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Abstract 31 

Forecasting the response of ecological systems to environmental change is a critical challenge for 32 
sustainable management. The metabolic theory of ecology (MTE) posits scaling of biological rates with 33 
temperature, but it has had limited application to population dynamic forecasting. Here we use the 34 
temperature dependence of the MTE to constrain empirical dynamic modeling (EDM), an equation-free 35 
nonlinear machine learning approach for forecasting. By rescaling time with temperature and modeling 36 
dynamics on a ‘metabolic timestep,’ our method (MTE-EDM) improved forecast accuracy in 18 of 19 37 
empirical ectotherm time series (by 19% on average), with the largest gains in more seasonal 38 
environments. MTE-EDM assumes that temperature affects only the rate, rather than the form, of 39 
population dynamics, and that interacting species have approximately similar temperature dependence. A 40 
review of laboratory studies suggests these assumptions are reasonable, at least approximately, though 41 
not for all ecological systems. Our approach highlights how to combine modern data-driven forecasting 42 
techniques with ecological theory and mechanistic understanding to predict the response of complex 43 
ecosystems to temperature variability and trends. 44 

Significance Statement 45 

Forecasting how populations respond to climate change is an important challenge for natural resource 46 
managers. Forecasting approaches range from machine learning that is agnostic about underlying 47 
biological mechanisms to process-based models that incorporate mechanisms but are often complex and 48 
tailored toward specific species. Here we blend these approaches by constraining empirical dynamic 49 
modeling, a nonlinear machine learning approach, with the metabolic theory of ecology (MTE). Focusing 50 
on short-lived ectotherms with high-frequency sampling, the conditions in which our methodology is likely 51 
to be most effective, we obtained improved forecasts for most time series. This lends support to the MTE 52 
as a general predictive theory and provides a new tool with which to forecast abundances in 53 
environments with seasonal and/or inter-annual temperature change. 54 

  55 
Main Text 56 
  57 
Introduction 58 
 59 

Forecasting the dynamics of ecosystems is a major challenge (1, 2), yet critical for the effective 60 
management of natural resources (3). More powerful methods, the increasing scale and resolution of 61 
ecological datasets, and advances in ecological theory can improve our ability to accurately forecast 62 
ecological systems, especially over the short term relevant for environmental decision-making (1). 63 
However, the complexity of natural ecosystems and the influence of numerous environmental drivers still 64 
pose a significant challenge to ecosystem forecasting, particularly in the face of ongoing environmental 65 
change (2).  66 

Data-driven techniques such as machine learning have revolutionized forecasts of dynamical 67 
systems (4). However, a major drawback of these techniques is their limited ability to extrapolate to new 68 
conditions, as purely data-driven techniques perform poorly outside the historic envelope of variation (5). 69 
In contrast, mechanistic models can deal with changing conditions because they rely on mechanism, 70 
rather than past behavior, to extrapolate to previously unobserved conditions (6). Combining data-driven 71 
techniques with process-based models that obey mechanistic constraints could lead to better predictions 72 
of ecosystem dynamics. Blended models combine artificial intelligence and machine learning (e.g., deep 73 
neural networks) with process-based models to represent complex, integrated systems with many 74 
components and biophysical constraints (7). Thus, blended modeling approaches improve extrapolation 75 
by restricting data-driven predictions to those that follow physical laws (7). The potential for blending data-76 
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driven and process-based forecasting has been recognized across various fields, including earth system 77 
science and medicine (8, 9), suggesting applications of this growing research area for ecology.  78 

Empirical dynamic modeling (EDM) is a data-driven machine learning technique that has shown 79 
great promise in forecasting the dynamics of complex ecosystems (10, 11). The foundation of EDM is 80 
Takens’ embedding theorem which states that lags of a single time series can reconstruct the dynamics 81 
of the complex, multidimensional system from which that series originated (12). Predictions are made by 82 
following nearby states (in delay coordinate space) forward in time, assuming that the past behavior of 83 
nearby states will reflect the future behavior of the system. EDM has been used successfully in many 84 
ecological applications where mechanistic models were lacking (11, 13, 14), and sometimes can even 85 
outperform forecasts made by fitting the ‘correct’ underlying mechanistic model (13). However, the fact 86 
that EDM does not require mechanism may also be a weakness – physical laws do not constrain its 87 
predictions, potentially resulting in implausible ecological states. Blending the EDM approach with first 88 
principles and biophysical constraints could improve forecasts. 89 

For biological systems, temperature stands out as a major driver of processes such as enzymatic 90 
reactions, growth, reproduction, body size, and the pace of life, resulting in well-described patterns such 91 
as latitudinal and altitudinal diversity gradients (15, 16). Seasonal temperature fluctuations can be large, 92 
and due to climate change, global temperatures are expected to rise and show increased variability within 93 
and across regions over the coming century (17, 18). Shifting temperatures are already influencing the 94 
population dynamics of a wide range of taxa (19, 20), including pest species (21) and harmful algae (22); 95 
however, our ability to forecast the population-dynamic consequences of increasing temperatures across 96 
a wide range of organisms is still in its infancy. 97 

The metabolic theory of ecology (MTE) is one of the few mechanistic ecological theories 98 
emerging from biophysical first principles (15). The MTE posits that biological rates, such as resting 99 
metabolic rate or growth rates, allometrically scale with body mass (with an exponent of ¾) and for 100 
ectotherms, increase with temperature according to the Boltzmann factor (also known as the Arrhenius 101 
equation) 𝑒−𝐸/𝑘𝑇 (where E is the activation energy and corresponds to a value of 0.65, k is Boltzmann’s 102 
constant and T is temperature in Kelvin) (15). Endotherms, which can maintain a relatively constant body 103 
temperature, are not expected to show this same scaling of rates with environmental temperature. The 104 
effects of body size and temperature on individuals subsequently scale up to determine population-level 105 
properties (e.g., intrinsic rate of growth, carrying capacity, rate of extinction, or mortality) (15, 23, 24), and 106 
ecosystem properties like net ecosystem respiration (25). The MTE has outstandingly synthesized 107 
patterns across a wide range of scales from cell division to individual metabolism to macro-ecology (15, 108 
24, 26). However, most predictions of the MTE are for static, steady-state conditions.  109 

The ability of the MTE to scale to higher-level processes suggests the theory could help forecast 110 
how temperature changes will affect population, community, and ecosystem dynamics. Indeed, models 111 
using the MTE have elucidated how population dynamic parameters scale with temperature (e.g., intrinsic 112 
rate of increase, carrying capacity, rate of extinction) (23, 24, 27, 28). The MTE has also successfully 113 
predicted within-host parasite dynamics across constant temperature environments (28). However, such 114 
detailed information on the temperature dependence of multiple vital rates is unavailable for most taxa, 115 
severely limiting our ability to forecast population dynamics under changing temperature conditions using 116 
mechanistic population models.  117 

