
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2023

Introduction and Comparison of Novel Decentral Learning Schemes with Multiple
Data Pools for Privacy-Preserving ECG Classification

Baumgartner, Martin ; Veeranki, Sai Pavan Kumar ; Hayn, Dieter ; Schreier, Günter

Abstract: Artificial intelligence and machine learning have led to prominent and spectacular innovations in
various scenarios. Application in medicine, however, can be challenging due to privacy concerns and strict
legal regulations. Methods that centralize knowledge instead of data could address this issue. In this work, 6
different decentralized machine learning algorithms are applied to 12-lead ECG classification and compared to
conventional, centralized machine learning. The results show that state-of-the-art federated learning leads to
reasonable losses of classification performance compared to a standard, central model (-0.054 AUROC) while
providing a significantly higher level of privacy. A proposed weighted variant of federated learning (-0.049
AUROC) and an ensemble (-0.035 AUROC) outperformed the standard federated learning algorithm. Overall,
considering multiple metrics, the novel batch-wise sequential learning scheme performed best (-0.036 AUROC to
baseline). Although, the technical aspects of implementing them in a real-world application are to be carefully
considered, the described algorithms constitute a way forward towards preserving-preserving AI in medicine.

DOI: https://doi.org/10.1007/s41666-023-00142-5

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-252456
Journal Article
Published Version

 

 

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Baumgartner, Martin; Veeranki, Sai Pavan Kumar; Hayn, Dieter; Schreier, Günter (2023). Introduction and Com-
parison of Novel Decentral Learning Schemes with Multiple Data Pools for Privacy-Preserving ECG Classifica-
tion. Journal of healthcare informatics research, 7(3):291-312.
DOI: https://doi.org/10.1007/s41666-023-00142-5



Vol.:(0123456789)

Journal of Healthcare Informatics Research (2023) 7:291–312

https://doi.org/10.1007/s41666-023-00142-5

1 3

RESEARCH ARTICLE

Introduction and Comparison of Novel Decentral Learning 
Schemes with Multiple Data Pools for Privacy‑Preserving 
ECG Classification

Martin Baumgartner1,2  · Sai Pavan Kumar Veeranki2  · Dieter Hayn1,3  · 

Günter Schreier1,2 

Received: 12 August 2022 / Revised: 11 April 2023 / Accepted: 28 July 2023 /  

Published online: 17 August 2023 

© The Author(s) 2023

Abstract

Artificial intelligence and machine learning have led to prominent and spectacular 

innovations in various scenarios. Application in medicine, however, can be chal-

lenging due to privacy concerns and strict legal regulations. Methods that centralize 

knowledge instead of data could address this issue. In this work, 6 different decen-

tralized machine learning algorithms are applied to 12-lead ECG classification and 

compared to conventional, centralized machine learning. The results show that state-

of-the-art federated learning leads to reasonable losses of classification performance 

compared to a standard, central model (−0.054 AUROC) while providing a signifi-

cantly higher level of privacy. A proposed weighted variant of federated learning 

(−0.049 AUROC) and an ensemble (−0.035 AUROC) outperformed the standard 

federated learning algorithm. Overall, considering multiple metrics, the novel batch-

wise sequential learning scheme performed best (−0.036 AUROC to baseline). 

Although, the technical aspects of implementing them in a real-world application 

are to be carefully considered, the described algorithms constitute a way forward 

towards preserving-preserving AI in medicine.

Keywords Decentral learning · Privacy-preserving artificial intelligence · Machine 

learning · Deep learning · Decision-support

1 Introduction

1.1  Artificial Intelligence in Healthcare

Artificial intelligence (AI), in particular, the fields of machine learning (ML) and 

its advancement deep learning, has led to prominent and spectacular innovations  

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s41666-023-00142-5&domain=pdf
https://orcid.org/0000-0002-6731-6873
https://orcid.org/0000-0003-2009-6428
https://orcid.org/0000-0003-1822-9033
https://orcid.org/0000-0003-3724-4255


292 Journal of Healthcare Informatics Research (2023) 7:291–312

1 3

in various medical fields such as radiology pathology [1], genomics [2], injury 

risk assessment [3], and disease prognosis [4, 5]. AI applications are expected to 

play an increasing role in the future of everyday medicine, based on (a) superior 

processes as compared to the state-of-the-art with better outcomes for patients 

and (b) non-inferior processes which are less expensive in terms of costs, time, 

and/or resources.

