets, mostly assembled from bulk RNA- 
seq or microarray data of sorted cell types. Examples are 
the C8 set of the MSigDB collection ( 15 ), the lm22 im- 
mune cell list of cibersort ( 12 ), the BioGPS Human Cell 
Type and Tissue Gene Expression Profiles collection ( 16 ) 
from harmonizome ( 17 ), or the Bioconductor ( 18 ) pack- 
age celldex ( 19 ). These r efer ences ar e often good enough for 
most applications provided that they contain the cell types 
that are expected to be present in the da ta a t hand. For our 
contribution to the Tumor Profiler Study ( 20 ), working on 

melanoma patient biopsy samples, we used the curated gene 
list fr om Tir osh et al.( 13 ) in combination with the immune 
cell list of cibersort. 

In cases where quantitati v e cell type-specific r efer ence 
profiles are available they can be used as is or they can be 
binarized to obtain cell type-specific gene lists (Figure 1 B). 
They should contain genes that show little variability and 

ar e highly expr essed in the target cell type and have zero or 
weak expression in all other cell types. The gene lists do not 
need to be e xclusi v e, i.e. the same gene can appear in differ- 
ent cell type lists, but the overlap between cell types should 

be kept small. Obviously, the more similar two cell types are, 
the larger the overlap between their specific gene lists will 
be. In addition, gi v en the sparsity of single cell count data, 
gene lists with only a few members will have lower sensitiv- 
ity compared to larger lists. 
The third ingredient to scROSHI is a hierarchical tree 

structur e defining par ent - kin r elationships between cell 
types. The purpose of this tree is to classify cells first 
into a small number of coarse-grained cell type super- 
families and then consecuti v ely into more and more spe- 
cialized, fine-grained cell (sub-)types (Figure 1 E). This 
way, the number of possible candidate cell types in each 

step is much smaller than the total number of candidate 
cell types thus reducing the possibility of false classifica- 
tion. Mor eover, the thr esholds for unknown and uncertain 

classes can be chosen to fit the detailed cell type similar- 
ity distribution in each branch to optimize classification 

efficiency. 
With the three inputs (i) count matrix, (ii) cell type- 

specific gene lists and (iii) hierarchical relationships between 

cell types, scROSHI performs the cell type score assign- 
ment and classification. For each cell and each cell type, a 
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Figure 1. Schematics of the scROSHI workflow. The gene x cell (row x column) normalized expression matrix ( A ) is combined with the binary gene ×
cell type membership matrix ( B ) to define genes specific for a cell type (black) and genes specific for other cell types (white). ( C ) The one-sided Mann- 
Whitney rank sum test provides a cell type x cell score matrix (top), which is normalized (bottom). ( D ) UMAP r epr esentation of all cells from a melanoma 
patient biopsy using the most highly variable genes, colored by pheno gra ph clusters. ( E ) De v elopmental ‘family tree’ defining cell type hierarchies. ( F ) The 
r epr esentation in (D) is colored by scROSHI predicted cell types. 

one-sided Mann-Whitney U-test is performed. The Null hy- 
pothesis is that the expression rank sum of the genes specific 
for this cell type is the same as or smaller than the rank sum 

of the genes specific for any other cell type in the list. The 
alternati v e hypothesis is that the rank sum of the genes spe- 
cific for this cell type is larger. The normalized negati v e log 
of the p-value for each cell-cell type pair is interpreted as a 
score how well the cell matches the respecti v e cell type (Fig- 
ure 1 C). If none of the scores is above a certain threshold, no 

cell type label is assigned to the cell but the class ‘unknown’. 
Also, if the ratio between the largest and the second largest 
score is below a certain threshold, again no cell type label is 
assigned to the cell but the class ‘uncertain’. Both categories, 
‘unknown ’ and ‘uncertain ’, can reflect popula tions tha t are 
not included in the list of a priori selected cell types, thus 
potentially indicating ‘novel’ cell types (or poor quality of 
the cell type-specific gene lists). These two categories there- 
fore help to avoid misclassification by explicitly considering 
classification uncertainty and moreover point out cell pop- 
ula tions tha t r equir e further investigation. The choice of the 
two thresholds can be made ad hoc based on visual inspec- 
tion of the results or consistency with other methods for un- 
labeled data, or based on an optimization scheme by mini- 
mizing the classification cr oss-entr opy when gr ound truth- 
labeled data is available. In general, the higher the difference 
between the cell types, the more stringent can the thresholds 
be chosen. 
Taken together, these steps facilitate an enrichment of the 

pure data-dri v en description of the single-cell data (Figure 
1 D) with biological meaning (Figure 1 F). 