Here we blend EDM (a data-driven forecasting method) with the temperature dependence of the 118 
MTE to forecast population dynamics of a range of taxa under natural temperature fluctuations. Our 119 
predictive hybrid framework rescales time according to the MTE to achieve a constant ‘metabolic’ 120 
timestep: when temperatures are high, the metabolic timestep encompasses less calendar time; when 121 
temperatures are low, it encompasses more calendar time (Fig. 1a,b). Since empirically estimated 122 
activation energies deviate from the ‘universal’ average value of 0.65 (29), the activation energy used for 123 
this rescaling can either be specified or estimated from the data. In keeping with ecosystem applications 124 
of the MTE (e.g., 30, 31), we assume that the effect of temperature is separable (see Methods for a more 125 
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precise definition) from other influences on population dynamics. That is, temperature affects the overall 126 
rate of dynamics, not their form. Strictly speaking, this requires that all interacting species have similar 127 
thermal responses. Lack of separability could result from large variation in temperature dependence 128 
among interacting species and/or among different vital rates within a species. As an example, in a cyclic 129 
predator-prey system with separable temperature dependence, only the period of oscillations would 130 
change with temperature. As a counter-example, any system where a change in temperature causes a 131 
shift from oscillatory to equilibrium dynamics (e.g. 32) would lack separability. However, when thermal 132 
responses are similar across the observed range of temperatures, though not identical, we expect EDM 133 
with MTE temperature dependence to improve prediction relative to standard EDM, despite the lack of 134 
strict separability. If, in contrast, the separability assumption is strongly violated, the method will not work, 135 
which will be apparent in the lack of improvement. We examined the reasonableness of the separability 136 
assumption using existing laboratory data and tested the robustness of the method to variation in 137 
temperature dependence using simulations.  138 

Using a collection of empirical field time series, we compared the EDM Simplex projection 139 
algorithm using a fixed calendar timestep (33) to Simplex projection using a metabolic timestep. For the 140 
metabolic timestep models, we used either the universal temperature dependence of 0.65 (the UTD 141 
model), temperature dependence estimated from the data (the MTE-EDM model), or for 3 species for 142 
which we could obtain data, temperature dependence based on empirical thermal performance curves 143 
(the TPC model). For comparison, we also fit a calendar timestep model with temperature as a covariate, 144 
which is a common alternative approach for incorporating temperature into EDM (34, 35).  145 
 146 
Results 147 
 148 

We first tested whether the temperature separability assumption is reasonable using data from 149 
published laboratory experiments measuring population dynamics across a gradient of constant 150 
temperatures. The pace of population dynamics, measured by log cycle period, displayed temperature 151 
scaling consistent with the MTE in three species (Fig. 1c, S1, Table S1). The scaling exponent for the 152 
rotifer Brachionus calyciflorus was 0.57 (95% CI: 0.22-0.93, R2=0.83) (36), and exponents for the 153 
predator-prey pair Didinium nasutum and Paramecium caudatum were 0.68 (95% CI: 0.39-0.97, R2=0.95) 154 
and 0.67 (95% CI: 0.37-0.97, R2=0.91), respectively (37). However, we did not find the expected scaling 155 
relationship in two additional studies: a Tetrahymena pyriformis-Pseudomonas fluorescens predator-prey 156 
system (38) and the moth Plodia interpunctella (39). In the latter studies, temperature likely drove those 157 
systems across bifurcations that qualitatively changed their dynamics instead of only influencing the rate 158 
of change. Thus, while it is clear that not all systems meet the assumptions of MTE-EDM, for systems that 159 
do, we would expect the method to produce forecasting improvements in environments with temperature 160 
variation.  161 

As a proof of concept, we simulated a chaotic three species food chain (40) under two 162 
temperature change scenarios: a linear temperature increase (Fig. S2a), and a more realistic scenario 163 
with seasonal temperature variation (26°C), a long-term trend (~1.5°C over 10 years), and stochasticity 164 
(Fig. 2a). In both scenarios, Simplex that does not account for temperature change results in poor 165 
predictive performance (R2 < 0.2), even as the embedding dimension (number of lags used) was 166 
increased (Fig. 2b, S1b). MTE-EDM greatly improved performance over Simplex (R2 > 0.8, Fig. 2b, S2b) 167 
and use of the dynamic timestep improved the resolution of the reconstructed underlying attractor, which 168 
was otherwise distorted by temperature-dependent dynamics (Fig. 2c,d, S1c,d). These simulations also 169 
demonstrate the effectiveness of MTE-EDM when temperature is nonstationary and shows directional 170 
trends.  171 

To explore sensitivity of MTE-EDM to variation in species-specific responses to temperature, we 172 
ran additional multi-species simulations with variable numbers of interacting ecto- and endotherms, for 173 
which the ectotherms had variable activation energies (Fig. S3, S4). Although MTE-EDM is applied to 174 
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data from a single species, the estimated activation energy integrates the temperature dependence of all 175 
closely interacting species, and variation in temperature dependence among species makes the 176 
population dynamics non-separable from temperature. Results show that in ectotherm-dominated 177 
systems, MTE-EDM is robust to variation in activation energy, recovering the correct mean activation 178 
energy in the presence of considerable variation among species. MTE-EDM frequently outperformed 179 
Simplex, particularly as the mean activation energy increased and variability in the activation energy 180 
among species decreased. The exception, not surprisingly, was when most community members were 181 
endotherms, in which case the mean activation energy estimate was biased low, and performance did not 182 
improve notably over Simplex. Thus, the method is robust to modest violations of the assumption of strict 183 
separability. 184 

We next evaluated whether MTE-EDM improves prediction in field populations exposed to natural 185 
temperature fluctuations. We assembled a database of 22 time series from 8 locations (5 aquatic, 3 186 
terrestrial) spanning a range of taxa (e.g. phytoplankton, crustaceans, moths, rodents; Table 1, S2). 187 
Sampling intervals ranged from half-weekly to monthly, and mean temperatures ranged from 9.8 to 188 
26.7°C. Absolute forecasting skill for both Simplex and MTE-EDM was high across time series, with R2 189 
values ranging from 0.22 to 0.85 (mean: 0.60) for Simplex and 0.39 to 0.88 (mean: 0.67) for MTE-EDM 190 
(Table 1). For 18 of 19 ectotherm time series, MTE-EDM outperformed Simplex, increasing forecast skill 191 
of these 18 series by 20% on average (19% across all series, Fig. 3a). Likelihood ratio tests indicated 192 
that this improvement was statistically significant in 17 of 19 cases. In terms of R2 values, MTE-EDM 193 
outperformed UTD in all cases, and UTD outperformed Simplex in only 8 of 19 cases. Using temperature 194 
as a covariate outperformed Simplex in 14 cases, but outperformed MTE-EDM in only 3 cases. Estimated 195 
activation energies from MTE-EDM were within the range of values estimated in other studies (29) and 196 
did not approach the parameter bounds (Fig. 3c, S5). As expected, MTE-EDM resulted in little forecast 197 
improvements for 3 endotherm time series (0.8% on average, Fig. 3a). The estimated activation energies 198 
for the endotherm series were close to 0, and the use of UTD decreased performance. 199 