Various techniques exist in the field of machine learning, which are currently 

dominated by artificial neural networks (ANNs). Most recently, the introduction 

of residual neural networks by He et  al. in 2016 [6] has revolutionized this 

field. Residual models have shown astonishing results in various fields, often 

outperforming other architectures. At the Computing in Cardiology/PhysioNet 

Challenge in 2020 [7], 9 out of the 10 [8–17] best performing competing teams 

have used some type of residual network or skip connections. Regardless of the 

chosen technology or architecture, there is one aspect all AI algorithms have in 

common: the need for data. The correlation between data availability and model 

quality has been documented [18–20] and is now broadly accepted by the research 

community. Recently, there appears to be a shift in the literature to focus more on 

the data aspect of AI. In 2022, AI pioneer Andrew Ng shared this sentiment by 

stating that data should be the central element of AI applications, not the models 

per se [21].

1.2  Artificial Intelligence and Clinical Data

Any data, especially health data, are subject to rigorous legal regulations. 

Additionally, medical data is often collected in decentralized settings. Institutions 

like hospitals or medical universities collect data from their patients for routine 

care applications and/or for clinical trials and other research activities. However, 

beyond the scope of this primary use, the data is rarely used for other purposes 

(secondary use) let alone shared with other institutions. Due to legal regulations, 

sharing of data with other institutions is often related to certain risks for the data 

holders and owners. However, if the highest level of privacy preservation was 

applied to all AI applications, the utility of the data would be reduced, and severe 

impairments of the clinical outcome would need to be conceded. This applies 

especially for applications that either require extensive amounts of data or areas 

where data is extremely sparse, such as rare diseases. Therefore, methods that 

balance data protection against data availability to optimize the overall outcome 

(“privacy-preserving AI”) are urgently needed.

1.3  Privacy‑Preserving Artificial Intelligence

Typically, clinical data is anonymized or pseudonymized prior model development. 

However, it has been shown in multiple studies that removing obvious identifying 

elements (e.g., names, date of birth, addresses) is not sufficient to protect the 
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patients’ privacy, since these datasets are still highly vulnerable to re-identifying 

attacks [22–25]. Latanya Sweeney found that with the three basic quasi-identifiers 

of date of birth, zip code, and gender, 87% of individuals can be successfully 

re-identified [26]. Re-identification is possible by cross-referencing the remaining 

information with other, publicly available or leaked data, which is ever increasing. 

One could theoretically remove even more information from the datasets to address 

this, but at the same time, the utility of that data is decreased. In her speech at 

the Differential Privacy Symposium in 2016, Cynthia Dwork famously stated 

“De-identified data isn’t” [27], aptly summarizing this dilemma of utility versus 

privacy. The concepts of k-anonymity [28] and l-diversity [29] are allowing for a 

gradual removal of sensitive information to address this, but are still vulnerable to 

attacks (e.g., skewness or similarity attacks) [30].

Various alternative methods have been explored in recent publications to cen-

tralize the data while still sufficiently preserving privacy. However, discrepancies 

between promising academic ideas and practically applicable solutions exist. There 

are prominent examples to this issue:

• Homomorphic encryption is a compelling technique, which allows operations 

on fully encrypted data without prior decryption. Craig Gentry published the 

first fully homomorphic encryption scheme in 2009 [31]. While the technology 

is certainly promising, it is currently still computationally too expensive for 

widespread practical application in most clinical applications.

• Dwork et al. introduced differential privacy [32], which has been successfully 

implemented in a wide range of applications [33]. To be differentially private, 

a database is transformed so that the individual records are obscured, but the 

underlying statistical information is retained. However, this approach might not be 

applicable on small datasets [34, 35].

• Another approach that results in a similar solution is the application of 

generative adversarial networks (GANs) [36], which produce synthetic data 

samples derived from original examples. Those samples exhibit the same statistical 

properties while not containing real private information. This approach has already 

been applied on medical data [37, 38]. However, GANs are computationally 

expensive, time-consuming, and their output is notoriously difficult to validate.

