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Abstract

Most low-density parity-check (LDPC) code constructions are considered over finite fields.
In this work, we focus on regular LDPC codes over integer residue rings and analyze their
performance with respect to the Lee metric. Their error-correction performance is studied over
two channel models, in the Lee metric. The first channel model is a discrete memoryless channel,
whereas in the second channel model an error vector is drawn uniformly at random from all vectors
of a fixed Lee weight. It is known that the two channel laws coincide in the asymptotic regime,
meaning that their marginal distributions match. For both channel models, we derive upper bounds
on the block error probability in terms of a random coding union bound as well as sphere packing
bounds that make use of the marginal distribution of the considered channels. We estimate the
decoding error probability of regular LDPC code ensembles over the channels using the marginal
distribution and determining the expected Lee weight distribution of a random LDPC code over
a finite integer ring. By means of density evolution and finite-length simulations, we estimate the
error-correction performance of selected LDPC code ensembles under belief propagation decoding
and a low-complexity symbol message passing decoding algorithm and compare the performances.

Index Terms

Lee metric, LDPC codes, belief propagation, symbol message passing decoding, weight enu-
merator, ring-linear codes

I. INTRODUCTION

The Lee metric has been introduced in [1], [2] for phase shift keying modulation purposes,

where the first notion of a channel “matching” to the Lee metric appeared. The construction of

Lee-metric codes was explored in various contexts ([3], [4], [5], [6], [7]). Currently, the Lee metric

is considered for applications in post-quantum cryptography ([8], [9], [10], [11], [12], [13]). It

has been shown that the syndrome decoding problem in the Lee metric (originally introduced

over Z/4Z in [10]) is NP-hard over any integer residue ring modulo ps, where p is a prime [13].

The paper also provides several generic decoding algorithms to attack the syndrome decoding

problem. In [12] the authors confirmed the results of [13] and additionally showed that the Lee

metric information set decoding variants are more costly than their counterparts in the Hamming

metric. Therefore, the Lee metric is a promising metric to reduce the key sizes or signature sizes.

Furthermore, codes in the Lee metric have potential applications in the context of magnetic [14]

and DNA [15] storage systems.

In [8] a channel model has been introduced over a q-ary ring, that adds to the channel input

an error vector of given constant Lee weight. We will refer to this channel as the constant Lee
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weight channel. As the block length grows large, the marginal distribution of this channel follows

a Boltzmann-like distribution. This distribution results to be dominant empirical distribution for

vectors of a fixed Lee weight. Introducing an error vector of fixed weight is motivated by code-

based cryptosystems, where the error vector is typically generated at the encryption side, with a

constant Lee weight. The underlying syndrome decoding problem’s hardness is highly dependent

on the weight of the error term. As the block length of the code grows large, it is not possible

to reduce the Lee weight by a scalar multiplication as shown in [8]. The decoding and error-

correction performance is additionally determined by the minimum distance of a code. Hence,

deriving bounds for the minimum distance is an important task. For the Lee metric several analogue

bounds to the Hamming metric, such as the Singleton bound, Gilbert-Varshamov bound, the sphere

packing bound, have been developed (see [16], [17], [18]). These bounds are all with respect to

the minimum Lee distance.

In this paper, we consider two channel models: The constant Lee weight channel, and a discrete

memory-less channel (DMC) matched to the Lee metric [4]. The first is a channel where a constant-

weight error pattern is added to the transmitted codeword, where the error pattern is chosen

uniformly from the set of vectors with fixed Lee weight and length equal to the blocklength. It is

possible to show that, in the limit of large blocklength, and with Lee weights that are proportional

to the blocklength, the marginal distribution of the additive error term follows the well-known

Boltzmann distribution. The second channel is an additive DMC, where the additive error term

follows the Boltzmann distribution (however, differently from the constant-weight channel, the

Lee weight of the error vector is not fixed). We refer to the second channel as memoryless Lee

channel.

Making use of the marginal distribution of the channels, we derive upper bounds on the error-

correction capability achievable by a code for given block length and rate. We derive random

coding union bounds for both channels as well as a sphere-packing bound over the memoryless Lee

channel, providing a finite-length performance benchmark to evaluate the block error probability

of practical coding schemes. In the case of the memoryless Lee channel, we also derive an

upper bound on the decoding failure probability of a general linear block code under maximum

likelihood (ML) decoding based on the Lee weight distribution (i.e., the Lee distance spectrum)

of the code. We compute the average Lee weight distribution of low-density parity-check (LDPC)

code ensembles [19] over finite integer rings [20] and analyze its spectral growth rate.

Finally, we study the decoding performance of LDPC codes over finite integer rings over both

channel models. We consider LDPC codes over q-ary integer residue rings and analyze their

performance with respect to the Lee metric from a code ensemble point of view, via density

evolution analysis. For simplicity, we focus on regular LDPC code ensembles, since this class of

LDPC code ensembles is mainly used in cryptography. The extension to irregular or protograph-

based LDPC code ensembles is straightforward. The decoding algorithms considered are the well-

known belief propagation (BP) decoding algorithm [21], [20] and the symbol message-passing

(SMP) algorithm [22]. The SMP decoder was originally defined for the q-ary symmetric channel.

In this work we adapt the decoder to Lee channels accordingly. The performance of both decoders

will additionally be compared to the Lee symbol flipping (LSF) decoder presented in [23]. We

provide finite-length simulation results for both the memoryless Lee channel and the constant

Lee weight channel for the decoders mentioned. The results are compared to the finite-length

performance bounds derived for the corresponding channel model.

The paper is organized as follows. Section II serves as preliminary section, where we state

important definitions and results needed throughout the paper. In Section III, we derive finite-

length bounds on the block error probability achievable by block codes over Lee channel models.

In Section IV, by means of asymptotic enumeration techniques, we derive the average Lee weight

spectrum of a regular LDPC code ensembles. The Lee weight spectrum serves then to derive

bounds on the error probability in Section V. We then analyze and compare the performance

of LDPC codes over both channel models under BP and SMP decoding. We discuss the main

ingredients to adapt the SMP from the original setting to the two channel models in the Lee metric,
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which relies on an assumption for the extrinsic channel probability. We justify this assumption

using empirical results. Finally, conclusions follow in Section VI.

II. PRELIMINARIES

In this section we introduce the basic notation and results required in the course of the paper.

In the following we denote by Z/qZ the ring of integers modulo q, where q is a positive integer.

For simplicity, we assume that Z/qZ is represented by the set {0, 1, . . . , q − 1}. The set of units

of Z/qZ will be denoted by (Z/qZ)×. By abuse of notation we will call an element of (Z/qZ)n a

vector of length n and we will denote it by bold lower case letters. Similarly, matrices are denoted

by bold upper case letters. For any real number x, we use the notation [x ]+ := max(0, x). We

denote by X a random variable over a discrete alphabet X and let x ∈ X be its realization. For

every x ∈ X , we will denote the probability distribution of X by

PX(x) := P(X = x).

Given a positive integer n and an s-tuple of nonnegative integers k := (k1, . . . , ks),
(
n

k

)
:=

(
n

k1, . . . , ks

)
=

n!

k1! . . . ks!

denotes the multinomial coefficient.

A. The Lee Metric

Definition II.1. Let a ∈ Z/qZ. Its Lee weight is defined as

wtL(a) := min(a, q − a).

For a vector a = (a1, . . . , an) ∈ (Z/qZ)n of length n, its Lee weight is defined to be the sum of

the Lee weights of its entries, i.e.

wtL(a) =

n∑

i=1

wtL(ai).

Intuitively, we can view the elements of Z/qZ on a circle with equal distances between them.

Then the Lee weight of a ∈ Z/qZ is the minimal number of arcs separating a from the origin 0.

This yields the following symmetry property of the Lee weight,

wtL(a) = wtL(q − a). (1)

Equation (1) implies that the Lee weight of any element in Z/qZ can never exceed ⌊q/2⌋.

Furthermore, we observe that the Lee weight of a ∈ Z/qZ is always lower bounded by its

Hamming weight, denoted by wtH(a), which is equal to 1 if a is nonzero and equal to zero

otherwise. Equality between the two weights holds if and only q ∈ {2, 3} for every choice of a.

Hence, for a vector a ∈ (Z/qZ)n we have

wtH(a) ≤ wtL(a) ≤ n · ⌊q/2⌋.

Similar to the Hamming weight, the Lee weight induces a distance between two vectors.

Definition II.2. Let a and b be two vectors in (Z/qZ)n. The Lee distance between a and b is

the Lee weight of their difference, i.e.

dL(a,b) := wtL(a− b).

It is easy to show then that the Lee distance is a metric over the finite ring of integers Z/qZ.

Lemma II.3 shows the expected Lee weight of a randomly chosen element in Z/qZ.
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Lemma II.3. Let A be a uniformly distributed random variable over Z/qZ. The expected Lee

weight of A is

δq := E [wtL(A)] =

{(
q2 − 1

)
/4q if q is odd

q/4 if q is even.

Proof. The results follows by computing the expectation of A, for A odd/even.

Let us define now the n-dimensional Lee sphere, S
(n)
t,q , (respectively the n-dimensional Lee

ball, V
(n)
t,q ) over Z/qZ centered at the origin of radius t by

S
(n)
t,q := {x ∈ (Z/qZ)n | wtL(x) = t}

V
(n)
t,q := {x ∈ (Z/qZ)n | wtL(x) ≤ t} .

Lemma II.4. [8, Lemma 1] Assume that x ∈ (Z/qZ)n has been drawn uniformly at random

among all vectors of Lee weight t. Let X denote the random variable defining the realizations of

an entry x of x. As n grows large, for every i ∈ Z/qZ, the probability of X taking the value i is

given by

P(X = i) =
1

Z(β)
exp (−β wtL(i)) (2)

where β is the unique real solution to the weight constraint t/n =
∑q−1

i=0 wtL(i)P(X = i) and

Z(β) denotes the normalization constant.