Seasonality was the dominant source of temperature variability in our field time series (trend: 0 - 200 
2.8°C year-1 [median 0.04]; seasonal range: 1.4 - 24°C [median 19]), as is typical of temperatures 201 
throughout most of the world (41). Among ectotherms, the degree of improvement when using MTE-EDM 202 
was strongly related to the seasonality of the environment, with larger improvement in forecast skill in 203 
more variable environments (Fig. 3b). This is a sensible result: If there is little variation in temperature, 204 
there will also be little variation in the length of the metabolic timestep, and thus the MTE-EDM model will 205 
be similar to Simplex. 206 

Despite the MTE’s success in explaining large-scale biological patterns in relation to 207 
environmental temperature, physiologists have pointed out that the MTE’s monotonic increase of vital 208 
rates with temperature is unrealistic (29). Thermal performance curves (TPCs) are usually domed: vital 209 
rates increase with temperature up to an optimum temperature and then decrease rapidly beyond the 210 
optimum (42). Organisms are typically exposed to a range of temperatures, including sub-optimal 211 
temperatures, especially in seasonal environments (43). Our modeling framework can readily use a TPC 212 
instead of MTE temperature scaling to determine the length of the metabolic timestep, which we expect to 213 
produce better results when the organism often experiences temperatures on the descending limb of the 214 
TPC. We obtained TPCs for the three species in our time series database for which curves were available 215 
and tested whether TPC-based models could improve forecasts. We found that forecasting skill was 216 
worse than MTE-EDM in all cases and worse than Simplex in 2 cases (Fig. 3a). 217 

 218 
Discussion 219 

 220 
Previous work on EDM has shown that unequally spaced lags can be optimal for modeling 221 

systems with multiple timescales (44) and that in ‘driven’ systems, delays of the driver (in this case 222 
temperature) included as additional predictors (covariates) can improve the forecast performance (45). 223 
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However, Takens’ theorem (12) shows that adding lags of temperature to an EDM model also adds 224 
information from other variables that interact with temperature, making a mechanistic interpretation 225 
difficult. For instance, (35) found that the temperature dependence at lag 1 was unimodal or increasing 226 
(as expected for thermal performance) but was bowl-shaped or decreasing at lag 2, possibly representing 227 
an indirect effect through predation or competition. Here we show that constraining EDM to obey a known 228 
mechanism outperforms the covariate approach in the majority of cases. Additionally, using a metabolic 229 
time step adds only one degree of freedom to the model, and permits model comparison to Simplex with 230 
a simple likelihood ratio. In contrast, the change in degrees of freedom that results from adding 231 
temperature as an additional coordinate in the nonparametric Simplex model is difficult to determine a 232 
priori, rendering a likelihood ratio test inappropriate for comparing this model. Our study is the first 233 
demonstration that separable, nonautonomous dynamics can be embedded through a simple time scale 234 
change.  235 

Not all biological rates or organisms have the same temperature dependence (29, 46, 47), and 236 
allowing for variable activation energies improved performance over the ‘universal’ value of 0.65. 237 
Surprisingly, MTE-EDM’s temperature scaling performed better than scaling using empirical TPCs, 238 
despite the known unimodal shape of thermal performance (48). This could be because most 239 
temperatures experienced by the focal species were below the TPC optimum. Additionally, different 240 
biological processes have different TPCs (29), and the particular one measured may or may not reflect 241 
the temperature dependency of the population dynamics, which integrates across many biological 242 
processes and interacting species (49). However, since only 3 species had TPCs, more applications are 243 
needed before we can draw any general conclusions about the performance of this method relative to 244 
MTE-EDM.  245 

Of course, temperature is not the only factor affecting biological rates or population dynamics, 246 
which may explain why MTE-EDM did not always greatly improve forecast skill, even with ample 247 
temperature variation. Understanding whether there are general rules for how temperature scaling shifts 248 
when resources are limiting is an active area of research, and testing whether the patterns described in 249 
the literature can be used as constraints to improve forecasts would be a useful direction for future 250 
forecasting research. For example, ecological stoichiometry posits that phosphorus content directly 251 
influences the growth rates of aquatic organisms (50). Ongoing efforts to expand the metabolic theory to 252 
include important constraints such as stoichiometry (e.g., 50, 51) could mean that additional adjustments 253 
to the metabolic time step may be possible (e.g. based on phosphorus availability (52)). However, not all 254 
environmental factors influence biological rates in a known or universal way that is separable from other 255 
population dynamics, as assumed in MTE-EDM, so there is not necessarily a straightforward way to 256 
integrate them into the metabolic time step. In these cases, environmental variables could be covariates 257 
rather than constraints or indirectly captured by the time lags. Coupling EDMs with physical models is 258 
another approach to incorporating mechanism that has been recently explored. For instance, EDM has 259 
recently been used in a hybrid modeling approach where data-driven predictions of the biogeochemical 260 
components of Lake Geneva were combined with a model of lake physics to predict future lake health 261 
(53). This yielded better forecast performance for dissolved oxygen concentration than the physical 262 
model. Blending data-driven methods with theory therefore provides new avenues to both improve 263 
forecasts and increase our understanding of relevant mechanisms.  264 

When using MTE-EDM, practitioners must consider the timescale of the system they are 265 
modeling and the resolution of the population and temperature data available. First, MTE-EDM needs 266 
samples taken frequently enough to be able to construct uniform metabolic time steps. Sampling intervals 267 
that are too coarse limit our ability to do so. Second, MTE-EDM requires sufficient temperature variation 268 
on timescales relevant to the focal organism. For example, in all of our field time series, the focal 269 
organisms all had relatively short generation times, often less than the annual temperature cycle, 270 
resulting in temperature variation across generations. In contrast, population dynamics of species with 271 
generation times >>1 year should be relatively insensitive to seasonal fluctuations in temperature 272 
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because from one generation to the next, the mean temperature will be more or less the same. Long-lived 273 
species may be sensitive to interannual variation in temperature (including climate change), but since this 274 
variation is typically much less than seasonal temperature variation (e.g. ~2°C over the past hundred 275 
years versus 20°C within a year), it may only be apparent over very long timescales. Hence, the 276 
effectiveness of MTE-EDM will depend on the generation time of the organism, the observed temperature 277 
range, and the availability of data. At present, we expect MTE-EDM to be most effective for ectotherms 278 
with short generation times (~1 year or less) and high frequency sampling (at least monthly). That said, 279 
we note that the change of variables used here is generic - any driver with approximately separable 280 
effects on dynamics could be built into EDM in this way.  281 