Instead of trying to find secure methods to aggregate data, federated learning 

(FL) is aiming to centralize knowledge without ever collecting data in a central 

infrastructure. The concept was proposed by Google researchers McMahan et al. in 

2015 for improving typing predictions in their Android operating system [39].

1.4  Federated Learning–Principles

The core principle of FL is to avoid the pooling of data from different participating 

clients (distinct participants with their individual datasets are referred to as nodes in 

further writing) into a central point of infrastructure. In FL, data stays in the nodes’ 

secure local environment where they were collected, and knowledge exchange is 
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realized by transferring models and models only. This eliminates the need of secure 

data transfer and storage, which always comes with a high risk of data leakages. In 

its original proposal [39], the FL workflow is comprised of five steps:

1) a central model is created

2) the model is distributed to all nodes

3) this model is trained at the clients’ infrastructure with the respective local data 

only

4) the changes in the models’ parameters are securely averaged

5) the central model is updated with the new parameters

Steps 2–5 are repeated multiple times until the model converges. Neural 

networks are well-suited for this as they are comprised of large matrices of 

weights and biases, for which standard mathematical operations like calculating 

a mean are easily applicable. McMahan et al. proposed averaging the parameters 

in a buffer, to obfuscate the individual nodes’ contribution even further [40].

A 2020 Nature publication investigated the possibility of applying federated 

learning in medicine and underlined its importance and potential [41]. However, 

the application of existing FL approaches in different scenarios might come 

with new challenges. In this paper, we focus on a simulated scenario, in which 

learning is not delegated to individual patients, but to various institutions 

holding pooled sets of data. In this scenario, only a few data nodes are used 

for training, while in its original application, potentially millions of Android 

smartphones were available. Furthermore, the different nodes can potentially 

provide rather homogenous datasets as not only the type of health data provider 

can vary (hospitals, research institutions, sports rehabilitation centers, geriatric 

homes, etc.) but also the population from which the data were collected (healthy 

subjects, patients, elderly adults, etc.). Another important aspect is dataset 

size since the quantity of data used in training is a well-established indicator 

of machine learning model performance. A yet unexplored question is whether 

the contribution of small institutions to a FL network could potentially have a 

negative effect on the final model’s performance. These considerations raise the 

question if averaging the models’ weights is truly sufficient in such a setting, 

as described by Rieke et  al. [41]. Sheller et  al. proposed three alternative 

methods of federated learning for application in medicine: Federated Learning, 

Institutional Incremental Learning and Cyclic Institutional Incremental Learning 

[42]. In their experiments, they compared a sequential learning scheme to the 

conventional federated learning approach and centralized machine learning. 

They found that cycling over institutions during learning achieved results 

comparable to conventional federated learning and even to centralized machine 

learning. However, this approach was less stable.
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1.5  Aims and Scope

The aim of the present work is to develop new decentral learning schemes for 

a scenario in which data is distributed across different sources. To simulate a 

realistic setting, four distinct open-source electrocardiogram (ECG) datasets of 

different size and with different characteristics were chosen to serve as nodes (as 

described in chapter  1.4) in the experiments. The learning schemes are applied 

to these datasets in a complex multi-label, multi-class classification task. Their 

performance is compared to a standard machine learning approach, in which data 

is centralized. The main questions to be answered in this study are as follows: (A) 

can standard federated learning as a form of privacy-preserving AI be applied to 

medical data with few nodes and (B) do methods exists that might improve the 

standard federated learning algorithm as described in the chapter above?

2  Methods

2.1  Data Description

We used the data provided for the 2020 Computing in Cardiology/PhysioNet 

challenge [7], which consisted of six publicly available 12-lead ECG datasets 

(CPSC, CPSC-Extra, INCART, PTB, PTB-XL, Georgia). Datasets collected 

by the same institutional source (CPSC and CPSC-Extra; PTB and PTB-XL) 

were merged to simulate a realistic distributed learning setting, resulting in a 

total number of four nodes: (1) INCART, (2) CPSC, (3) Georgia, and (4) PTB 

(Table 1).

The ECG recordings in these databases were heterogeneous in terms of signal 

length, sampling rate, demographic properties, and the number of classes. To 

imitate the participation of a smaller institution with less data, the INCART set 

(patient base n = 74) was included, which is the most different from the other sets. 