Benchmarking 

A detailed description of the datasets used, their origin, 
which preprocessing steps were applied, as well as the de- 
scription of the pipeline and the competing tools is de- 
scribed in the Supplementary Material (Supplementary Ta- 
bles S1–S5, Supplementary Figures S1–S3). 
To briefly summarize, we used public datasets with a sim- 

ilar cell type composition to benchmark scROSHI against 
high profile competitor methods. Data from three periph- 
eral blood mononuclear cell experiments were retrie v ed, one 
from an adult human in which the cell types were pre-sorted 

(Zheng sorted set), and one each of an adult (Adult set) and 

a newborn (Newborn set). Hence, the three sets are similar 
in content but differ in experimental setting and donor age. 
We defined a common set of matching cell type labels 

across the three datasets for comparisons between datasets 
(see Supplementary Material for further details on the 
ground truth dictionary). 
Based on a pre vious benchmar k of automatic cell identi- 

fication methods ( 11 ), we decided to compare scROSHI to 

three front runners: support vector machine (SVM), ran- 
dom forest (RF) and GARNETT ( 21 ). The main difference 
between scROSHI and its competitors is the fact that they 
use part of the data to train a model whereas with scROSHI 
there is no training involved once the cell type-specific gene 
lists are selected. While SVM and RF can capture non- 
linear relationships between the explanatory features (gene 
expression) as well as interactions between them, GAR- 
NETT is based on a penalized multivariate generalized 

linear prediction model (GLMNET). All methods, includ- 



NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 5 

ing scROSHI, were used under standard conditions, with 

default parameter settings. 
We trained a model for RF, SVM, and GARNETT and 

evaluated the performance of the classifiers by a ppl ying a 
5-f old cross-validation f or each dataset. The f olds were split 
in a stratified manner in order to keep equal proportions of 
each cell population in each fold. We used the same train- 
ing and testing f olds f or all classifiers. scROSHI and Gar- 
nett r equir e a cell type specific gene list. We used a list 
of cell type specific genes based on pre vious pub lications 
( 12 , 22 ) for scROSHI and a garnett-optimized marker list 
( check markers() function from the garnett package 
v.0.2.17) for Garnett. In addition, the following criteria were 
supplied to scROSHI for classifying a cell as unknown or un- 
certain . A cell is labeled unknown if none of the P -values is 
below 0.05 and uncertain if the ratio between the smallest 
and the second smallest P -values is above 0.1 (major cell 
type) or 0.8 (subtype). These thr esholds wer e chosen as the 
default settings when designing scROSHI in the context of 
profiling tumor samples from the Tumor Profiler study ( 20 ). 

Validation scheme. Each of the three datasets was split in 

training, validation, and testing sets. Three major valida- 
tion runs were performed in which each of the three datasets 
served as the training / validation set. After the final model 
was obtained, it was tested once ‘in set’ on the testing set 
that came from the same experiment as the training data, 
and two times ‘out of set’ on the two remaining sets from 

which the model has not yet seen any data. scROSHI was 
tested by the same scheme. Further details on the validation 

scheme can be found in the Supplementary Material. 

Copy number variation estimation 

To pre-process scRNA-seq data from the Tumor Profiler 
Study, we used a procedure based on standard quality con- 
trol measures ( 23 ). First, to retain only high quality cells, we 
removed cells with fewer than 700 expressed genes and 1500 
total read counts detected. Second, to avoid contamination 

by dying cells while retaining as many informati v e cells as 
possible, we filtered out cells with more than 35% of read 

counts coming from mitochondrial genes ( 24 , 25 ). 
To distinguish normal from malignant cells, we inferred 

large-scale copy number variations (CNVs) from the gene 
expression data using inf er cnvp y ( https://github.com/icbi- 
lab/infer cnvp y ). We ran infercnvpy on e v ery sample in- 
dividually using T cells , B cells , Endothelial cells and 