Although MTE-EDM improved forecasts in the series we analyzed and our simulations indicated 282 
that MTE-EDM is robust to modest variation in activation energy among interacting ectotherms, it is worth 283 
noting conditions under which MTE-EDM will not improve forecasts. MTE-EDM will not improve forecasts 284 
when there is little variation in temperature, or when most interacting species are insensitive to 285 
temperature (e.g. endotherms). Less obviously, MTE-EDM is not expected to work when the separability 286 
assumption is strongly violated (e.g. where vital rates within and across species have sufficiently different 287 
effects over the observed range of temperatures). In particular, it will not improve forecasts when the lack 288 
of separability results in temperature driven shifts in structural stability, as occurs in some models (30, 289 
51), experimental systems (36), and field systems (e.g. tea tortrix moth (52)). The prevalence of such 290 
temperature-driven bifurcations in natural systems under current climate conditions is an open question. 291 
On the other hand, in cases where the temperature does vary, a failure of MTE-EDM to improve 292 
performance over Simplex suggests that either the system is temperature-independent (activation energy 293 
near 0) or that nonseparability is present. So, although we do not expect the MTE-EDM approach to be 294 
useful in all systems, its failure suggests alternative hypotheses that are worth exploring.  295 

Although we did not see this in our data and have insufficient sample size to draw any general 296 
conclusions, we suspect MTE-EDM might work better on aggregated time series, since species-specific 297 
temperature dependencies may average out. Aggregation has also been shown to lead to higher forecast 298 
accuracy with EDM (54).  299 

EDM – and other data-driven approaches – are powerful tools for making predictions and gaining 300 
insights into complex systems. Their power comes from their generality – we don’t need to know how a 301 
system works for them to be useful. However, one of the strengths of mechanistic model building is that 302 
known mechanisms and auxiliary data (not time series) are readily incorporated. Several previous studies 303 
have noted the importance of bringing together empirical and mechanistic approaches (8, 55–57). Our 304 
approach is a novel addition to this growing toolbox. For systems that meet the assumptions of the 305 
method, it offers a new way to account for temperature variability and nonstationarity both now and in a 306 
future increasingly influenced by climate change. 307 
  308 
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Materials and Methods 309 
 310 
Time delay embedding 311 
 312 

Time delay embedding refers to the reconstruction of system dynamics using time lags of one or 313 
more variables from that system. For a generic, autonomous dynamical system of dimension 𝑆,  314 𝑑𝑥𝑖/𝑑𝑡 = 𝑓𝑖(𝑥1, . . . , 𝑥𝑆)  [1] 315 
that converges to an attractor with dimension 𝑑 < 𝑆, Takens proved that the lag vectors 𝑋𝑖(𝑡) =316 {𝑥𝑖(𝑡), 𝑥𝑖(𝑡 + 𝜏), . . . , 𝑥𝑖(𝑡 + 𝐸𝜏)} are sufficient to embed the attractor, where 𝜏 is a time delay and 𝐸 + 1 is 317 
the embedding dimension (12). For the remainder, we do this for each time series independently and 318 
drop the subscript 𝑖 to simplify the notation. The practical upshot of Takens’ theorem is that we can model 319 
the next state, 𝑥(𝑡), as 320 𝑥(𝑡) = 𝐹(𝑥(𝑡 − 𝜏), . . . , 𝑥(𝑡 − 𝐸𝜏)) [2], 321 
where one of several function approximation schemes can be used to estimate the delay embedding 322 
map, 𝐹 , from time series data. The simplest such scheme is the nearest neighbor approach, referred to 323 
in ecology as the Simplex projection algorithm (33, 58). To make a prediction for 𝑥(𝑡), Simplex uses the 324 
averages of the 𝐸 + 1 nearest neighbors of {𝑥(𝑡 − 𝜏), . . . , 𝑥(𝑡 − 𝐸𝜏)}. Although there have been many 325 
elaborations on this approach, Simplex makes the fewest assumptions and has the fewest tunable 326 
parameters. As such, it is a natural benchmark for generalization. 327 
 328 
Rescaling time with temperature (metabolic embedding) 329 
 330 

The MTE posits that the effect of temperature (𝑇) on metabolism structures fecundity and 331 
mortality rates, and hence species interactions. Within ectotherms, the activation energy is highly 332 
conserved. Under these assumptions, the population dynamics of the 𝑖th species are given approximately 333 
by 334 𝑑𝑥𝑖/𝑑𝑡 = 𝑓𝑖(𝑥1, . . . , 𝑥𝑆 , 𝑇) ≈ 𝑓𝑖(𝑥1, . . . , 𝑥𝑆)ℎ(𝑇) [3] 335 
where ℎ(𝑇) is the average temperature dependence and 𝑓𝑖 describes the effects of all other state 336 
variables. This approximation assumes the population and temperature dynamics are separable, such 337 
that temperature primarily affects the overall rate of change, and that all species approximately adhere to 338 
the same universal temperature dependence. This is clearly not exactly true for most real systems and we 339 
evaluate the consequence of deviations using simulations.  340 

System [3] falls under the skew-product embedding theorems of Stark (45), which would expand 341 
the delay coordinate space to include lags of temperature in a nonparametric way. This is the justification 342 
for using temperature as an additional coordinate (covariate) in the Simplex model. However, including 343 
temperature in this way does not explicitly take advantage of the known functional dependence on 344 
temperature, i.e. ℎ(𝑇) = 𝑒−𝐸0/𝑘𝑇 where 𝑘 = 8.617 × 10−5𝑒𝑉/𝐾 is Boltzmann’s constant, 𝑇 is temperature 345 
in degrees Kelvin, and 𝐸0 is the activation energy. 346 

Here, we make use of both the separability implied by equation [3] and the fact that ℎ(𝑇) is 347 
known, to introduce a metabolic time, 𝜇, which renders the dynamics autonomous. Specifically, if 𝑑𝜇/𝑑𝑡 =348 ℎ(𝑇), then 𝑑𝑥𝑖/𝑑𝜇 = 𝑓𝑖(𝑥1, . . . , 𝑥𝑆), eliminating the need for skew-product embedding. Integrating over a 349 
fixed 𝜇-step, we obtain a discrete 𝜇 model  350 𝑥𝑖,𝑛 = 𝐹𝑖(𝑥𝑖,𝑛−1, . . . , 𝑥𝑆,𝑛−1) 351 

where 𝑥𝑖,𝑛 = 𝑥𝑖(𝑡𝑛) and the times 𝑡𝑛 are defined implicitly by  ∫ ℎ(𝑇) = 𝑛𝜇𝑡𝑛0 . From here, Takens theorem 352 
allows us to re-cast the dynamics as  353 𝑥𝑛 = �̃�(𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥𝑛−𝐸) 354 
where we have again dropped the subscript 𝑖 to simplify the notation though we remind the reader that 355 
the inputs to �̃� are lags of a single state variable.  356 
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If data were available in continuous time, we would construct delay vectors for each 𝑥(𝑡𝑛) such 357 

that ∫ ℎ(𝑇)𝑑𝑡 = 𝑗𝜇𝑡𝑛𝑡𝑛−𝑗   exactly. In practice, however, data are available on a discrete time step so some 358 

approximation is necessary. For simplicity, we find the sampling times 𝑡𝑛−𝑗 such that ∑ ℎ(𝑇𝑖)𝛥𝑡𝑡𝑛𝑡𝑛−𝑗  is as 359 

close to 𝑗𝜇 as possible. Given the collection of metabolic delay vectors, we use the same nearest-360 
neighbor averaging to approximate �̃� that we used for the Simplex algorithm.  361 