Furthermore, the INCART ECGs were longer (30 min), and patients tended to be 

younger (mean age = 55.99 years). In total, 111 different classes represented by 

SNOMED codes were present. Each ECG could be labelled with one or multiple 

classes. For this publication, medically related classes were joined or merged into 

parent categories, resulting in 13 classes as described in Table 2.

2.2  Pre‑processing

All recordings were resampled to 250 Hz. Subsequently, from each signal, a 

10-s sequence was extracted to generate a uniform data sample for the machine 

learning model. The first 5 s of a signal were ignored in this selection if excessive 

data was available. The ECG data was filtered by a bandpass filter (3–30 Hz, 

Butterworth bandpass, 2nd order).
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2.3  Model Architecture Description

For this multi-class, multi-label classification task, a deep convolutional neural 

network with five one-dimensional convolutional blocks and a global average 

pooling prior to the classification layer was applied [46]. Figure  1 graphically 

summarizes the model architecture:

The model was trained with the binary cross-entropy loss function and the 

Adam optimizer [47]. The number of training epochs and learning rate decay, 

as suggested by Kingma et  al. [47], are described in the individual methods’ 

descriptions. All implementations were executed in Python 3.7.4, and modelling 

was done with Tensorflow 2.4 [48].

Table 2  Considered ECG classes and frequency of occurrence in each data source

Class CPSC Georgia INCART PTB Total

Sinus rhythm 922 1752 0 18,172 20,846

ST interval abnormal 2985 3053 10 2188 8236

Myocardial infarction 1544 7 9 5629 7189

T wave abnormal 27 3118 1 2639 5785

Myocardial ischemia 545 1635 0 2580 4760

Right bundle branch block 2057 977 2 1660 4696

Left ventricular hypertrophy 158 1232 10 2359 3759

Atrial fibrillation 1374 570 2 1529 3475

Bradycardia 316 1683 11 637 2647

Ventricular ectopics 896 398 49 1,154 2497

Tachycardia 303 1261 11 827 2402

1st degree AV block 828 769 0 797 2394

Atrial ectopics 742 640 7 555 1944

Fig. 1  Model architecture: The input layer is followed by five convolutional blocks. Each block consisted 

of three 1D-convolutional layers with LeakyReLU activation (α = 0.3) and a concluding dropout layer. 

Square brackets indicate convolutional parameters: (filters, kernel size, stride). The final block was a 

global average pooling layer followed by LeakyReLU activation (α = 0.3), dropout, and batch normaliza-

tion layer. The final block was concluded with a fully-connected layer with 13 units with sigmoid activa-

tion, serving as the classification layer
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2.4  Learning Schemes

Eleven different learning schemes were applied (1 centralized baseline, 4 node-

individual, 6 decentral), which are summarized in Table 3. The following chapters 

describe each method in detail.

2.4.1  B: Baseline Centralized Model

The baseline model (B) served as a control classifier. For this model, all of the train-

ing data was joined to resemble a non-distributed optimal learning setting. On this 

aggregated training data, the model was trained for 50 epochs. Learning rate was 

decayed by Eq. 1 where the initial learning rates lr0 = 0.001, decay λ = 0.2, and cur-

rent epoch number is t.

2.4.2  I1‑I4: Individual Models

One individual model was trained for each of the four data nodes, resulting in four 

additional models (I1: CPSC, I2: Georgia, I3: PTB, and I4: INCART), which were 

trained the same way as the combined model, but only with training data from the 

respective nodes.

2.4.3  M1a: Regression Ensemble

The first method to aggregate knowledge from federated data sources was to calcu-

late the average of all classification results from the individual models I1–I4. All 

models trained on individual nodes were queried to classify the common test set. 

Subsequently, the result was determined by calculating the mean of each class-spe-

cific regression result. Finally, a threshold of 0.5 (= 50% probability) was applied to 

derive the classification result of M1a from the regression values.

2.4.4  M1b: Weighted Regression Ensemble

In M1a, all four individual models contributed equally to the final classification. 