Macrophages as r efer ence cells. The gene ordering file con- 
taining the chromosomal start and end position for each 

gene was generated from the human GRCh37 assembly. To 

reduce the noise le v el, we only used genes that had a mean 

read count greater than 0.1. 
We then used an approach based on hierarchical cluster- 

ing of single cell copy number profiles to detect cells with 

and without CNVs. After calling CNVs, we used scipy ’s im- 
plementation of hierarchical clustering with Ward linkage 
( 26 ) to obtain a dendrogram of the CNV profiles. By defini- 
tion, each node in a dendro gram onl y had two child nodes 
that r epr esented a cluster of clusters, except for leaf nodes 
that r epr esented a cluster of cells. Each cell was annotated 

as malignant or non-malignant using scR OSHI’ s cell type 
annota tions. Starting a t the root node, we then iterati v ely 
assigned a CNV status to the nodes according to the com- 
position of their subtrees. Specifically, a node and all nodes 
in its subtree were annotated as presenting no CNVs if both 

its subtrees contained at least 60% of non-malignant cells. 
We traversed the dendrogram until we reached all nodes or 
a maximum depth of fiv e in the dendrogram. Finally, a cell 
was assigned the ‘no CNVs’ status if it belonged to a leaf 
node that had been annotated as not presenting CNVs. All 
remaining cells were annotated as showing CNVs. 

RESULTS AND DISCUSSION 

Perf ormance ev aluation 

We compared the performance of scROSHI on test datasets 
with the performance of supervised methods that had been 

trained with the test dataset (intra-dataset evaluation) and 

that had been trained with a different dataset (inter-dataset 
evaluation). Ther e wer e thr ee types of classifiers: ( 1 ) prior 
knowledge method (scROSHI) for which a cell type specific 
gene list is r equir ed. ( 2 ) Supervised methods (RF, SVM), 
which r equir e a training dataset labeled with correspond- 
ing cell labels. ( 3 ) Combined method (GARNETT), which 

r equir es both a cell type specific gene list and a training 
da taset. We calcula ted the percentage of unlabeled cells 
across all cell populations per classifier. Further, we calcu- 
lated the accuracy of only major cell types for scROSHI and 

GARNETT, since both methods perform a hierarchical cell 
typing with major and subtype labels (Supplementary Table 
S5). Additionally, we determined the proportions of cells 
that only have a major cell type label, cells that have label 
‘unknown’, or are unclassified. 
Figure 2 shows the overall results of the inter and intra- 

da taset evalua tion. Generally, scROSHI performs as well 
as the supervised methods if the supervised methods were 
trained with the test dataset (scROSHI accuracy: adult 
0.823, newborn 0.879, Zheng 0.715). However, scROSHI 
outperforms the supervised methods if they were trained 

with another dataset –– in this case we observed a lower ac- 
curacy and / or a higher amount of unlabeled cells for all su- 
pervised methods, a consequence of overfitting to the train- 
ing data. The supervised methods perform better if they 
were trained with a dataset that is closer to the test dataset 
(e.g. training da ta: Adult; test da ta: Newborn) but there is a 
strong decrease in performance if the test data is dissimilar 
(e.g. training data: Adult; test data: Zheng). 
The subtype classification on the Zheng dataset was chal- 

lenging for all classifiers (scROSHI accuracy: 0.715). How- 
e v er, the accuracy of the major cell type label was 0.952 
for scROSHI indica ting tha t e v en if it was not possible to 

find the correct subtype label the correct major cell type 
label could usually be determined. Moreov er, e v en though 

the fraction of unknown cells was slightly increased for 
scROSHI in the Zheng dataset, considerably elevated lev- 
els were observed for the ML-based methods regardless of 
whether the Zheng data was involved in training or testing 
(Figure 2 , black bars in the right column and the bottom 

row, respecti v ely). 
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Figure 2. Benchmark results for scROSHI (left) and the three competing machine learning methods. Each panel corresponds to a combination of training 
data (column) and test data (row). The cross-validation accuracy (in%) is shown separately for major cell types (orange) and all fine-grained cell types 
(green). The black bar shows the percentage of cases where the cell type is ‘unknown’. 
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Figure 3. UMAP r epr esentation of cells in gene expr ession and CNV space. Cells from thr ee melanoma biopsy samples ( A , n = 3928 cells; B , n = 2967 cells; 
C , n = 2326 cells) were annotated using scROSHI. The first row shows the UMAP embedding of the normalized and log-transformed gene expressions 
and the second row shows the UMAP embedding of CNV profiles. The colors r epr esent the cell type annotations. The greyscale in the insets r epr esent the 
CNV status. 