Although 𝐸0=0.65 has been referred to as ‘universal temperature dependence’ (UTD) (15), 362 
subsequent meta-analyses (29) found substantial variability in 𝐸0 across species and traits. For MTE-363 
EDM, we, therefore, estimate 𝐸0 by computing the log likelihood on a grid of 50 values of 𝐸0 from 0 to 2 364 
and a maximum embedding dimension of 15. In keeping with other EDM studies that minimize squared 365 
prediction errors, a Gaussian likelihood was used. Note that UTD (𝐸0= 0.65) and Simplex (𝐸0= 0) are 366 
special cases of MTE-EDM, so that twice the log likelihood ratio is expected to follow a chi-square 367 
distribution with one degree of freedom. It is less clear how the degrees of freedom change when using 368 
temperature as an additional coordinate, so significance levels for the likelihood ratio test are approximate 369 
in this case. Although MTE-EDM is applied to data for a single species, it is important to recognize that 370 
the estimated 𝐸0 represents an average for the species with which it closely interacts, rather than a 371 
species-specific metabolic rate.  372 
 373 
Simulated data 374 
 375 

As a proof of concept, we simulated a chaotic three species food chain (40) in which the vital 376 
rates depend on temperature as in equation [3]. Specifically, we used 377 
 378 𝑑𝑥𝑑𝑡 = ℎ(𝑇)[𝑥(1 − 𝑥) − 𝑎𝑥𝑦/(1 + 𝑏𝑥)] 379 𝑑𝑦𝑑𝑡 = ℎ(𝑇)[𝑎𝑥𝑦/(1 + 𝑏𝑥) − 𝑐𝑦𝑧/(1 + 𝑑𝑦) − 𝑚𝑦] 380 𝑑𝑧𝑑𝑡 = ℎ(𝑇)[𝑐𝑦𝑧/(1 + 𝑑𝑦) − 𝜇𝑧] 381 

 382 
where 𝑎 = 5.0, 𝑏 = 3.0, 𝑐 = 0.1, 𝑑 = 2.0, 𝑚 = 0.4, 𝜇 = 0.01 and the initial conditions were 𝑥(0) = 0.8, 𝑦(0) =383 0.1, 𝑧(0) = 9.0. The system was integrated using a 4th order Runge-Kutta scheme on a weekly time step 384 
for 500 weeks. To provide interesting test cases, we simulated a temperature trend,  𝑇(𝑡) = 0.052𝑡 − 8, 385 
and a more realistic scenario with seasonal temperature variation, a long-term trend, and stochasticity, 386 𝑇(𝑡) = 5 + 13 𝑠𝑖𝑛 (2𝜋𝑡/55)  + 0.003𝑡 + 2.6𝜖(𝑡) where 𝜖(𝑡)~𝑁(0,1) is white noise. The linear increase of 387 
0.003°C week-1 results in a net increase of 1.5°C over the ~10 year simulation.  388 

To understand the effect of variable activation energies within a community, we also simulated 10 389 
years of weekly data using the food chain model described above, but with ℎ(𝑇) allowed to vary among 390 
species- violating the assumption of strict system-level separability. We considered four scenarios: 1) two 391 
ectotherms, 2) three ectotherms, 3) two ectotherms and one endotherm, and 4) one ectotherm and two 392 
endotherms. For each ectotherm we generated random activation energies drawn from a Gaussian 393 
distribution with different means (0.20, 0.32, 0.65, 1.20) representing most of the typically observed range 394 
crossed with three levels of variability (SD: 0, 0.1, 0.2). Note that the interval 0.2 to 1.2 was originally 395 
proposed for variation in activation energy (26) and provided good bounds for within-species variation in 396 
lifespan (59), while 0.32 and 0.65 are typical values for photosynthesis and ectotherm metabolism, 397 
respectively.  398 

For each of the 4 scenarios, 4 mean activation energies, and 3 SDs, we ran 50 replicates from 399 
random initial conditions for a total of 2400 simulated data sets. For each data set, we used the MTE-400 



10 

EDM approach to estimate the activation energy and used likelihood ratio tests to assess the probability 401 
that MTE-EDM would be significantly better than Simplex. 402 

 403 
Analysis of empirical data 404 
 405 
Cycle period in lab experiments 406 

To examine the impact of temperature on population cycle period, we searched the literature for 407 
laboratory experiments reporting population dynamics at different constant temperatures. This search 408 
yielded four studies: a rotifer (Brachionus calyciflorus) population (36), a ciliate (Didinium-Paramecium) 409 
predator-prey system (37), a moth (Plodia interpunctella) (39), and a cilate-bacteria (Tetrahymena 410 
pyriformis-Pseudomonas fluorescens) predator-prey system (38). Raw data were obtained from 411 
supplementary materials or, if necessary, directly from figures using WebPlotDigitizer (60). 412 

We used spectral analysis to assess the periodicity for each abundance time series. To compute 413 
the power spectrum, we used penalized (ridge) regression onto sine and cosine basis functions with 414 
frequencies 2𝜋𝑠/𝑁, where 𝑠 = 2,3, . . . , 𝑁/2 and 𝑁 is the time series length (thus, the longest period 415 
considered was 0.5𝑁, and the shortest was 2 timesteps). Time series were rescaled to mean 0 and unit 416 
variance prior to analysis, and the penalty was set to 0.01. Power at each frequency was calculated from 417 
the sine and cosine coefficients. The frequency (cycle period) with the highest power was then selected. 418 
For (38), we performed analyses on the average abundance at each time point and excluded replicate A 419 
for Tetrahymena pyriformis because the density was 0 throughout the time series. For (37), visual 420 
inspection of the time series showed that Didinium and Paramecium each went through one cycle before 421 
going extinct. Thus, we computed cycle period as the length of time to extinction. The Didinium population 422 
at 17oC did not finish its cycle (i.e., it did not go extinct) during the experiment, so was excluded. 423 

We performed ordinary least squares regression to assess the relationship between natural log-424 
transformed cycle period and inverse absolute temperature, i.e., 1/𝑘𝑇, where 𝑘 is Boltzmann’s constant. 425 
The slope of this relationship corresponds to the activation energy. 426 
 427 
Natural population dynamics 428 