However, in M1b, the individual regression results were weighted according to two 

factors (see Eq. 2): (a) their training set size proportion in relation the total dataset 

size (sample size n
m

 divided by the sum of sample sizes of all nodes) and (b) their 

node-internal AUROC performance.

AUROC scores were interpolated to a range of [0, 1] and the final weights were 

normalized, so that the sum of all four weights was equal to 1.

(1)lr
t
=

lr
t−1

1 + t ∗ �

(2)w
m
=

n
m

∑4

i=1
n

i

∗ AUROC
m
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2.4.5  M2a: Node‑Wise Sequential Learning

A combined model was trained by progressively exposing the initially untrained 

model to the data of one node after the other, so that knowledge was gathered 

sequentially. This method was comparable to Institutional Incremental Learning 

as proposed by Sheller et al [42]. For method M2a, a single model was sent to all 

nodes in the following order: (1) CSPC, (2) Georgia, (3) INCART, and (4) PTB, as 

depicted in Fig. 2.

At first, a model was initialized and sent to the first node, where the model is 

trained with the data of this specific node. After training, the model was sent to the 

next node in order, where its already partly optimized weights were the initial condi-

tion for continuing the training with the next pool of data. At each node, the model 

was trained for 50 epochs and the learning rate was decayed after each epoch as 

described in Eq. 1. After training at a node, the learning rate was reset to the initial 

value of 0.001 and sent to the next node in order. This was repeated until the model 

was trained at all nodes once.

2.4.6  M2b: Batch‑Wise Sequential Learning

To take the idea of sequential learning even further, we applied a novel method 

called Batch-wise sequential learning (M2b). Instead of fully completing training 

at a node like in M2a, the model was trained only on a randomly selected mini-

batch of one node’s training data before sending it to the next node. The batch size 

of these mini-batches was set to 2% of a node’s training set size. This meant that 

each sample contributed equally to the model in M2b (which is equivalent to larger 

nodes consisting of more samples contributing more, as achieved with the weighted 

approaches). One epoch was considered completed when the model was exposed to 

each training sample exactly once. The model was trained for 50 epochs in total and 

the learning rate was decayed after each epoch according to Eq. 1. Method M2b is 

illustrated in Fig. 3.

2.4.7  M3a: Federated Learning

In M3a, a model was trained in update cycles as depicted in Fig. 4. Each of these 

cycles repeated the steps as described in chapter 1: (1) distribute central model, (2) 

train locally at the nodes, (3) average the weights of the trained models, and (4) 

Fig. 2  Node-wise sequential learning scheme (M2a): An untrained model was sequentially sent to all 

nodes, where it was trained for 50 epochs each. Learning rate was reset to 0.001 after each node
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update central models with new parameters. The newly updated model from step 4 

was then re-distributed as the central model in step 1 for the next update cycle. This 

method follows the original proposal for federated learning [39].

50 update cycles were completed. The epoch number for one cycle was set to 1. 

The learning rate was decayed according to Eq. 1, where t is the current update cycle 

iteration.

2.4.8  M3b: Weighted Federated Learning

As an advancement to federated learning (M3a), weighted federated learning (M3b) 

was implemented. A weighted average was used to calculate the new parameters in step 

Fig. 3  Batch-wise sequential learning scheme (M2b): An untrained model was trained on mini-batches at 

the nodes and passed on to the next node until all mini-batches were used (1 epoch). This was repeated 

for 50 epochs in total

Fig. 4  Federated learning scheme (M3a): In a first step, an initial, untrained model was distributed to all 

nodes, where they trained for 1 epoch, after which the models’ parameters were averaged. Subsequently, 

this average model was re-distributed to all nodes again starting a new update cycle. 50 of these update 

cycles were executed
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3 according to node-internal performance and dataset size as described in Eq. 2 for 

model M1b.

2.5  Cross Validation and Evaluation Metrics

We trained models with a central dataset, with local datasets, and in decentral schemes. 

The only data available for training in the respective scheme was provided to the 

respective models during training. To find out how well all these models perform, each 

model was applied to a “global” test dataset, containing data from all nodes in a 10 fold 

cross-validation scheme.

During training in each fold N, 90% of each dataset was applied to the respective 

learning scheme. Depending on the learning scheme, training was carried out based on 

data from single nodes or from all nodes as described in the learning schemes chapter.