Ther e wer e two cases wher e on first glance the out-of- 
training performance of the RF model was comparable 
(training Zheng, test Adult) or e v en better (training New- 
born, test Zheng) than scROSHI. Howe v er, both were ac- 
companied by an unknown cell fraction of more than 70% 

in RF but below 10% in scROSHI. Essentially, the high ap- 
parent accuracy was therefore only achie v ed at the cost of 
a large proportion of cells that could not be assigned any 
label. 

All in all, our benchmark study shows that scROSHI per- 
forms superior to competing tools provided a good quality 
cell type specific gene list is available and annotated train- 
ing data are limited or not available, which is often a re- 
alistic scenario in early stage projects. Moreover, the good 

performance is achie v ed with v ery reasonab le amount of re- 
sources. For example, it took less than 35 s to classify 2000 
cells expressing 3368 genes into 11 cell types using 6 GB 

RAM on a standard laptop (i7 Intel processor). And be- 
cause classification is done independently cell-by-cell, e v en 

extremely large datasets can be handled by splitting into 

smaller batches. 
Similar to the scoring tool ucell ( 27 ), the cell type 

score of scROSHI depends only on the relati v e rank of the 
gene expression signal, does not require normalization, and 

makes no assumptions about the distribution of the sig- 
nal. But, because scROSHI utilizes the hierarchical nature 
of cell identities, it can outperform its competitor when a 
sample contains similar cell types that deri v e from different 
branches of the lineage tree. 

scROSHI was de v eloped for 10xGenomics mRNAseq 

data of tumor patient samples but there is no known limita- 
tion to use it on any other modality or or ganism. Ho we v er, 
it is ideal if the cell type-specific gene lists were defined from 

results of the same technology as the data at hand. 
One possibility to improve the performance of the ma- 

chine learning tools, i.e. the accuracy on unseen data, might 
be to train them on a more di v erse data set. Yet, because 
training on accuracy does not learn causal features for cell 
type identity, this approach by design does not lead to a 
uni v ersall y a pplicable model and the performance will still 
be lower on unseen data than in the validation set, due to 

overfitting. 
The hierarchical scheme in scROSHI, to successi v ely clas- 

sify cells first into more coarsely grained parent cell types, 
followed by more and more fine-grained sibling cell sub- 
types within each parent cell type, reduces the classification 

complexity in each branch of the tree, potentially reducing 
the classification error rate in turn. Moreover, the thresh- 
olds for unknown and uncertain classes can be tailored to 

the detailed cell type similarity distribution or count matrix 
sparsity within each branch. 

Consistency with estimations of copy number alterations 

In addition to these benchmark datasets with known 

ground truth but relati v ely simple cell type composi- 
tion we used scROSHI for cell type identification in 

clinical samples, i.e. biopsies from melanoma patients 
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Figure 4. Cell type classification where the list of expected cell types was modified. ( A ) All known cell types are included. ( B ) Plasmacytoid dendritic 
cells are excluded. ( C ) T cells are excluded. ( D ) Melanoma cells are excluded. In panels B–D, the cluster of cells for which the label was excluded in the 
classification is marked by an arrow. 

participating in the Tumor Profiler Study ( 20 ). In these sam- 
ples the cell type composition can vary considerably from 

patient to patient depending, for instance, on the biopsy 
location, and is more complex to start with. No ground 

truth was available for such clinical samples, thus we eval- 
ua ted the classifica tion results by comparison to single cell 
CyTOF cell type composition analysis on the same sam- 
ples ( 28 ) and by consistency with copy number variation 