To evaluate the MTE temperature effect on natural populations, we assembled a database of 429 
time series from 22 short-lived species from terrestrial and aquatic environments (Table 1, Table S2). We 430 
chose to focus on species with sub-annual sampling intervals and short generation times in order to 431 
encompass seasonal variation in temperature and ensure sufficient data to reconstruct dynamics. Most 432 
time series were species-level, although 4 time series represented species aggregates (e.g., 433 
phytoplankton). Sampling intervals ranged from 3 days to 1 month, and sampling time ranged from 2 to 434 
40 years. Temperature data were either recorded during sample collection or obtained from nearby 435 
sources (Table S2). If a database contained multiple species, for our proof-of-concept purposes, we 436 
analyzed the 5-6 most abundant species with the longest continuous records. We also excluded series if 437 
the Simplex algorithm had prediction R2 less than 0.2.  438 

Each abundance time series was square-root transformed and standardized to zero mean and 439 
unit standard deviation prior to analysis. Since the sampling interval was somewhat variable for many of 440 
the time series, series were interpolated to the shortest constant interval (3-day, weekly, bi-weekly, or 441 
monthly) that was most consistent with the original sampling scheme using a Gaussian process 442 
regression with a cyclic prior mean with Fourier modes at 2𝑠 years where s = -2,-1, 0, 1, 2, 3. 443 
Temperature data were interpolated similarly, but were not square-root transformed.  444 

For each time series, we fit 2 calendar timestep models (standard Simplex, temperature as a 445 
covariate), and 2 metabolic timestep models (UTD, MTE-EDM). For the calendar timestep models, we 446 
selected the pair of embedding dimension and time delay, 𝜏, that maximized forecast accuracy: We 447 
evaluated embedding dimensions ranging from 1 to 5, and time delays ranging from 1 to 12 steps, where 448 
the step size was set by the original sampling scheme. For the metabolic timestep models, we selected 449 
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the embedding dimension that maximized forecast accuracy, fixing the metabolic delay, 𝜇, to the average 450 
metabolism over the same time step. That is, if the time series was sampled weekly, for a total of 𝑁 451 

weeks, we set 𝜇 = 1𝑁 𝛴𝑖 𝑒−0.65/𝑘𝑇𝑖. Forecast accuracy was measured using leave-one-out prediction R2, 452 

excluding the time point before and after, which was also used as our measure of forecast performance. 453 
While alternative cross-validation schemes or performance measures may give different results in terms 454 
of absolute forecast skill, the relative performance of the different models should be the same. 455 

To evaluate the effect of thermal performance curve (TPC) shape on metabolic embedding, we 456 
obtained empirical TPCs for two copepod species (Acartia tonsa, Acartia hudsonica) and the tea tortrix 457 
moth (Adoxophyes honmai). TPCs for the copepods were obtained by fitting a Sharpe-Schoolfield model 458 
(61) to egg production data for each copepod species (62). For Adoxophyes honmai, we fit the same 459 
model to laboratory data for lifetime production of hatching eggs, calculated from data for age-specific 460 
survival, fecundity, and egg hatchability (63). TPCs were unavailable for the other species for which we 461 
had time series. 462 

 463 
Acknowledgments 464 
 465 
The University of Zurich Research Priority Program on Global Change and Biodiversity supported this 466 
research. We thank the two anonymous reviewers for their constructive comments and suggestions, 467 
which have considerably improved the methodology and manuscript. 468 
 469 
Funding 470 
 471 
FP was supported by the Swiss National Science Foundation (grant 310030_197811). CCS was 472 
supported by a Hellman Fellowship Award at the University of California, Irvine. 473 
 474 
Data and Code Availability 475 
 476 
The laboratory time series, interpolated field time series, and all code required to reproduce the analyses 477 
are available at https://github.com/tanyalrogers/MTE_EDM. Field data sources are listed in Table S2. The 478 
datasets used for Lake Geneva are © OLA-IS, AnaEE-France, INRAE of Thonon-les-Bains, CIPEL, 479 
citation in Table S2. 480 

References 481 

1.  M. C. Dietze, et al., Iterative near-term ecological forecasting: Needs, opportunities, and 482 
challenges. Proc. Natl. Acad. Sci. 115, 1424–1432 (2018). 483 

2.  J. S. Clark, et al., Ecological Forecasts: An Emerging Imperative. Science 293, 657–660 484 
(2001). 485 

3.  D. E. Schindler, R. Hilborn, Prediction, precaution, and policy under global change. 486 
Science 347, 953–954 (2015). 487 

4.  S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by 488 
sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113, 3932–489 
3937 (2016). 490 

5.  J. Elith, J. R. Leathwick, Species Distribution Models: Ecological Explanation and 491 
Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009). 492 

https://github.com/tanyalrogers/MTE_EDM


12 

6.  O. L. Petchey, et al., The ecological forecast horizon, and examples of its uses and 493 
determinants. Ecol. Lett. 18, 597–611 (2015). 494 

7.  L. Parrott, Hybrid modelling of complex ecological systems for decision support: Recent 495 
successes and future perspectives. Ecol. Inform. 6, 44–49 (2011). 496 

8.  M. Reichstein, et al., Deep learning and process understanding for data-driven Earth 497 
system science. Nature 566, 195–204 (2019). 498 

9.  M. Alber, et al., Integrating machine learning and multiscale modeling—perspectives, 499 
challenges, and opportunities in the biological, biomedical, and behavioral sciences. Npj 500 
Digit. Med. 2, 1–11 (2019). 501 

10.  H. Ye, G. Sugihara, Information leverage in interconnected ecosystems: Overcoming the 502 
curse of dimensionality. Science 353, 922–925 (2016). 503 

11.  H. Ye, et al., Equation-free mechanistic ecosystem forecasting using empirical dynamic 504 
modeling. Proc. Natl. Acad. Sci. 112, E1569–E1576 (2015). 505 

12.  F. Takens, “Detecting strange attractors in turbulence” in Dynamical Systems and 506 
Turbulence, Warwick 1980, Lecture Notes in Mathematics., D. Rand, L.-S. Young, Eds. 507 
(Springer, Berlin, Heidelberg, 1981), pp. 366–381. 508 

13.  C. T. Perretti, S. B. Munch, G. Sugihara, Model-free forecasting outperforms the correct 509 
mechanistic model for simulated and experimental data. Proc. Natl. Acad. Sci. 110, 5253–510 
5257 (2013). 511 

14.  C. Karakoç, A. T. Clark, A. Chatzinotas, Diversity and coexistence are influenced by time-512 
dependent species interactions in a predator–prey system. Ecol. Lett. 23, 983–993 (2020). 513 

15.  J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic 514 
theory of ecology. Ecology 85, 1771–1789 (2004). 515 

16.  B. A. Hawkins, et al., A Global Evaluation of Metabolic Theory as an Explanation for 516 
Terrestrial Species Richness Gradients. Ecology 88, 1877–1888 (2007). 517 