While training of fold N was done with different datasets depending on the learning 

scheme, all resulting models in fold N were evaluated with one and the same test-set-N. 

Therefore, the respective 10% shares of data from each dataset were aggregated to form 

one common test dataset N per fold. All models and decentral schemes described in the 

following chapters were tested on this test-set-N within fold N.

Predicted classes were compared to the known reference classes for each ECG, and 

each model was evaluated with six standard metrics for a complete assessment of clas-

sification performance: accuracy, area under the receiver operator curve (AUROC), 

Jaccard score, F1 score, specificity, and sensitivity. To correctly address the multi-label 

classification problem, the metrics (except accuracy) were derived from a weighted 

average according to the frequency of occurrence in the test set [50].

To combine the results achieved with each of these evaluation metrics in a represent-

ative way, we ranked the models by each of the six-evaluation metrics and calculated 

the mean ranks of all metrics for each model, i.e., the best model ended up with the 

lowest mean rank.

3  Results

3.1  Model Performance

Table 4 summarizes average values obtained during the 10-fold cross-validation pro-

cess as achieved for the six-evaluation metrics (accuracy, AUROC, Jaccard score, F1 

score, specificity, and sensitivity). Every model was ranked within each metric, and the 

average rank for each model was calculated.

3.2  Average Rank per Model

Figure 5 illustrates the average rank per model. As expected, the baseline model with 

all data pooled centrally during learning performed best. From all decentral learning 

methods, models taking the size of the different nodes into account performed best 
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(M1b, M2b, M3b), while models derived on data from small nodes only performed 

worst (especially I3).

3.3  Evaluation Metrics per Model

The evaluation metrics are displayed as box-whisker-plots for graphical comparison 

in Fig. 6.

4  Discussion

Privacy-preserving artificial intelligence (PPAI) is widely discussed nowadays. Fed-

erated learning is commonly used for training models based on data from large user 

groups (e.g., mobile phone users). The goal is to aggregate knowledge without cen-

tralizing data to protect personal information. Clinical scenarios are different from 

the usual federated learning approach (e.g., less data nodes, less data at the nodes, 

non-iid data), and thus, implementing this principle requires adaptions. We have 

implemented six different decentralized learning schemes for ECG classification and 

compared the results of these learning schemes with each other and with a central-

ized approach.

Figure 5 gives a summarized overview over all applied learning schemes. As 

expected, the baseline model (B), which was trained on all available data per-

formed the best and thus its performance serves well as reference. All individual 

models (I1–I4) performed worse than the baseline model. The INCART dataset 

(I3) was arguably too small (n = 74) to produce any sensible deep classifica-

tion model on its own. I4 performed the best of all individual models. This can 

be explained by the fact that I4 was trained on the largest dataset (PTB-XL and 

PTB, 51.86% of the entire dataset), and therefore, the test dataset also consisted 

Fig. 5  Average achieved rank: 

achieved rank of each model in 

sorted order
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of more than 50 % from this specific dataset, constituting a bias in the test set 

towards the I4 model. Of all decentralized learning methods, the novel batch-wise 

sequential learning (M2b) and weighted regression ensemble (M1b) performed 

best (see Fig. 5). Although M1b achieved a higher AUROC score, M2b was over-

all the better performing model when considering all metrics. M2b was designed 

to mimic standard machine learning as close as possible in a decentral scenario, 

and thus, it appears sensible that it performed best out of the tested decentralized 

algorithms.

Fig. 6  Model performances of all tested learning schemes: Figures a–f are box-whisker-plots of all 

recorded evaluation metrics: accuracy (a), AUROC (b), Jaccard score (c), F1 score (d), specificity (e), 

and sensitivity (f). Error bars indicate minimum and maximum values. Small rhombus symbols denote 

outliers
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Furthermore, our weighted variant of the federated learning scheme (M3b) out-

performed the standard unweighted algorithm (M3a). The benefit of weighting is 

assumed to be related to the imbalance of the node size and the heterogeneity of the 

different datasets (i.e., cancelling out the negative impact of bad performing models 

trained on small datasets). Since in our experiments, one of the nodes was signifi-

cantly smaller than the others, and since the number of events per class varied a lot 

among the nodes, weighting led to significantly better results. In a more homogene-

ous and balanced setting, however, the effect is expected to be less severe.