In the following, let δ := t/n be the normalized Lee weight. Note that if δ = δq, then X
is distributed uniformly over Z/qZ and hence β = 0. Moreover, β > 0 if and only if δ < δq.

The distribution in (2) is closely related to the Boltzmann distribution [24], [25]. The Boltzmann

distribution gives the probability that a system will be in a certain state depending on that states’

energy and temperature. In statistical mechanics the distribution is used for systems of fixed

compositions all being in a thermal equilibrium. Additionally, the distribution maximizes the

entropy subject to a mean energy state. In our case the Lee weight may be interpreted as the

energy value of a state e ∈ Z/qZ. Hence, we will refer to the distribution in (2) as Boltzmann

distribution and we will denote it by Bδ .

Finally, we introduce the normalized logarithmic surface (respectively, volume) spectra

σ
(n)
δn :=

1

n
log2

∣∣∣S(n)
δn,q

∣∣∣ and ν
(n)
δn :=

1

n
log2

∣∣∣V (n)
δn,q

∣∣∣

while their asymptotic counterparts are denoted by

σδ := lim
n→∞

1

n
log2

∣∣∣S(n)
δn,q

∣∣∣ and νδ := lim
n→∞

1

n
log2

∣∣∣V (n)
δn,q

∣∣∣ .

B. Information-Theoretic Definitions

The entropy of X is then defined to be

H(X) := H(PX) = −
∑

x∈X

PX(x) log2 PX(x),

where by convention for PX(x) = 0 we set PX(x) log2 PX(x) = 0. We will make use of the

following, well-known result.

Theorem II.5. [24, Theorem 2.5.1] Let X1, . . . , Xn be a sequence of random variables drawn

according to a probability distribution P (x1, . . . , xn). Then the entropy of the sequence satisfies

H(X1, . . . , Xn) =

n∑

i=1

H(Xi |Xi−1, . . . , X1) ≤
n∑

i=1

H(Xi)

where equality holds if and only if the Xi are independent.
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Given an empirical distribution p := (p1, p2, . . . , p|X |) we have that that for any positive integer

n

1

(n+ 1)|X |
2nH(p) ≤

(
n

np

)
≤ 2nH(p) (3)

(see [26, Theorem 11.1.3]).

Consider two probability distributions PX(x) and P̃X(x) over a shared alphabet X . Their

Kullback-Leibler divergence is denoted as

D(PX || P̃X) :=
∑

x∈X

PX(x) log2

(
PX(x)

P̃X(x)

)
.

An alternative measure of the similarity of two probability distributions is the total variation

distance. We define the distance only for discrete probability distributions, since this paper only

deals with this case. We follow the description of [27, Proposition 5.2] and define the total variation

distance between two distributions PX and P̃X over X as

TV(PX , P̃X) :=
1

2

∑

x∈X

∣∣∣PX(x) − P̃X(x)
∣∣∣ .

C. Low-Density Parity-Check Codes over Finite Integer Rings

We will now introduce linear codes over integer residue rings Z/qZ and we will focus in

particular on LDPC codes over Z/qZ. A ring-linear code C ⊂ (Z/qZ)n is a Z/qZ-submodule

of (Z/qZ)n. Similar to codes over finite fields, codes over rings have a length given by n and a

Z/qZ-dimension given by k := logq(|C|). We then refer to C as [n, k] linear code over Z/qZ. A

code C can be represented by the kernel of a parity-check matrix H ∈ (Z/qZ)(n−k)×n, i.e.,

C =
{
x ∈ (Z/qZ)n |Hx⊤ = 0⊤

}
.

We denote by M := |C| the number of codewords in C. Recall, that the code rate of an [n, k]
linear code C of size M over Z/qZ is given by

R2 =
log2 M

n
bits per channel use

or

R =
logq M

n
symbols per channel use.

depending on the choice of logarithm’s base.

LDPC codes [19] are binary linear error-correcting codes characterized by a sparse parity-check

matrix. In [20], the authors analyzed LDPC codes over Z/qZ defining the nonzero entries of the

parity-check matrix over the units (Z/qZ)×. In the following, let C always denote an [n, k] linear

block code over Z/qZ and let H ∈ (Z/qZ)m×n be a parity-check matrix of C, where m ≥ n− k
and where m = n− k if and only if all parity-check equations are linearly independent. A parity-

check matrix H can be described by a bipartite graph G = (V , E) consisting of a set of vertices

V and a set of edges E connecting the vertices. The set of vertices consists of two disjoint sets:

The set of variable nodes (VNs) {v1, . . . , vn}, representing the columns of H, and the set of

check nodes (CNs) {c1, . . . , cm}, representing the rows of H. A variable node vi is connected to

a check node cj by an edge if and only if the corresponding entry hij in the parity-check matrix

is nonzero. The edge carries as label the entry hij . The degree dv of a variable node v is the

number of edges connected to v. The neighbors N (v) of a variable node v is the set of check

nodes connected to v. Similarly, we define the degree dc and the neighbors N (c) of a check node

c.

We consider regular nonbinary LDPC codes which have a constant variable node degree dv = dv
and a constant check node degree dc = dc. We denote by C n

dv,dc
the unstructured regular LDPC

code ensemble of length n, i.e. the set of all LDPC codes defined by an (m × n) parity-check



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 6

matrix, whose associated bipartite graph has constant variable node degree dv and constant check

node degree dc. This ensemble has then the designed rate R0 = 1 − m/n. As proposed in

[20], when sampling an LDPC code from C n
dv ,dc

, we assume that the nonzero entries are drawn

independently and uniformly at random from the set of units (Z/qZ)×.

D. Message Passing Decoders

We briefly recall two message passing algorithms for nonbinary LDPC codes. The first algorithm

in the well-known (nonbinary) BP algorithm. The second algorithm is a message passing algorithm

where the messages exchanged between variable and check nodes are hard symbol estimates. The

latter algorithm, dubbed SMP, generalizes the Gallager-B algorithm [19] and binary message-

passing (BMP) algorithm [28] to nonbinary alphabets.

Let us fix some notation used in the description of the two decoders. We denote by mv→c the

message sent from variable node v to a neighboring check node c and vice versa mc→v is the

message sent from c to v. Furthermore, we will denote the likelihood at the variable node v input

(associated with the corresponding channel observation) by

mv :=
(
PY |X(y | 0), . . . , PY |X(y | q − 1)

)
,

i.e., this is the vector of probabilities of the channel output y, conditioned on the q possible

channel input values . For every connected variable node v and check node c we denote by hcv

the corresponding entry in the parity-check matrix H. Note, since the nonzero entries of H were

chosen to be units modulo q, the inverse h−1
cv is guaranteed to exist.

1) Belief Propagation Decoding:

We consider now the BP algorithm for nonbinary LDPC codes over finite rings. The decoder

consists of four main steps that are outlined below, where Step 2 and 3 are repeated at most

ℓmax times. For every connected variable node v and check node c we let Πcv be the (q × q)
permutation matrix induced by hcv.

1) Initialization. Each variable node v receives the channel observation in the form of mv.

Then, the variable node v sends to each c ∈ N (v) the permuted channel observation, i.e.,

mv→c = mv ·Πcv.

2) CN-to-VN step. Consider a given check node c and a neighboring check node v ∈ N (c).
For the message mc→v, the check node computes the circular convolution of the incoming

messages mv′→c from all neighboring variable nodes v
′ ∈ N (c) \ {v} as

u = ⊛
v′∈N (c)\{v}

mv′→c

and sends to every neighboring variable node v ∈ N (c) a permuted version of u according

to the permutation Π−1
cv , i.e., the CN-to-VN message is

mc→v = u ·Π−1
cv .

3) VN-to-CN step. The variable node v computes the Schur product ⊙ of all incoming messages

but the one from check node c and normalizes the result by a constant K (to obtain a proper

probability vector)

v = K ⊙
c′∈N (v)\{c}

mc′→v.

Finally, it applies the permutation matrix Πcv to the vector v and sends the following

message to the check node c

mv→c = v ·Πcv.
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4) Final decision. The final decision happens at the variable node side. After at most ℓmax

iterations of steps 2 and 3 each variable node computes the Schur product of all incoming

messages, yielding the a posteriori probability (APP) estimate

mAPP

v = ⊙
c∈N (v)

mc→v.

The decision x̂ is the index of the maximal entry of mAPP

v

x̂ = argmax
i∈Z/qZ

mAPP

v,i .

2) Symbol Message Passing Decoding:

The SMP algorithm is a message-passing algorithm for nonbinary LDPC codes, where each

message exchanged by a variable node/check node pair is a symbol, i.e., an hard estimate of

the codeword symbol associated with the variable node. Following the principle outlined in [28],

the messages sent by check nodes to variable nodes are modeled as observations at the output a q-

ary input, q-ary output DMC. By doing so, the messages at the input of each variable node can be

combined by multiplying the respective likelihoods (or by summing the respective log-likelihoods),

providing a simple update rule at the variable nodes.

Assume we have a DMC over Z/qZ with output w and channel law PW |X(w |x). We define

the log-likelihood of w given x by Lx(w) := log
(
PW |X(w |x)

)
and the log-likelihood vector by

L(w) := (L0(w), L1(w), . . . , Lq−1(w)).

With a slight abuse of notation, we will use the L(·) for different channels, where the channel

law to be applied is made clear by the argument.

1) Initialization. The decoder is initialized by forwarding the channel observation y to every

variable node v. Then, the variable node v sends to each c ∈ N (v)

mv→c = y.

2) CN-to-VN step. Consider a given check node c and a neighboring check node v ∈ N (c).
For the message mc→v, the check node computes

mc→v = h−1
c,v

∑

v′∈N (c)\{v}

hc,v′mv′→c.