17.  M. Collins, et al., Long-term Climate Change: Projections, Commitments and Irreversibility. 518 
Clim. Change 2013 - Phys. Sci. Basis Contrib. Work. Group Fifth Assess. Rep. Intergov. 519 
Panel Clim. Change, 1029–1136 (2013). 520 

18.  G. A. Meehl, C. Tebaldi, More Intense, More Frequent, and Longer Lasting Heat Waves in 521 
the 21st Century. Science 305, 994–997 (2004). 522 

19.  A. J. Davis, L. S. Jenkinson, J. H. Lawton, B. Shorrocks, S. Wood, Making mistakes when 523 
predicting shifts in species range in response to global warming. Nature 391, 783–786 524 
(1998). 525 

20.  E. Post, M. C. Forchhammer, Synchronization of animal population dynamics by large-526 
scale climate. Nature 420, 168–171 (2002). 527 



13 

21.  K. J. Haynes, A. J. Allstadt, D. Klimetzek, Forest defoliator outbreaks under climate 528 
change: effects on the frequency and severity of outbreaks of five pine insect pests. Glob. 529 
Change Biol. 20, 2004–2018 (2014). 530 

22.  M. L. Wells, et al., Harmful algal blooms and climate change: Learning from the past and 531 
present to forecast the future. Harmful Algae 49, 68–93 (2015). 532 

23.  V. M. Savage, J. F. Gillooly, J. H. Brown, G. B. West, E. L. Charnov, Effects of body size 533 
and temperature on population growth. Am. Nat. 163, 429–441 (2004). 534 

24.  J. R. Bernhardt, J. M. Sunday, M. I. O’Connor, Metabolic Theory and the Temperature-535 
Size Rule Explain the Temperature Dependence of Population Carrying Capacity. Am. Nat. 536 
192, 687–697 (2018). 537 

25.  G. Yvon-Durocher, et al., Reconciling the temperature dependence of respiration across 538 
timescales and ecosystem types. Nature 487, 472–476 (2012). 539 

26.  J. F. Gillooly, J. H. Brown, G. B. West, V. M. Savage, E. L. Charnov, Effects of size and 540 
temperature on metabolic rate. Science 293, 2248–2251 (2001). 541 

27.  C. F. Clements, B. Collen, T. M. Blackburn, O. L. Petchey, Effects of directional 542 
environmental change on extinction dynamics in experimental microbial communities are 543 
predicted by a simple model. Oikos 123, 141–150 (2014). 544 

28.  D. Kirk, et al., Empirical evidence that metabolic theory describes the temperature 545 
dependency of within-host parasite dynamics. PLOS Biol. 16, e2004608 (2018). 546 

29.  A. I. Dell, S. Pawar, V. M. Savage, Systematic variation in the temperature dependence of 547 
physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011). 548 

30.  J. R. Schramski, A. I. Dell, J. M. Grady, R. M. Sibly, J. H. Brown, Metabolic theory predicts 549 
whole-ecosystem properties. Proc. Natl. Acad. Sci. 112, 2617–2622 (2015). 550 

31.  B. J. Enquist, et al., Scaling metabolism from organisms to ecosystems. Nature 423, 639–551 
642 (2003). 552 

32.  M. Lindmark, J. Ohlberger, M. Huss, A. Gårdmark, Size-based ecological interactions drive 553 
food web responses to climate warming. Ecol. Lett. 22, 778–786 (2019). 554 

33.  G. Sugihara, R. M. May, Nonlinear forecasting as a way of distinguishing chaos from 555 
measurement error in time series. Nature 344, 734–741 (1990). 556 

34.  E. R. Deyle, et al., Predicting climate effects on Pacific sardine. Proc. Natl. Acad. Sci. 110, 557 
6430–6435 (2013). 558 

35.  T. L. Rogers, S. B. Munch, Hidden similarities in the dynamics of a weakly synchronous 559 
marine metapopulation. Proc. Natl. Acad. Sci. 117, 479–485 (2020). 560 

36.  U. Halbach, Population dynamics of rotifers and its consequences for ecotoxicology. 561 
Hydrobiologia 109, 79–96 (1984). 562 



14 

37.  J. P. DeLong, S. Lyon, Temperature alters the shape of predator–prey cycles through 563 
effects on underlying mechanisms. PeerJ 8, e9377 (2020). 564 

38.  K. E. Fussmann, F. Schwarzmüller, U. Brose, A. Jousset, B. C. Rall, Ecological stability in 565 
response to warming. Nat. Clim. Change 4, 206–210 (2014). 566 

39.  A. M. Laughton, R. J. Knell, Warming at the population level: Effects on age structure, 567 
density, and generation cycles. Ecol. Evol. 9, 4403–4420 (2019). 568 

40.  A. Hastings, T. Powell, Chaos in a Three-Species Food Chain. Ecology 72, 896–903 569 
(1991). 570 

41.  G. Wang, M. E. Dillon, Recent geographic convergence in diurnal and annual temperature 571 
cycling flattens global thermal profiles. Nat. Clim. Change 4, 988–992 (2014). 572 

42.  M. J. Angilletta, Thermal Adaptation: A Theoretical and Empirical Synthesis (OUP Oxford, 573 
2009). 574 

43.  T. L. Martin, R. B. Huey, Why “Suboptimal” Is Optimal: Jensen’s Inequality and Ectotherm 575 
Thermal Preferences. Am. Nat. 171, E102–E118 (2008). 576 

44.  K. Judd, A. Mees, Embedding as a modeling problem. Phys. Nonlinear Phenom. 120, 273–577 
286 (1998). 578 

45.  J. Stark, Delay Embeddings for Forced Systems. I. Deterministic Forcing. J. Nonlinear Sci. 579 
9, 255–332 (1999). 580 

46.  A. C. Iles, Towards predicting community level effects of climate: Relative temperature 581 
scaling of metabolic and ingestion rates. Ecology (2014) https:/doi.org/10.1890/13-1342.1 582 
(February 26, 2014). 583 

47.  N. J. B. Isaac, C. Carbone, Why are metabolic scaling exponents so controversial? 584 
Quantifying variance and testing hypotheses. Ecol. Lett. 13, 728–735. 585 

48.  G. Englund, G. Öhlund, C. L. Hein, S. Diehl, Temperature dependence of the functional 586 
response. Ecol. Lett. 14, 914–921 (2011). 587 

49.  A. Gårdmark, M. Huss, Individual variation and interactions explain food web responses to 588 
global warming. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190449 (2020). 589 

50.  J. J. Elser, et al., Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–590 
550 (2000). 591 

51.  A. P. Allen, J. F. Gillooly, Towards an integration of ecological stoichiometry and the 592 
metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12, 369–384 593 
(2009). 594 