The novel methods of batch-wise sequential learning (M2b) and the weighted 

federated learning (M3b) both outperformed standard federated learning, although 

the latter was exceeded by the weighted regression ensemble (M1b).

As shown in Fig. 6, performance varies across the statistical measures. Accuracy 

proved to be a suboptimal measure of performance due to the sparsity of labels. 

Most entries in the label vectors were negative (i.e., a diagnosis was not present), 

and thus, a model predicting only negatives would achieve high accuracy scores. To 

address this inadequacy, the Jaccard score was used which gauges in how many sam-

ples all classes were predicted correctly. This scenario with 13 classes and multi-

label possibilities is a highly complex classification problem, and thus, no model 

achieved a Jaccard score above 0.4. The sparse label problem can also be seen in 

specificity and sensitivity scores. Due to overhang of negative samples, models were 

incentivized to be conservative with classification (i.e., preferring negative predic-

tions over positives). This naturally led to a low false positive rate, which resulted 

in higher specificity than sensitivity. Assessing individual model performances, the 

unreliability of I3 is visible in all metrics. Furthermore, a trend becomes apparent 

that the variant schemes (M1b, M2b, M3b) performed better than their more con-

ventional counterparts (M1a, M2a, M3a). The variants take dataset sizes and inter-

nal performance into account which appears to a valuable consideration. To add to 

that, the variants also tend to be more stable and have less variance in their perfor-

mance across the 10 cross-validation folds.

4.1  Technical Implications

As compared to centralized approaches, all decentral schemes require computational 

power at the nodes, which comes with some challenges for the respective healthcare 

providers: firstly, the nodes need to be online and ready for training simultaneously 

(especially true for M2b, M3a, and M3b) and secondly, models are exchanged at a 

high frequency (most notably M2b), which might cause significant network loads at 

the nodes. In a real application, this could be addressed by nightly routines, where 

network and computational loads are typically lower. However, comparing the 

decentralized methods’ computational costs with those of the baseline model is most 

interesting and most relevant for real applications.

The regression ensemble methods (M1a and M1b) cause low network load and 

have almost no additional computational cost compared to conventional machine 

learning. They could potentially be more efficient since model training can be paral-

lelized. The only additional operation required is the consolidation of all individual 
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predictions, which is computationally inexpensive. The federated learning schemes 

(M3a and M3b) also parallelize model training, but the frequent update cycles slow 

down the optimization process and cause substantial network load. The degree of 

this effect depends on a multitude of factors (e.g., resources at the nodes, network 

availability, network speed) and is difficult to assess, but the overall computational 

cost is likely to be higher than in conventional machine learning. M3b is slightly 

more costly than M3a due to the extra step of finding weights and weighing the 

average accordingly. The sequential learning schemes (M2a and M2b) serialize 

training instead of parallelizing it. The computational cost is expected to be approxi-

mately the same as conventional learning, but is slowed down by exchanges over 

the network. Node-wise sequential learning (M2a) is less demanding on the network 

than the batch-wise variant (M2b), which constitutes the highest network load of 

all tested schemes. In our implementation, a simple method of calculating weights 

was used, which ultimately has minimal impact on the overall optimization duration. 

However, more complex weight calculations could constitute a more substantial por-

tion of model training and should be carefully considered.

4.2  Limitations

Due to its size, the INCART dataset proved impractical for machine learning pur-

poses and models trained solely on this dataset did not generalize well (see Table 4 

and Fig.  6) as performance on the test data was poor. However, it was included 

mainly to investigate the question whether institutions with small amounts of data 

could have a negative impact on a decentralized learning scheme. Using the dataset 

size as a factor to weigh the influence of individual models according to their data-

set size as in Eq. 1 improved performance as the weighted variants of M1 and M3 

performed better than their unweighted counterparts. This result might indicate that 

participants with inadequately small datasets can potentially cause more harm than 

good in a decentralized learning scheme. However, it remains unclear, whether the 

size alone is the cause of this effect as the INCART set was also different in ECG 

length and average patient age. Furthermore, the increase in performance could not 

only stem from giving the INCART set less influence but also from giving the PTB 

dataset more importance.