3) VN-to-CN step. At each variable node v, incoming messages are treated as observations of

the codeword symbol at the output of an “extrinsic channel” ([28], [29]) with conditional

probability

PM |X(m |x) =

{
1− ξ if m = x

ξ/(q − 1) otherwise
. (4)

For the calculation of the message to be sent of each check node c ∈ N (v), (4) is used to

compute the log-likelihood vector

E = L(y) +
∑

c′∈N (v)\{c}

L (mc′→v) . (5)

For each c ∈ N (v), the message sent by the variable node v is then

mv→c = argmax
i∈Z/qZ

Ei.

4) Final decision. After at most ℓmax iterations for each variable node v we compute

LFIN = L(y) +
∑

c∈N (v)

L (mc→v) .
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Then the final decision, x̂, is the index of the maximal entry of LFIN, i.e.,

x̂ = argmax
i∈Z/qZ

LFIN

i .

Note that the extrinsic channel of (4) is modelled as a q-ary symmetric channel (q-SC) with

error probability ξ. As it will be shown in Section V-B, this choice yields an accurate description

of the extrinsic channel conditional probability, despite of its simplicity. The extrinsic channel

parameter ξ is iteration-dependent. Its evaluation can be performed via Monte Carlo simulations,

or by using estimates that follow from density evolution (DE) analysis [28], [22].

E. Lee Channels

We consider classical additive channel models over the q-ary alphabet Z/qZ. In the constant

Lee weight channel, a random error vector e ∈ (Z/qZ)n of fixed Lee weight wtL(e) = t is added

to the channel input x ∈ C, i.e., the channel output is

y = x+ e.

More specifically, the error vector e is drawn uniformly at random over the Lee sphere S
(n)
t,q of

radius t = δn. Hence, the channel transition probability for the constant Lee weight channel is

PY |X(y |x) =





∣∣∣S(n)
δn,q

∣∣∣
−1

if dL(y,x) = δn,

0 otherwise.

As a consequence of Lemma II.4, the marginal distribution of the error terms follows, for large

n, the Boltzmann distribution

PE(e) =
1

Z(β)
exp (−β wtL(e)) (6)

where β follows by enforcing E[wtL(E)] = δ.

The memoryless Lee channel is a DMC defined by

y = x+ e

where y, x, e ∈ Z/qZ, and where the probability distribution of e matches the marginal distribution

of the constant Lee weight channel of (6). We denote the expected normalized Lee weight of

e ∈ Z/qZ by

δ = E

[
1

n
wtL(E)

]
.

As the channel is memoryless, we have again δ = E [wtL(E)].

III. FINITE-LENGTH BOUNDS FOR LEE CHANNELS

In this section we are going to derive bounds on the error probability achievable by an [n, k]
code over both the constant Lee weight channel and the memoryless Lee channel defined in

Section II-E.1. In the first case we will see an achievability bound in terms of a random coding

union bound. For the memoryless Lee channel we will derive an upper bound again in terms

of a random coding union (RCU) bound as well as a converse bound, meaning a lower bound,

achievable by any [n, k] code in terms of a sphere packing bound.

For both channel models we distinguish between ML decoding and minimum distance (MD)

decoding, that is, given a received word y ∈ Z/qZ, we consider the ML decoding rule

x̂ML = argmax
x∈C

PY |X(y |x)

1Several of bounds minimum distance achievable by [n, k] codes can be found in [16], [17], [18]
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and the MD decoding rule

x̂MD = argmin
x∈C

dL(y,x).

Note that the two decoding rules coincide over the memoryless Lee channel for δ ≤ δq . In the

constant Lee weight channel, the ML decoder gives a list of all codewords which are at distance

δn from the received word y and it outputs one of the codewords in this list randomly. Hence,

the two decoding rules for the constant Lee weight channel coincide whenever δn is within the

decoding radius of the code C.

A. Bounds on the Lee Spheres and Lee Balls

Before proceeding with the derivation of the error probability bounds, we first derive upper

bounds on the size of a Lee sphere and a Lee ball, respectively.

We denote by Hδ := H(Bδ) the entropy of the Boltzmann distribution with parameter δ and

we introduce the notation

H+
δ :=

{
Hδ 0 ≤ δ ≤ δq

log2(q) δq < δ < r.

Lemma III.1 (Growth rate of the surface spectrum). For any positive integer δn the surface

spectrum is upper bounded by

σ
(n)
δn ≤ Hδ.

In particular, as n grows large it holds that σδ = Hδ.

Proof. Let X = (X1, . . . , Xn) be a finite sequence of random variables Xi chosen uniformly at

random in the Lee sphere S
(n)
δn,q. Since X is uniformly distributed in the sphere, its entropy is

given by H(X) = log2

(∣∣∣S(n)
δn,q

∣∣∣
)

. Hence, the normalized logarithmic surface area is

σ
(n)
δn =

1

n
H(X).

The chain rule for the entropy, Theorem II.5, and the fact that the Xi´s are identically distributed,

yield

H(X) ≤
n∑

i=1

H(Xi) = nH(X1).

Since the Boltzmann distribution Bδ is the distribution of X1 maximizing the entropy under the

constraint that E(wtL(X1)) = δ, the desired upper bound follows. To get the asymptotic result it

suffices to take limits on both sides of the inequality.

Lemma III.2 (Growth rate of the volume spectrum). For any positive integer δn the volume

spectrum is upper bounded by

ν
(n)
δn ≤ H+

δ .

In particular, as n grows large we have that νδ = H+
δ .

Proof. The proof follows in a similar fashion to the proof of the growth rate of the surface

spectrum. Consider a random vector X = (X1, . . . , Xn) chosen uniformly at random over V
(n)
δn,q .

Hence, wtL(x) ≤ δn, where x denotes the realization of X. It holds that

log2

(∣∣∣V (n)
δn,q

∣∣∣
)
= H(X),

which implies, using again Theorem II.5, that

ν
(n)
δn =

1

n
H(X) ≤ H(X1).
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Note that H(X1) ≤ log2(q) for any parameter of δ ∈ [0, r]. Hence, again since Bδ maximizes the

entropy under the constraint E(wtL(X1)) ≤ δ, we observe that H(X1) ≤ H+
δ which yields the

first statement of the lemma. To prove the latter statement it suffices to take the limit as n tends

to infinity.

B. Error Probability Bounds for the Constant Lee Weight Channel

We consider an [n, k] code C of cardinality |C| = qk =: M over Z/qZ, and we focus on the

constant Lee weight channel where the additive error term is of fixed Lee weight δn.

Theorem III.3 (Random Coding Union Bound, ML Decoding). Let C ⊂ (Z/qZ)n be a random

code of rate R2. The average ML decoding error probability of C used to transmit over a constant

Lee weight channel satisfies

E [PB(C)] < 2
−n

[
log2 q−σ

(n)
δn

−R2

]+
.

Proof. Consider first the pairwise error probability PEP(x,y) for fixed x and y, where x is

the transmitted codeword, y is the channel output and X̃ is a random codeword distributed

uniformly over (Z/qZ)n. By breaking ties always towards X̃, we can upper bound the pairwise

error probability as

PEP(x,y) ≤ P

(
PY |X(y |x) = PY |X(y | X̃)

)

= P

(
dL(y, X̃) = δn

)

=

∣∣∣S(n)
δn,q

∣∣∣
qn

.

The union bound on the block error probability is obtained by multiplying the result by M − 1.

By observing that the pairwise error probability does not depend on x,y, we get

E [PB(C)] ≤ min (1, (M − 1)PEP(x,y))

< min


1, M

∣∣∣S(n)
δn,q

∣∣∣
qn




= 2
−n

[
log2 q−σ

(n)
δn −R2

]+
.

Owing to Lemma III.1, the bound can be loosened yielding the simple form described in the

following corollary.

Corollary III.4. The average ML decoding error probability of a random code C ⊂ (Z/qZ)n of

rate R2 used to transmit over a constant Lee weight channel satisfies

E(PB(C)) < 2−n[log2 q−Hδ−R2]
+

= 2−n[D(Bq || U(Z/qZ))−R2]
+

.

In terms of MD decoding, the two results can be proven in a similar fashion, considering all

codewords of distance up to δn, i.e., instead of working over the sphere S
(n)
δn,q only we extend to

the ball V
(n)
δn,q . Then the MD counterparts of Theorem III.3 and its consequence, Corollary III.4,

are given in the following two results.

Theorem III.5 (Random Coding Union Bound, MD decoding). Let C ⊂ (Z/qZ)n be a random

code of rate R2. The average MD decoding error probability of C used to transmit over a constant

Lee weight channel satisfies

E(PB(C)) < 2
−n

[
log2 q−ν

(n)
δn −R2

]+
.
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Proof. Consider first the pairwise error probability under the assumption that x is the transmitted

codeword, y is the channel output and X̃ is a random codeword distributed uniformly over

(Z/qZ)n. By breaking ties always towards X̃, we have

PEP(x,y) ≤ P

(
dL(y,x) ≥ dL(y, X̃)

)

= P(dL(y, X̃) ≤ δn)

=

∣∣∣V (n)
δn

∣∣∣
qn

.

The union bound on the block error probability can be obtained by multiplying the result by

M − 1. By observing that the pairwise error probability does not depend on x,y, we get

E(PB(C)) ≤ min (1, (M − 1)PEP)

< min


1,M

∣∣∣V (n)
δn

∣∣∣
qn




= 2
−n

[
log2 q−ν

(n)
δn

−R2

]+
.

Owing to Lemma III.2, the bound can be loosened yielding the simple form described in

Corollary III.6.

Corollary III.6. The average MD decoding error probability of a random code C ⊂ (Z/qZ)n of

rate R2 used to transmit over a constant Lee weight channel satisfies

E(PB(C)) < 2−n[log2 q−H+
δ −R2]

+

.