52.  J. F. Gillooly, E. L. Charnov, G. B. West, V. M. Savage, J. H. Brown, Effects of size and 595 
temperature on developmental time. Nature 417, 70 (2002). 596 



15 

53.  E. R. Deyle, et al., A hybrid empirical and parametric approach for managing ecosystem 597 
complexity: Water quality in Lake Geneva under nonstationary futures. Proc. Natl. Acad. 598 
Sci. 119, e2102466119 (2022). 599 

54.  V. Agarwal, C. C. James, C. E. Widdicombe, A. D. Barton, Intraseasonal predictability of 600 
natural phytoplankton population dynamics. Ecol. Evol. 11, 15720–15739 (2021). 601 

55.  G. Sugihara, et al., Residual delay maps unveil global patterns of atmospheric nonlinearity 602 
and produce improved local forecasts. Proc. Natl. Acad. Sci. 96, 14210–14215 (1999). 603 

56.  J. T. Thorson, K. Ono, S. B. Munch, A Bayesian approach to identifying and compensating 604 
for model misspecification in population models. Ecology 95, 329–341 (2014). 605 

57.  J. Runge, et al., Inferring causation from time series in Earth system sciences. Nat. 606 
Commun. 10, 2553 (2019). 607 

58.  J. D. Farmer, J. J. Sidorowich, Predicting chaotic time series. Phys. Rev. Lett. 59, 845–848 608 
(1987). 609 

59.  S. B. Munch, S. Salinas, Latitudinal variation in lifespan within species is explained by the 610 
metabolic theory of ecology. Proc. Natl. Acad. Sci. 106, 13860–13864 (2009). 611 

60.  A. Rohatgi, WebPlotDigitizer (2020). 612 

61.  R. M. Schoolfield, P. J. H. Sharpe, C. E. Magnuson, Non-linear regression of biological 613 
temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 614 
88, 719–731 (1981). 615 

62.  B. K. Sullivan, L. T. McManus, Factors controlling seasonal succession of the copepods 616 
Acartia hudsonica and A. tonsa in Narragansett Bay, Rhode Island: temperature and 617 
resting egg production (1986). 618 

63.  F. H. Nabeta, M. Nakai, Y. Kunimi, Effects of temperature and photoperiod on the 619 
development and reproduction of Adoxophyes honmai (Lepidoptera: Tortricidae). Appl. 620 
Entomol. Zool. 40, 231–238 (2005). 621 

 622 
  623 



16 

 624 

Figure 1. Conceptual diagrams demonstrating principles behind MTE-EDM and the rescaling of time with 625 
temperature. The example in (A) and (B) depicts a seasonal system. (A) Calendar time and metabolic 626 
time proceed at different rates depending on temperature (light blue indicates low temperatures, red high 627 
temperatures). (B) Abundance dynamics will proceed faster at higher temperatures, but have the same 628 
underlying dynamics when using a metabolic timestep. A constant metabolic timestep can be achieved 629 
using a dynamic calendar time step based on temperature. (C) Under the assumptions of MTE-EDM, 630 
population cycle period should decrease with increasing temperature. Consistent with this assumption, 631 
empirically-measured cycle periods in constant-temperature laboratory experiments scale with 632 
temperature. Filled shapes and solid linear regression from (37), open shapes and dashed linear 633 
regression from (36). 634 

  635 
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 636 
Figure 2. Simulated population dynamics with temperature seasonality, a long-term trend, and 637 
stochasticity. Panel (a) shows temperature and (b) abundance time series. (c) Leave-one-out prediction 638 
R2 for Simplex and MTE-EDM with different embedding dimensions. (d) Reconstructed attractor in delay-639 
coordinate space using a fixed calendar timestep or (e) using a fixed metabolic timestep. 640 
  641 
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 642 
 643 
Figure 3. (a) Change in forecast performance (as measured by change in leave-one-out prediction R2) for 644 
each model relative to the Simplex, for each empirical time series. Models used a metabolic timestep 645 
based on either universal temperature dependence (UTD), optimized temperature dependence (MTE), or 646 
empirical thermal performance curves (TPC), or used a calendar timestep with temperature as a covariate 647 
(Covariate). Only 3 series had TPC models. Mean ± standard deviation for change in R2 across ectotherm 648 
series: UTD: -0.01±0.06, MTE: 0.08±0.08, Covariate: 0.01±0.02. (b) Change in forecast performance 649 
(MTE vs. Simplex) vs. standard deviation of temperature, excluding endotherms (3 rodent time series 650 
from Portal, Arizona). (c) Distribution of optimized activation energies from MTE-EDM. The vertical 651 
dashed line is the UTD value (0.65). The Simplex model (no temperature dependence) corresponds to an 652 
activation energy of 0. Exact activation energy values are given in Fig. S5. 653 
  654 
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Table 1. Metadata for empirical datasets used in the study and leave-one-out R2 values for Simplex and 655 
MTE-EDM. Data citations are in Table S2.  656 

Taxon Location 
Sampling 
interval 

Time series 
length (n) 

R2 
(Simplex) 

R2 (MTE-
EDM) 

Acartia hudsonica copepod Narragansett Bay weekly 767 0.63 0.88 

Acartia tonsa copepod Narragansett Bay weekly 767 0.72 0.78 

Phytoplankton  Lake Greifensee monthly 388 0.57 0.57 

Cyanobacteria  Lake Greifensee monthly 388 0.58 0.61 

Eukaryotes  Lake Greifensee monthly 388 0.37 0.39 

Bythotrephes longimanus  cladoceran Lake Geneva biweekly 1038  0.85 0.86 

Eudiaptomus gracilis  copepod Lake Geneva biweekly 1038 0.78 0.78 

Kellicottia longispina  rotifer Lake Geneva biweekly 1038  0.83 0.84 

Adoxophyes honmai  moth Japan 5 days 2754 0.54 0.62 

Acartia sp., nauplii  copepod Wadden Sea weekly 503 0.48 0.65 

Acartia sp., copepodites  copepod Wadden Sea weekly 503 0.51 0.63 

Harpacticoida  copepod Wadden Sea weekly 503 0.66 0.68 

Balanidae, nauplii  barnacle Wadden Sea weekly 503 0.66 0.74 

Spionida, metatrochophora  polychaete Wadden Sea weekly 503 0.36 0.50 

Temora longicornis, nauplii  copepod Wadden Sea weekly 503 0.58 0.70 

Anarsia lineatella  moth Greece 3 days 322 0.22 0.51 

Adoxophyes orana  moth Greece 3 days 322 0.43 0.45 

Grapholita moleasta  moth Greece 3 days 322 0.60 0.70 

Zooplankton  Bermuda biweekly 600 0.49 0.50 

Dipodomys merriami kangaroo rat Portal, Arizona monthly 312 0.80 0.80 

Dipodomys ordii kangaroo rat Portal, Arizona monthly 312 0.80 0.80 

Onychomys torridus mouse Portal, Arizona monthly 312 0.70 0.71 
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