For schemes M2a and M2b, the order of nodes may have a detrimental influence 

on the final results, potentially leading to two possible extremes: (A) the first node 

applied on the model might have already optimized the model’s parameters towards 

a local optimum in such a way that other nodes cannot re-adjust them to the global 

optimum anymore. (B) The influence of the first node might be completely extin-

guished by the other nodes at the end and cause its gradients’ change to be irrel-

evant. This effect is expected to be more prominent in M2a as compared to M2b, as 

each node is only used once in M2a. The likelihood of extreme A or extreme B to 

occur can be adjusted by the learning rate decay. In this experiment, we have reset 

the learning rate whenever the model was passed over to a new node, making M2a 

more prone to extreme B. Not resetting the learning rate and decaying it smoothly 

from node to node might lead to better overall results, although this variant would be 
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more susceptible to extreme A. This matter still needs to be explored in the future. 

Both versions of learning rate decay are explained schematically in Fig. 7.

For a real-world implementation, the weighted regression ensemble scheme 

seems highly attractive since it performed well and is computationally inexpensive. 

However, all the models were currently trained with the same settings (model archi-

tecture, number of epochs, learning rate, batch size, etc.) and method of calculating 

the weights per node (based on size and intra-node AUROC). After the training, 

the averaging weights represent the only meta-parameter that can still be adapted. 

Because only the models’ regression outputs are used for M1b, individualizing the 

models and training routine for each specific node could ultimately lead to better 

results. Therefore, more experiments with different settings for the individual data-

sets are possible subjects for further research.

Besides technical limitations, the properties of the used data must be considered. 

By nature, ECG signals are quasi-periodic, which might impact the classification 

algorithms’ performance. How well the insights found in this study translate to non-

periodic signals remain unexplored and could be subject of future analysis. Further-

more, for the present work, no specific pre-processing steps were taken into account 

for the periodically occurring QRS complexes, which might have improved overall 

classification results. Li and Clifford showed that constructing individual-specific 

templates of periodical patterns in physiological data (photoplethysmography) with 

dynamic time warping can be helpful in classification problems [51].

4.3  Outlook

Future studies might focus on the influence of hyper-parameters on optimiza-

tion. Additionally, different application scenarios with regression, single label 

Fig. 7  Schematic explanation of potential learning rate decay options: the green line represents the learn-

ing rate behavior as executed in M2a. The blue line shows a variant where the learning rate is decaying 

smoothly
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classification, more nodes, more and/or less imbalanced, and/or heterogeneous 

nodes could further elucidate the advantages and disadvantages of all learning 

schemes.

To investigate the underlying causes for the performance increases in the 

weighted variants of M1 and M3, analyses stratifying dataset sizes or simply exclud-

ing the INCART dataset entirely could provide more insight into the exact mecha-

nisms of performance reduction with small or otherwise heterogeneous datasets.

Furthermore, the applied classification algorithms used in this study could be 

used with non-periodic signals like electroencephalography (EEG) or electromyo-

graphy (EMG) data. Addressing EEG and EMNG in a follow-up study could pro-

vide further insight into the algorithms’ performance regarding stationarity because 

EEG signals are non-stationary, while EMG signals are typically stationarity. While 

the model type (convolutional neural networks) is likely to be suitable, minor adjust-

ments in model architecture might be required to ensure satisfactory performance.

5  Conclusion

Depending on the application scenario, different learning schemes are suitable. 

While a central approach should be preferred whenever legally and ethically possi-

ble, decentral schemes carry considerable potential in scenarios where privacy is of 

utmost priority. We have shown that the principle of federated learning as a form of 

privacy-preserving AI is indeed applicable to decentral ECG data. Since federated 

learning was designed for the application with millions of nodes (e.g., smartphones), 

its application to healthcare data might require adaptions due to the different char-

acteristics (e.g., less nodes, more heterogeneous). We have demonstrated such adap-

tions and variations of standard federated learning can improve performance. The 

properties of each data node should especially be taken into consideration by the 

decentral algorithms (e.g., weighting the impact of each individual node). This 

increased performance most, which is necessary to develop successful decentral 

learning applications, which could constitute a valuable step towards privacy-pre-

serving applications of AI in healthcare data.
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