Figure 1 depicts the upper bounds based of Theorem III.5 and Corollary III.6 for MD decoding,

for [500, 250] codes over Z/7Z. The bound of Corollary III.6 is only slightly looser than the one

provided by Theorem III.5. A similar result holds for the bounds of Theorem III.3 and Corollary

III.4, under ML decoding.

C. Error Probability Bounds for the Memoryless Lee Channel

We consider next a memoryless Lee channel with expected normalized Lee weight of the error

pattern δ. We restrict the attention to the case δ ≤ δq. In this regime, the ML and the MD decoding

rules coincide.

Theorem III.7 (Random Coding Union Bound). Let C ⊂ (Z/qZ)n be a random code of rate

R2. The average ML/MD decoding error probability of C used to transmit over a memoryless Lee

channel with expected normalized Lee weight of the error pattern δ satisfies

E (PB(C)) < E

(
2
−n

[
log2 q−ν

(n)
L −R2

]+)

where the expectation is taken over the distribution of the Lee weight L = wtL(E).

A direct consequence using Lemma III.2 is captured in Corollary III.8. It’s proof follows similar

to the constant Lee weight case.

Corollary III.8. The average ML/MD decoding error probability of a random code C ⊂ (Z/qZ)n

of rate R2 used to transmit over a memoryless Lee channel satisfies

E(PB(C)) < E

(
2
−n

[
log2 q−H+

L/n
−R2

]+)

where the expectation is taken over the distribution of the Lee weight L = wtL(E).
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Fig. 1. Random coding union bounds under MD decoding based on Theorem III.5 and Corollary III.6 for the parameters
n = 500 and k = 250 over Z/7Z.

Following the idea of [30, Section 5.8], we provide next a lower bound on the block error

probability achievable by any [n, k] code over the memoryless Lee channel.

Theorem III.9 (Sphere Packing Bound). The block error probability of any code C ⊆ (Z/qZ)n

of rate R2 over a memoryless Lee channel is lower bounded as

PB(C) >
1

Z(β)n

rn∑

d=d0+1

S
(n)
d,q exp (−βd) +

1

Z(β)n

(
S
(n)
d0,q

− ξ
)
exp (−βd0)

where d0 and ξ are chosen so that

d0−1∑

d=0

S
(n)
d,q + ξ = 2n(log2(q)−R2) and 0 < ξ ≤ S

(n)
d0

.

Proof. The proof follows closely the analogous proof for the binary symmetric channel provided

in [30, Section 5.8].

Figure 2 depicts the random coding union bound of Corollary III.8 and the sphere packing

bound of Theorem III.9, over a memoryless Lee channel, for [1024, 512] codes over Z/7Z. The

two bounds are tightly close to each other. Hence, they provide an accurate benchmark to assess

the performance achievable over the memoryless Lee channel.

IV. LEE WEIGHT SPECTRUM OF REGULAR LDPC CODE ENSEMBLES

We now turn our attention to regular LDPC code ensembles over Z/qZ. We are going to derive

the average Lee weight spectrum of a random code C ⊆ (Z/qZ)n from the (dv, dc) regular LDPC

code ensemble. The result will be used in Section V to establish an upper bound on the block

error probability under ML decoding.

For each possible Lee weight ℓ ∈ [0, . . . , n⌊q/2⌋] we define the number of codewords of Lee

weight ℓ as

W
(n)
ℓ := |{c ∈ C | wtL(c) = ℓ}| .
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Fig. 2. Random coding union (Corollary III.8) and sphere packing bounds (Theorem III.9) for the parameters n = 1024
and k = 512 over Z/7Z.

As the Lee weight of a vector is not identical to the number of nonzero positions but gives the

nonzero entries a specific value, we are interested in the number of entries of a certain Lee weight

in a codeword, i.e., we are interested in the type in terms of the Lee weight of the codeword. For

this we introduce the following definition.

Definition IV.1. For every codeword c ∈ C we define its Lee type to be the (⌊q/2⌋ + 1)-tuple

θc = (θc(0), . . . , θc(⌊q/2⌋)) consisting of the relative fraction of occurrences of each possible

Lee weight ℓ ∈ {0, . . . , ⌊q/2⌋}, i.e.,

θc(ℓ) =
1

n
|{k = 1, . . . , n | wtL(ck) = ℓ}| .

We denote the set of all Lee types over (Z/qZ)n by T ((Z/qZ)n). Then, we define the number

of codewords in a code C ⊆ (Z/qZ)n of Lee type θ ∈ T ((Z/qZ)n) as

A
(n)
θ

:= |{c ∈ C | θc = θ}| .

Note that we can describe the Lee weight of a codeword c ∈ C in terms of its Lee type as

wtL(c) = n

⌊q/2⌋∑

ℓ=1

ℓθc(ℓ).

By abuse of notation, we will call this the Lee weight of the Lee type θc and use the notation

wtL(θc). Thus, there is a natural relation between W
(n)
ℓ (C) and A

(n)
θ

(C). In fact, we have

W
(n)
ℓ (C) =

∑

θ∈T ((Z/qZ)n)
wtL(θ)=ℓ

A
(n)
θ

(C).

In the following, we consider a (dv, dc)-regular LDPC code C taken uniformly at random from

an ensemble of (dv, dc)-regular LDPC codes over Z/qZ. Let H be a parity-check matrix of C
where the nonzero entries of H lie in the set of units (Z/qZ)×. As C is a random regular LDPC

code, the parity-check matrix H is a random matrix where each row has dc nonzero entries taken
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randomly among the unit elements and each column has dv of them. We consider a randomly

chosen c ∈ (Z/qZ)n and denote its Lee type by θc. Recall that c is a codeword if and only if

cH⊤ = 0.

We now briefly discuss what it means for a codeword c of a random LDPC code to satisfy the

check equations of a parity-check matrix H. Considering the Tanner graph of a code C, given a

codeword c we start by repeating each position ci exactly dv times over the edges connected to the

i-th variable node. We denote the resulting vector by z′ := (c1, . . . , c1, . . . , cn, . . . , cn). Note that

z′ is of length ndv and is of Lee type θz′ = θc. Let then u ∈ ((Z/qZ)×)ndv be chosen uniformly

at random, i.e., every entry ui is chosen uniformly at random among the units (Z/qZ)×. Finally,

choosing a random permutation Π we compute z := Π(z′ ⊙u). Now, c satisfies cH⊤ = 0 if and

only if z satisfies the m check equations. Figure 3 below visualizes this procedure for a random

(dv, dc)-regular LDPC code.

. . .

. . . . . . . . . . . .

dv dv dv dv

c1 c2 c3 cn

Random permutation of edges via Π and multiplication by random unit elements

. . .

. . . . . . . . .
dc dc dc

c1 c2 c3 cnc1 c2 c3 cn. . . . . . . . . . . . = z′

z1 zdc
zdc+1 z2dc

z(m−1)dc+1 zmdc
. . . . . . . . . = z

Fig. 3. Graphical representation of a random (dv, dc) LDPC code of length n.

Having Figure 3 in mind, we can say that the average Lee type enumerator of a random LDPC

code is given by

A
(n)

θ (C) =

(
n

nθ

)
P (z satisfies the check equations | θc = θ) .

We denote the Lee type of z by ωz in order not to confuse it with the Lee type θc. Note that

ωz highly depends on θc. Further discussions and observations follow in Theorem IV.4. For now,

let Tθc

(
(Z/qZ)ndv

)
denote the set of all possible Lee types for a vector z resulting from the Lee

type θz. Hence, we can further break down the conditional probability as

A
(n)

θ (C) =

(
n

nθ

) ∑

ω∈Tθ((Z/qZ)ndv)

P (ωz = ω | θc = θ)P (z satisfies the check equations |ωz = ω) .

(7)

In the following we elaborate more the two probabilities, which we will denote by

f (n)(ω | θ) := P (ωz = ω | θc = θ) and (8)

a(n)(ω) := P (z satisfies the check equations |ωz = ω) . (9)

A. Transformation of the Lee Type

We start by analyzing how the Lee type of c changes to the Lee type of the vector z. More

precisely, we now study the probability f (n)(ω | θ) that the vector z has a Lee type ωz = ω given

that the Lee type of the codeword c is θc = θ. Recall that z ∈ (Z/qZ)ndv is formed from c by

repeating the entries ci each dv times and then multiplying each copy by a randomly chosen unit.

This already implies that the fraction of zeros in z must be equal to the fraction of zeros in c.
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Focusing on the nonzero entries of c we have to treat several cases separately, as the multiplication

of a random nonzero element x ∈ Z/qZ by a random unit u ∈ (Z/qZ)× lies in different orbits.

Note that the group of units (Z/qZ)× acts under multiplication on Z/qZ. For an element

a ∈ Z/qZ we define its orbit Oa as

Oa :=
{
a · u |u ∈ (Z/qZ)×

}
. (10)

Orbits induce an equivalence relation, i.e., two elements are equivalent if and only if they lie within

the same orbit. Each orbit can be represented by the smallest element in it which corresponds

exactly to a divisor of q. Let Dq denote the set of divisors of q, i.e.,

Dq := {ℓ ∈ N : ℓ | q} .

Then the distinct orbits are given by Od for d ∈ Dq.

Example IV.2. We consider the integer residue ring Z/10Z. The set of divisors is given by

D10 = {1, 2, 5, 10} .

Hence, there are four orbits defined by the divisors of ten, namely,

O1 = (Z/10Z)× = {1, 3, 7, 9} , O2 = {2, 4, 6, 8} , O5 = {5} and O0 := O10 = {0} .

By the definition of an orbit in (10), we observe that if an element a lies in a given orbit Od

then every multiple of a by a unit element is in the same orbit. Hence, a codeword c and a vector

z resulting from c have the same fraction of elements in an orbit Od for every divisor d ∈ Dq.