(CNV) estimations (Figure 2 ). The rationale is that only tu- 
mor cells are expected to harbor any CNVs, and thus CNVs 
can be used to distinguish tumor cells from non-tumor 
cells. 
The thr ee r epr esentati v e samples in Figure 3 A–C show 

a di v erse cell type composition, as illustrated by the two- 
dimensional UMAP r epr esentation based on gene expr es- 
sion in the top row. CNV states appear nearly e xclusi v ely in 

cells identified as melanoma cells, the only malignant cells 
present (insets). In Figure 3 bottom row, the focus is shifted 

to UMAP r epr esentations based on CNV states, where all 
non-malignant cells form a single cluster and malignant 
cells one or more separate clusters. In the sample shown 

in Figure 3 A, a few cells located in the melanoma cluster 
are mis-classified as cancer associated fibroblasts (CAFs, 
filled purple circles), possibly a consequence of an increased 

copy number in melanoma cells loca ted a t some CAF spe- 
cific genes and / or copy number decrease in some melanoma 
specific 

genes. The cell type composition in these samples is dom- 
inated by melanoma cells (A: 92%, B: 8%, C: 87%), B cells 
(A: 0%, B: 52%, C: 1%) and T cells (A: 1%, B: 33%, C: 7%). 
A comparison to single cell CyTOF experiments of the same 
samples gave similar proportions (S. Chevrier, private com- 
munication, manuscript in preparation): melanoma cells 
(A: 81%, B: 2%, C: 84%), B cells (A: 0.7%, B: 40%, C: 2%) 
and T cells (A: 5%, B: 40%, C: 9%). 

Unexpected cell types 

As we have introduced the label ‘unknown’ into scROSHI 
when none of the classification scores of the list of candi- 
date cell types was high, we investigated whether this would 

empower scROSHI to recognize that there is an unexpected 

cell type present in a sample. 
We simulated the situation that there is an unknown cell 

type in a sample by removing one cell type from the can- 
didate cell type list. As a starting point, we used a sam- 
ple from the Tumor Profiler Study ( 20 ) with se v eral differ- 
ent cell types that could be identified (Figure 4 A). Then we 
removed the genes specific for three cell types (Plasmacy- 
toid dendritic cells (pDC), T cells, Melanoma cells) and re- 
peated the analysis for each case (Figure 4 B–D). All pre- 
viously identified pDCs were classified as ‘unknown’ when 

excluded from the candidate list, as expected (Figure 4 B, 
bottom right corner). 
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When T cells were missing in the candidate list, a small 
proportion was mis-classified as dendritic cells or plasma 
cells but the vast majority was correctly labeled ‘unknown’ 
(Figure 4 C). Moreover, the cells now (mis-) labeled as den- 
dritic cells are sparsely scattered across the entire former T 

cell popula tion ra ther than forming a compact cluster or 
region, which would be expected if they belong to a well- 
defined cell type or subtype. This observation should raise 
suspicion and trigger further investigation as it reflects the 
possibility that the cell type-specific genes do not r epr esent 
the profile of a distinct cell population observed in this par- 
ticular study. 

In contrast, when melanoma cells wer e r emoved from the 
candidate list, a considerable proportion was mis-labeled 

(Figure 4 D). One particular subpopulation on the left hand 

side of the melanoma cluster appears to share expres- 
sion features with cancer associated fibroblasts (CAFs), 
whereas another subpopulation on the right hand side of 
the melanoma cluster seems to share some similarity with 

macrophages. At the same time the relati v ely large propor- 
tion of ‘unknown’ cells in the center of the cluster indicates 
that the cell type candidate list is incomplete or otherwise 
not suitable for this kind of data. A possible explanation 

for this observation may be the fact that tumor cells can 

shar e expr ession featur es with other cell types by exploiting 
cellular plasticity and de-dif ferentia tion programs ( 29 ). 
To summarize this part, most of the cells for which the 

cell type specifics were excluded from the candidate list were 
labeled as ‘unknown’ while a small proportion was misclas- 
sified. This procedure outlines how scROSHI may serve as 
a tool to detect novel cell types that were not expected to be 
in the sample under investigation. 

CONCLUSION 

Cell type identification is a critical, yet challenging, step in 

single cell transcriptomics analysis. Although various ma- 
chine learning based methods for cell typing are available, 
the necessity to learn features on adequate training data is 
prone to overfitting and also challenging in practice, in par- 
ticular for studies on novel experimental conditions. Here, 
we have presented scROSHI, a novel supervised cell type 
classification method independent of training data but in- 
stead based on a priori defined cell type cell type specific 
genes. In a benchmark study and on clinical data from tu- 
mor samples, we have shown that scROSHI is useful, ro- 
bust, versatile, and competitive to existing methods under 
real-life scenarios. 
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