For a codeword c with Lee type θc and for every d ∈ Dq the fraction of elements in orbit Od is

denoted as

θc(Od) :=
∑

a∈Od

a≤⌊q/2⌋

θc(a). (11)

The tuple of all such fractions is denoted by

θc,O :=
(
θc(Od1), . . . , θc(Od|Dq|

)
)
.

Regarding the Lee metric, we can prove that two elements of the same Lee weight are equivalent.

Lemma IV.3. Elements of the same Lee weight in Z/qZ lie in the same orbit, i.e., for every

a ∈ Z/qZ we have Oa = Oq−a.

Proof. Let a ∈ Z/qZ. By symmetry of the Lee weight, q−a is the only element having the same

Lee weight as a. The proof then follows by applying the definition of an orbit. In fact,

Oq−a =
{
(q − a) · u |u ∈ (Z/qZ)×

}

=
{
q · u− a · u |u ∈ (Z/qZ)×

}

=
{
−a · u |u ∈ (Z/qZ)×

}

=
{
a · (−u) |u ∈ (Z/qZ)×

}

=
{
a · u |u ∈ (Z/qZ)×

}
= Oa.

Lemma IV.3 indicates that we only have to consider elements up to ⌊q/2⌋. If q is odd, then zero

is the only element of Lee weight 0. All other weights in this case are represented by two elements.

If instead q is even additionally the Lee weight ⌊q/2⌋ is represented only by one element, namely

⌊q/2⌋ itself. This fact is important when studying the number of configurations of a fixed Lee



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 16

weight. Given the Lee type θx of a vector x we denote the fraction of Lee weights with only one

representative element by

θ̂x :=

{
1− θx(0) if q is odd,

1− θx(0)− θx(⌊q/2⌋). if q is even.

We are then able to state the result on the expression for the probability f (n)(ω | θ) over Z/qZ.

Theorem IV.4. Consider a random c of Lee type θc. Let z ∈ (Z/qZ)ndv be the resulting vector

when repeating the entries of c dv times and multiplying each position by a randomly chosen

unit element. Furthermore, we denote by ωz the Lee type of z. Given the set of divisors Dq =
{d1, . . . , dr}, then

f (n)(ω | θc) =





( ndv
ndvω

)2ndvω̂

( ndv
ndvθc,O

)
∏

d∈Dq
|Od|

ndvθc(Od) if ω ∈ Tθc

(
(Z/qZ)ndv

)

0 otherwise

(12)

where Tθc

(
(Z/qZ)ndv

)
:=
{
ω ∈ T ((Z/qZ)ndv ) |ω(Od) = θc(Od)∀d ∈ Dq

}
.

Proof. Assume the Lee type θc of c is given by θ and let the Lee type ωz be equal to ω. By

the above discussion, when multiplying an element a of a given orbit Od with a randomly chosen

unit u ∈ (Z/dZ)×, the product is still an element of Od. In fact, au can take each element of Od

with the same probability. Therefore, z must have the same fraction of elements in orbit Od as

the codeword c which also yields, that f (n)(ω | θ) = 0 if this is not fulfilled.

Let us assume then that for every divisor d of q it holds that ω(Od) = θ(Od). The probability

that ωz = ω given that θc = θ is given by the number of vectors of length ndv over Z/qZ of

Lee type ω divided by the total number of vectors of a Lee types fulfilling the constraint on the

fraction of orbit elements. The number of configurations of vectors with Lee type ω is given by

the multinomial coefficient(
ndv
ndvω

)
=

(
ndv

ndvω(0), . . . , ndvω(⌊q/2⌋)

)
.

Since the Lee type gives rise only to the number of elements of a certain Lee weight, we

must consider Lee weights reached by two different elements. We hence have to multiply the

multinomial coefficient by a power of 2 considering the two options for Lee weights admitting two

representative elements given by 2ndvω̂ . This yields us the numerator of the probability f (n)(ω | θ)
and hence the number of vectors v ∈ (Z/qZ)ndv of Lee type ω.

We are now interested in finding the number of vectors v ∈ (Z/qZ)ndv of Lee type ωv,

satisfying ωv,O(Od) = θO . This number splits into two quantities: first, focusing only on the

orbits, the number of constellation of the orbits, and second the number of choices in each orbit.

The first quantity is again given by a multinomial coefficient regarding the fraction of elements in

orbit Od for every d ∈ Dq given in (11). To obtain the latter quantity we raise the cardinality of

the orbit Od to the power of the number of positions with elements in that orbit. Combining the

results yields the denominator and hence, the desired result on the probability f (n)(ω | θ).

Note that if q is a prime number, there are only two orbits; one containing only the zero element,

and one corresponding to the set of units modulo q (which are all nonzero elements). Then the

expression in Theorem IV.4 simplifies to

f (n)(ω | θ) =

{
2ndvω̂

(q−1)ndv(1−θ(0)) if ω(0) = θ(0)

0 otherwise.

Example IV.5. To illustrate (12) presented in Theorem IV.4 consider the following example over

Z/16Z. Note that Z/16Z consists of the following five orbits:

O16 = {0} , O1 = (Z/16Z)×, O2 = {2, 6, 10, 14} , O4 = {4, 12} and O8 = {8} .
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Let C ⊂ (Z/16Z)2 be a regular code with regular variable node degree dv = 2. Let c ∈ C be a

codeword of Lee type θc = (0, 0, 1/2, 0, 1/2, 0, 0, 0, 0). Without loss of generality, we can assume

that c = (2, 4). Following the procedure described by Figure 3 yields

z′ = (2, 2, 4, 4).

When multiplying each of the entries by a randomly chosen unit, we observe that z can be one

of the following vectors (up to permutation and Lee weight)

(2, 2, 4, 4), (2, 6, 4, 4), and (6, 6, 4, 4).

Hence, the possible types for z are

ω(1) = (0, 0, 1/2, 0, 1/2, 0, . . . , 0),

ω(2) = (0, 0, 1/4, 0, 1/2, 0, 1/4, 0, 0) and

ω(3) = (0, 0, 0, 0, 1/2, 0, 1/2, 0, 0).

The number of permutations for each case is given by the multinomial coefficient with respect to

the type ω(i). For instance, the vector (2, 2, 4, 4) admits 6 permutations, i.e.,
(

ndv
ndvω(1)(0), . . . , ndvω(1)(8)

)
=

(
2 · 2

2 · 2 · (1/2), 2 · 2 · (1/2)

)
=

4!

2!2!
= 6.

Since the Lee type focuses on the Lee weight only and since every nonzero entry different from

⌊q/2⌋ admits two representatives, we have two possible entries for each position. In the case of

type ω(1) we would hence have 6 · 16 = 96 possible vectors of that type. Similarly, we have 96
vectors of type ω(3) and 192 vectors of type ω(2). This yields a total of 384 vectors. Note that

this indeed coincides with(
ndv

ndvθc(O1), . . . , ndvθc(O16)

) ∏

d∈Dq

|Od|
ndvθc(Od) =

(
4

2

)
|O2|

2 |O4|
2 = 384.

Thus, the probability that z has Lee type ω(1) given that the Lee type of the codeword c is θc is

f (n)(ω(1) | θc) =
96
384 = 1

4 .

Consequently to Theorem IV.4 we determine the asymptotic growth rate of f (n)(ω | θ) in

Corollary IV.6

Corollary IV.6. Let z ∈ (Z/qZ)ndv be the vector resulting from a vector c ∈ (Z/qZ)n of Lee

type θ after repetition and permutation. Then we obtain the following asymptotic expression for

the probability that z is of Lee type ω.

φ(ω | θ) := lim
n−→∞

1

n
log(f (n)(ω | θ)) = dv


H(ω) + ω̂ −H(θO)−

∑

d∈Dq

θ(Od) log(|Od|)


 .

Proof. The proof follows by taking the limit of each summand.

Moreover, Lemma IV.7 shows us an even stronger form of convergence.

Lemma IV.7. Given a random regular (dv, dc) LDPC code over Z/qZ. Given a Lee type θ ∈
T ((Z/qZ)n) and the sequence f (n)(ω | θ) defined in (12) with ω ∈ Tθ

(
(Z/qZ)ndv

)
. Then the

sequence of functions
(
1
n log(f (n)(ω | θ))

)
n∈N

is uniformly convergent to φ(ω | θ) as n −→ ∞.

Proof. We have to show that for every ε > 0 there is a natural number nε ∈ N such that for all

n ≥ nε it holds
∣∣∣∣
1

n
log(f (n)(ω | θ))− φ(ω | θ)

∣∣∣∣ < ε.
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Applying Theorem IV.4 and Corollary IV.12, and by using the triangle inequality, we get
∣∣∣∣∣
1

n
log(f (n)(ω | θ))− φ(ω | θ)

∣∣∣∣∣ =
∣∣∣∣∣
1

n
log

((
ndv
ndvω

))
− dvH(ω)−

1

n
log

((
ndv

ndvθO

))
+ dvH(θO)

∣∣∣∣∣

≤

∣∣∣∣∣
1

n
log

((
ndv
ndvω

))
− dvH(ω)

∣∣∣∣∣+
∣∣∣∣∣dvH(θO)−

1

n
log

((
ndv

ndvθO

)) ∣∣∣∣∣.

Let us focus now on

∣∣∣ 1n log
((

ndv

ndvω

))
−dvH(ω)

∣∣∣. Recall from (3) that we have the following bounds

on
(

ndv

ndvω

)
,

1

(ndv + 1)⌊q/2⌋+1
2ndvH(ω) ≤

(
ndv
ndvω

)
≤ 2ndvH(ω).

Hence, if 1
n log

((
ndv

ndvω

))
> dvH(ω), we get

∣∣∣ 1
n
log

((
ndv
ndvω

))
− dvH(ω)

∣∣∣ = 0.

On the other hand, we obtain
∣∣∣ 1
n
log

((
ndv
ndvω

))
− dvH(ω)

∣∣∣ ≤ (⌊q/2⌋+ 1)
1

n
log (ndv + 1).

By l’Hôpital’s rule this converges to zero as n −→ ∞.

Note that the same argument holds for

∣∣∣dvH(θO)− 1
n log

((
ndv

ndvθO

)) ∣∣∣ and thus the result follows.

B. Valid Check Node Assignments

We now discuss the probability a(n)(ω) given in (9). We make use of generating functions

to describe the situation at one check node and then extend the generating function to m check

nodes. In the following let w denote the Lee weight decomposition of a vector x ∈ (Z/qZ)n.

That is, for every i = 0, . . . , ⌊q/2⌋,

wi = |{k = 1, . . . , n | wtL(xk) = i}| .

Furthermore, recall from Equation (12) in Theorem IV.4 that given a type θ of c, the type ω of

a valid check node assignment has to show the same orbit distribution. Hence, there is a restricted

choice. Let us denote the set of possible check node types resulting from θ by Tθ
(
(Z/qZ)ndv

)
,

that is,

Tθ
(
(Z/qZ)ndv

)
:=
{
ω ∈ T ((Z/qZ)ndv ) |ω(Od) = θ(Od)∀d ∈ Dq

}
.

Theorem IV.8. Consider a vector z ∈ (Z/qZ)ndv of Lee type ω and weight decomposition w.

Furthermore, consider a random regular LDPC code of variable degree dv and check node degree

dc. Then, the probability that z fulfills the check node equations is given by

a(n)(ω) =
coeff(G(t), tωndv )(

ndv

ndvω

) ,

where

G(t) =
1

qm




∑

zi∈(Z/qZ)dc

dcωzi
=w

q−1∑

s=0

dc∏

k=1

e
2πi
q szkt

ndvω(1)
1 . . . t

ndvω(⌊q/2⌋)
⌊q/2⌋




m

.

Proof. Recall that a(n)(ω) describes the probability of z ∈ (Z/qZ)ndv satisfying the check node

equations and being of a given Lee type ω. Furthermore, we have m check nodes each of degree
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dc. Hence, we can split z into m parts z1, . . . , zm each one corresponding check node c1, . . . , cm,

respectively.

We focus now on one check node only and describe a generating function for the number of

zi’s satisfying the check node equations of check node ci and having Lee weight decomposition

given by w = (w0, . . . , w⌊q/2⌋). We turn our attention at this point only to the nonzero elements

and note that w0 = dc −
∑⌊q/2⌋

i=1 wi. In that sense, let us define

g(w1,...,w⌊q/2⌋) :=
∣∣∣
{
zi ∈ (Z/qZ)dc | zi satisfies the check-equation and

∣∣{j = 1, . . . , dc | wtL(zij ) = k
}∣∣ = wk

}∣∣∣.

We can describe this quantity summing over all dc-tuples that sum up to zero using an indicator

function. Indeed,

g(w1,...,w⌊q/2⌋) =
∑

zi∈(Z/qZ)dc

dcωzi
=w

1

(
dc∑

k=1

zi = 0

)
.

Applying the inversion formula for the discrete Fourier transform over Z/qZ yields

g(w1,...,w⌊q/2⌋) =
∑

zi∈(Z/qZ)dc

dcωzi
=w

1

q

∑

χ character

χ

(
dc∑

k=1

zk

)
. (13)

Over the finite abelian group Z/qZ there are q characters χ0, . . . , χq−1 defined by χk(a) := e
2πi
q ka

for each element a ∈ Z/qZ. Hence, we can rewrite (13) as

g(w1,...,w⌊q/2⌋) =
1

q

∑

zi∈(Z/qZ)dc

dcωzi
=w

q−1∑

s=0

e
2πi
q s

∑dc
k=1 zk . (14)

We then define the generating function g(t) by

g(t) :=
∑

w composition
of dc

g(w1,...,w⌊q/2⌋)t
w1
1 . . . t

w⌊q/2⌋

⌊q/2⌋ .

To obtain a similar expression for a configuration regarding all the check nodes, we take the

m-fold convolution of g(w1,...,w⌊q/2⌋), i.e.,

G(w1,...,w⌊q/2⌋) := g(w1,...,w⌊q/2⌋) ⊛ . . .⊛ g(w1,...,w⌊q/2⌋).

Hence, the corresponding generating function for m check nodes is

G(t) :=
∑

w composition
of mdc

g(w1,...,w⌊q/2⌋)t
w1
1 . . . t

w⌊q/2⌋

⌊q/2⌋ = g(t)m.

Let ω denote the type of the decomposition w, i.e., ndvω(i) = wi for every i ∈ {0, . . . , ⌊q/2⌋}.

The number of configurations of given Lee type ω is then the coefficient of the polynomial G(t)
at tndvω = tw1

1 . . . t
w⌊q/2⌋

⌊q/2⌋ . Finally, the probability a(n)(ω) is obtained by dividing the ndvω-th

coefficient of G(t) by all the possible permutations of a vector x ∈ (Z/qZ)ndv of Lee type ω,

which is given by the multinomial coefficient
(

ndv

ndvω

)
.

At this point, to simplify the understanding we would like to discuss the expression in (14)

with an example.

Example IV.9. Assume the check node degree is dc = 2 and that the underlying integer ring is

Z/5Z. Let us furthermore assume that the Lee weight decomposition of a tuple zi at a check node

is w = (0, 2, 0). This means that zi is one of the following tuples

(1, 1), (1, 4), (4, 1), or (4, 4).
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Since only (1, 4) and (4, 1) satisfy the check equation (i.e. sum up to zero modulo five), the

enumerator g(0,2,0) should equal two. In fact, the exponential expression in Equation (14) equals

1 for all tuples satisfying the check equation. For those not satisfying the check equation the sum

of exponentials is the sum of n-th roots of unity (in our case n = 5) and is hence equal to zero.

Let us now focus on the asymptotic growth rate of a(n) which we define as

α(ω) := lim
n−→∞

1

n
log(a(n)(ω)).

A direct consequence of taking the logarithm and the limit of the sequence a(n) is captured in

Corollary IV.10.

Corollary IV.10. Let z ∈ (Z/qZ)ndv satisfy the m check equations and denote by ω its Lee type.

Then we obtain the following asymptotic expression for the probability a(n)(ω).

α(ω) = −dvH(ω) + (1 −R) inf
t≻0

log

(
g(t)

tωndv

)
,

where t ≻ 0 means that not every entry of t = (t1, . . . , t⌊q/2⌋) is equal to zero.

Taking the infimum over all possibilities of t = (t1, . . . , t⌊q/2⌋) is impractical. We will use

the asymptotic Hayman method for multivariate polynomials (see [31], [32], [33]) to establish

limn−→∞ 1/n log
(
coeff(G(t), tωndv

)
.

Lemma IV.11 (Hayman Formula). Let x = (x1, . . . , xd) ∈ R
d and let p(x) be a multivariate

polynomial with p(0) 6= 0. Furthermore, let β = (β1, . . . , βd) such that 0 ≤ βi ≤ 1 and βin ∈ N

for all i = 1, . . . , d. Assume that x⋆ = (x⋆
1, . . . , x

⋆
d) is the unique positive real solution to the

system of equations given by

x1
∂p(x)

∂x1
= β1p(x), . . . , xd

∂p(x)

∂xd
= βdp(x).

Then, as n −→ ∞, it holds

lim
n−→∞

1

n
ln
(
coeff

(
(p(z))n, znβ

))
=

(
ln(p(x)) −

d∑

i=1

βi ln(xi)

)
.

In our case, we have that

lim
n−→∞

1

n
ln
(
coeff

(
(g(t)1/dc)ndv , tωndv

))
= dv lim

n′−→∞

1

n′
ln
(
coeff

(
(g(t)1/dc)n

′

, tωn′
))

.

Hence, Corollary IV.12 is a direct consequence of Hayman’s Formula.

Corollary IV.12. Let ω = (ω(0), . . . , ω(⌊q/2⌋)) ∈ [0, 1]⌊q/2⌋+1 such that ω(i)ndv ∈ N for every

i = 1, . . . , d. Then

α(ω) = dv


H(ω) + ln

(
g(t⋆)1/dc

)
−

⌊q/2⌋∑

i=1

ω(i) ln(t⋆i )


 ,

where t⋆ = (t⋆1, . . . , t
⋆
⌊q/2⌋) is the unique positive real solution to the equations

ti
∂g(t)1/dc

∂ti
= ω(i)g(t)1/dc , i = 1, . . . , ⌊q/2⌋.

In his paper, Hayman gave an explicit expression for the coefficient of an admissible function

(see [31, p. 69]). With this, it easily follows that the sequence of functions
(
1
n log(a(n))

)
n∈N

is

uniformly convergent.
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C. Asymptotic Growth Rate

Having determined the two probabilities defined in Equations (8) and (9), respectively, the

expression for the average type enumerator A
(n)

θ (C) follows immediately. We can then deduce

immediately the asymptotics of the average type enumerator and average weight enumerator,

respectively.

Corollary IV.13. Let C be a random (dv, dc)-regular LDPC code of length n over Z/qZ. Let

A(θ) := limn−→∞
1
n log(A

(n)

θ
(C)) and W(ℓ) := limn−→∞

1
n log(W

(n)

ℓ (C)) be spectral growth

rate of the average Lee type enumerator and weight enumerator, respectively. Then

A(θ) ≤ H(θ) + sup
ω∈Tθ((Z/qZ)ndv )

(φ(ω | θ) + α(ω)) , and

W(ℓ) ≤ sup
θ∈T ((Z/qZ)n) : wtL(θ)=ℓ

A(θ). (15)

Proof. From Equation (7) we observe that A
(n)
θ

(C) =
(
n
nθ

)∑
ω∈Tθ((Z/qZ)ndv ) f

(n)(ω | θ)a(n)(ω).
Hence,

A(θ) = H(θ) + lim
n−→∞

1

n
log


 ∑

ω∈Tθ((Z/qZ)ndv)

f (n)(ω | θ)a(n)(ω)




≤ H(θ) + lim
n−→∞

1

n
log

(
sup

ω∈Tθ((Z/qZ)ndv )

[
f (n)(ω | θ)a(n)(ω)

] ∣∣Tθ
(
(Z/qZ)ndv

)∣∣
)

(a)
= H(θ) + lim

n−→∞
sup

ω∈Tθ((Z/qZ)ndv )

[
1

n
log
(
f (n)(ω | θ)a(n)(ω)

)]

= H(θ) + lim
n−→∞

sup
ω∈Tθ((Z/qZ)ndv )

[
1

n
log
(
f (n)(ω | θ)

)
+

1

n
log
(
a(n)(ω)

)]
,

where for (a) we used, that
∣∣Tθ
(
(Z/qZ)ndv

)∣∣ is polynomial in n. By the uniform convergence

shown in Lemma IV.7 and in [31], we can switch the limit with the supremum and the statement

follows. The bound in (15) for W(ℓ) follows in an analogous manner.

Figures 4, 5 and 6 show the spectral growth rate of the average weight enumerator of a random

regular (3, 6) LDPC code over Z/2Z, Z/3Z and Z/4Z, respectively.
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Fig. 4. Spectral growth rate of the average weight enumerator of a regular (3, 6) LDPC code ensembles over Z/2Z.
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Fig. 5. Spectral growth rate of the average weight enumerator of a regular (3, 6) LDPC code ensembles over Z/3Z.
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Fig. 6. Spectral growth rate of the average weight enumerator of a regular (3, 6) LDPC code ensembles over Z/4Z.

V. PERFORMANCE ANALYSIS OF LDPC CODES OVER THE LEE CHANNELS

In this section, we analyze the error-correction performance of regular LDPC codes over the

two channel models presented in Section II-E. First and foremost, we discuss an upper bound on

the block error probability under ML decoding over the memoryless Lee channel using a union

bound argument. We then focus on the performance with respect to the SMP decoder and the

SMP decoder, respectively. For both decoders we start by adapting the decoders to the Lee metric

over integer residue rings discussing the main changes and assumptions needed for providing a

full density evolution analysis.

A. Bounds on the Block Error Probability Based on the Lee Weight Spectrum

We are interested in the average block error probability under ML decoding of random regular

LDPC code ensembles over Z/qZ in the memoryless Lee channel. As the channel is symmetric,
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we can assume the transmission of the allzero codeword. The ML decoder fails if and only if

there is an nonzero codeword c ∈ C \ {0} satisfying

PY |X(y |0) ≤ PY |X(y | c).

We refer to the probability of this event as the pairwise error probability and denote it by PEP(0 →
c). Note that in the spirit of obtaining an upper bound on the block error probability, we break

ties always in favor of the erroneous codeword. Using a union bound argument, we observe that

the block error probability is upper bounded by the sum of all pairwise error probabilities, i.e.,

PB(C) ≤
∑

c∈C\{0}

PEP(0 → c).

We can rewrite the pairwise error probability as

PEP(0 → c) = P

(
PY |X(y |0)

PY |X(y | c)
≤ 1

)
. (16)

Denoting the log-likelihood ratio as

Λ(y, c) := log

(
PY |X(y | 0)

PY |X(y | c)

)

we have PEP(0 → c) = P (
∑n

i=1 Λ(yi, ci) ≤ 0). Hence, the analysis reduces to the analysis of the

distribution of the random variables Λℓ := Λ(Y, c = ℓ), where Y is a random variable distributed

as Bδ. Owing to the symmetry of the Boltzmann distribution, we have that

PY |X(y | c) = PY |X(−y | − c)

and therefore also

Λ(y, c = ℓ) = Λ(−y, c = −ℓ).

It follows that the distribution of Λℓ equals the distribution of Λ−ℓ. Hence, the evaluation of

(16) can be carried out by counting the number of elements in c possessing Lee weight ℓ with

ℓ ∈ {0, . . . ⌊q/2⌋}. We will therefore again make use of the Lee type of a codeword (see Definition

IV.1). Thus, we can rewrite the pairwise error probability for any nonzero codeword c ∈ C \ {0}
as follows

PEP(0 → c) = P




⌊q/2⌋∑

ℓ=1

nθc(ℓ)∑

j=1

Λj ≤ 0


 .

This gives us an exact value of the pairwise error probability under ML decoding. However,

this expression requires eventually to iterate over every Lee type in the code C and is therefore

inefficient for codes with large parameters. In the following we present a “worst case” candidate

for the pairwise error probability, as long as wtL(c) = t ≤ n, which ultimately serves to upper

bound the block error probability.

Lemma V.1. Consider a nonzero codeword c ∈ C such that wtL(c) = t ≤ n. Let x(t) ∈ (Z/qZ)n

be of Lee type θx(t) = (1 − t/n, t/n, 0, . . . , 0). Over a memoryless Lee channel with δ ≤ δq we

have

PEP(0 → c) ≤ PEP(0 → x(t))

where equality holds if and only if c is of the same Lee type θc = θx(t) .

Observe that the nonzero positions of x(t) consist only of elements of Lee weight 1. Therefore,

it holds that wtL(x
(t)) = wtH(x

(t)) = wtL(c). Figure 7 gives empirical evidence supporting the

result of Lemma V.1.
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Fig. 7. Comparison of the pairwise error probabilities over Z/9Z of vectors of Lee weight 11 and varying Hamming
weight.

For the case t > n there is a similar scenario stated in Lemma V.2

Lemma V.2. Consider a nonzero codeword c ∈ C such that wtL(c) = t > n. Let x(n) ∈ (Z/qZ)n

be of Lee type θx(n) = (0, 1, 0, . . . , 0). Over a memoryless Lee channel with δ ≤ δq we have

PEP(0 → c) ≤ PEP

(
0 → x(n)

)
.

We can use these results to upper bound on the block error probability of a linear code over

the memoryless Lee channel as a function of the codes Lee distance spectrum, for δ ≤ δq .

Corollary V.3. Consider an [n, k] linear code C ⊂ (Z/qZ)n. For all ℓ ∈ {0, . . . , n⌊q/2⌋} let

W
(n)
ℓ (C) denote the Lee weight enumerator of C. The block error probability of C under ML

decoding over the memoryless Lee channel δ ≤ δq is upper bounded as

PB(C) ≤

n⌊q/2⌋∑

ℓ=1

W
(n)
ℓ (C)P




min(ℓ,n)∑

i=1

Λ1 < 0


 . (17)

Proof. The proof follows by applying Lemma V.1 and Lemma V.2 to the PEP-terms in the classical

union bound.

Example V.4. Figure 8 depicts the union bound provided in Corollary V.3, together with the block

error probability estimated via Monte Carlo simulation. For the comparison we used a linear code

over Z/7Z of length n = 6 and dimension k = 2 with generator matrix

G =

(
1 0 3 3 3 0
0 1 0 4 3 3

)
.

As usually observed, the union bound provide accurate estimates at sufficiently low error proba-

bility.

The union bound of Corollary V.3 can be readily used to study the error floor performance of

regular LDPC code ensembles. To do so, it is sufficient to replace the weight enumerator W
(n)
ℓ

in (17) with the ensemble average enumerator W
(n)

ℓ . An example if provided in Figure 9, where

the union bound on the ML decoding average block error probability for the (3, 6)-LDPC code
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Fig. 8. Comparison of the union bound from Corollary V.3 with respect to the performance measured via Monte Carlo
simulation for the linear code over Z/7Z of length n = 6 and dimension k = 2 from Example V.4.

ensemble of length n = 256 over Z/4Z is depicted. The result is compared with the numerical

simulation for a code from the ensemble, under BP decoding. As typical of union bounds on

the block error probability, the bound is not informative above the cut-off rate of the channel.

However, it provides an indication of the error probability regime at which an error floor may

be observed, allowing for a quick estimation of the capability of certain code ensembles to attain

given target error probabilities.
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Fig. 9. Union bound versus belief propagation over Z/4Z for a random (3, 6) LDPC code of length n = 256.
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B. Density Evolution Analysis

The analysis of the Lee spectrum of LDPC code ensembles can be used, in conjunction with

the union bound, to analyze the ensembles behaviour under ML decoding at low error rates.

Nevertheless, it fails to capture the block error probability behaviour in the waterfall region,

under iterative decoding. We hence complement the distance spectrum analysis with a density

evolution characterization of the ensemble in the limit of large block lengths. In particular, we

estimate the asymptotic iterative decoding threshold over the memoryless Lee channel under BP

and SMP decoding. The iterative decoding threshold δ⋆ is defined as the largest value of the

channel parameter δ for which, in the limit of large n and large maximal number of iterations

ℓmax, the symbol error probability of an LDPC code picked randomly from a (dv, dc) code ensemble

becomes vanishing small [34]. Owing to the complexity of tracking the evolution of the distribution

of multi-dimensional messages, under BP decoding we resort to the Monte Carlo method [35].

We denote by δ⋆
BP

the decoding threshold under BP decoding.

The density evolution analysis for the SMP decoder has been introduced in [22, Sec. IV].

We will briefly sketch the idea and emphasize the respective modifications according to the new

memoryless Lee channel. For the SMP decoder the density evolution analysis not only aims at

estimating the decoding threshold δ⋆
SMP

but it also provides bounds on the error probabilities ξ of

the extrinsic channel modelled as q-SC which are needed in the computation of the aggregated

extrinsic log-likelihood vector (5). Since the memoryless Lee channel is symmetric and the code

is linear, we can assume that the allzero codeword has been transmitted. Similar to the notation

used in the description of the SMP decoder, we let m
(ℓ)
v→c denote the message sent from variable

node v to check node c in the ℓ-th iteration. For every a ∈ Z/qZ, let us define the probability of

sending a message m
(ℓ)
v→c = a, knowing that originally zero has been transmitted as

p(ℓ)a := P

(
m(ℓ)

v→c = a |X = 0
)
.

Hence, recalling the memoryless Lee channeltransition probability PY |X(y |x) from (6), we

initialize the density evolution analysis routine by computing for each a ∈ Z/qZ the probabilities

p(0)a = PY |X(a | 0).

As indicated above, except from the computation of the aggregated extrinsic likelihood vector, the

remaining steps of the density evolution analysis are identical to [22, Sec. IV]. In particular, we

employ the q-SC approximation for the extrinsic channel.

Table I records the decoding thresholds δ⋆
SMP

and δ⋆
BP

for the SMP and BP decoder, respectively,

for both (3, 6) and (4, 8) regular LDPC code ensembles with q ranging from 5 to 8, as well as

the Shannon limit δ⋆
SH

for the rate R = 1/2.

TABLE I
DECODING THRESHOLDS FOR REGULAR LDPC CODE ENSEMBLES UNDER BP AND SMP DECODING.

q (v, c) δ⋆
BP

δ⋆
SMP

δ⋆
SH

5
(3, 6) 0.2148 0.1039

0.2684
(4, 8) 0.1802 0.1200

6
(3, 6) 0.2485 0.1151

0.3147
(4, 8) 0.2217 0.1405

7
(3, 6) 0.3086 0.1261

0.3560
(4, 8) 0.2686 0.1539

8
(3, 6) 0.3135 0.1374

0.3950
(4, 8) 0.26904 0.1623

Remark V.5. The choice of the DMC used to model the extrinsic channel plays a crucial role

for the SMP algorithm, especially concerning the decoding performance. In [28], for the case

of BMP decoding, it was suggested to model the VN inbound messages as observations of a

binary symmetric channel (BSC), whose transition probability was estimated by means of density
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evolution analysis. The approach was generalized in [22] for SMP, where the VN inbound messages

are modelled as observations of a q-SC. In our setting we will also model the extrinsic channel

as a q-SC defined in (4), although in our setting the q-SC model holds only in an approximate

sense.

The adoption of the q-SC approximation is particularly useful from a practical viewpoint since

the VN processing in SMP decoding becomes particularly simple if the VN-to-CN messages are

assumed to be observations of an extrinsic q-SC. Moreover, this specific choice is motivated by the

fact that, for LDPC codes over finite fields, the extrinsic channel transition probabilities, averaged

over a uniform distribution of nonzero elements in the parity-check matrix, yield (in the limit

of a large block length) a q-SC [22]. The following Lemma for q prime, whose proof is trivial,

supports this statement.

Lemma V.6. Consider a prime number q. Let H be a random variable drawn uniformly at random

form the multiplicative group (Z/qZ)× and let X be any random variable over Z/qZ. Define the

random variable V = X ·H . Then V follows a q-SC-like distribution given as

P(V = v) =

{
P(X = 0) if v = 0
1

q−1 (1− P(X = 0)) else.

If q is nonprime, the average extrinsic channel transition probabilities can not be represented

by a q-SC, we still make this assumption. T

Empirical evidence obtained by measuring the total variation distance between the true extrinsic

channel and the q-SC shows that the q-SC can still be used to accurately model the actual extrinsic

channel, especially if the ring possesses relatively many unit elements. More precisely, we show

numerically that the total variation distance between the two message distributions tends to zero

as the number of iteration grows. We denote by Uq the fraction of units in Z/qZ, i.e.,

Uq :=
|(Z/qZ)×|

|Z/qZ|
.

In order to cover different cases and support the conjecture that the q-SC assumption is especially

accurate for integer rings with relatively many units, we chose three integer rings having different

fractions of units. Namely, we chose Z/8Z with U8 = 1/2, Z/9Z with U9 = 2/3 and Z/12Z
with U12 = 1/3. Figures 10, 11 and 12 show the evolution of the total variation distance with the

number of iterations for different regular LDPC code ensembles, respectively. In each figure and

for each integer ring, we consider three different situations: one where the relative Lee weight δ
is below δ⋆

SMP
, one where δ is close to δ⋆

SMP
and one where the relative Lee weight exceeds the

threshold. The figures clearly support the conjecture on the fraction of units Uq as well as the

choice to model the average extrinsic channel transition probabilities by a q-SC.
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Fig. 10. Evolution of the TV distance between the extrinsic channel distribution and the q-SC for regular (3, 6) LDPC
code ensembles in the SMP decoder.
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Fig. 11. Evolution of the TV distance between the extrinsic channel distribution and the q-SC for regular (4, 8) LDPC
code ensembles in the SMP decoder.
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Fig. 12. Evolution of the TV distance between the extrinsic channel distribution and the q-SC for regular (5, 10) LDPC
code ensembles in the SMP decoder.

C. Numerical Results

We finally present numerical results showing the decoding performance (in terms of block error

rates) of (3, 6) regular LDPC codes of length n = 256 under both BP and SMP decoding. We

chose to analyze the performances over three different integer rings, namely Z/5Z, Z/7Z and

Z/8Z. The performances will additionally be compared to the LSF decoder presented in [23,

Algorithm 2]. Following the suggestions of [23], we assumed a decoding threshold τ = dv

2 for the

LSF decoder. All the results were obtained using Monte Carlo simulations where we generated

the parity-check matrices via the progressive edge growth (PEG) algorithm [36] assuming that

the nonzero entries are chosen uniformly at random and independently from (Z/qZ)×. The error

vectors in the constant Lee weight channelare drawn uniformly at random from the Lee sphere

of a given radius representing the desired weight according to [8, Algorithm 1 and 2], whereas in

the memoryless Lee channelthe entries of the error vector are drawn according to the distribution

defined in (6). In both cases, the performance is compared to the RCU bounds established in

Theorem III.4 and Theorem III.7, respectively.

The block error probability evaluated over the memoryless channel is shown in Figure 13. The

RCU bounds (dotted in the graph) show clearly the impact of the size q of the finite integer ring,

i.e., larger q admit a larger relative Lee weight δ. This is also observed in the performance under

both BP and SMP decoding as well as in the LSF decoder. The impact of q in the SMP is not

only important for the admissible choices of δ. Moreover it shows clearly the difference between

q prime and not. While a small gain is achieved when considering Z/8Z instead of Z/7Z under

BP decoding, the performance slightly suffers under SMP decoding meaning there is almost no

gain. This might be due to the q-SC assumption which holds only in an asymptotic sense for the

non-field case, as discussed in Section V-B.

We observe the same effect in the performance over the constant Lee weight channel in Figure

14, i.e. there is almost no gain visible when moving from q = 7 to q = 8 under the SMP decoder.

Analogous to the memoryless case, we observe the same impact of the size of Z/qZ on the

possible choices of δ which is captured by the RCU bound for the constant Lee weight channel.

In both channel models we observe that the SMP decoder outperforms the LSF decoder despite

the q-SC assumption in the extrinsic channel of the SMP. We want to emphasize and acknowledge

here that the LSF was originally designed for low-Lee-density parity-check codes which form a
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special class of LDPC codes. Hence, when comparing the performances over the two decoders

the difference of the code classes might be taken in consideration. Nevertheless, we will not focus

deeper on this argument and leave this subject to future investigations. However, we believe that the

additional knowledge about the marginal distribution plays a crucial part in the performance gain

under SMP decoding. Observe that the estimated threshold values obtained via density evolution

analysis and stored in Table I match well to the actual block error rates achieved by both BP

and SMP decoding. As expected from the predictions in Table I, BP clearly outperforms SMP

decoding. However, the SMP algorithm shows a performance that is appealing for applications

demanding low-complexity decoding [23].
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Fig. 13. Block error rate vs. δ for regular (3, 6) nonbinary LDPC codes of length n = 256, memoryless Lee channel.
LSF compared to the RCU bound from Theorem III.7, SMP and BP decoding.
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Fig. 14. Block error rate vs. δ for regular (3, 6) nonbinary LDPC code ensembles of length n = 256 and rate R = 1/2
on the constant Lee weight channel under LSF, SMP and BP decoding compared to the RCU bound from Theorem III.3.

VI. CONCLUSIONS

In this paper we studied the decoding performance of random regular low-density parity-check

(LDPC) codes over finite integer rings considering two channel models in the Lee metric, a

memoryless channel model and a channel introducing an error of given Lee weight. We established

the growth rate spectra of the Lee sphere and Lee volume, respectively. These results were used to

derive random coding union bounds for the block error probability under maximum likelihood and

minimum distance decoding for both channel models. In the case of the memoryless Lee channel

we also derived a lower bound (in terms of a sphere packing bound) on the error probability. An

upper bound on the ML block error probability of linear codes based on the Lee weight enumerator

of the code was introduced. The bound has been used to study the average block error probability

of regular LDPC code ensembles, thanks to a derivation of the average Lee weight spectrum

of the ensembles. The bound provides relevant information on the code performance in the low

error probability regime (i.e., in the error floor region). The study has been complemented with

a density evolution analysis. Two decoders have been considered: one based on the (non-binary)

belief propagation algorithm, and a low-complexity message-passing algorithm where exchanged

messages are hard symbols (i.e., ring elements). The simulation results confirmed the outcomes

of the density evolution analysis, that is belief propagation decoding outperforms symbol message

passing decoding. Nevertheless, the performance under symbol message passing decoding seems

a promising option for applications asking for low complexity (such as code-based cryptosystems

involving the Lee metric).

In this work, we restricted ourselves to regular LDPC codes over integer residue rings. Future

work includes the performance study of other families of LDPC codes over finite integer rings

such as protograph-based and irregular LDPC codes.
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